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Abstract: This study applies a neural-network-based optimal TCSC controller for damping oscillations. 

Optimal neural network controller is related to model-reference adaptive control, the network controller is 

developed based on the recursive “pseudo-linear regression”. Problem statement: The optimal NN 

controller is designed to damp out the low frequency local and inter-area oscillations of the large 

power system. Approach: Two multilayer-perceptron neural networks are used in the design-the 

identifier/model network to identify the dynamics of the power system and the controller network to 

provide optimal damping. By applying this controller to the TCSC devices the damping of inter-area 

modes of oscillations in a multi-machine power system will be handled properly. Results: The 

effectiveness of the proposed optimal controller is demonstrated on two power system problems. The 

first case involves TCSC supplementary damping control, which is used to provide a comprehensive 

evaluation of the learning control performance. The second case aims at addressing a complex system 

to provide a very good solution to oscillation damping control problem in the Southern Malaysian 

Peninsular Power Grid. Conclusion: Finally, several fault and load disturbance simulation results are 

presented to stress the effectiveness of the proposed TCSC controller in a multi-machine power system 

and show that the proposed intelligent controls improve the dynamic performance of the TCSC devices 

and the associated power network. 
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INTRODUCTION 

 

 The concept of Flexible Ac Transmission Systems 

(FACTS) is made possible by the application of high 

power electronic devices for power flow and voltage 

control FACTS are being increasingly used to better 

utilize the capacity of existing transmission systems and 

is a technology based solution to help the utility 

industry deal with changes in the power delivery 

business. A major thrust of FACTS technology is the 

development of power electric based systems that 

provide dynamic control of the power transfer 

parameters transmission voltage, line impedance and 

phase angle
[1,2]

. 

 Power system oscillations occur due to the lack of 

damping torque at the generators rotors. The oscillation 

of the generators rotors cause the oscillation of other 

power system variables (bus voltage, bus frequency, 

transmission lines active and reactive powers). Power 

system oscillations are usually in the range between 0.1 

and 2 Hz depending on the number of generators 

involved in
[3,4]

. Local oscillations lie in the upper part 

of that range and consist of the oscillation of a single 

generator or a group of generators against the rest of the 

system. In contrast, inter-area oscillations are in the 

lower part of the frequency range and comprise the 

oscillations among groups of generators. 

 To improve the damping of oscillations in power 

system, a Power System Stabilizers (PSSs) applied on 

selected generators can effectively damp local 

oscillation modes while for interarea oscillations a 

supplementary controller can be applied to TCSC 

devices. Most of these controllers are designed base on 

conventional approach that is designed based on a 

Linearized model which cannot provide satisfactory 

performance over a wide range of operation points and 

under large disturbances
[5]

. 

 Neural networks, enjoy a variety of advantages 

(e.g., high speed, generalization capability and learning 

ability), are a viable choice for non-linear control 

design. They have been successfully applied to the 

identification and control of dynamical systems 

especially in the field of adaptive control by making use 

of on-line training
[6,7]

. 

 Direct and indirect adaptive control with MLP and 

RBF neural networks has been discussed in
[8,9]

 for such 
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systems which relies on continuous online training of 

the identifier and controller network. 

 The research on the application of neural networks 

to the FACTS controllers design so far includes online 

tuning of FACTS controller parameters
[10-12]

, the 

implementation of indirect adaptive and direct adaptive 

control FACTS controller in
[12-14].  

 Jung-Wook et al.[15]
 Designed a supervised Neural 

network Controller base on Proportional-Integral (PI) 

controller for series TCSC device using Dual Heuristic 

Programming (DHP) optimization approach. The 

performance of the PI based conventional internal 

controller (CONVC) is compared with that of the DHP 

controller with respect to damping low frequency 

oscillations. This method, however need to have three 

different neural network model, model of Identifier, 

model of DHP controller and critic. In addition there are 

too many functions to store and training is base on 

offline unlike MLP that is straightforward to implement. 

 Dash et al.[16]
 Presents single-neuron and multi-

neuron Radial Basis Function Controller (RBFNN) for 

the UPFC control in single machine-infinite-bus and 

three-machine power systems and claimed to provide 

the best transient stability performance of the power 

system. This is because output layer of RBF can be 

optimized fully using traditional linear modeling 

techniques but, before linear optimization can be 

applied to the output layer of an RBF network, the 

number of radial units must be decided and then their 

centers and deviations must be set. Although faster than 

MLP training, the algorithms to do this are equally 

prone to discover sub-optimal combinations. RBF's 

requires a lot of units to adequately model most 

functions. Another drawback of RBF solution is will 

tend to be slower to execute and more space consuming 

than the corresponding MLP. 

