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Optimal Throughput-Delay Scaling in Wireless
Networks – Part I: The Fluid Model

Abbas El Gamal, James Mammen, Balaji Prabhakar, and Devavrat Shah

Abstract

Gupta and Kumar (2000) introduced a random model to study throughput scaling in a wireless network with
static nodes, and showed that the throughput per source-destination pair is Θ

(

1/
√

n log n
)

. Grossglauser and Tse
(2001) showed that when nodes are mobile it is possible to have a constant throughput scaling per source-destination
pair.

In most applications delay is also a key metric of network performance. It is expected that high throughput is
achieved at the cost of high delay and that one can be improved at the cost of the other. The focus of this paper is
on studying this trade-off for wireless networks in a general framework. Optimal throughput-delay scaling laws for
static and mobile wireless networks are established. For static networks, it is shown that the optimal throughput-delay
trade-off is given by D(n) = Θ(nT (n)), where T (n) and D(n) are the throughput and delay scaling, respectively.
For mobile networks, a simple proof of the throughput scaling of Θ(1) for the Grossglauser-Tse scheme is given and
the associated delay scaling is shown to be Θ(n log n). The optimal throughput-delay trade-off for mobile networks
is also established. To capture physical movement in the real world, a random walk model for node mobility is
assumed. It is shown that for throughput of O

(

1/
√

n log n
)

, which can also be achieved in static networks, the
throughput-delay trade-off is the same as in static networks, i.e., D(n) = Θ(nT (n)). Surprisingly, for almost any
throughput of a higher order, the delay is shown to be Θ(n log n), which is the delay for throughput of Θ(1). Our
result, thus, suggests that the use of mobility to increase throughput, even slightly, in real-world networks would
necessitate an abrupt and very large increase in delay.

Index Terms

Queueing theory, random walks, scaling laws, throughput scaling, throughput-delay trade-off, wireless networks.

I. INTRODUCTION

A wireless network consists of a collection of nodes, each capable of transmitting to or receiving from other
nodes. When a node transmits to another node, it creates interference for other nodes in its vicinity. When several
nodes transmit simultaneously, a receiver can successfully receive the data sent by the desired transmitter only
if the interference from the other nodes is sufficiently small. An important characteristic of wireless networks is
that the topology of the nodes may not be known. For example, it may be a sensor network formed by a random
configuration of nodes with wireless communication capability. The wireless nodes could also be mobile, in which
case the topology could be continuously changing.

As the complexity of wireless networks increases, there is a need to develop better understanding of the
fundamental trade-offs that govern their behavior. How much does interference limit throughput? How much does
cooperation between the users help combat such interference? How does mobility affect network performance?
Attempting to answer such questions by studying instances of wireless networks is not likely to lead to answers
applicable to most of them.

In their seminal paper [11], Gupta and Kumar introduced a random network model for studying throughput
scaling in a static wireless network, i.e., when the nodes do not move. They defined a random network to consist of
n nodes distributed independently and uniformly on a unit disk. Each node has a randomly chosen destination node
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and can transmit at W bits per second provided that the interference is sufficiently small. Thus, each node can be
simultaneously a source, S, a destination, D, and a relay for other source-destination (S-D) pairs. They showed that
for almost all realizations of the random network, throughput scales as Θ(1/

√
n log n) per S-D pair 1. Their result

also showed that cooperation among users is essential to combating the adverse effects of interference. In [13],
throughput scaling in static networks is studied and results similar to that of [11] are obtained using a different and
simpler approach. In a related line of work (see e.g., [20], [14], [12]), the information-theoretic notion of network
capacity is studied.

In [10], Grossglauser and Tse showed that by allowing the nodes to move, throughput scaling changes dramat-
ically. Indeed, if node motion is independent across nodes and has a uniform stationary distribution, a constant
throughput scaling (Θ(1)) per S-D pair is feasible. Later, Diggavi, Grossglauser and Tse [5] showed that a constant
throughput per S-D pair is feasible even with a more restricted mobility model.

In most networking applications delay is also a key performance metric along with throughput. Further, throughput
that can be obtained from a network at the cost of increase in delay may not be useful. In this context the
understanding of throughput-delay trade-off is key to achieving the quality of service required by the application.
Indeed, a more useful description of the network capability would be in terms of its delay-constrained throughput.
Most previous work has focused mainly on achieving the highest throughput with no consideration for delay or
the trade-off between throughput and delay. In [2], a random network model with both mobile and static nodes
is considered. The authors propose a routing algorithm that is almost optimal in terms of throughput and study
its delay. In [18], throughput-delay trade-off in a mobile network is studied using an i.i.d. mobility model. In this
model, each node is equally likely to be in any part of the network at each time instant.

In [7], we studied throughput and delay scaling for static and mobile networks and established optimal throughput-
delay trade-offs. This paper provides a more complete treatment of our earlier results reported in [7] as well as
some extensions. Further, we provide results on throughput-delay trade-off for mobile networks under a random
walk model instead of the less realistic “hierarchical” Brownian motion model assumed in [7] 2. In addition to
establishing the optimal throughput-delay trade-off in wireless networks, the schemes we developed to achieve
the optimal trade-off should help enhance our understanding of the fundamental interplay between such essential
features of wireless networks as uncontrolled placement of nodes, common medium of communication leading to
interference, and node mobility.

From previous throughput results in [11] and [10], one may make the following inferences about the trade-off
between throughput and delay: (i) In a static random network a small transmission range is necessary to limit
interference and hence to obtain a high throughput. This results in multi-hopping, and consequently leads to large
delay. (ii) On the other hand, mobility allows nodes to approach each other closely. This not only allows the use of
smaller transmission ranges, but more crucially, it allows the use of a single relay node, which boosts throughput to
Θ(1). However, the delay is now dictated by the time it takes the relay to carry the packet to the neighborhood of
the destination, which can be very large. The above observations point out three important features that influence
the throughput and delay of any communication scheme in networks: (i) the number of hops, (ii) the transmission
range, and (iii) the node mobility and velocity. We exploit these three features, to different degrees, to obtain the
throughput-delay trade-off in an optimal way.

In the following section we provide needed definitions and summarize our main results. In Section III we establish
the throughput-delay trade-off for static wireless networks. In Section IV we consider a mobile network model,
present a scheme that achieves constant throughput, and determine its the corresponding delay. In Section V we
established the trade-off for mobile networks.

II. MODELS, DEFINITIONS, AND MAIN RESULTS

We first present the static and mobile random network models along with the model for successful wireless
transmission and then provide definitions of throughput and delay.

1Recall the following notation: (i) f(n) = O(g(n)) means that there exists a constant c and integer N such that f(n) ≤ cg(n) for n > N .
(ii) f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. (iii) f(n) = Ω(g(n)) means that g(n) = O(f(n)), (iv) f(n) = ω(g(n)) means
that g(n) = o(f(n)). (v) f(n) = Θ(g(n)) means that f(n) = O(g(n)); g(n) = O(f(n)).

2We note here that [7] incorrectly states the motion model as a Brownian motion model, whereas it is actually a hierarchical Brownian
motion model.
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Definition 1 (Random network model): The random network consists of n nodes distributed uniformly at random
in a unit torus. The nodes are split into n/2 distinct source-destination (S-D) pairs at random. Time is slotted for
packetized transmission. For simplicity, we assume that the time-slots are of unit length. In a static network nodes
do not move. In the case of a mobile network, the mobility model, which we denote as the random walk (RW) model,
is as follows. The unit torus is divided into n square cells of area 1/n each, resulting in a two-dimensional

√
n×√

n
discrete torus. The initial position of each node is equally likely to be any of the n possible cells independent of
others. Each node independently performs a simple random walk on the two-dimensional

√
n×√

n discrete torus.
By a simple random walk, we mean the following: let a node be in cell (i, j) ∈ {0, . . . , √n−1}2 at time t, then, at
time t+1 the node is equally likely to be in any of the four adjacent cells {(i−1, j), (i+1, j), (i, j −1), (i, j +1)},
where addition and subtraction are modulo

√
n.

Note that, implicitly this models a situation where each node moves 1/
√

n distance in unit time, that is, velocity
scales as 1/

√
n. Further, note that in the random walk model, nodes move independently according to a uniform

stationary and ergodic distribution as in previous work [10]. The additional assumption of the random walk model
is not required for throughput results and is used only in the analysis of delay.

At this point, we would like to argue that the random walk model is a good model for capturing real motion in
the physical world due to its Markovian nature, so that the present position determines the distribution of the future
position. It is sufficiently simple and well studied by probabilists, so as to allow analysis of complicated quantities
such as queueing delay, which depends heavily on the motion model.

Definition 2 (Model for successful transmission): For successful transmission, we assume a model similar to the
Protocol model as defined [11]. Under our Relaxed Protocol model, a transmission from node i to node j in a
time-slot is successful if for any other node k that is transmitting simultaneously,

d(k, j) ≥ (1 + ∆)d(i, j) for ∆ > 0,

where d(i, j) is the distance between nodes i and j. During a successful transmission, nodes send data at a constant
rate of W bits per second.

To establish our results without being encumbered by issues related to scheduling packets in the network, we
allow the packet size to be arbitrarily small. We refer to this as the fluid model. In this model, the data sent in a
time-slot could correspond to multiple packets. Thus the time taken for a packet transmission may only be a small
fraction of the time-slot itself. However, a packet received by a node in some time-slot cannot be transmitted by
the node until the next time-slot. The scheduling problem is avoided using the fluid model by choosing the packet
size to be small enough depending on the number of nodes in the network. In the second part of this paper [9],
we extend our trade-off results for static networks to the case where packet size remains constant.

In the other commonly used model of successful transmission, namely the Physical model (e.g., [11], [10]), a
transmission is successful if the signal to interference and noise ratio (SINR) is greater than some constant. It is
well known [11] that if signal decays with distance r as r−δ for δ > 1, the Protocol model is equivalent to the
Physical model, where each transmitter uses the same power. In the rest of the paper, we shall assume the Relaxed
Protocol model.

Definition 3 (Scheme): A scheme Π for a random network is a sequence of communication policies, {Πn}, where
policy Πn determines how communication takes place in a network of n nodes.

Definition 4 (Throughput of a scheme): Let BΠn
(i, t) be the number of bits of S-D pair i transferred in t time-

slots under policy Πn, for 1 ≤ i ≤ n/2,. Note that this could be a random quantity for a given realization of the
network. Scheme Π is said to have throughput TΠ(n) if ∃ a sequence of events AΠ(n) such that

AΠ(n) =

{

min
1≤i≤n/2

lim inf
t→∞

1

t
BΠn

(i, t) ≥ TΠ(n)

}

,

and P (AΠ(n))→1 as n→∞.
We allow randomness in policies and as a result the set AΠ(n) above is in the joint probability space including
both the random network of size n and the policy. Randomness will be used in our schemes for mobile networks.
We say that an event An occurs with high probability (whp) if P (An)→1 as n→∞.

Definition 5 (Delay of a scheme): The delay of a packet is the time it takes for the packet to reach its destination
after it leaves the source. Let Di

Πn
(j) denote the delay of packet j of S-D pair i under policy Πn, then the sample
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mean of delay (over packets that reach their destinations) for S-D pair i is

D̄i
Πn

= lim sup
k→∞

1

k

k
∑

j=1

Di
Πn

(j).

The average delay over all S-D pairs for a particular realization of the random network is then

D̄Πn
=

2

n

n/2
∑

i=1

D̄i
Πn

.

The delay for a scheme Π is the expectation of the average delay over all S-D pairs, i.e.,

DΠ(n) = E[D̄Πn
] =

2

n

n/2
∑

i=1

E[D̄i
Πn

].

Definition 6 (Throughput-delay optimality): A pair (T (n), D(n)) is said to be throughput-delay (T-D) optimal if
there exists a scheme Π with TΠ(n) = Θ(T (n)) and DΠ(n) = Θ(D(n)) and ∀ scheme Π′ with TΠ′(n) = Ω(T (n)),
D(Π′)(n) = Ω(D(n)).

Definition 7 (Optimal throughput-delay trade-off): The optimal throughput-delay trade-off consists of all optimal
T-D pairs.

Although we have introduced detailed notation in order to unambiguously define the above quantities, in the rest
of this paper we shall avoid the use of subscripts to indicate the scheme and policy since the scheme or policy
under consideration will be clear from the context. Also when describing a scheme Π, we shall just describe the
policy Πn for arbitrary n.

We would like to note that since the fluid model allows us to scale down the size of the packets, packet delay
as defined here is not equivalent to the delay per bit. To measure delay per bit one would need to keep the packet
size constant but then this would require scheduling in the network. The fluid model allows us to initiate a study
of the network delay, without dealing with packet scheduling. The packet delay scaling as defined above would be
the delay per bit scaling if the scheduling delay does not dominate the packet delay. This is the case in one of our
schemes (Scheme 2 in Section IV), where we use packets of constant size. In subsequent work [9], we show that
this is in fact the case for static networks as well.

In this paper, constants that do not depend on n are denoted as ci. We would also like to note that in order to
keep the discussion clear, we sometimes use looser bounds that result in the correct order even when tighter bounds
in terms of constants can be readily obtained.

The main results of this paper are as follows.
Trade-off in the static random network: In Section III, we introduce a cellular scheme (Scheme 1) for static
networks, which by varying cell size can trade-off throughput for delay. We then prove that the scheme is optimal
leading to the following result.

Theorem 1: The optimal throughput-delay trade-off in a static random network is given by

T (n) = Θ

(

D(n)

n

)

, (1)

when T (n) = O
(

1/
√

n log n
)

.
The above result, which is illustrated in Figure 1, says that: (i) The highest throughput per node achievable in

a static network is Θ
(

1/
√

n log n
)

, as Gupta and Kumar obtained. At this throughput the average delay D(n) =

Θ
(

√

n/ log n
)

(point Q in Figure 1). (ii) By increasing the cell size and hence the transmission radius, the
average number of hops can be reduced. But because the interference is higher now, the throughput is lower.
When throughput is O

(

1/
√

n log n
)

, equation (1) shows the optimal delay-constrained throughput (segment PQ in
Figure 1).
Mobile network at T(n) = Θ(1): In [10], a two-hop scheme that achieves constant throughput scaling in mobile
wireless networks was presented. It was expected that the delay would be high since mobility was utilized to
communicate packets. Delay scaling, however, was not quantified. In Section IV, we introduce Scheme 2, which is
essentially the same as the two-hop scheme in [10]. We show that this scheme achieves constant throughput scaling
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Fig. 1. Throughput-delay trade-off for the static random network. The scales of the axes are in terms of the orders in n.

for the mobile network and determine its associated constant. Using results and methods from random walks and
queueing theory, we determine the exact order of delay for the random walk model of node mobility.

Theorem 2: Scheme 2 for the mobile random network has throughput T (n) = Θ(1) and its delay scales as

D(n) = Θ (n log n) .
Point R in Figure 2 corresponds to the throughput-delay scaling provided by Scheme 2. As mentioned before, in
contrast to other schemes in this paper that use a fluid model, the packet size remains fixed in Scheme 2. Note
that any trade-off that can be achieved using constant-size packets can obviously be achieved using the fluid model
since the constraint of requiring packets to have a constant size is removed.
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Fig. 2. Throughput-delay trade-off for the mobile random network. Again, the scales of the axes are in terms of the orders in n.

