
Optimal Time-Critical Scheduling Via Resource Augmentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Extended Abstract)

I
Cynthia A. Phillips zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* Cliff Stein +

Abstract

We consider two fundamental problems in dynamic schedul-
ing: scheduling to meet deadlines in a preemptive multipro-
cessor setting, and scheduling to provide good response time
in a number of scheduling environments. When viewed from
the perspective of traditional worst-case analysis, no good
on-line algorithms exist for these problems, and for some
variants no good off-line algorithms exist unless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = "P.

We study these problems using a relaxed notion of com-
petitive analysis, introduced by Kalyanasundaram and Pruhs,
in which the on-line algorithm is allowed more resources
than the optimal off-line algorithm to which it is compared.
Using this approach, we establish that several well-known
on-line algorithms, that have poor performance from an ab-
solute worst-case perspective, are optimal for the problems
in question when allowed moderately more resources. For
the optimization of average flow time, these are the first
results of any sort, for any MP-hard version of the prob-
lem, that indicate that it might be possible to design good
approximation algorithms.

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcaphillQcs.sandia.gov. Sandia National Labs, Albuquerque,
NM. This work was supported in part by the United States De-
partment of Energy under Contract DEAC04-94AL85000.

cliffQcs.dartmouth.edu. Department of Computer Science,
Sudikoff Laboratory, Dartmouth College, Hanover, NH. Research
partially supported by NSF Award CCR9308701 and NSF Career
Award CCR-9624828. Some of this work was done while this
author was visiting Stanford University, and while visiting the
first author at Sandia National Laboratories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t torngQcps.rnsu.edn. Department of Computer Science, A-714
Wells Hall, Michigan State University, East Lansing, MI 48824-
1027. Some preliminary work done while the author was a Stan-
ford graduate student, supported by a DOD NDSEG Fellowship,
NSF Grant CCR-9010517, Mitsubishi Corporation, and NSF YI
Award CCR-9357849, with matching funds from IBM, Schlum-
berger Foundation, Shell Foundation and Xerox Corporation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 weinQrnern.poly.edu. Department of Computer Science, Poly-
technic University, Brooklyn, NY, 11201. Research partially sup-
ported by NSF Research Initiation Award CCR9211494, NSF
Grant CCR-9626831, and a grant from the New York State Sci-
ence and Technology Foundation, through its Center for Ad-
vanced Technology in Telecommunications.

Eric Torng Joel Weins

1 Introduction

In this paper, we consider two fundamental multiprocessor
scheduling problems:

e on-line multiprocessor scheduling of sequential jobs in
a hard-real-time environment, in which all jobs must
be completed by their deadlines, and

e on-line multiprocessor scheduling of sequential jobs to
minimize average flow time (average response time) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J preemptive and nonpreemptive settings.

These problems have defied all previous (worst-case) an-
alytic attempts to identify effective on-line algorithms for
solving them. For example, Dertouzos and Mok proved that
no on-line algorithm can legally schedule all feasible input in-

ances of the hard-real-time scheduling problem for m 2 2
machines [3]. Furthermore, there is no obvious notion of
an approximation algorithm' for this problem since all jobs
must be completed. For the various versions of the flow time
problem, while approximations are acceptable, a variety of
results [13,16] show that no on-line algorithm can guarantee
a reasonable approximation ratio. The net result is that the
traditional worst-case analysis techniques have failed in two
ways:

e they have failed to identify effective algorithms for
these problems, and

e they have failed to differentiate between algorithms
whose performance is observed empirically to be rather
different.