 In this study, on-line trained neural networks are 

employed to design an adaptive neural network TCSC 

controller for a multi-machine power system. The 

proposed neural network TCSC controller design is 

started by designing a dynamic neuroidentifier for the 

TCSC device incorporated in a multimachine power 

system; then designing a neurocontroller for the TCSC 

device using the MLP network and train using Modified 

Recursive Prediction Error Algorithm (MRPEA). 

Finally compare the performance of the optimal 

neurocontroller with the conventional state feedback 

controller for a number of operating conditions. 

 

MATERIALS AND METHODS 
 

TCSC model: A typical TCSC module consists of a 

Fixed series Capacitor (FC) in parallel with a Thyristor 

Controlled Reactor (TCR) as shown in Fig. 1. The TCR is 

formed by a reactor in series with a bi-directional thyristor 

valve that is fired with an angle ranging between 90 and 

180° with respect to the capacitor voltage
[14]

. 

 Consider a line l, having line reactance XL, 

connected between buses k and m. If the reactance of 

TCSC placed in the line l is Xc, the percentage of 

compensation of TCSC (kc) is given by: 

 

C

L

X
kc

X
=  (1) 

 

 The line power flows are functions of the degree of 

compensation of the TCSC. The real power (Pkm) and 

reactive power (Qkm) in a line l (connected between 

buses k and m), with TCSC having degree of 

compensation kc and neglecting the line resistance, can 

be written as: 

 

km k m c k mP = V V B(x ) sin( )θ − θ  (2) 

 

mk kmP  = P−
 

(3) 

 
2

k km k m km k m
Qkm = V  (Y + B) V V (Y + B) cos( )− θ − θ

 
(4) 

 
2

m km k m km k m
Qmk = V  (Y +B) V V (Y +B) cos( )− θ − θ

 
(5) 

 

 The equivalent substance of the TCSC, is given by: 

 

C l C
km

l C l C

x /x k
B(xc) = - B

x (1 x /x ) (k 1)
=

− −
 

(6) 

 

 The TCSC reactance is varied by varying the real 

power error (Pref-P). 

 

Optimal adaptive neuro controller design: For 

engineering purposes, the neural network can be 

thought of as a black box model which accepts inputs, 

processes them and produces outputs according to some 

nonlinear transfer function
[17]

. 

 

 
 

Fig. 1: TCSC model 
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Fig. 2: Optimal neural network controller model 
 
 Neural network has been applied very successfully 

in the identification and control of dynamic systems. 

The universal approximation capabilities of the 

multilayer perceptron MLP make it a popular choice for 

modeling nonlinear systems and for implementing 

general-purpose nonlinear controller. The following 

describes the process of design of the neural network 

controller. There are typically two steps that involved 

when using neural network for control. 
 
System identification: 
Control design: In system identification stage, a model 

for the system that needs to be controlled should be 

developed. In control stage the developed model should 

be used in training the controller. This controller uses a 

neural network model to predict future plant responses 

to potential control signals. An optimization process 

then computes the control signal that optimizes the 

future plant performance
[18]

. The optimal neuro-

controller design consists of two separate neural 

networks, namely the neuro-controller and the neuro-

identifier. The structure for the training of the neuro-

identifier and the neuro-controller is shown in Fig. 2. 

These two phases are carried out in series. The training 

algorithm and process of the neuro controller are 

described in detail in section below. 
 