Trade-off in the mobile random network: In Section V we introduce Schemes 3(a) and 3(b) that achieve the
optimal throughput-delay trade-off in mobile networks. To provide lower delay, Scheme 3(a) does not use mobility
to relay packets. In fact, mobility makes this scheme significantly more complex than Scheme 1, even though the
throughput-delay trade-off achieved is the same for both schemes. This is because packets need to chase the nodes
to achieve low delay. However, mobility is essential for higher throughput and this is harnessed by Scheme 3(b) at
the cost of higher delay. The throughput-delay results for mobile networks are as follows.
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Theorem 3: The optimal throughput-delay trade-off for the mobile random network is as follows.
(a) For the range of T (n) = O

(

1/
√

n log n
)

, similar to the case of static network,

T (n) = Θ

(

D(n)

n

)

.

(b) For T (n) = ω
(

1/
√

n log n
)

and T (n) = O(1/ log n) the optimal throughput-delay trade-off is characterized
as,

T (n) = Θ

(

1
√

n a(n) log n

)

and

D(n) = Θ

(

n log

(

1

a(n)

))

,

where a(n) is a parameter such that a(n) = Ω(log n/n) and a(n) ≤ 1.
Segment PQ in Figure 2 corresponds to Theorem 3(a) and segment Q1R corresponds to Theorem 3(b). Note that
the effect of mobility is to significantly increase the range of achievable throughput albeit at the expense of a very
large delay.

Independently and around the same time, it has been shown in [15] using a Brownian motion model for node
mobility that any throughput higher than Θ(1/

√
n) comes at the expense of a very high delay. The same conclusion

follows from the optimal throughput-delay trade-off for mobile networks obtained using the random walk mobility
model in this paper.

The results for mobile networks provide several insights into the role of mobility in wireless networks.
• For throughput of O

(

1/
√

n log n
)

, the trade-off in mobile networks is identical to that in static networks. This
suggests that, although mobility can enhance the throughput of wireless networks, it does not alter the trade-off
between throughput and delay for the range of throughputs achievable in static wireless networks. Further, the
scheme achieving the above trade-off does not use the mobility of the nodes to communicate packets. This
suggests that for low delay applications, mobility is in fact a hindrance and makes communication schemes
significantly more complex.

• As soon as mobility is used to boost the throughput beyond Θ
(

1/
√

n log n
)

, the delay jumps up to Θ(n log log n).
Thereafter, even though the throughput increases to Θ(1), the delay only increases to Θ(n log n). In this sense
there is almost no trade-off between throughput and delay for this range of high throughputs. This also means
that if mobility is used to boost the throughput even slightly beyond that in static wireless networks then the
delay shoots up to its highest value.

Apart from the above results, there are two other contributions of this paper.
1) Our work provides a unified framework for understanding the seemingly disparate throughput results of [11]

and [10]. Further, the optimal throughput-delay trade-off for static and mobile wireless networks is also
determined in the same framework.

2) In the course of establishing the optimal throughput-delay trade-off, we provide simpler proofs of previous
throughput results. We note that our model is essentially the same as that in [11] and [10], with two minor
differences — we assume that the network is located on a torus instead of a disk and we assume the Protocol
model instead of the Physical model.

III. THROUGHPUT-DELAY TRADE-OFF FOR STATIC NETWORKS

This section establishes the optimal throughput-delay trade-off in a static wireless network by providing a proof
of Theorem 1. We first present Scheme 1 and compute the trade-off achievable using this scheme in Theorem 4.
Theorem 5 provides a converse, which states that for a given delay scaling no scheme can provide a better throughput
scaling than that of Scheme 1, thus establishing the optimality of Scheme 1 and also proving Theorem 1.

Our trade-off scheme is a multi-hop, time-division-multiplexed (TDM), cellular scheme with square cells of area
a(n) so that the unit torus consists of 1/a(n) cells as shown in Figure 3. In the following analysis, we ignore the
edge effects due to 1/a(n) not being a perfect square. Before presenting the trade-off scheme, we present three
lemmas about the geometry of the n nodes on the torus divided into square cells of area a(n). Proofs of Lemmas 1
and 2 are in Appendix I.
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Lemma 1: If a(n) ≥ 2 log n/n, then each cell has at least one node whp.
We say that cell B interferes with another cell A if a transmission by a node in cell B can affect the success of

a simultaneous transmission by a node in cell A.
Lemma 2: Under the Relaxed Protocol model, the number of cells that interfere with any given cell is bounded

above by a constant c1, independent of n.
A consequence of Lemma 2 is that there exists an interference-free schedule such that each cell becomes active

regularly once in 1 + c1 time-slots and it does not interfere with any other simultaneously transmitting cell.
We say that a cell is active in a time-slot if any of its nodes transmits in that time-slot. A consequence of

Lemma 2 is that, there exists an interference-free schedule where each cell becomes active regularly, once in 1+ c1

time-slots and no cell interferes with any other simultaneously transmitting cell.
Let the straight line connecting a source S to its destination D be called an S-D line.
Lemma 3: For a(n) = Ω(log n/n), the number of S-D lines passing through each cell is O

(

n
√

a(n)
)

, whp.

Proof: Let Hi be the number of hops taken by a packet for S-D pair i, 1 ≤ i ≤ n/2 in traveling from S to
D along the S-D line by hops along adjacent cells of area a(n). For each S-D pair, Hi depends on the distance Li

between S and D and also the orientation of the S-D line. Now E[Li] is a constant and hence since the hops are
along cells having side-length 1/

√

a(n), it can be shown that

E[Hi] = Θ
(

E[Li]/
√

a(n)
)

. (2)

There are m = 1/a(n) cells. Fix a cell j and define Y j
i to be the indicator of the event that the S-D line of S-D

pair i passes through cell j. That is,

Y j
i =

{

1 if any hop of S-D pair i is in cell j
0 otherwise

for 1 ≤ i ≤ n/2 and 1 ≤ j ≤ m. Summing up the total number of hops in the cell in two different ways we obtain

n/2
∑

i=1

m
∑

j=1

Y j
i =

n/2
∑

i=1

Hi.

Taking expectations on both sides and noting that all the E[Y j
i ] are equal due to symmetry on the torus, we obtain

nm

2
E[Y j

i ] =
n

2
E[Hi]. (3)

From (2) and (3) it follows that P{Y j
i = 1} = Θ

(

√

a(n)
)

. Now for a fixed cell j, the total number of S-D

lines passing through it is given by Y =
∑n/2

i=1 Y j
i . This is the sum of i.i.d. Bernoulli random variables since the

position of each node is independent of that of the others and Y j
i depends only on the positions of the source and

destination nodes of S-D pair i. Moreover E[Y ] = Θ
(

n
√

a(n)
)

, which is Ω
(√

n log n
)

since a(n) = Ω(log n/n)

and hence the Chernoff bound for the sum of i.i.d. Bernoulli random variables (e.g. see [17]) yields

P{Y > (1 + δ)E[Y ]} ≤ exp(−E[Y ]δ2/4).

Choosing δ = 2
√

2 log n/E[Y ] results in

P{Y > (1 + δ)E[Y ]} ≤ 1/n2.

Since δ = o(1), for a(n) = Ω(log n/n) this means that Y = O(E[Y ]) with probability ≥ 1 − 1/n2. Now
using the union bound over m = O(n/ log n) cells shows that the number of lines passing through each cell is
O(E[Y ]) = O

(

n
√

a(n)
)

with probability ≥ 1 − 1/n.

The above lemma shows that the number of S-D lines passing through each cell is ≤ c2n
√

a(n) whp, for an
appropriate choice of the constant c2.

Now we are ready to describe Scheme 1, which is parameterized by the cell area a(n), where a(n) = Ω(log n/n)
and a(n) ≤ 1.
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Fig. 3. The unit torus is divided into cells of size a(n) for Scheme 1. The S-D lines passing through the shaded cell in the center are
shown.
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Fig. 4. The TDM transmission schedule of Scheme 1. Each cell becomes active once in 1 + c1 time-slots and each active time-slot is
divided into several packet-slots.

Scheme 1: Static networks

1) Divide the unit torus using a square grid into square cells, each of area a(n) (see Figure 3).
2) Verify whether the following conditions are satisfied for the given realization of the random network.

• Condition 1: No cell is empty.
• Condition 2: The number of S-D lines through each cell is at most c2n

√

a(n).
3) If either of the above conditions is not satisfied then use a time-division policy, where each of the n/2 sources

transmits directly to its destination in a round-robin fashion.
4) Otherwise, i.e., if both conditions are satisfied, use the following policy Σn:

a) Each cell becomes active at a regular interval of 1+c1 time-slots (the constant c1 comes from Lemma 2).
Several cells which are sufficiently far apart become active simultaneously. Thus the scheme uses TDM
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between nearby cells.
b) Let the straight line connecting a source S to its destination D be denoted as an S-D line. A source S

transmits data to its destination D by hops along the adjacent cells lying on its S-D line as shown in
Figure 3.

c) When a cell becomes active, it transmits a single packet for each of the S-D lines passing through it.
This is again performed using a TDM scheme that slots each cell time-slot into packet time-slots as
shown in Figure 4.

The point of trade-off at which Scheme 1 operates is determined by the parameter a(n) and the dependence is
made precise in the following theorem.

Theorem 4: For a(n) ≥ 2 log n/n,

T (n) = Θ

(

1

n
√

a(n)

)

and D(n) = Θ

(

1
√

a(n)

)

,

i.e., the throughput-delay trade-off achieved by Scheme 1 is

T (n) = Θ

(

D(n)

n

)

for T (n) = O

(

1√
n log n

)

.

Proof: If the time-division policy with direct transmission is used, then the throughput is 2W/n with a delay
of 1. But since it happens with a vanishingly low probability, as shown by Lemmas 1 and 3, the throughput and
delay for Scheme 1 are determined by that of policy Σn.

First we analyze the throughput of Scheme 1. When policy Σn is used, since Condition 1 is satisfied, each cell
has at least one node. This guarantees that each source can send data to its destination by hops along adjacent
cells on its S-D line. From Lemma 2, it follows that each cell gets to transmit a packet every 1 + c1 time-slots, or
equivalently, the cell throughput is Θ(1). The total traffic through each cell is that due to all the S-D lines passing

through the cell, which is O
(

n
√

a(n)
)

since Condition 2 is also satisfied. This shows that

T (n) = Θ
(

1/
(

n
√

a(n)
))

.

Next we compute the average packet delay D(n). As defined earlier, packet delay is the sum of the amount of
time spent in each hop. We first bound the average number of hops then use the fact that the time spent at each
hop is constant, independent of n.

Since each hop covers a distance of Θ
(

√

a(n)
)

, the number of hops per packet for S-D pair i is Θ
(

di/
√

a(n)
)

,
where di is the length of S-D line i. Thus the number of hops taken by a packet averaged over all S-D pairs is
Θ
(

1
n

∑n
i=1 di/

√

a(n)
)

. Since for large n, the average distance between S-D pairs is 1
n

∑n
i=1 di = Θ(1), the

average number of hops is Θ
(

1/
√

a(n)
)

.
Now note that by Lemma 2 each cell can be active once every constant number of cell time-slots and by Lemma 3

each S-D line passing through a cell can have its own packet time-slot within that cell’s time-slot. Since we assumed
that packet size scales in proportion to the throughput T (n), each packet arriving at a node in the cell departs in the
next active time-slot of the cell. Thus the delay is at most c1 times the number of hops. From the above discussion,
we conclude that the delay D(n) = Θ

(

1/
√

a(n)
)

. This concludes the proof of Theorem 4.
Next we show that the throughput-delay trade-off provided by Scheme 1 is optimal for a static wireless network

as far as the scaling is concerned.
Theorem 5: If any scheme has throughput, T (n), and delay, D(n), then D(n) = Ω(nT (n)).

Proof: This proof uses techniques similar to those used in the proof of Theorem 2.1 in [11]. Consider a given
fixed placement of 2n nodes in the unit torus. Let L̄ be the sample mean of the lengths of the S-D lines for the
given node placement and let the throughput of the scheme under consideration be λ. Consider a large enough time
t, so that by definition, the total number of bits transported in the network is λnt. Let h(b) be the number of hops
taken by bit b, 1 ≤ b ≤ λnt and let r(b, h) denote the length of hop h of bit b. Therefore,

λnt
∑

b=1

h(b)
∑

h=1

r(b, h) ≥ λntL̄. (4)
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Now, for two simultaneous transmissions from node i to node j and from node k to node l, consider

d(j, l) ≥ d(j, k) − d(l, k)

≥ (1 + ∆)d(i, j) − d(l, k), (5)

and

d(j, l) ≥ d(l, i) − d(i, j)

≥ (1 + ∆)d(l, k) − d(i, j). (6)

Combining (5) and (6), we obtain

d(j, l) ≥ ∆

2
(d(i, j) + d(k, l)) .

This result implies that if we place a disk around each receiver of radius ∆/2 times the length of the hop, the
disks must be disjoint for successful transmission under the Protocol model. Since a node transmits at W bits per
second, each bit transmission time is 1/W seconds. During each bit transmission, the total area covered by the
disks surrounding the receivers must be less than the total unit area. Summing over the Wt bits transmitted in time
t and accounting for edge effects, we obtain

λnt
∑

b=1

h(b)
∑

h=1

π

4

(

∆

2
r(b, h)

)2

≤ Wt. (7)

Let the total number of hops taken by all bits be H =
∑λnt

b=1 h(b). Then by convexity, it follows that




λnt
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤
λnt
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)2. (8)

Using (4), (7) and (8), we obtain
(

λntL̄
)2 ≤

(

16Wt

π∆2

)

H. (9)

Now defining h̄ to be the sample mean of the number of hops over λnt bits, i.e., h̄ = 1
λntH . Using this to rewrite

(9) and the obvious fact that λ ≤ W , we obtain

λn ≤ min

{

16W

π∆2L̄2
h̄, nW

}

. (10)

By the law of large numbers, L̄ = Θ(1) whp. Moreover the rate of convergence is exponential in n. Let An be
the set such that L̄ = Θ(1) and let I(An) be the indicator of set A. Then from (10), we have

nE[λ] ≤ E

[

16W

π∆2L̄2
h̄I(An)

]

+ E [nWI(Ac
n)]

≤ c5E[h̄] + o(1), (11)

where the last term is o(1) since P (Ac
n) converges to 0 exponentially.

By definition, if a scheme has throughput T (n) then there exists a set Bn on which λ ≥ T (n) and P (Bn)
converges to 1. Therefore we have

E[λ] = E[λI(Bn)] + E[λI(Bc
n)]

≥ T (n)(1 − o(1)). (12)

From (11) and (12), it follows that nT (n)(1 − o(1)) ≤ c5E[h̄] + o(1), which is the same as E[h̄] = Ω(nT (n)).
Now each packet spends at least one time-slot at each hop and hence the delay of each packet is at least as much as
the number of hops it takes. As a result, if D(n) is the delay of the scheme under consideration then by definition,
D(n) ≥ E[h̄]. Thus we have shown that for any scheme, D(n) = Ω(nT (n)).
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IV. MOBILE NETWORK WITH T (n) = Θ(1)

In this section we consider a random mobile network with the random walk mobility model, which is similar to
the model introduced by Grossglauser and Tse in [10]. They showed that under the Physical model T (n) = Θ(1)
is achievable. Recall that we assume the n nodes form n/2 distinct S-D pairs in a torus of unit area. The motion
of each node is independent, ergodic and uniform on the

√
n×√

n discrete torus. Thus, at a given time, a node is
equally likely to be in any part of the torus independent of the location of any other node.