In this paper we give the first encouraging results that
apply worst-case analysis to these two multiprocessor prob-
lems. We utilize a new method of analysis, introduced by
Kalyanasundaram and Pruhs [ll] (for one-processor schedul-
ing) of comparing the performance of an on-line algorithm

IThere has been significant work in the area of best-effort red-
time scheduling, in which one tries to maximize the total weight
of the jobs scheduled by their deadlines, but this is not really
an appropriate approximation for hard-real-time scheduling since
the fundamental assumption of best-effort scheduling is that it
is acceptable for jobs to not complete by their deadlines. Fur-
thermore, even if one accepts best-effort real-time scheduling as
a reasonable way to approximate hard-real-time scheduling, Ko-
ren et al. showed that the best competitive ratio any on-line
algorithm can achieve is lower bounded by (&)m(A1/m - 1)
where m is the number of machines and A is the ratio between
the weights of the most important and least important jobs in
the input instance [14].

http://caphillQcs.sandia.gov
http://cliffQcs.dartmouth.edu
http://weinQrnern.poly.edu

DISCLAIMER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This report was prepared zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwamntyY express or implied, or assumes any legal tiabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdisdased, or represents that its use wouid not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAotherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necesSar-
ily state or reflect those of the United States Government or any agency thereof.

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the performance of an optimal off-line algorithm when
the on-line algorithm is given extra resources. For example,
in a preemptive multiprocessor environment, we show that
when given machines that are twice as fast, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshortest-
remaining-processing-time algorithm gives optimal perfor-
mance for average flow time, and the earliest-deadline-first
and least-lady-first algorithms, give optimal performance
for meeting deadlines. In the nonpreemptive setting, we
also show that simple greedy algorithms perform well for
optimizing average flow time when given more machines.
Many of our results for average flow time extend to average
weightedpow time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well. While we analyze our algorithms
using the metric introduced in [ll], our results differ from
that work in two fundamental ways: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 we consider the multiprocessor case, and

we almost always find schedules whose objective func-
tion value is optimal, rather than near-optimal.

In addition, our results are in a somewhat different on-line
model. We assume that when a job arrives, its processing
time is known; we discuss our model in more detail later in
this introduction.

We feel that our results have two practical implications.
First, our results provide system designers with analytic
guidelines for coping with lack of knowledge of the future.
For example, our results that describe the performance of
an algorithm when given extra machines tell a system de-
signer how many extra processors are needed to insure a de-
sired performance level. Our results that describe the per-
formance of an algorithm when given faster machines not
only tell a system designer how much faster the processors
need to be to insure a desired performance level, they also
have implications for the performance of the original system
in a setting where job-arrival rate is reduced. In particu-
lar, we show that, for the problem of minimizing the aver-
age flow time, on-line algorithms can achieve small constant
competitive ratios with respect to offline algorithms given
identical resources if the arrival rate of jobs in the on-line
system is somewhat slower than the arrival rate of jobs in the
identical offline system. Thus reduced job-arrival rate is an
“extra resource” that can compensate for lack of knowledge
of the future, much as the hardware-based increased speed
or increased machines can. Second, more speculatively, if
an algorithm, when allowed a bit more speed or resources,
performs well on all input instances, then perhaps the in-
stances on which it performs very poorly under traditional
worst-case analysis have a special structure, and it is possi-
ble that such instances may be less likely to arise in practice.
We suggest, though, that the ultimate decision of whether
this sort of analysis is meaningful will depend on the sorts of
algorithms the analysis recommends and whether or not it
yields interesting and new distinctions between algorithms.
When evaluated from this perspective, our results provide
powerful evidence that “extra-resource” analysis is a useful
tool in the analysis of on-line scheduling problems.

Although our notion of worst-case analysis is not the
traditional one, these analytic results for on-line algorithms
are the first that provide any evidence that it is possible
to design polynomial-time off-line algorithms for the mini-
mization of average flow time with performance guarantees
of good quality for any NP-hard variant of the problem.
Problem Definitions: We are given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm identical parallel
machines and an input instance (job set) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , which is a col-
lection of n independent jobs { J I , Jz, . . . , J,,}. Each job J,
has a release date T, , an execution time (also referred to as

length or processing time) p , , possibly a weight w,, and, in
the real-time setting only, a deadline d3. The ratio of the
length of the longest job to that of the shortest job in in-
stance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is denoted A(I) , or simply A when the job set I
is unambiguous. For any input instance I , we let I‘ denote
the I-stretched input instance where job J, has release time
IT, instead of r,. A job can run on only one machine at a
time and a machine can process only one job at a time. We
will often denote the completion time of job J3 in schedule
S by C,” and will drop the superscript when the schedule is
understood from context. The Pow time, or response time
of a job in schedule S is F,” C,” - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,; the total pow time