Neural network identifier: In order to provide a closer 

approximation to the dynamic behavior of the power 

system a Nonlinear Auto Regressive Moving Average 

(NARMA) model
[17]

 is employed in this study, which is 

identified by means of artificial neural networks. The 

neuro-identifier developed is a 3rd order model of the 

form: 
 

1 1
A(z )y(t) B(z )u(t) (t)

− −= + ζ  (7) 

 

where, A(z
−1

) and B(z
−1

) are polynomials in the 

backward shift operator z
−1

 and are defined as: 

1 1 2 3

1 2 3
A(z ) 1 a z a z a z− − − −= + + +

 
(8) 

 
1 1 2 3

1 2 3
B(z ) b z b z b z− − − −= + +

 
(9) 

 

 The variables y(t), u(t) and ζ(t) are the system 

output, system input and white noise respectively. For 

the purpose of identification, Eq. 7 can be written in the 

form of: 

 
T

y(t) (t) (t) (t)= θ ϕ + ζ   (10) 

 

Where: 

 

[ ]1 2 3 1 2 3(t) a a a b b bθ =  (11) 

 
T

y(t 1) y(t 2) y(t 3)
(t)

u(t 1) u(t 2) u(t 3)

− − − − − − 
ϕ =  − − − 

 (12) 

 

where, θ(t) and ϕ(t) are the parameter vector and the 

measurement variable vector, respectively. The typical 

structure of the MLP neural Network identifier is 

shown in Fig. 3. The network has six input neurons, 

five neurons in the hidden layer and a single layer of 

neuron in the output layer. MLP perceptron is used to 

track the dynamics of the system and modeled so that its 

weights have a one-to-one relationship with the ARMA 

parameters. The plant Identifier receives the plant input u 

and plant output y at one step of time (t-1) (t-2) and (t-3), 

and give out the estimated output ŷ through the ARMA 

method explained above. The parameters of the identifier 

are updated based on the error between the plant output y 

and its desired output ym. 

 In this research the network is trained in advance 

with the nnarx function in the NNSYSID toolbox
[19]

. 

The variables defining the network includes input and 

two delayed inputs signals, output and two delayed 

output of the system as mention already together with 

initial weights of the network and then the number and 

types of neurons in hidden and output layer. Similar 

variable is specified as controller initials architecture. 

 

Neuro-controller model: The neuro-controller is also a 

multi-layer feedforward network trained with Modified 

Recursive Prediction Error Algorithm (MRPE). The 

number of neurons in input, hidden and output layer is 
six, five and one respectively, each hidden neurons used 

tangent activation functions and a linear function in the 

output. The inputs to the Neuro-controller are actual 

plant output y and its two previous values plus the two 

previous values of output of the Neuro-controller u 

together with reference signal.  
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Fig. 3: Network of MLP model 

 

Training algorithm: There are so many types of 

training algorithm of neural network most of them can be 

viewed as a straight forward application of optimization 

theory and statistical estimation. They include: Back 

propagation by gradient descent, Recursive Prediction 

Error algorithm (RPE), BFGS, CG. In this project a 

Modified Recursive Prediction Error Algorithm (MRPE) 

explained by
[20]

 is adapted here. 

 

Modified recursive prediction error algorithm: 
Recursive Prediction Error algorithm (RPE) was 

originally derived by Ljung and Soderstrom
[20,21]

 and 

modified by
[22]

 to train MLP networks. RPE algorithm 

is a Gauss-Newton type algorithm that will generally 

give better performance than a steepest descent type 

algorithm such as back propagation algorithm. In the 

present study, the convergence rate of the RPE 

algorithm is further improved by using the optimized 

momentum and learning rate. The momentum and 

learning rate in this research are varied compared to the 

constant values in Chen et al.[22]
. The RPE algorithm 

modified by Chen et al.[22]
 minimizes the following cost 

function: 

 

( )
N

T 1

N

t 1

1ˆ ˆ ˆV (t, ) (t, )
2N

−

=

θ = ε θ Λ ε θ∑  (13) 

 

 By updating the estimated parameter vector, 

(consists of w’s and b’s), recursively using Gauss-

Newton algorithm: Where ε(t) and Λ are the prediction 

error and m×m symmetric positive definite matrix 

respectively and m is the number of output nodes .The 

weights (specified by the vector θ, or alternatively by 

the matrices w and W) are the adjustable parameters of 

the network and are determined through the process 

called training: 

 
ˆ ˆ(t) (t 1) P(t) (t)θ = θ − + ∆

 
(14) 

and: 

 

m g u u(t) (t) (t 1) (t) (t)(e (t) u(t 1)))∆ = α ∆ − + α ψ − ρ −
 

(15) 

 

Where: 

ρ = Penalty on squared differenced 

controls 

αm(t) and αg(t) = The momentum and learning rate 

respectively 

 