We first present a scheme (which is similar to the one in [10]) and show that it achieves constant throughput and
then analyze its delay in Subsection IV-A. The analysis of delay for this scheme will also help in characterizing
the throughput-delay trade-off in mobile wireless networks in Section V.

Scheme 2: T (n) = Θ(1) in mobile networks

1) Divide the unit torus into n square cells, each of area 1/n.
2) Each cell becomes active once in every 1 + c1 time-slots (as a consequence of Lemma 2).
3) In an active cell, the transmission is always between two nodes within the same cell.
4) Each time-slot is divided into two sub-slots A and B. The following is done in each active cell.

a) In sub-slot A, if one or more source nodes are present and the cell contains two or more nodes, pick
one source node at random. With probability 0 < p1 < 1, the randomly chosen node transmits its packet
to another randomly chosen node in the same cell, which acts as a relay. This node could also happen
to be the destination. And with probability 1 − p1 it does nothing.

b) In sub-slot B, if the cell contains one or more destination nodes and two or more nodes in all, pick
one destination node at random. Another randomly chosen node in the same cell acts as a relay and
transmits to this destination a packet that is destined for it if it has one. This node could also happen
to be the source. Otherwise nothing happens.

We now show that this scheme achieves a constant throughput scaling using a simpler proof than the one in [10].
Our proof is based on showing that the total network throughput is Θ(n). The symmetry of the scheme and the use
of at most one relay ensure that this total network throughput is equally divided among the n/2 S-D pairs resulting
in T (n) = Θ(1).

Theorem 6: The throughput in a mobile random network using Scheme 2 is T (n) = Θ(1).
Proof: Consider the transmission of packets from sources in sub-slot A over a period of T time-slots. Due to

division into sub-slots the packet size is W/2 bits. Let A(i, t) be the number of packets transmitted from source i

in time-slot t and let A(t) =
∑n/2

i=1 A(i, t) be the total number of packets transmitted in time-slot t. The number
of bits transmitted by source i in time-slot t is just WA(i, t)/2.

Next we determine E[A(t)]. Let C(t) be the number of cells which contain at least one of the n/2 source nodes
and two or more nodes in all. Then from the description of Scheme 2 it follows that E[A(t)] = p1E[C(t)]/(1+c1).
Now let Ii be the indicator for the event that cell i contains at least one source node and two or more nodes in
all. Let E1 be the event that cell i contains exactly one source node and E2 be the event that cell i contains two
or more source nodes. Similarly let F1 be the event that cell i contains one or more destination nodes. Also let

pk =

(

n/2

k

)(

1

n

)k (

1 − 1

n

)n/2−k

→e−1/2

2kk!
.

That is, pk is equal to the probability that k nodes are in cell i. Then for 1 ≤ i ≤ n,

E[Ii] = P ((E1 ∩ F1) ∪ E2)

= P (E1)P (F1) + P (E2)

= p1(1 − p0) + (1 − p0 − p1)

→ 1

2
e−1/2

(

1 − e−1/2
)

+ 1 − e−1/2 − 1

2
e−1/2

= c3 > 0, (13)
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as n → ∞. Therefore,

E[A(t)] =
p1

1 + c1
E[C(t)]

=
p1

1 + c1
E

[

n
∑

i=1

Ii

]

=
np1

1 + c1
E[I1]

→ c4n, (14)

where c4 = c3p1/(1 + c1) > 0.
Now the mobile random network is an irreducible finite-state Markov chain and A(t) is a bounded non-negative

function of the state of this Markov chain at time t. Therefore by the ergodicity of such a Markov chain,

lim
T→∞

1

t

T
∑

t=1

A(t) = E[A(t)] → c4n.

Thus the total rate at which packets are transmitted from sources is Θ(n). From the symmetry of the nodes and the
randomness of the scheme it follows that each of the n/2 sources transmits at rate of Θ(1). These packets either
reach the destination or are queued at the relay nodes, in which case they are transmitted to their final destinations
in some of the B sub-slots. By choosing 0 < p1 < 1 in Scheme 2, we have ensured that the arrival rate to each
queue is less than the rate at which the queue can be serviced. This ensures the stability of the queues as a result
of which the throughput per S-D pair is just the rate at which each source transmits data. And we have shown that
this is Θ(1) thus proving that Scheme 2 yields T (n) = Θ(1).
The above proof also shows that the constant throughput per S-D pair that can be achieved is close to c4W/2 bits
per second for large enough n. Now c3 = 0.2095 and reasonably small values of ∆ result in 1 + c1 = 16, which
results in c4 = 0.13p1. Thus under Scheme 2, for large enough n, the throughput between each source-destination
pair is about 0.65% of the maximum possible value of W bits per second.

A. Analysis of Delay

The nodes perform independent random walks. Hence only Θ(1/n) of the packets belonging to any S-D pair
reach their destination in a single hop (which happens when both S and D are in the same cell in sub-slot A). Thus,
most of the packets reach their destination via a relay node, where the delay has two components: (i) hop-delay,
which is constant and independent of n, and (ii) mobile-delay, which is the time a packet spends at the relay while
it is moving until it is delivered to its destination. Next, we analyze the mobile-delay.
Relay-queue: From the description of Scheme 2, for each S-D pair, each of the remaining n − 2 nodes acts as a
relay. Each node maintains a separate queue for each of the S-D pairs as illustrated in Figure 5. Thus the mobile-
delay is the expected delay at such a relay-queue. By symmetry, all such queues at all relay nodes are identical.
Consider one such relay-queue, i.e., fix an S-D pair and a relay node R. To compute the expected delay of this
relay-queue, we need to study the characteristics of its arrival and departure processes.

A packet arrives at the relay-queue when (i) R is in the same cell as S, (ii) the cell becomes active, (iii) S and R
are chosen as a transmit-receive pair, and (iv) S transmits a packet (which happens with probability p1). Similarly,
a departure can occur from the queue when (i) R is in the same active cell as D, (ii) the cell becomes active, and
(iii) R and D are chosen as a transmit-receive pair. Such a time-slot is called a potential departure instant and the
sequence of inter-potential-departure times is called the potential-departure process. A packet actually departs, only
if, in addition to the above, R also has a packet for D, i.e., the relay-queue is not empty. In the analysis below, we
ignore the effect of the the cell becoming active once in 1+ c1 time-slots since the actual delay is 1 + c1 times the
delay computed in this manner by ignoring it.

We say that two nodes meet if they are in the same cell. The joint position of two nodes due to independent
random walks can also be viewed as a difference random walk relative to the position of one node. Then the
inter-meeting times are just the inter-visit times of state (0, 0) for the difference random walk on a

√
n × √

n
discrete torus. Hence the inter-meeting times of nodes S and R, τ0, τ1, . . ., form an i.i.d. sequence. Let τ be a
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Fig. 5. For any S-D pair, the remaining n − 2 nodes act as relays. Each node maintains a separate queue for each of the n − 2 S-D pairs.

random variable with their common distribution. The moments of τ that will be required later are given in the
following lemma, which is proved in Appendix II.

Lemma 4: The first and second moments of τ are given by

E[τ ] = n, E[τ 2] = Θ(n2 log n).
In what follows, we obtain upper and lower bounds of the same order on the delay of the relay-queue, thus

pinning down the exact order of delay scaling. To obtain an upper bound, we progressively define queues that
are simpler to analyze. We first upper bound the delay of the relay-queue by that of another queue, Q1, which
has i.i.d. inter-arrival times. The delay of Q1 is then upper bounded by that of Q2, which, in addition, has i.i.d.
inter-potential-departure times. The delay of Q2 is then upper bounded by the sum of delays through two queues,
Q3 and Q4, in tandem. Queue, Q3, is a GI/GI/1 queue, so that Kingman’s upper bound can be used. Queue, Q4,
is not a GI/GI/1 queue, but we are still able to bound the delay using the moments of the inter-arrival and inter-
potential-departure times. For both these queues, the required moments can be expressed in terms of the moments
of the inter-meeting time of two nodes, which we obtain using random walk analysis. We now proceed to the
details.
Upper bound: As mentioned above, the inter-meeting times of nodes S and R form an i.i.d. sequence. The inter-
arrival times, however, are not independent because an arrival occurs with probability p1 only if S and R are chosen
as a transmit-receive pair. The probability that S and R are chosen as a transmit-receive pair depends on the number
of other nodes in the same cell. If S and R are not chosen, in spite of being in the same cell, the likelihood of
there being many more nodes in the same cell increases. Due to the random walk model of the node mobility, if
there is a crowding of nodes in some part of the network, it remains crowded for some time in the future. Hence
due to the Markovian nature of node mobility, inter-arrival times in the relay-queue are not independent.

Consider a queue, Q1, in which there is an arrival with probability p1 whenever S and R meet, irrespective of
whether S and R are chosen as a transmit-receive pair. The inter-arrival times of this queue are then stochastically
dominated by the inter-arrival times of the relay-queue. Let the potential-departure process of Q1 be the same as
that of the relay-queue. Then the delay of Q1 provides an upper bound on the delay of the relay queue. It is easy
to see that the sequence of inter-arrival times of Q1 is i.i.d. and that the common distribution is that of the sum of
G independent copies of τ , where G ∼ Geom(p1). Recall that τ is the inter-meeting time of S and R.

Let the potential-departure process of the relay-queue (and also Q1) be denoted by {Si}. Next we will study
this process in order to replace it with another coupled process with less frequent potential departures. Recall that
the potential departure time-slots are the ones in which a packet can be emptied from the queue if the queue is
not empty. These are the times when R and D are in the same cell and are chosen as a transmit-receive pair. Let
α0, α1, . . . be the time-slots in which R and D are in the same cell and let Ei, i = 0, 1, . . ., be the indicator of the
event that αi is also a potential service instant. That is, Ei is an indicator for the event that R and D are chosen
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as a transmit-receive pair at time αi.
Let αi denote {α0, . . . , αi} and Ei denote {E0, . . . , Ei}. Then P (Ei = 1|αi, Ei−1), i = 0, 1, . . . is the probability

that Ei = 1 given α0, . . . , αi and E0, . . . , Ei−1. This is the probability that R and D are chosen as a transmit-
receive pair given that they are in the same cell in time-slot αi and given the entire past consisting of α0, . . . , αi

and E0, . . . , Ei−1. From the description of Scheme 2 it is clear that the probability of the event {Ei = 1} depends
on the number of other nodes in the cell containing R and D. This, in turn, depends on the entire past of the
processes {Ei} and {αi} due to the Markovian nature of node mobility.

Thus the potential-departure process is generated by the processes {αi} and {Ei}. This is because time-slot αi,
when R and D are in the same cell for the ith time, is chosen as a potential departure instant with probability
P (Ei = 1|αi, Ei−1).

Due to the dependence on the past of {Ei}, the inter-potential-departure times are also dependent. We will
next show that this dependence is not too much, in the sense that irrespective of the past, the probability of the
event {Ei = 1} is greater than a positive constant that does not depend on n. The following lemma is proved in
Appendix II.

Lemma 5: There exists a constant, c6, (independent of n) such that for all large enough n,

P
(

Ei = 1|αi, Ei−1
)

≥ c6 > 0.

Now let Q2 be a queue such that each time-slot in which R and D meet is chosen to be a potential departure instant
with probability c6. Then by Lemma 5, the inter-potential-departure times for this queue would be stochastically
dominated by those for Q1. If Q2 has the same arrival process as Q1 then the delay of Q2 is an upper bound on
that of Q1.

As before, the sequence of inter-potential-departure times of Q2 is i.i.d. and the common distribution is that of
the sum of G independent copies of τ , where G ∼ Geom(c6). As a result, we have upper bounded the delay of
the relay-queue by the delay of Q2, which has i.i.d. inter-arrival times and i.i.d. inter-potential-departure times.
To obtain an upper bound on the delay, we only use the first two moments of the inter-arrival time and the inter-
potential-departure time. Since both of these are sums of a Geometric number of independent inter-meeting times,
it is easy to check that their moments are of the same order as that of the inter-meeting time. As a result, the
constants p1 and c6 do not affect the delay scaling. Further, Q2 is stable as long as the arrival rate is less than the
service rate, i.e., p1 < c6. Since we are interested in determining the delay scaling, for simplicity, we assume that
in Q2, an arrival occurs whenever S and R meet with probability 0.5 and a potential departure occurs whenever R
and D meet.

Now we bound the delay of Q2 by the sum of the delays through two queues, Q3 and Q4, in tandem. Both Q3

and Q4 will be shown to have delay of O(n log n), which implies that the delay of Q2 is O(n log n). Queues Q3

and Q4 are constructed as follows. The arrival process of Q3 is the same as that of Q2. The potential-departure
process of Q3 is an i.i.d. Bernoulli process with parameter 2/3n (or potential departure rate 2

3n ). An arrival occurs
at Q4 whenever there is a potential-departure at Q3. If Q3 is non-empty, then the arrival to Q4 is the head-of-line
packet transferred from Q3 to Q4 or else a dummy packet is fed to Q4. Thus the arrival process at Q4 is the same
as the potential-service process at Q3. By construction, the delay of a packet through this tandem of queues, Q3

and Q4, upper bounds the delay experienced by a packet through Q2. Now from Lemmas 6 and 7 stated below
and proved in Appendix II, both Q3 and Q4 have an expected delay of O(n log n).

Lemma 6: The expected delay of a packet through Q3 is O(n log n).
Lemma 7: The expected delay of a packet through Q4 is O(n log n).
Hence the expected delay of the packets of each S-D pair relayed through each relay R is O(n log n). The delay

of a scheme is the expectation of the packet delay averaged over all S-D pairs and all relay nodes. Hence it follows
that the delay of Scheme 2 is O(n log n).
Lower bound: We now establish a lower bound on the delay of Scheme 2. Consider a packet arrival at the relay
node when it is in cell (i, j). Let the destination be in cell (k, l), which is equally likely to be any one of the n
cells since the destination performs an independent random walk. Using the difference random walk, the delay is
at least equal to the time required for the random walk to reach state (k, l) starting from state (i, j). Hence the
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expected value of the delay can be lower bounded as

E[D] ≥
√

n−1
∑

i,j=0

√
n−1
∑

k,l=0

π(i, j)π(k, l)E(i,j)T(k,l)

= Θ(n log n), (15)

where (15) is from p. 11 in Chapter 5 of [1].
Combining this lower bound with the earlier upper bound leads to the following theorem.
Theorem 7: The delay of Scheme 2 is

D(n) = Θ (n log n) .