of schedule S is E, FY, whose minimization is equivalent
to the minimization of average p o w time k F,. If the
jobs have weights, we can also define the total weightedpow
time of schedule S by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, w, F,”, or equivalently the average

weighted flow time $ E, w3 F,. For hard real-time schedul-
ing with deadlines, we say a schedule S is o timaI if each

are often called feasible schedules.
We will consider both preemptive and nonpreemptive

scheduling models. In a preemptive scheduling model, a
job may be interrupted and subsequently resumed with no
penalty; in a nonpreemptive scheduling model, a job must
be processed in an uninterrupted fashion.
Our On-line Model and Methods of Analysis: We
consider on-line scheduling algorithms which construct a
schedule in time, and must construct the schedule up to
time t without any prior knowledge of jobs that will become
available at time t or later. When a job arrives, however,
wgassume that all other relevant information about the job
is known; this model has been considered by many authors,
e.g. [S, 9, 10, 22, 231, and is a reasonable model of a number
of settings from repair shops to timesharing on a supercom-
puter. (For example, in the latter setting, when one submits
a job to a national supercomputer center, one must give an
estimate of the job size.)

We will analyze our algorithms by considering their per-
formance when they are allowed to run on more and/or
faster machines as well as when they are run on I-stretched
input instances. Given an input I to a scheduling prob-
lem with m machines and (optimal) objective function value
V , an s-speed p-approximation algorithm finds a solution
of value pV using m speed-s machines. A w-machine p -
approximation algorithm finds a solution of value pV using
wm machines. An I-stretch p-approximation finds a solution
to I‘ of value pV using machines identical in number and
speed to the offline algorithm. For a problem with dead-
lines, we consider V to be the objective of scheduling all
jobs by their deadlines, so it is always the case that p = 1.
In fact, for both deadlines and flow-time, we will usually be
concerned with the case where p = 1, so we will omit the
term “papproximation” when this is true.
Results - Preempt ive Problems: We now discuss our
results, which are summarized in Figure 1. We first study
on-line preemptive scheduling for both objectives: minimum
total flow time and hard real-time scheduling with deadlines.
We show that several simple and widely-used scheduling
heuristics (for which worst-case analysis yields a pessimistic
evaluation) are (2 - &)-speed algorithms. These results fol-
low from a general result that characterizes the amount of
work done by any “busy” algorithm (one that never allows
any unforced idle time) run at speed s when compared to
that done by any algorithm run at speed 1. We also show

job J, is scheduled by its deadline d,, i.e. C, d 5 d,. These

that no (1 +e)-speed-algorithms exist for either problem for . < - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- ,* .\.” ,, , .- 1 . k’p .:<,>*.-...A . -

Speed to Achieve Optimal Extra Machines to Achieve Optimal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(LLF) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 clog A

cA < w (E D F)

hard deadline i < s 5 2 - $ p < W

' preemptive,) 1 Fj ! $ - < $ 5 2 - $
preemptive,) wjFj, m = 1 $ 5 2
nonpreemptive, wj Fj w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 clogA

* w 5 clog zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn [I + o(l)-approx]

Figure 1: Summary of main algorithms and hardness results. The notation G < s 5 y means the problem can be solved with speed-y
machines, but cannot be solved optimally with speed-z machines. Similarly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is for w-machine algorithms, and w(EDF) is the number
of extra machines given to earliest-deadline-fit algorithm. LLF is the least-laxity f i t algorithm. We use c to denote some constant
and call to denote all constants. A is the ratio of the longest length to the shortest length.

small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (1/5 for meeting deadlines and 1/21 for flow time).
More specifically, for preemptive hard real-time schedul-

ing, we analyze two simple and widely used on-line algo-
rithms, earliest-deadline-first (EDF) [2] and least-laxity-first
(LLF) [18]. At time t i n an rn-processor system, EDF sched-
ules the m jobs currently in the system which have the ear-
liest deadlines while LLF schedules the m jobs currently in
the system which have the smallest laxities (at time t , a job
5, has l a d y (d, - t) - (p j - 2,) where zj is the amount of
processing 5, received prior to time t). In the uniprocessor
setting (m = l) , both EDF [2] and LLF [18] can schedule
any feasible input instance. In the multiprocessor environ-
ment (m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2), no on-line algorithm legally schedules all fea-
sible m-machine input instances [3]. Nonetheless, EDF and
LLF are likely heuristic choices in practice with EDF being
simpler to implement and LLF more effective in general.