 αm(t) and αg(t) can be arbitrarily assigned to some 

values between 0 and 1 and the typical value of are 

closed to 1 and 0 respectively. αm(t) and αg(t) used in 

this study are varied to further improve the convergence 

rate of the RPE algorithm according to: 

 

m m(t) (t 1) aα = α − +
 

(16) 

 

and: 

 

g m m(t) (t)(1 (t))α = α − α
 

(17) 

 

where, a is a small constant (typically a = 0.01); is 

normally initialized to 0≤αm(0)<1. ψ(t) represents the 

gradient of the one step ahead predicted output with 

respect to the network parameters: 

 

ˆdy(t, )
(t, )

d

θ ψ θ =  θ   

(18) 

 

P(t) in Eq. 19 is updated recursively according to: 

 
Tˆdy(t, ) P(t 1) (t) (t)P(t 1)

P(t) P(t 1)
d

 θ − ψ ψ −= − − θ γ 
 (19) 

 
T

(t)I (t)P(t 1) (t)γ = λ + ψ − ψ
 

(20) 

 

where, λ (t) is the forgetting factor, 0<λ(t)<1 and 

normally been updated using the following scheme: 

 

0 0(t) (t 1) (1 )λ = λ λ − + − λ
 

(21) 

 

where, λ0 and the initial forgetting factor λ(0) are the 

design values. Initial value of covariance matrix P(t), 

P(0) is normally set to αI where I is the identity matrix 

and α is a constant, typically between 10-10000. Small 

value of α will cause slow learning however too large 

may cause the estimated parameters do not converge 

properly
[21]

. 
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Training of the neural network identifier: The 

training process of the neuro-identifier is only trained 

around some stable operating point, it is necessary for it 

to be trained online to adapt to the cases when system 

states change. To obtain training data the power system 

model in consideration is simulated and the 

input/output data table is generated for different 

operating conditions. During this phase, the input and 

desired output of the neuro-identifier are [y(t-1), y(t-2) 

y(t-3),u(t-1) u(t-21),u(t-32)] and ŷ(t1)  respectively, 

where ŷ(t)  is the most current system state.  

 Where: 
 
u(t) = Input reference vector of the TCSC as(Pref-PL)  

y(t) = Output vector for the system like speed of the 

generator and line active power  
 
Training of the neural network controller: The 

training of the neural network controller takes place 

with the training of the neural network -identifier in 

cascade. During this period, the input to the Neuro-

controller is [y(t), y(t-1), y(t-2), u(t-1), u(t-2),r(t+1)] 

and the output is u, which is then fed to the Neuro-

identifier and evaluated against the desired output. The 

desired control signal is calculated through the neural 

network -identifier by comparing the output of the 

Neuro-identifier with the desired system response. The 

error signal in equation eu is used to update the weights 

of the Neuro-controller and the objective function used 

to train the optimal neural Network controller is given 

in Eq. 23: 
 

2 2

t

J ( )= (r(t) y(t)) + (u(t)) ,    0θ − ρ ρ ≥∑
 

(23) 

 

 The weights are updated as: 

 

( )u u
ˆ ˆ(t) (t 1) P(t) (t) e (t) u(t 1)θ = θ − + ψ − ρ −  (24) 

 

Where:  

u

du(t 1)
(t)

d

−ψ
θ

≃  = Gradient of the one step ahead input 

with respect to network parameters 

P(t) = Covariance matrix determine from 

Eq. 19 

u

y(t)
e = e(t)

u(t-1)

∂
∂

 = Output error back propagated to the 

controller model 

ρ = Finality factor to penalize the 

squared controls 

 

 The training algorithm implemented is a modified 

recursive Gauss-Newton algorithm based on Recursive 

Prediction Error algorithm (RPE) mention in section 

above for minimizing the above objective function. 
 

RESULTS 
 
 Simulations were performed in the Sirnulink 

environment of Matlab using a fixed step-size of 1 m sec 

and ode 45 solvers. The results are separately presented 

for the two test cases that are 11 bus system and 145 

bus systems. 
 

DISCUSSION 
 
Two area four machines with TCSC device: The 

First test system used for applying TCSC Neuro-

controller is 11 bus systems, shown in Fig. 4. To 

evaluate the performance of designed TCSC Neuro-

controller controller, the simulations are carried out 

under the following two conditions: 
 
Case 1: For this case study, a three phase faults is 

applied at bus 8 for a 1 sec and cleared after 1.05 sec 

with a heavy load demand from area 2 of 650 MW with 

all the tie-lines in place. Figure 5 presents the inter-area 

and local modes of oscillations for the treated TCSC 

devices. Figure 5 shows the superiority of TCSC 

Neuro-controller over its conventional counterpart. 
 