V. THROUGHPUT-DELAY TRADE-OFF IN MOBILE NETWORKS

In this section we establish the optimal throughput-delay trade-off for mobile random networks under the random
walk (RW) model for node mobility. To achieve this trade-off, we introduce Scheme 3. The scheme is divided into
two parts based on the range of throughput handled by it. Scheme 3(a) is for T (n) = O(1/

√
n log n), while Scheme

3(b) is for T (n) = ω(1/
√

n log n). These ranges are dealt with separately since the schemes achieving the optimal
trade-off in these ranges are fundamentally different. In the low throughput range, the optimal scheme cannot use
the mobility of nodes to communicate packets. In fact, Scheme 3(a) is significantly more complex than Scheme
1. Even though it provides the same trade-off, it needs to overcome difficulties created by node mobility. On the
other hand, in the high throughput range, it is essential to use the mobility of nodes to communicate packets.

Both these schemes divide the network into square cells of area a(n), which is a parameter that determines the
point of trade-off. We would like to note that these cells are a part of the scheme and are unrelated to the n cells
used in the definition of the random walk mobility model.

A. Trade-off for low throughput

Scheme 3(a) described below requires the packet size to scale down as Θ
(

1/
(

n
√

a(n)
))

, and similar to Scheme
1, it is a cellular TDMA scheme. Due to the mobility of the nodes, the packets need to chase their destination
nodes, which makes the scheme and its analysis significantly more complex. For the sake of our proof technique,
the scheme drops a packet that is unsuccessful in chasing down its destination for long. A more precise description
of the scheme follows.

Scheme 3(a): Mobile networks at low throughput

1) Divide the unit torus into square cells, each of area a(n) (see Figure 3).
2) A cellular TDMA transmission scheme is used, in which, each cell becomes active at regularly scheduled

cell time-slots (see Figure 4). From Lemma 2, each cell gets a chance to be active once every 1 + c1 cell
time-slots.

3) A packet is sent from its source S to its destination D by chasing the destination for at most k(n) =
Θ(log log n) stages as follows:

a) Consider a packet that is generated at S, when S is in cell C0. Let D be in cell C1 at that time.
b) Set k = 1.
c) In stage k, the packet is sent from cell Ck−1 to cell Ck via hops along adjacent cells on the line joining

centers of cells Ck−1 and Ck.
d) When the packet reaches cell Ck, assume that the destination D is in the cell Ck+1. If Ck+1 = Ck then

the packet is delivered to D. Otherwise, set k = k + 1.
e) If k < k(n), repeat (c)-(d), else drop the packet.

4) In every active time-slot of a cell, each of the source nodes residing in the cell at that time generates a new
packet for its respective destination. These new packets are transmitted in the same time-slot.

5) Packet size scales as Θ
(

1/
(

n
√

a(n)
))

and hence in an active time-slot a cell can transmit Θ
(

n
√

a(n)
)

packets. If at any time instant a cell has more packets than it can transmit then the excess packets are dropped.
6) Packets transmitted to a cell not containing any node are dropped.
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Fig. 6. In scheme 3(a), the unit torus is divided into square cells of area a(n). In stage 1 of chasing, a packet starts from cell C0 containing
its source, and moves by hops along adjacent cells towards cell C1 which contains its destination node at that time. By the time it reaches
cell C1, its destination has moved to cell C2. So in stage 2 of chasing, the packet hops from cell C2 to cell C3. And this continues for at
most k(n) stages or until the packet reaches the cell containing its destination.

In the above scheme packets are dropped if one of the following three scenarios occurs.
(i) Empty cells: Due to mobility of nodes, it is possible that a cell may be empty in some time-slot. In part b)

of step 3) above, a packet may be lost if it is transmitted to any empty cell.
(ii) Overloading of cells: In the case of Scheme 1 we could provide a guarantee whp on the maximum number

of S-D lines passing through each cell. In this case, due to mobility, the number of S-D lines passing through
a cell may exceed its capacity of Θ

(

n
√

a(n)
)

packets. If this occurs, the excess packets are dropped as
mentioned in step 5) above.

(iii) Unsuccessful chasing: A packet that does not reach its destination after k(n) stages of chasing is also dropped.
The following theorem shows that the fraction of packets dropped is negligible, i.e., goes to 0 as n → ∞. We

assume that error correction is employed to combat this packet loss, however this requires only a constant fraction
of the total throughput and hence does not affect the throughput scaling. Thus, in spite of node mobility, Scheme
3(a) achieves the same throughput-delay trade-off as Scheme 1 for static networks.

Theorem 8: Scheme 3(a) achieves the throughput-delay trade-off given by:

T (n) = Θ

(

D(n)

n

)

, for T (n) = O

(

1√
n log n

)

.

We first analyze the throughput of Scheme 3(a). The delay of a packet, as per the description of the scheme,
is (1 + c1) times the number of hops taken by a packet. In the process of determining the throughput, we shall
determine the average number of hops per packet during the k(n) stages. This will allow us to determine the
average packet delay.

As explained in the description of Scheme 3(a) above, each source generates a packet of size Θ
(

1/
(

n
√

a(n)
))

each time the cell it belongs to become active. Each cell becomes active once every 1+ c1 time-slots, according to
Lemma 2. Hence, independent random walk of nodes under the RW model implies that each node is in an active cell
for a constant fraction 1/(1+c1) of the time w.p. 1 due to ergodicity. That is, each source node generates traffic at rate
Θ
(

1/
(

n
√

a(n)
))

under Scheme 3(a). Thus, to show that each S-D pair achieves throughput Θ
(

1/
(

n
√

a(n)
))

,
it is sufficient to show that the fraction of the packets dropped under Scheme 3(a) goes to 0 as n → ∞.
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To show that the fraction of dropped packets goes to 0 as n → ∞, we need to bound the total traffic generated
by all k(n) stages. The total traffic due to all k(n) stages is the number of packets that a cell is required to transmit
in a time-slot. We analyze this in the following three lemmas by utilizing arguments similar to that in the proof of
Lemma 3. See Appendix III for proofs of Lemmas 8 and 9. For simplicity of analysis, we assume that each cell
becomes active every time-slot instead of 1 + c1 time-slots. This simplification does not change the results in the
order notation.

Lemma 8: The number of packets of stage 1 passing through each cell in a time-slot is O
(

n
√

a(n)
)

with

probability at least 1 − 1/n3.

Lemma 9: For k ≥ 2, the number of packets of stage k passing through each cell in a time-slot is O

(

(

n2

m

)2−k
)

with probability at least 1 − 1/n3.

Lemma 10: The number of packets passing through each cell in a time-slot is O
(

n
√

a(n)
)

with probability at

least 1 − 1/n2.9.
Proof: There are k(n) = O(log log n) stages. Using the union bound over k(n) stages and the bounds given

by Lemma 8 and Lemma 9, we can show that the total number of packets (due to all k(n) stages), P (n), passing
through each cell is

P (n) = O(n
√

a(n)) +

k(n)
∑

k=2

O

(

(

n2

m

)2−k
)

, (16)

with probability at least 1 − k(n)/n3 ≥ 1 − 1/n2.9.
Next, we evaluate the summation on the right hand side of (16). Consider the largest index k such that

(

n2

m

)2−k+1

≥ 2

(

n2

m

)2−k

. (17)

This gives
(

n2

m

)2−k

≥ 2. (18)

That is,

k ≤ log log n2/m − log log 2

log 2
.

Note that the parameter k(n) in Scheme 3(a) is chosen to satisfy this condition. Moreover for k < k(n), the ratio
of consecutive terms,

(

n2

m

)2−k+1

(

n2

m

)2−k =

(

n2

m

)2−k

≥ 2,

due to (18). As a consequence,

k(n)
∑

k=2

(

n2

m

)2−k

≤
k(n)
∑

k=2

(

n2

m

)2−2

2−k+2

=

√
n

m1/4

k(n)−2
∑

k=0

2−k

≤ 2
√

n

m1/4
. (19)

Replacing (19) in (16), we obtain that, for large enough n, with probability at least 1 − 1/n2.9,

P (n) = O(n
√

a(n)) + O

( √
n

m1/4

)

. (20)
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Now, a(n) = Ω(log n/n). Hence, n
√

a(n) = Ω
(√

n log n
)

. Since m = Ω(1), this will imply that the right hand
side of (20) is O(n

√

a(n)).

Remark: The packet size is of order Θ
(

1/
(

n
√

a(n)
))

and the associated constant in this Θ notation is chosen
such that the total data due to all the packets can be supported in one time-slot.

Proof of Theorem 8: We show that the fraction of packets dropped due to (i) overloading of cells, (ii)
unsuccessful chasing, and (iii) empty cells, goes to 0 as n → ∞. This will immediately imply that the throughput
of Scheme 3(a) is as claimed in Theorem 8.
Packets dropped due to overloading of cells: Since the number of hops in each stage is O

(

1/
√

a(n)
)

and there

are at most Θ(log log n) stages, the total number of packets in the network is O
(

n log log n/
√

a(n)
)

. Thus the
process describing the number of packets in each of the 1/a(n) cells is a finite-state Markov chain that is induced
by the underlying Markov chain due to the random walk of nodes on the

√
n × √

n discrete torus as specified
by the RW model. This is aperiodic and hence an ergodic Markov chain. Hence by choosing packets of size
Θ
(

1/
(

n
√

a(n)
))

, the fraction of time when the the number of packets through any cell exceeds its capacity is

pn ≤ 1/n2.9. Now consider a long time duration t in which nT (n)t bits corresponding to nt packets are sent from
the sources to their destinations. Of these, at most O

(

n log log npnt/
√

a(n)
)

is dropped due to overloading in cells

since the total number of packets in the network is O
(

n log log n/
√

a(n)
)

. Hence if pn = o
(

log log n
√

a(n)
)

,
the fraction of packets dropped approaches 0 as n → ∞, which is indeed the case here.
Packets dropped due to unsuccessful chasing: We need to determine the fraction of packets dropped due to the
destination moving away from its initial position in the last stage, i.e., stage k(n). Recall that the choice of k(n)
is such that it is the largest index with property (17). Hence

(

n2

m

)2−k(n)

≥ 2

(

n2

m

)2−k(n)−1

,

which in turn yields
m2−k(n) ≤ 4. (21)

Using (21) in (67), we obtain
lk(n) = O

(m

n

)

.

Now using the fact that m = O (n/ log n), it follows that lk(n) → 0 as n → ∞. On the other hand, for our motion
model where the nodes move according to a two-dimensional random walk on the

√
n × √

n discrete torus and
cell size of Ω(log n/n), the average time taken by a node to move out of a cell is Ω(log n). Hence the probability
that a packet is dropped due to unsuccessful chasing tends to 0 as n → ∞.
Packets dropped due to empty cells: Finally in any time-slot, the packets that need to be relayed through cells
that do not contain any nodes are lost. Now consider a fixed time-slot. Each node is equally likely to be in any
of the cells, thus by Lemma 1, the probability that any cell is empty is ≤ 1/n2. Again, using ergodicity and the
bound on the number of packets transmitted per time-slot, which is O

(

n
√

a(n)
)

, the fraction of packets dropped
due to cells being empty goes to 0 as n → ∞.

Thus, the net fraction of packets dropped due to (i) overloading in cells, (ii) empty cells and (iii) unsuccessful
chasing goes to 0 as n → ∞. In other words, almost all the packets that are generated in Scheme 3(a) reach their
destination successfully. As noted before, the number of packets generated by each source per unit time is Θ(1),
and since each packet is of size Θ

(

1/
(

n
√

a(n)
))

, the net throughput per S-D pair is Θ
(

1/
(

n
√

a(n)
))

. This
completes the proof of the achievability of throughput as claimed in Theorem 8.
Average Delay: Next we compute the average delay of packets. Under Scheme 3(a), the average delay of a packet
in stage k is lk as it makes lk hops on average in the kth stage. Hence from (67), we obtain that the average delay,
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D(n), is

D(n) =

k(n)
∑

k=1

lk

≤ √
c5m +

k(n)
∑

k=2

c5m

n

(

n2

m

)2−k

. (22)

Using (19) in (22), for large enough n, we obtain

D(n) ≤ √
c5m +

2c5m
√

n

nm1/4

≤ c5

√
m + 2c5

√
m

√√
m

n
= O

(√
m
)

, (23)

where (23) holds because m = O(n/ log n) = o(n). Thus as claimed the average packet delay D(n) = O (
√

m).
This completes the proof of Theorem 8.

B. Trade-off for high throughput

To obtain a throughput higher than Θ
(

1/
√

n log n
)

, we need to use mobility, and to keep the delay as low as
possible, we need to use multiple hops cleverly. This naturally leads to a scheme that combines Scheme 3(a) (which
provides low throughput with low delay) and Scheme 2 (which provides high throughput with high delay). A first
approach would be to time-share between Scheme 3(a) and Scheme 2. It is easy to show that such a scheme can
achieve any throughput in the range from Θ

(

1/
√

n log n
)

to Θ(1), but the average delay remains fixed at Θ(n log n).
By using Scheme 3(b), which is a careful combination of Scheme 2 and Scheme 3(a), the throughput-delay trade-off
can be slightly improved. And it turns out that the performance of Scheme 3(b) is optimal.

Scheme 3(b) uses the chasing technique of Scheme 3(a) by using hopping along adjacent cells of size Θ(log n/n)
as the underlying packet transport mechanism. However this chasing is not done all the way from each source to
its destination. Instead, the mobility of an intermediate mobile relay node is employed as in Scheme 2 to increase
the throughput. The chasing technique of Scheme 3(a) is used only to send packets from a source to a mobile relay
node or from a mobile relay node to a destination when they are sufficiently close. Nodes get sufficiently close
to each other due to their mobility and the amount of closeness is captured by the parameter b(n) of the scheme,
which determines the trade-off point.

In the description of the scheme and the proof we refer to two ways of measuring distance between two nodes.

1) The step-distance or distance in terms of steps between two nodes with positions (i1, j1) and (i2, j2) on the√
n × √

n discrete torus is |i2 − i1| + |j2 − j1|, where the subtraction is modulo
√

n. Thus this distance is
simply the Manhattan distance on the underlying discrete torus.

2) The hop-distance or distance in terms of hops, which is the number of hops a packet would take along
adjacent cells of the straight line joining the nodes to reach from one node to the other. The cells in this case
are determined by the scheme and are always of area of Ω(log n/n) in Scheme 3(b).

Scheme 3(b): Mobile networks at high throughput

1) Divide the unit torus into square cells each of area a(n) = Θ(log n/n) as in Figure 7. The scheme uses a
parameter b(n) that determines the point of trade-off. Let l(n) = c6

√

nb(n) and c0(n) = c7

√

nb(n).
2) A cellular TDMA transmission scheme is used, in which, each cell becomes active at regularly scheduled

cell time-slots. By Lemma 2, these active time-slots are at most 1 + c1 time-slots apart.
3) Each node in the network maintains a separate FIFO queue for each of the n/2 S-D pairs in the network.
4) Each time-slot is divided into two equal subslots, A and B. The network operates in two phases – SR (source

to relay) phase in the A subslots and RD (relay to destination) phase in the B subslots.
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5) SR phase: (Source-to-Relay in the A subslots)
a) For the SR phase, each source node maintains a counter and a state variable for every other node. Let

SSR
ij be the value of the state variable and CSR

ij be the value of the counter at source node i for some
mobile node j. The state variable SSR

ij is binary valued and is used to determine whether node i should
send packets to node j or not. Each counter is initially at count 0 and is operated as follows:
i) If CSR

ij = 0 and the step-distance between nodes i and j is greater than l(n) then set CSR
ij = −1.

ii) If CSR
ij = −1 and the step-distance between nodes i and j is no greater than l(n) then set CSR

ij =

c0(n) and with probability p0, 0 < p0 < 1 set SSR
ij = 1 otherwise reset to SSR

ij = 0.
iii) In each A subslot of the SR phase, the counter decrements by one until it reaches 0.

b) In the SR phase when a cell becomes active, every source node i in the cell sends a packet intended for
its destination to every other node j in the network for which CSR

ij > 0 and SSR
ij = 1. These nodes act as

relay nodes for this source node. These packets reach these relay nodes using the transport mechanism
of Scheme 3(a) during the A subslots of the SR phase.

6) RD phase: (Relay-to-Destination in the B subslots)
a) For the RD phase, each mobile node i maintains a counter for every destination node j denoted by CRD

ij .
They are initially set to 0 and operated in the same way as the counters for the SR phase as follows:
That is, each CRD

ij is set to 0,−1 or c0(n) based on the step-distance between nodes i and j and the
previous value of the counter. Each counter is initially at count 0 and is operated as follows:
i) If CRD

ij = 0 and the step-distance between nodes i and j is greater than l(n), set CRD
ij = −1.

ii) If CRD
ij = −1 and the step-distance between nodes i and j is no greater than l(n), set CRD

ij = c0(n).
iii) In each B subslot of the SR phase, the counter decrements by one until it reaches 0.

b) In the RD phase when a cell becomes active, every node i in the cell sends a packet to every other
destination node j in the network, for which CRD

ij > 0, if it has a packet intended for that destination
node. That is, if the FIFO queue corresponding to a destination is not empty, then a packet for that
destination is emptied out of the queue. These packets reach their respective destinations using the
transport mechanism of Scheme 3(a) during the B subslots constituting the RD phase.

7) Packet size scales as Θ
(

1/
√

n3b(n)3 log n
)

and hence in an active time-slot, a cell can transmit Θ
(

√

n3b(n)3 log n
)

packets. If in any time-slot, a cell has more packets than it can transmit then the excess packets are dropped.
8) Packets transmitted to a cell not containing any node are dropped.

As shown in Figure 7, in Scheme 3(b), a source node S sends a packet intended for its destination to a mobile
relay node R, which is no farther than l(n) hops initially. It continues to do so for c0(n) time slots during which it
is improbable that S and R get too far (i.e. farther than Θ(l(n)) step-distance) from each other due to the random
walk mobility model. These packets are sent using the chasing strategy of Scheme 3(a) by hops along adjacent
cells of size Θ(log n/n). This mobile relay R, in turn, sends the packet to the destination D when R and D get
sufficiently close. Sending with probability p0 < 1 ensures that arrival rate to each relay node is less than the
service rate so that the queues at the mobile relay nodes are stable.

Theorem 9: Scheme 3(b) provides the following throughput and delay.
(i)

T (n) = Θ

(

1
√

nb(n) log n

)

,

(ii)

D(n) = O

(

n log

(

1

b(n)

))

,

where the parameter satisfies b(n) = Ω(log n/n) and b(n) = O(1). That is, the achievable throughput-delay
trade-off for Scheme 3(b) is

T (n) = Θ

(

D(n)

n

)

.

We first analyze the throughput of this scheme and then its delay. The throughput analysis requires extensions
of the techniques used in the proof of Theorem 8.
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Fig. 7. Scheme 3(b) is a cellular TDM scheme like Scheme 3(a). All other mobile nodes act as relays for each S-D pair as in Scheme 2.
Sources send packets to relays and relays send packets to destinations only when they are sufficiently close using the chasing technique of
Scheme 3(a).

Proof of Theorem 9(i): The throughput analysis involves showing that (i) if no packets are dropped then the
throughput is as claimed, and that (ii) the fraction of packets dropped by the underlying packet transport mechanism
of Scheme 3(a) is negligible.

First note that the traffic in the SR and RD phases are similar and hence it is sufficient to analyze just the
SR phase. Let Cij(t) denote the value of the counter at source node i for some mobile node j at time t. Let
Xij(t) be the indicator of the event that Cij(t) is positive, i.e., Xij(t) = 1 if Cij(t) > 0 and zero otherwise.
For simplicity, assume that each cell becomes active every time-slot (instead of once every 1 + c1 time slots) and
whenever Xij(t) = 1, source i transmits a new packet to a relay j (instead of also considering the state variable
Sij(t) which is positive with probability p0). It is easy to see that these assumptions do not affect the results in
the order notation.

Now let {T̃k} be the intervals between consecutive transitions of Xij(t) from 0 to 1 (see Figure 8). Then {T̃k} is
an i.i.d. sequence due to the independent random walks of the nodes. Let T̃ be a random variable with the common
distribution of these random variables. As shown in Lemma 11

E[T̃ ] = Θ
(

√

n/b(n)
)

.

The random walk of nodes i and j on the discrete torus is a stationary and ergodic process and hence the process
Xij(t) derived from it is also stationary and ergodic. Hence w.p. 1,

lim
s→∞

s
∑

t=1

Xij(t)/s = E[Xij(t)].

The quantity above is the rate at which packets are sent from source node i to relay node j in t time-slots.
Now each time Xij(t) makes a transition from 0 to 1, it remains at 1 for c0(n) time-slots. Hence using the
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random variable version of the elementary renewal theorem (see [19]), it is easy to see that w.p. 1,

lim
s→∞

s
∑

t=1

Xij(t)/s = c0(n)/E[T̃ ]

= Θ

(

√

nb(n)
1

√

n/b(n)

)

= Θ(b(n)). (24)

Hence we have
P{Xij(t) = 1} = E[Xij(t)] = Θ(b(n)). (25)

Each source node uses the other n− 2 nodes as relays. By considering all these n− 2 relays and the direct path,
it follows from (24) that if no packets are dropped then the throughput for each S-D pair in terms of packets is

lim
s→∞

s
∑

t=1

∑

j 6=i

Xij(t)/s = Θ(nb(n)).

Now since the packet size is Θ
(

1/
(

n3/2b(n)3/2
√

log n
))

it is immediate that if no packets are dropped then the

throughput per S-D pair is Θ
(

1/
√

nb(n) log n
)

as claimed. The rest of the proof shows that the fraction of packets
dropped goes to zero. In Scheme 3(b), as in Scheme 3(a), packets are dropped due to (i) overloading in cells, (ii)
transmission to empty cells, and (iii) unsuccessful chasing. Scheme 3(b) uses cells of size Θ(log n/n) and hence
as shown in the proof of Scheme 3(a), the fraction of packets being dropped due to (ii) and (iii) goes to 0. To
establish (i), it is sufficient to show that the number of packets passing through each cell is O

(

√

n3b(n)3 log n
)

whp, which we do next.
Next let Dij(t) be the distance in steps from node i to node j. If Xij(t) makes a transition from 0 to 1 at time

τ then we know that Dij(τ) = l(n). After this Xij(t) stays at 1 for c0(n) time-slots. Since nodes i and j are
moving according to independent random walks, the distance between them increases by at most two steps in each
time-slot. Therefore, Dij(t) ≤ l(n) + c0(n) = O(l(n)) for τ ≤ t ≤ τ + c0(n). Thus we have

Dij(t) = O(l(n)) given Xij(t) = 1. (26)

Now let Lij(t) be the distance in hops between nodes i and j if Xij(t) = 1 and 0 otherwise. Then Lij(t) =
O(Dij/

√
log n)) since the cells are of size log n/n and so

E[Lij(t)]

= E[Lij(t)|Xij(t) = 1]P{Xij(t) = 1}
= E[Lij(t)|Xij(t) = 1]Θ(b(n)) (27)

= O(E[Dij(t)|Xij(t) = 1]b(n)/
√

log n) (28)

= O(l(n)b(n)/
√

log n)

= O(b(n)3/2
√

n/ log n), (29)

where (27) is due to (25) and (28) follows from (26).
For exactly the same reasons as those pointed out while analyzing the traffic of Scheme 3(a), the traffic in stage

1 of Scheme 3(b) dominates the traffic of all other stages. Hence we will only analyze traffic of stage 1 here. Now
let Y c

ij(t) be the number of packets in stage 1 of source i to node j passing through cell c at time t. As shown
during the analysis of traffic in stage 1 of Scheme 3(a), we have Y c

ij(t) ∈ {0, 1, 2}.
Now a packet sent out from source i at time t− k passes through some cell in the network at time t if and only

if Lij(t − k) > k. There are m = n/ log n cells in the network and summing over all these cells we obtain
m
∑

c=1

Y c
ij(t) =

∞
∑

k=0

I{Lij(t − k) > k},
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where I(A) is the indicator function of the event A. Taking expectations on both sides, using the symmetry of the
cells and 29, this gives

mE[Y c
ij(t)] =

∞
∑

k=0

P{Lij(t − k) > k}

=
∞
∑

k=0

P{Lij(t) ≥ k}

= E[Lij(t)]

= O(b(n)3/2
√

n/ log n).

Hence we have
E[Y c

ij(t)] = O
(

b(n)3/2
√

log n/n
)

. (30)

The total number of packets passing through cell c in time-slot t is given by Y =
∑

i

∑

j 6=i Y
c
ij(t). The

total number of distinct source-relay pairs is Θ(n2). For each such pair, by symmetry and (30), E[Y c
ij(t)] =

O
(

b(n)3/2
√

log n/n
)

. Hence the expected number of packets passing through cell c in time-slot t is

E[Y ] = Θ
(

n2E[Y C
SR(t)]

)

= O
(

√

n3b(n)3 log n
)

. (31)

Thus it is sufficient to show that Y = Θ
(

E[Y C(t)]
)

whp in order to establish that the number of packets through

each cell is O
(

√

n3b(n)3 log n
)

whp. Next, we establish this.

Note that terms of the form Y c
ii(t) are always 0 and terms of the form Y c

ij(t) and Y c
ik(t) for j 6= k are independent.

So are terms of the form Y c
ij(t) and Y c

kj(t) and terms where all indices are different. Another important property
which we use crucially is that if nodes j and k are not in cell c and Y c

ij = Y c
ik = 1 then Y c

jk(t) is necessarily 0. This
happens because Y c

ij(t) = Y c
ik(t) = 1 implies that nodes j and k lie on the same side of cell c under consideration

and hence the line connecting j and k does not pass through cell c. The same holds when Y c
ji = Y c

ki = 1. This is
not true however if either of the nodes j and k lies in cell c. However this can be handled by dealing with the
first and last hops separately which is easy since it depends only on the distribution of nodes themselves. Hence
we ignore this aspect for the sake of simplicity.

Now fix a cell c and a time-slot t and define Zij = 1 if Y c
ij(t) > 0 and 0 otherwise. Then Yij(t) ≤ 2Zij and

hence

Y ≤ 2

n/2
∑

i=1

n
∑

j=1

Zij

=

n/2
∑

i=1

n
∑

j=i+1

Zij +

n/2
∑

i=2

i−1
∑

j=1

Zij.

In what follows, we will show that the first sum above is of the same order as its expected value whp. The same
technique would show that the same is true for the second sum also whp and hence that the total traffic Y is of
the same order as its expected value whp.

So consider the M = Θ(n2) terms in the first sum, i.e., {Zij , 1 ≤ i ≤ n/2, i < j ≤ n}. These are identically

distributed Bernoulli random variables with pn = P{Zij = 1} = O
(

b(n)3/2
√

log n/n
)

. The dependence properties
of {Yij(t)} carry over to {Zij} so that, for example, Zij = Zik = 1 implies that Zjk = Zkj = 0. For simplicity
we rewrite {Zij , 1 ≤ i ≤ n/2, i < j ≤ n} as {Zi, 1 ≤ i ≤ M}. Now let {Z̃i, 1 ≤ i ≤ M} be i.i.d. Ber(pn) random
variables and let Z =

∑M
i=1 Zi and Z̃ =

∑M
i=1 Z̃i. Now

E[Zk] =
∑

(i1,...,ik)∈{1,...,M}k

E [Zi1 , . . . , Zik
]

=
∑

(i1,...,ik)∈{1,...,M}k

P{Zi1 = . . . = Zik
= 1}.
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Similarly, we can write E[Z̃k] as the sum of terms of the form P{Z̃i1 = . . . = Z̃ik
= 1}. Consider a term of

the form P{Zi1 = . . . = Zik
= 1}. If all the Zis contained in this term are independent then this is the same as

the corresponding term of E[Z̃k]. When there is a dependence, the term becomes zero due to the particular nature
of dependence as mentioned above, due to which for some distinct indices i, j, k, Zi = Zj = 1 implies Zk = 0.
However, for E[Z̃k] the corresponding term is still non-zero. Hence E[Zk] ≤ E[Z̃k] for all k ≥ 0. As a result, for
any t > 0,

E[exp(tZ)] ≤ E[exp(tZ̃)]. (32)

So we can write for t > 0,

P{Z > (1 + δ)E[Z]} ≤ E[exp(tZ)]

exp((1 + δ)tZ)

≤ E[exp(tZ̃)]

exp((1 + δ)tZ̃)

≤ exp(−E[Z̃]δ2/2),

using the Chernoff bounding technique for the sum of i.i.d Bernoulli random variables. Now E[Z̃ ] = O(Mpn) =
O
(

n3/2b(n)3/2
√

log n
)

. Choosing an appropriate δ we have Z = O(E[Z]) whp. Hence the total number of packets
through a cell is O

(

n3/2b(n)3/2
√

log n
)

whp. Using the union bound over the n/ log n cells establishes the claim
about the throughput of Scheme 3(b).

Next we analyze the delay for Scheme 3(b). The delay of a packet is determined by the queueing delay at a relay
node. We first upper bound this queueing delay by that of a GI/GI/1 queue and then use Kingman’s upper bound
for the GI/GI/1 queue. To use this upper bound, we require to compute the first two moments of the inter-arrival
times and the service times. For Scheme 3(b), these moments are related to the corresponding moments of the
hitting times of subsets of the torus.

Proof of Theorem 9(ii): Two types of relaying are used in Scheme 3(b). First, there is relaying by hops along
adjacent cells of size of Θ(log n/n) when a packet is sent from a source to a mobile relay node which we call
relaying by hops. Second, the mobile relay node carries the packet until it gets near the destination for further
hop-relaying. Thus the total delay experienced by a packet in moving from its source S to its destination D via a
mobile relay R involves two types of delay - (i) the hop-delay Dh(n), which is the delay in relaying by hops from
S to R and then from R to D, and (ii) the queueing delay Dq(n) in the queue at R for that S-D pair. Only packets
that reach from S to R directly (i.e., without an intermediary mobile relay node) are not subject to queuing delay,
which form a negligible fraction.