2

3

4

7

8

51 6 9 10 11

L7
L9

G1

G2 G4

u

TCSC

+

 
 
Fig. 4: Two area test system with TCSC neuro-

controller 
 

 
 

Fig. 5: Speed deviation of (G1-G3) for case 1 
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Case 2: For this case study, a three phase faults is 

applied at bus 8 for a 1 sec and cleared after 1.05 sec 

with a normal load demand from area 2 of 400 MW but 

with the tie-lines 7-8 outage. The interarea and local 

mode of oscillations for TCSC devices in the network is 

shown in Fig. 6. In this case, the responses of TCSC 

under Conventional control and Neuro-controller are 

presented. Figure 6 the superiority of Neuro-controller 

is clearly observed. 

 

EEE 50 machines, 145 bus system with TCSC: The 

test system used for applying TCSC Neuro-controller is 

IEEE 145 bus system, shown in Fig. 7 to evaluate the 

performance of designed TCSC Neuro-controller 

controller, the simulations are carried out under the 

following two conditions: 

 

Case 1: Three phase faults are applied at bus 6 on line 

between bus 6 and 12, followed by outage of the line 6-

12. The fault is cleared 5.56 m sec after the fault is 

applied 

 

Case 2: Three phase fault is applied at bus 66 when one 

of the possible tie line between bus 65 and 66 is 

switched off. The fault is cleared 0.05 m sec after. 

 Figure 8 and 9 shows the responses of power flow 

in controlled line were TCSC is connected and speed 

deviation of G128 with respect to G120 for case 1 

respectively. From Fig. 8 and 9 the superiority of 

Neuro-controller is clearly observed. Similar results are 

obtained in Fig. 10 and 11 for case 2. 

 

 
 

Fig. 6: Speed deviation of (G1-G3) for case 2 
 

9 3

1 1 0

3 3
5

4

3

3 4

36

4 3

3 5

3 8

3 7

4 1

8 79 9

3 9

4 0

4 4
42

45

84

48
4 9

4 9
5 0

4 7

51

1 02

56

53

63

6 4 6 5
68

9 7
8

6 6 1 11

1 04

6

3 2
10

6 7

10 1

57

11 3

1 14

7 0

10 0 1 0 3

5 8

5 5
5 2

54

9 8

71
1 0

1 12

5 9

8 0

79

1 07

6 0

9 4

90
9 2

6 9

1 24

11

21

2 0

1 9

1 8

8 1

7 4
7 3

3 1
2 6

8 3 78
30

2 3

1 5
1 6

25

1 0 5

1 06

82

10 8
1 09

2 7

7 5
2 9

2 8

24

77
7 6

8 9

14

13

1 2

72

9 6

1 2 112 01 19

1 26

1 25

1 29

1 2 7

1 2 8

13 8

1 22 95

1 31

12 3

1 30

13 2

1 33
13 4

1 35

1 36

1 37

13 9

1 4 0

1 1 6

1 15
14 5

14 4
1 4 3 14 2

1 41

46

8 5 1 1 7

11 8

A rea 1 A re a  2

7

9

6 1 8 6

2

 
 

Fig. 7: IEEE 145 bus, 50 machine test systems 
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Fig. 8: Active powers for the TCSC placement in line 

6-7 for case 1 

 

 
 

Fig. 9: Speed deviation of (G120-G128) for case 1 

 

 
 

Fig. 10: Active  powers for the TCSC placement in 

line 6-7 for case 2 

 

 

Fig. 11: Speed deviation of (G120-G128) for case 2 

 

CONCLUSION 

 

 In this study, optimal Neuro-controller is proposed 

for damping oscillations and the effectiveness of the 

proposed control system is compared with 

Conventional controller under some disturbances. The 

controller is tested on a well known bench mark power 

system model proposed by Kundur called two area four 

machines system and a practical network of IEEE 145 

bus system. From the results it can be concluded that 

the optimal Neuro-controller produces no steady state 

error and acceptable overshoot under some 

disturbances. 
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