First we determine Dh(n), the delay due to relaying by hops. Consider a packet that is relayed by hops from its
source S to a mobile relay node R or its destination. The counters in Scheme 3(b) ensure that this process starts
only when S and R are initially within a step-distance of l(n) hops. Thereafter due to the random walk model for
mobility of nodes, the average distance between S and R monotonically increases with time and at time c0(n) the
average distance in terms of number of steps is less than l(n) + Θ(

√

c0(n)) = Θ(l(n)) since l(n) = Θ(c0(n)).
Hence from the analysis of Scheme 3(a) it can be seen that the delay due to relaying by hops along cells of size
Θ(log n/n) is

Dh(n) = Θ
(

l(n)/
√

log n
)

= Θ
(

√

nb(n)/ log n
)

. (33)

Now we proceed to determine Dq(n), the queueing delay. Since the underlying packet transport mechanism is
that of Scheme 3(a), packets are dropped in the network. However packets are dropped during the relaying by hops
and hence does not affect the queuing delay at the mobile relay nodes.

For any S-D pair the delay at each mobile relay node is the same and by symmetry each S-D pair has the same
delay. Hence we only need to compute the queueing delay for any one such queue. So fix an S-D pair and a mobile
relay node R and let the queue at this relay node be called Q1. First consider the arrival process to this queue
which is depicted in Figure 8. The solid line in in the figure is non-zero when S and R when S and R are at a
distance no more than l(n) hops. The counter is set to c0(n) the first time this happens and the dashed line is
non-zero when the counter is positive. Packets are sent from S to R during this period when the counter is positive
if the corresponding state variable is 1. Note that some of the arriving packets may be dropped due to the way
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Fig. 8. The solid line is non-zero when S and R are within a distance of l(n) hops of each other. The dashed line is non-zero when the
counter at S for R is positive. Packets are sent from S to R when the dashed line is non-zero if the state variable is 1 as explained in the
description of Scheme 3(b).

Scheme 3(a) operates. However by considering a queue Q2 in which these packet drops are ignored we obtain an
upper bound on the queueing delay in Q1.

Packets arrive at R with a delay of Dh(n) due to hopping. However these packets arrive in order (although some
of the packets may arrive together) because of the way Scheme 3(a) works. Now the step-distance between S and R
when any packet departs is at most l(n) + c0(n) and so Dh(n) ≤ (c6 + c7)

√

nb(n)/ log n = Dmax
h (say). So if we

consider a queue in which each packet arrives exactly Dmax
h time-slots after its departure from S, then the sum of

the average delay of this queue and Dmax
h is an upper bound to the delay in Q2. Now as will be shown later (and

as claimed in the Theorem), it turns out the the queueing delay is of an order strictly greater than that of Dmax
h

hence it does not matter in the order of the average delay of Q2. Moreover the arrival and service processes are
jointly stationary since they are based on the motion of nodes S, R and D. Hence in order to determine an upper
bound of the same order as the actual delay we can instead consider a queue, say Q3, in which arrivals occur when
the counter is positive and the state variable is 1.

Let T̃ be a random variable denoting the time interval between two instants when the counter is set to c0(n)
consecutively. Then {T̃j} in Figure 8 is a sequence of i.i.d. random variables each with the same distribution as
T̃ . Also let T be a random variable denoting the time interval between two slots when the distance between S and
R decreases to l(n) from greater than l(n) consecutively. Then {Ti} in Figure 8 is a sequence of i.i.d. random
variables each with the same distribution as T .

The departure process is similar and departures occur when the corresponding counter is positive if the queue is
not already empty. The delay for this queue is the same as that for Q4, a queue in which a single arrival occurs at
the start of each period of length c0(n) of arrivals in Q3 and a departure occurs at the beginning of each period of
c0(n) departures in Q3. The inter-arrival times in Q4 form an i.i.d. process and the distribution of the inter-arrival
time is the same as the sum of K independent copies of T̃ where K is an independent Geometric random variable
with parameter p0. Hence the first two moments of the inter-arrival time in Q4 are the same as those of T̃ which
is the time interval between two instants when the counter is set to c0(n) consecutively. Similarly the inter-service
times are also i.i.d. and hence as done in the delay analysis of Scheme 2, we can upper bound the delay of Q4

by that of a GI/GI/1 queue Q5 whose service time distribution is the same as the inter-service time distribution of
Q4. Further using Kingman’s upper bound for the GI/GI/1 queue as in the delay analysis of Scheme 2 and the fact
that the moments of the inter-arrival time and service time in Q5 are of the same order, we can write

Dq(n) = O
(

E[T̃ 2]/E[T̃ ]
)

. (34)

Substituting the moments of T̃ from Lemma 11 which is presented after this proof, we obtain

Dq(n) = O(n log(1/b(n))). (35)

As a result the delay for Scheme 3(b) scales as

D(n) = Dh(n) + Dq(n) = O(n log(1/b(n))).
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Remark: At the choice of b(n) = Θ(1) the performance of the scheme is vastly different for b(n) = 1 and b(n) 6= 1.
This discontinuity of trade-off is the consequence of using mobility since b(n) = 1 means that the mode of operation
is that of Scheme 3(a) where mobility is not used to move the packets toward their destinations. The delay jumps
up immediately as mobility is used with b(n) 6= 1.

Lemma 11: For T̃ , as defined earlier,

E[T̃ ] = Θ

(
√

n

b(n)

)

, and

E[T̃ 2] = O

(

log

(

1

b(n)

)

√

n3

b(n)

)

.

Proof: Consider the counter at a source node for some other node. Recall that T̃ is a random variable denoting
the time interval between two consecutive transitions of the counter from −1 to c0(n). For simplicity, assume that
each cell becomes active every time-slot (instead of once in 1 + c1 time slots). Then by definition, T̃ ≥ c0(n). Let
T be a random variable denoting the time interval between two slots when the distance between S and R decreases
to l(n) from greater than l(n) consecutively. Then {Ti} in Figure 8 is a sequence of i.i.d. random variables each
with the same distribution as T .

Consider the random variable K = inf{k : T1 + · · · + Tk > c0(n)}, where Ti are i.i.d. with the distribution of
T . Then, by definition

T̃ =
K
∑

k=1

Tk. (36)

From definition of K ,
∑K−1

k=1 Tk ≤ c0(n). Hence, from (36)

T̃ > TK and T̃ ≤ c0(n) + TK . (37)

This implies that,
E[T ] ≤ E[T̃ ] ≤ c0(n) + E[T ], (38)

and
E[T̃ 2] ≤ c2

0(n) + c0(n)E[T ] + E[T 2]. (39)

Next we compute E[T ], E[T 2] to determine E[T̃ ], E[T̃ 2]. In the random walk motion model, each node moves
according to a simple random walk on the discrete

√
n × √

n torus. Let X(t) ∈ {(i, j) : 0 ≤ i, j ≤ √
n − 1} be

such a random walk on the
√

n × √
n torus. Since T is determined by the independent random walks of S and

R on the torus, equivalently we can study it using a difference random walk of a single node as was done in the
analysis of delay for Scheme 2.

Now let A be the set of cells of the torus which are at a distance no greater than l(n) from (0, 0), i.e.,

A = {(i, j) : d((i, j), (0, 0)) ≤ l(n)}.

And let ∂A be the set of cells of the torus which are exactly at distance l(n) from (0, 0), i.e.,

∂A = {(i, j) : d((i, j), (0, 0)) = l(n)}.

Then T as defined above is the time taken by a node performing a difference random walk to perform another
transition from Ac to A starting from such a transition. Since we are interested only in the exact order of the
moments, we can consider the simple random walk instead of the difference random walk on the discrete torus.
Hence to determine E[T ] and E[T 2] we can redefine T as follows.

Let π denote the stationary distribution for the random walk on the torus which we know is uniform and let for
a set B let π(B) =

∑

v∈B π(v) be the probability of the set B under π. By the probability distribution πB , we
mean πB(v) = π(v)/π(B) if v ∈ B and zero otherwise.

Now instead of the random walk {X(t)}, consider a Markov chain given by Z(t) = (X(t− 1), X(t)). The state
space of {Z(t)} is clearly the set of directed edges of the torus. Let ∂A+ be the set of edges of the torus directed
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from A to Ac and let ∂A− be the set of edges of the torus directed form Ac to A. For this new Markov chain
{Zt}, T is the first return time to the set ∂A−, i.e.,

T = inf{t ≥ 1 : Z(t) ∈ ∂A−},

starting from Z(0) ∼ π∂A− .
Before proceeding to compute the first two moments of T , note that there are 4n states in the state space

corresponding to the 4 directed edges emanating from each vertex of the torus. Moreover the stationary distribution
of {Z(t)} is also uniform. This can be easily verified (e.g. see the proof of Lemma 6.5 in [17] or the proof of
Lemma 7 in Chapter 3 of [1]). Also note that the number of states in A is 4l(n) = 4c6

√

nb(n). Now using Kac’s
formula, we obtain

E[T ] = = Eπ∂A+T

= 1/π(∂A+) (40)

= 4n/c8

√

nb(n)

= c8

√

n/b(n). (41)

Now using equation (21) in Chapter 2 of [1], we obtain

E[T 2] = Eπ∂A+ [T 2]

= (2EπT + 1) /π(∂A+)

= (2EπT + 1) E[T ], (42)

where the last equality follows from (40).
Let E be the set of all directed edges of the torus and let EA be the set of directed edges that are between vertices

in A. Consider the following two possible cases, based on the starting position of Z(0), to compute Eπ[T ].

Case 1. Suppose Z(0) = e ∈ E − (EA ∪ ∂A−)
4
= E1. Under this situation for Z(·) to visit any edge in ∂A−, the

original random walk needs to enter A starting from a node in Ac chosen with the uniform distribution restricted
to Ac. Thus it is the same as TA, the hitting time of set A of vertices, starting with initial distribution π(Ac). Using
Lemma 12 following this proof, it follows that

EπAc TA = O(n log(1/b(n))).

Thus,
EπE1

[T ] = O(n log(1/b(n))). (43)

Case 2. Suppose Z(0) = e ∈ EA ∪ ∂A− 4
= E2. Under this starting condition, the original random walk starts inside

the set A. Hence visiting edge of ∂A− requires that the original random walk first get out of the set A, and then
visit ∂A− given that Z(·) is in E − (EA ∪ ∂A−)(= E1). From basic first passage time results for one-dimensional
random walks, it is easy to see that the expected time to get out of set A starting from any position inside A is
O
(

l(n)2
)

. Using this and Case 1, we obtain

EπE2
[T ] ≤ EπE1

[T ] + O(l(n)2)

= O (n log(1/b(n)) + O
(

l(n)2
)

= O (n log(1/b(n)) . (44)

From Case 1 and Case 2, using (43) and (44), we obtain

EπT = O(n log(1/b(n))). (45)

Finally combining (42) and (45),

E[T 2] = O

(

log(1/b(n))

√

n3

b(n)

)

. (46)
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The following lemma used in the above proof is proved in Appendix III.
Lemma 12: Consider the subset A = {(i, j) : 0 ≤ i, j <

√
m} on a two-dimensional

√
n ×√

n discrete torus.
That is, A is a square set of

√
m ×√

m cells of the discrete torus. Let TA be the hitting time of A then

EπAc TA = O
(

n log
( n

m

))

.

C. Optimality of Scheme 3

In this section, we establish the optimality of Scheme 3 under the random walk (RW) model. Consider any
communication scheme operating under the RW model. Then the distance traveled by a packet between its source
and destination is the sum of the distances traveled by hops and the total distance traveled by the mobile relays
that are used by the packet under this scheme. Let l̄(n) be the sample mean of the distance traveled by hops (i.e.,
by wireless transmission) and let r̄(n) be the sample mean of the distance traveled by a packet per hop. In the
following lemma, proved in Appendix III, we obtain a bound on throughput scaling as a function of l̄(n) and r̄(n)
using a technique similar to the one used in Theorem 5. We then show that to achieve this optimal throughput,
the minimum delay incurred is of the same order as the delay of Scheme 3, which will establish the optimality of
Scheme 3.

Lemma 13: Consider any scheme such that the sample mean of the distance traveled by hops is l̄(n) and the
sample mean of the distance traveled per hop is r̄(n). Then its achievable throughput,

T (n) = O

(

1

nl̄(n)r̄(n)

)

. (47)

The above lemma is proved in Appendix III. Next we state a result regarding the mean hitting time of a subset
of cells for a random walk on the

√
n×√

n discrete torus. It is a consequence of Lemma 2.1 in [4] and the strong
approximation (of random walk by Brownian motion) results as used in the proof of Theorem 1.1 in [4].

Lemma 14: Let Tr be the time to hit a set of cells of the discrete torus contained in a disk of radius r < R/2
around a point x starting from the boundary of a disk of radius R around x. Then for a symmetric random walk
on

√
n ×√

n discrete torus,
E[Tr] = Θ(n log r−1).

Now we are ready to prove the optimality of Schemes 3(a) and 3(b) using Lemma 13 and Lemma 14.
Optimality of Scheme 3(a): Consider any communication scheme that uses cellular transmission and possibly
utilizes node mobility to achieve the optimal throughput-delay trade-off for T (n) = O(1/

√
n log n). Let l̄(n) be

the sample mean of the distance traveled by hops under this scheme. Let r̄(n) be the sample mean of the hop
distance, then by Lemma 13, T (n) = O

(

1/
(

nl̄(n)r̄(n)
))

. For this scheme, the average delay due to hops alone,
i.e., the time taken to travel by hops is Θ

(

l̄(n)/r̄(n)
)

.
Now, if l̄(n) = Θ(1), T (n) = O (1/ (nr̄(n))) and D(n) = Ω(1/r̄(n)). That is, T (n) = O (D(n)/n). Hence

from Theorem 8, among all schemes that have l̄(n) = Θ(1), Scheme 3(a) is optimal. As a consequence, if Scheme
3(a) is not optimal then it must be that l̄(n) = o(1) for the optimal scheme.

If l̄(n) = o(1), then at least a constant fraction of the packets must travel a distance of Θ(1) using the node
mobility. From Lemma 14, it follows that for such packets, the delay is Ω(n). But then, D(n) = Ω(n) = ω(nT (n))
since T (n) = o(1). Hence, Scheme 3(a) is optimal among all schemes with l̄(n) = o(1).

This shows that Scheme 3(a) provides the optimal throughput-delay trade-off as far as the scaling is concerned.
Optimality of Scheme 3(b): Consider an optimal communication scheme that uses cellular transmission, possibly
along with the mobility of nodes, to achieve the optimal throughput-delay trade-off for T (n) = ω(1/

√
n log n). Let

l̄(n) and r̄(n) be as defined above. By Lemma 13, T (n) = ω(1/
√

n log n) requires that l̄(n) = o(1). But from the
preceding discussion, when l̄ = o(1), the mobile-delay (the time spent at a mobile relay node) dominates the hop-
delay (the time spent in performing hops). Thus when throughput is ω(1/

√
n log n), to maximize the throughput

for a given delay any optimal scheme must have the smallest possible r̄(n), which is Θ(
√

log n/n). Therefore,
any optimal scheme for this range of high throughput has T (n) = Θ

(

1/
(

l̄(n)
√

n log n
))

.
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Consider a throughput-delay optimal scheme. For any such scheme, fixing a throughput T (n), fixes l̄(n), which
is the average distance traveled by hops. The goal of an optimal scheme then, is to travel this distance by hops in
a manner so as to minimize the average time for a packet to reach its destination.

Consider the transmission of a packet p starting from its source S and moving toward its destination D, initially
at a distance d from S. Recall that a packet travels a distance l̄ = l̄(n) through hops and the rest through the
motion of the nodes relaying it. Define tp to be the time it takes the packet p, after leaving its source S, to reach
its destination D. We ignore the time required for hops as the mobile delay dominates the total delay. Let E[tp] be
the expectation of tp for a given l̄ and d. Note that the expectation is over the distribution induced by the random
walks of the nodes.

We claim the following.
Lemma 15: For any l̄ and d, a scheme that minimizes E[tp] must perform all the hops the first time the packet

is at a distance less than or equal to l̄ from its destination D.
Proof: For l̄ ≥ d, the Lemma clearly holds. Next consider the case where l̄ < d. To prove the Lemma for

this case, consider the following two schemes. Scheme A uses the entire hop distance l̄ when the packet reaches
within a distance l̄ of D for the first time, which is consistent with the claim of the lemma. Scheme B uses a hop
of length ε when the packet is at a distance d̃ (d > d̃ > l̄) from D, and uses the remaining hop distance l̄ − ε at
the end, as in Scheme A.

We want to show that, on average, a packet takes longer to reach D in Scheme B than in Scheme A. For
simplicity, we assume that D is fixed. This does not affect generality as all nodes perform independent symmetric
random walks.

Consider the path of a packet originating at distance d from D. Until the packet reaches within a distance d̃ of
D, its path is the same in both schemes. As illustrated in Figure V-C, under Scheme B, at point X, which is at a
distance d̃ from D, the packet travels a distance ε by hops toward D to reach Y. Under Scheme A, the packet remains
at point X. At this instant, the remaining time for the packet to reach D under Scheme A, tA, is the time taken to
reach a ball B(D, l̄) starting from X, and under Scheme B, it is the time tB taken to reach B(D, l̄ − ε), starting
from Y. We now show that on average tA < tB. Consider a point D’ on the line X–D at distance ε from D (as
depicted in Figure V-C). Since all nodes perform independent symmetric random walks, the probability that a path
starting from X reaches B(D, l̄) is the same as the probability that any path starting from Y reaches B(D ′, l̄). Note
that, by construction, B(D, l̄ − ε) ⊂ B(D′, l̄). Hence the time for a packet at Y to reach B(D ′, l̄) is stochastically
dominated by the time needed to reach B(D, l̄− ε). This proves that the time taken by Scheme A is strictly smaller
than the time taken by Scheme B on average.

Using the above argument inductively for all hops establishes the Lemma.
The above Lemma shows that a throughput-delay optimal scheme must utilize all the hops at the end. Since in

Scheme 3(b), half the hops are performed at the end, it follows that its throughput-delay trade-off is of the same
order as that of an optimal scheme. The argument used above is for the case when the scheme allows only one
copy of each packet in the network at any time. Clearly the scaling is unaffected by the use of Θ(1) copies of each
packet.

The optimality of Schemes 3(a) and 3(b) establishes the following theorem.
Theorem 10: Among all schemes such that the number of copies of any packet in the network at any time is

Θ(1), Scheme 3 obtains the optimal throughput-delay trade-off for mobile networks.

VI. CONCLUSION

Optimal throughput scaling with the number of nodes in static and mobile wireless networks was established in
[11] and [10] using a random network framework. Delay scaling, however, was not as well addressed in earlier
work. This paper established the optimal trade-off between throughput and average packet delay in static and mobile
wireless networks using a similar random network framework to that in [11] and [10].

For static networks, we showed that the optimal throughput-delay trade-off is given by D(n) = Θ(nT (n)). For
mobile networks, we presented a scheme similar to the Grossglauser-Tse scheme in [10] and showed that the delay
corresponding to Θ(1) throughput scales as Θ(n log n) when the nodes move according to independent random
walks. Further, we described and analyzed a scheme that achieves the optimal throughput-delay trade-off for mobile
networks by varying the number of hops, the transmission range, and the degree to which node mobility is used.
For the low throughput range achieved in static networks, we found that the trade-off for mobile networks is the
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same as that for static networks. For higher throughputs, there is almost no trade-off between throughput and delay
– the same maximum delay is incurred regardless of the throughput. Our results utilized a unified framework for
static and mobile networks and our random network model resulted in simpler proofs of previous throughput results.
The framework and proofs should provide a better understanding of the essential characteristics of large wireless
networks.

Several questions remain to be tackled for a better theoretical understanding of the data communication aspect of
random wireless networks. With the exception of Scheme 2, the paper assumed a fluid model in which the packet
size is allowed to be arbitrarily small. A priori, it is not clear what the trade-off will be with the additional constraint
that packet size remains constant. In the second part of this paper [9], we show that for static networks the trade-off
remains unchanged even with packets of constant size. We believe that the same should hold for mobile networks,
but such a result remains to be established.

The Protocol model used in this paper and the Physical model have been used by many researchers. These
models, however, do not take transmission energy into account. Modeling energy consumption and determining the
trade-offs between throughput, delay and energy is an important issue with initial steps already taken by several
researchers (e.g., [3], [8], [6]).

In this paper we assumed a random walk model for node mobility. One expects that the scaling results would
be the same for a larger class of Markovian motion models. Determining the class of such motion models would
be another future challenge.
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APPENDIX I

Proof of Lemma 1: Let Ai be the event that cell i is not empty and let m = 1/a(n) be the number of cells.
Then

P (Ai) = 1 − (1 − 1/m)n → 1 − e−n/m.

With m ≤ n/2 log n, it follows that P (Ai) ≥ 1− 1/n2 and hence an application of the union bound completes the
proof.

Proof of Lemma 2: Consider a node in a cell transmitting to another node within the same cell or in one of
its 8 neighboring cells. Since each cell has area a(n), the distance between the transmitting and receiving nodes
cannot be more than r =

√

8a(n). Under the Relaxed Protocol model, data is successfully received if no node
within distance r̄ = (1+∆)r of the receiver transmits at the same time. Therefore, the number of interfering cells,
c1, is at most

c1 ≤ 2
r̄2

a(n)
= 16(1 + ∆)2,

which, for a constant ∆, is a constant, independent of n (and a(n)).

APPENDIX II

Proof of Lemma 5: Let the cells on the torus be numbered 1 to n. Let X i(t) be the cell in which node i resides
at time t for i = 1, . . . , n. Without loss of generality let node 1 be the relay node and node 2 be the destination node.
Now X(t) = (X3(t), . . . , Xn(t)) is a Markov chain formed by the independent random walks of the n− 2 nodes
other than the relay and the destination on the two-dimensional torus. The corresponding equilibrium distribution is
independent and uniform, i.e., each node is equally likely to be in any of the n cells. This implies that at time α0,
X1(α0) = X2(α0) = U0 where U0 is uniformly distributed on {1, . . . , n}. And nodes 3 to n are also distributed
independently and uniformly over the n cells. Due to symmetry on the torus, by arguing inductively, it can be seen
that for k = 0, 1, . . . , X1(αk) = X2(αk) = Uk ∼ Uniform{1, . . . , n}.

For typographical ease, let F = {Ei = 1}. Then for a network of n nodes, we have

P
(

Ei = 1|αi, Ei−1
)

=
∑

X(αi)

P
(

F |X (αi) , αi, Ei−1
)

P
(

X (αi) |αi, Ei−1
)

=
∑

X(αi)

P (F |X (αi)) P
(

X (αi) |αi, Ei−1
)

(48)

≥ min
X(αi)

P (F |X(αi))
∑

X(αi)

P (X(αi)|αi, Ei−1)

= min
X(αi)

P (F |X (αi)) , (49)

where (48) is true since Ei is independent of everything else given X (αi) since it determines the configuration
of occupancies of all the n cells by the other n − 2 nodes. Next we show that the configuration that minimizes
P (F |X(αi)) is the one in which n − 2 cells contain one node each.

In time-slot αi, let Fk be the event that R and D meet in cell k and let sk, dk denote the cell occupancies, i.e.,
number of source and destination nodes respectively in cell k (not including R and D) for 1 ≤ k ≤ n. Obviously,
sk, dk are determined by X(αi). Recall that R and D are equally likely to meet in any of the n cells and hence

P (F |X(αi)) =
n
∑

k=1

P (Ei = 1|X(αi), Fk)P (Fk)

=
1

n

n
∑

k=1

1

(1 + dk)(1 + sk + dk)
. (50)

Now clearly for l ≥ 0 and k ≥ 1
1

(k + 1)(k + 2)(k + l + 1)
<

1

2
,
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and for l ≥ 1 and k ≥ 0
1

(k + 1)(k + l + 1)(k + l + 2)
<

1

2
.

With simple algebraic manipulations, these can be rewritten as

1

(k + l + 1)(k + 1)
+

1

2
<

1

(k + 2)(k + l + 1)
+ 1, (51)

1

(k + l + 1)(k + 1)
+

1

6
<

1

(k + 1)(k + l + 2)
+ 1. (52)

Consider two cells with occupancies s1 = l, d1 = k + 1 and s2 = 0, d2 = 0. Then their contribution to the sum in
(50) is given by the right hand side of (51). Now by moving one of the nodes from cell 1 into cell 2 we obtain
s1 = l, d1 = k and s2 = 0, d2 = 1. For this case, the left hand side of (51) gives the contribution to the sum in
(50). Thus the last inequality says that if a cell contains more than 1 destination nodes and there is another empty
cell then P (F |X(αi)) can be reduced by moving one of the destination nodes to an empty cell. Similarly (52)
says that if a cell contains more than 1 source nodes and there is another empty cell then P (F |X(αi)) can be
reduced by moving one of the source nodes to an empty cell. But in our case with n cells and n− 2 nodes, empty
cells always exist. Hence starting from any initial cell occupancies, we progressively obtain that P (F |X(αi)) is
minimized when each of the n − 2 nodes occupies a different cell.

Next we compute the term in (49), which is the probability of R and D being chosen as a transmit-receive pair
for the worst case of cell occupancies mentioned above. Using (50), we obtain

min
X(αi)

P (F |X (αi)) =
1

n

(

(n − 2)

2

[

1

4
+

1

2

]

+ 2

)

=
3

8
− 5

4n

→ 3

8
. (53)

This proves the lemma for any choice of c6 < 3/8.
Remark: It is interesting to obtain an upper bound on P (Ei = 1|αi, Ei−1) in the same manner. It is easy to see that
the configuration that maximizes this probability is the one in which all n − 2 nodes are in the same cell. Hence
using (50) and recalling that F = {Ei = 1}, we obtain

P (Ei = 1|αi, Ei−1) ≤ 1

n

(

(n − 1) +
4

n2

)

= 1 − 1

n
+

4

n3
→ 1.

This shows that 3/8 − 5/4n ≤ P (Ei = 1|αi, Ei−1) ≤ 1 − 1/n + 4/n3, indicating the extent of dependence in the
process.

Proof of Lemma 4: We need to compute the first and second moments of τ , which is the inter-meeting time of
two nodes, i and j, moving according to independent random walks on a

√
n×√

n discrete torus. Let the position
of node i at time t be X i(t) = (X i

1(t), X
i
2(t)), where X i

k(t) ∈ {0, . . . ,√n − 1} for k ∈ {1, 2}.
Now consider the difference random walk between nodes i and j, defined by X ij(t) = (X ij

1 (t), X ij
2 (t)), where

Xij
k (t) = X i

k(t) − Xj
k(t) mod

√
n, for k = 1, 2. The meeting time of two nodes i, j is identified by the event

{Xij(t) = (0, 0)}. Thus the inter-meeting time is the stopping time

T ij = inf{t ≥ 1 : X ij(t) = (0, 0), X ij (0) = (0, 0)}.

This is in fact the first return time to state (0, 0). Since we are only interested in the scaling orders of the first two
moments, we instead consider the first return time to state (0, 0) for a simple random walk X(t) on a

√
n × √

n
discrete torus. The first return time to state (0, 0) is given by

T = inf{t ≥ 1 : X(t) = (0, 0), X(0) = (0, 0)}.

First note that, X(t) is a Markov chain with a uniform equilibrium distribution π, i.e. π(i, j) = 1/n for 0 ≤
i, j ≤ √

n − 1. For any finite-state ergodic Markov chain, the expectation of the first return time to any state is



33

the reciprocal of the equilibrium probability of the Markov chain being in that state. In particular, the average first
return time to state (0, 0) is n, i.e. E[T ] = n. By the same argument, E[τ ] = n.

Next, we wish to compute E[T 2], which is of the same order as E[τ 2]. First consider the quantity

T0 = inf{t ≥ 0 : X(t) = (0, 0)},
which is the hitting time of state (0, 0). Let E(i,j)T(k,l) denote the expected time to first hit state (k, l) starting from
state (i, j). Then

Eπ[T0] =

√
n−1
∑

i,j=0

π(i, j)E(i,j)T(0,0)

=

√
n−1
∑

i,j=0

π(i, j)E(i,j)T(k,l) (54)

=

√
n−1
∑

i,j=0

√
n−1
∑

k,l=0

1

n
π(i, j)E(i,j)T(k,l)

=

√
n−1
∑

i,j=0

√
n−1
∑

k,l=0

π(i, j)π(k, l)E(i,j)T(k,l)

= Θ(n log n), (55)

where (54) holds because
∑

ij E(i,j)T(0,0) =
∑

ij E(i,j)T(k,l) for any 0 ≤ k, l ≤ √
n − 1 due to symmetry of states

corresponding to cells on the torus. The validity of (55) is from page 11 of Chapter 5 in [1].
Using Kac’s formula (see Corollary 24 in Chapter 2 of [1]) and (55), we obtain

E[T 2] =
2Eπ[T0] + 1

π(0, 0)

= 2Θ
(

n2 log n
)

+ n.

Therefore, we obtain E[τ ] = n and E[τ 2] = Θ(n2 log n).
Proof of Lemma 6: An arrival occurs to Q3 when S and R meet with probability 0.5. Let {Xi} be the sequence

of inter-arrival times to this queue. Then, Xi are i.i.d. with E[X1] = 2E[τ ] = 2n and E[X2
1 ] = Θ(E[τ 2]) =

Θ(n2 log n) from Lemma 4. The potential-departure process is an i.i.d. Bernoulli process with parameter 1/1.5n. Let
{Yi} be the sequence of service times then Yi is a Geometric random variable with mean 1.5n. Hence E[Y1] = 1.5n
and E[Y 2

1 ] = Θ(n2). Let D3 denote the delay of a packet through Q3. The service process is independent of the
arrival process and hence Q3 is a GI/GI/1 FCFS queue. Then, by Kingman’s upper bound [19] on the expected
delay for a GI/GI/1 – FCFS queue, the expected delay of Q3 is upper bounded as

E[D3] = O

(

E[X2
1 ] + E[Y 2

1 ]

E[X1]

)

= O

(

n2 log n + n2

n

)

= O (n log n) .

Proof of Lemma 7: Consider the service process of Q4, which is 1 at a potential departure instant and 0
otherwise. This is a stationary, ergodic process since the inter-potential-departure times are i.i.d. with mean n. The
Bernoulli arrival process to Q4 is independent of the service process with mean inter-arrival time 1.5n. Since the
arrival and service processes form a jointly stationary and ergodic process with mean service time strictly less than
mean inter-arrival time, the queue has a stationary, ergodic distribution with finite expectation as shown by [16].
Thus Q4 is stable.

Let Q̃t be the number of packets in the queue in time-slot t and let Qi be the number of packets in the queue at
potential departure instant i. Thus the process {Qi} is obtained by sampling {Q̃t} at potential departure instants.
Let Ai+1 be the number of arrivals between potential departure instants i and i + 1. Then the evolution of Qi is
given by

Qi+1 = Qi − 1{Qi>0} + Ai+1. (56)
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Comparing the evolution of the process {Qi} with that of {Q̃t} shows that {Qi} also has a stationary, ergodic
distribution. Recall that τ is the inter-meeting time of R and D. Then since the arrival process is Bernoulli and
the inter-potential departure times are i.i.d. with common distribution that of τ , it is clear the {Ai} is a stationary
process. Let Q̃, Q and A be random variables with the common stationary marginals of {Q̃t}, {Qi} and {Ai}
respectively. Then taking expectation in (56) under the stationary distribution, we obtain

P (Q > 0) = E[A]. (57)

The arrival process is i.i.d. Bernoulli and hence conditioned on τ , the distribution of A is Binomial (τ, 2/3n). Since
E[τ ] = n from Lemma 4, we obtain

E[A] = E[E[A|τ ]] = E
[ τ

1.5n

]

=
2

3
. (58)

Squaring (56), taking expectation, using the independence of Qi and Ai+1 and then rearranging terms, we obtain

2(1 − E[A])E[Q] = P (Q > 0) + E[A2] − 2E[A]P (Q > 0).

Using (57) and (58) in the above, we obtain

E[Q] =
E[A] + E[A2] − 2E[A]2

1(1 − E[A])

=
3

2

(

E[A2] − 2

9

)

. (59)

Recall that conditioned on τ the distribution of A is Binomial (τ, 2/3n) and hence

E[A2] = E[E[A2|τ ]]

=
2E[τ ]

3n
+

4

9n2

(

E[τ2] − E[τ ]
)

=

(

2

3
− 4

9n

)

+
4

9n2
Θ(n2 log n)

= Θ(log n), (60)

where we used Lemma 4. As a result it follows from (59) that

E[Q] = Θ(log n). (61)

Next, we will bound E[Q̃] using E[Q]. To this end, consider a time-slot t and let the number of potential
departures before time-slot t be I(t). Thus time-slot t is flanked by potential departures I(t) and I(t) + 1. Then
Q̃t ≤ QI(t) + AI(t)+1. Also using the fact that {Q̃t} is ergodic, with probability 1, we have

E[Q̃] = lim
T→∞

1

T

T
∑

k=1

Q̃k

≤ lim
T→∞

1

T

I(T )+1
∑

j=1

(Qjτj+1 + Aj+1τj+1)

= lim
T→∞

I(T ) + 1

T

1

I(T ) + 1
I(T )+1
∑

j=1

(Qjτj+1 + Aj+1τj+1)

=
1

E[τ ]
(E[Q1τ2] + E[A1τ1]) (62)

=
1

n

(

E[Q]E[τ ] +
2

3n
E[τ2]

)

(63)

= O(log n). (64)
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We used the fact that I(T )/T→1/E[τ ] by the elementary renewal theorem [19] in (62) and the independence of
Qj and τj+1 in (63). Let D4 denote the delay of a packet through Q4. Using Little’s formula, since the arrival rate
is 2/3n, we conclude that

E[D4] =
3n

2
E[Q̃] =

3n

2
O(log n) = O(n log n).

APPENDIX III

Proof of Lemma 8: Consider a fixed cell, say cell 1, out of m = 1/a(n) cells. First we determine the traffic
due to stage 1 in time-slot 0 which is the number of packets that cell 1 is required to transmit in time-slot 0.

Let Yi be the number of packets of the S-D pair i at cell 1 in time-slot 0. We claim that no more than two
packets of S-D pair i can be passing through cell 1 in time-slot 0. This is because k packets of S-D pair i can
pass through cell 1 at the same time if and only if for k consecutive time-slots, the source node S moves closer to
cell 1 by 1 hop along the line joining S and D. Now, cells are of size at least Θ(log n/n), whereas according to
the RW model, the nodes can only move Θ(1/

√
n) distance in unit time. Hence this can hold for at most k = 2.

Thus, Yi ∈ {0, 1, 2}. Next, we compute E[Yi].
Let Li(s) be the length (in terms of number of hops) of the straight line joining the center of cells that contain

S and D at time s of S-D pair i. Now, a packet generated at time −s, s ≥ 0 can be part of stage 1 at time 0, only
if Li(−s) > s. This is true because otherwise packet generated at time −s is already transmitted for s times till
time 0 and hence it is either in stage 2 or has reached the destination. Using this, we obtain

m
∑

j=1

Yi(j) ≤
∞
∑

s=0

I({Li(−s) > s}),

where I(A) is the indicator function of the event A and Yi(j) is the number of packets of stage 1 of the ith S-D
pair at cell j at time 0. By symmetry, E[Yi(j)] = E[Yi(1)] = E[Yi]. Then,

mE[Yi] ≤
∞
∑

s=0

P{Li(−s) > s}

(a)
=

∞
∑

s=0

P{Li(0) > s}

= E[Li(0)]
(b)
= Θ

(

1/
√

a(n)
)

.

Above, (a) holds because of the stationarity of Li(·) under the RW model. And (b) is true because under the RW
model the average distance between an S-D pair is Θ(1/

√

a(n)) hops since the actual physical distance is Θ(1).

From above, E[Yi] = Θ
(

√

a(n)
)

. Now let Zi = I({Yi 6= 0}). Then by Markov’s inequality,

P ({Zi = 1}) = P ({Yi ≥ 1}) ≤ E[Yi].

The total number of packets passing through cell 1 at time 0 is
∑n/2

i=1 Yi ≤ 2
∑n/2

i=1 Zi. Since under the RW model,
all n/2 S-D pairs move independently, {Zi} are independent and due to symmetry they are distributed identically.
Thus we can define {Z̃i} to be i.i.d. Bernoulli random variables with parameter pn = Θ

(

√

a(n)
)

so that Zi is

stochastically dominated by Z̃i. As a result, the total number of packets is stochastically dominated by 2
∑n/2

i=1 Z̃i.
By an application of the Chernoff bound,

∑n/2
i=1 Z̃i ≤ npn with probability at least 1 − 1/n4 for large enough

n. Thus, cell 1 has O(npn) = O
(

n
√

a(n)
)

packets passing through it in time-slot 0 with probability at least

1 − 1/n4. Due to symmetry, the same is true for all m cells. Hence, by the union bound, each of the m cells has
O
(

n
√

a(n)
)

packets of stage 1 in time-slot 0 with probability at least 1 − m/n4 ≥ 1 − 1/n3.

Proof of Lemma 9: Let H(Ck−1, Ck) denote the number of hops made by a packet in stage k for k =
1, . . . , k(n)− 1. For a given packet this is the hop distance between Ck−1 and Ck (as explained in the description
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of Scheme 3(a)). Let lk = E[H(Ck−1, Ck)]. Since, each source node S is at a physical distance of Θ(1) from
its destination on average, l1 = Θ(1/

√

a(n)). It is clear that the traffic of stage k depends on lk, which in turn
depends on lk−1. Hence, we first determine the relation between lk and lk−1 for k ≥ 2 in order to evaluate lk.

By definition, H(Ck−1, Ck) is the displacement of the destination node of the packet while the packet was being
transported in stage k from cell Ck−2 to cell Ck−1. Under Scheme 3(a), if a packet is not dropped, it reaches Ck−1

from Ck−2 in time H(Ck−2, Ck−1) since each hop takes a constant amount of time. The average distance moved
by destination node in this time is Θ

(

√

H(Ck−2, Ck−1)/n
)

under the RW model. That is, the destination node

is displaced from Ck−1 by Θ
(

√

H(Ck−2, Ck−1)/na(n)
)

hops on average. Putting this together, we obtain the
following.

lk = E[H(Ck−1, Ck)]

= E
[

E
[

H(Ck−1, Ck)|H(Ck−2, Ck−1)
]]

= E

[

Θ

(
√

H(Ck−2, Ck−1)

na(n)

)]

= Θ





E
[

√

H(Ck−2, Ck−1)
]

√

na(n)





= O

(

√

E[H(Ck−2, Ck−1)]
√

na(n)

)

, (65)

where (65) follows from Jensen’s inequality. Equation (65) gives us the following recursion. For k ≥ 2,

lk = O

(
√

mlk−1

n

)

. (66)

Now, as noted earlier, l1 = O
(

1/
√

a(n)
)

= O (
√

m). For ease of presentation, let c5 ≥ 1 be constant such that

for large enough n, l1 ≤ √
c5m and lk ≤

√

c5mlk−1/n. Putting all this together, we obtain

lk ≤
√

c5mlk−1

n

≤
(c5m

n

)

P

k−1
j=1 2−j

l2
−k+1

1

≤
(c5m

n

)1−2−k+1

(c5m)2
−k

≤ c5m

n

(

n2

m

)2−k

. (67)

Now we are ready to analyze the traffic load on cells due to stage k, k ≥ 2. The analysis of stage 1 showed
that at most 2 packets of the same S-D pair can pass through a cell in the same time-slot. This happens only if the
source moves in a particular way so that in adjacent time-slots the distance to the cell being considered reduces by
one hop. Similarly by considering the motion of both the source and the destination it can be shown that in stage
2 the number of packets of the same S-D pair that can pass through a cell is at most 3. For stage k ≥ 3, since a
packet originates from a fixed cell, rather than from a mobile node like S, it follows that the number of packets of
the same S-D pair passing through a cell in the same time-slot is no more than 3.

Consider stage k. As in stage 1, let Yi be the number of packets for S-D pair i at cell 1 at time 0. From the
above discussion, Yi ∈ {0, 1, 2, 3}. Let Li(s) denote the length in hops, H(Ck−1, Ck), for a packet of the S-D pair
i entering stage k in time-slot s. Due to the symmetry of the cells under the RW model (using arguments similar
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to that used in analysis of stage 1) and (67), we obtain

mE[Yi] ≤
∞
∑

s=0

P ({Li(−s) > s})

=

∞
∑

s=0

P ({Li(0) > s}

= E[Li(0)]

= O

(

m

n

(

n2

m

)2−i
)

.

Thus,

E[Yi] = O

(

1

n

(

n2

m

)2−i
)

. (68)

Again using the same method as in the analysis of stage 1, it can be shown that the total number of stage k packets

passing through each cell is O

(

(

n2

m

)2−k
)

with probability at least 1 − 1/n3.

Proof of Lemma 12: Let X(t) = (X1(t), X2(t)) be a two-dimensional simple RW on the
√

n ×√
n discrete

torus. Let B = {1,√m, . . . , (
√

n/m−1)
√

m}, i.e., B is the set of elements of {0, . . . ,√n−1} which are multiples
of

√
m. Let Y1(t) ∈ B be the discrete-time process such that Y1(t) is the last (including the current) state visited

by X1(t) in B. Thus the process Y1(t) is a coarser version of X1(t) that changes state only when X1(t) moves√
m steps away on the one-dimensional discrete torus. Similarly, define Y2(t) to be the last state visited by X2(t)

in B and let Y (t) = (Y1(t), Y2(t)).
Now let Z(t) be the process obtained by sampling Y (t)/

√
m whenever its value changes. Thus Z(t) ∈ {0, . . . ,

√

n/m}
proceeds in steps and ignores the random amount of time that Y (t) spends in each step. Now Z(t) is a random
walk on the discrete

√

n/m ×
√

n/m torus, such that the next state is one of the eight possible neighbors. Let
TZ

0 be the hitting time of state (0, 0) for the random walk Z(t). This is the number of steps taken by Z(t) to hit
(0, 0). Since we are only interested in the order, we can use the corresponding moment for the simple random walk
instead. Thus we obtain

EπTZ
0 = O

( n

m
log
( n

m

))

.

Now Z(T Z
0 ) = (0, 0) implies that for some time T , X(T ) ∈ A. In fact, T is the random time required for T Z

0

steps of Z(t). Hence E[T ] is an upper bound on E[TA]. Let T̃ (i) be the time required for step i of Z(t), i.e., the
time for Y (t) to change state for the ith time. The T̃ (i) are clearly i.i.d. Moreover, T Z

0 is independent of T̃ (i) and

T =

T Z
0
∑

i=1

T̃ (i).

Let T̃1 and T̃2 be the random times required for Y1(t) and Y2(t) respectively, to change their states. Then
E[T̃1] = E[T̃2] = m, since this is the time required for a simple random walk on the integers to exit from
{−√

m + 1, . . . ,
√

m− 1}. Moreover, T̃ (i) is dominated by T̃1 since Y (t) changes state if either of Y1(t) or Y2(t)
change. Hence E[T̃ (i)] ≤ E[T̃1] = m.

Now in using T to upper bound TA, we need to take care of the possibility that X(t) may not start from a state
that is an element of B ×B and hence Y (t) is undefined until both X1(t) and X2(t) hit some element of B. But
this time is at most equal to max T1, T2 ≤ T1 + T2. Hence allowing for the initial expected time for X(t) to reach
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one of the elements of B, which is at most 2m, we obtain

n − |A|
n

EπAc TA = EπTA

≤ EπT + 2m

≤ Eπ

T Z
0
∑

i=1

T̃ (i) + 2m

= E
[

TZ
0

]

E
[

T̃ (1)
]

+ 2m

= O
(

n log
( n

m

))

.

Proof of Lemma 13: If the throughput of the network is T (n), the number of bits transmitted in a large enough
time t is at least ntT (n)/2. We will ignore this factor of 1/2 as it does not affect the scaling. Now consider a bit
b, where 1 ≤ b ≤ ntT (n). Let h(b) denote the number of hops taken by bit b and let r(b, h) denote the length of
hop h of bit b. Then

ntT (n)
∑

b=1

h(b)
∑

h=1

r(b, h) ≥ ntT (n)l̄(n). (69)

Using the same reasoning as the one which led to (7), we obtain

ntT (n)
∑

b=1

h(b)
∑

h=1

π

4

(

∆

2
r(b, h)

)2

≤ Wt. (70)

Let the total number of hops taken by all bits be

H =

ntT (n)
∑

b=1

h(b).

Then by convexity, we obtain




ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤
ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)2. (71)

Combining (70) and (71) we obtain,




ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)





2

≤ 16Wt

π∆2H
= c3

t

H
, (72)

where c3 is a constant that does not depend on n. Substituting from (69) into (72) and rearranging we obtain

ntT (n)l̄(n)

H
r̄(n) ≤ c3

t

H
, (73)

where

r̄(n) =

ntT (n)
∑

b=1

h(b)
∑

h=1

1

H
r(b, h)

is the sample mean of hop-lengths over H hops as defined earlier. Rearranging we obtain

T (n) ≤ c3

nl̄(n)r̄(n)
. (74)

This completes the proof of Lemma 13.
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