In the faster-machine model, we show that both EDF and
LLF are exactly (2 - $)-speed algorithms for the problem
of hard-real-time scheduling; this provides some theoretical
justification for these heuristic choices. We also show that no
(1 + €)-speed algorithm exists for this problem for e < 1/5
and m 2 2. In the extra-machine model, we show that
LLF is an O(1ogA)-machine algorithm while EDF is not a
o(A)-machine algorithm for any m 2 2. We note that our
analysis of LLF is fairly tight by showing that LLF is not
a c-machine algorithm for any constant c. We also show
that no (1 + €)-machine algorithm exists for this problem
for E < 1/4 for m 2 2. Comparing these results with those
in the faster-machine model, we see a contrast between the
power of extra machines and the power of extra speed in the
preemptive setting.

For the problem of minimizing total flow time, we ana-
lyze the simple and widely used SRPT (Shortest Remain-
ing Processing Time) Rule which always schedules the m
jobs with the shortest remaining processing time. In the
uniprocessor setting (m = l) , SRPT is optimal. In the
multiprocessor setting (m 2 2), however, SRPT is only an
O(1og m)-approximation [16]. Furthermore, Leonardi and
Raz have shown that no randomized on-line algorithm can
be any better than an Q(1ogm)- approximation algorithm
[16]. In contrast, we show that SRPT is a (2 - $)-speed
algorithm. Thus, we provide encouraging theoretical evi-
dence to support the use of SRPT in practice. We also
show that no (1 .+ €)-speed algorithm exists for this problem
for E < 1/21 for m 2 2.

We also consider the problem of scheduling a single ma-
chine preemptively to minimize average weighted flow time.
This weighted variant reflects the fact that in many settings,
the jobs to be scheduled have different priorities. In con-

trast to the unweighted problem, scheduling preemptively
on a single machine to optimize average weighted flow time
is "P-hard [15]. Recently there has been much progress
in developing off-line approximation algorithms for the re-
lated NP-hard problem of minimizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, w,C, via certain
classes of linear programming relaxations [I, 9, 201, but no
non-trivial polynomial-time approximation algorithms are
known for ~ W J F J . (Since c w , C , = c w , F , + ~ W , T , ,

an optimal schedule for w,C, is also an optimal sched-
ule for w, C, may be
a very poor approximation for w, F,.) We show how to
use the linear-programming relaxations considered by [9] to
develop an (on-line) %speed algorithm for this problem.
Nonpreemptive Models: We also consider the problem
of scheduling nonpreemptively to minimize average weighted
fly time in both the uniprocessor and multiprocessor set-
tmgs. Note that the simplest possible variant of this prob-
lem (off-line, uniprocessor, unweighted) is already a difficult
problem with very strong nonapproximability results. In
particular, Kellerer et al. [13] recently showed that there ex-
ists no polynomial-time o(fi-approximation algorithm for
this problem unless P = "P, and Leonardi and Raz have
given analogous hardness results for parallel machines [16].
Thus, traditional worst-case analysis has little to offer to
practitioners. In sharp contrast to these results, we give
an O(1og A)-machine algorithm and an O(log n)-machine
(1 +o(1))-approximation algorithm for the on-line minimiza-
tion of total weighted flowtime on parallel machines. These
results generalize further to nonpreemptive scheduling to
meet due dates.

We then offer some evidence that indicates it may be
difficult to improve upon our results. A common method
of analyzing the performance of a nonpreemptive algorithm
is with respect to the optimal preemptive solution, which
is an obvious lower bound [20, 131. Let S, be the sched-
ule with optimal flowtime in the preemptive m-machine set-
ting for some instance I , and let Sw be the schedule with
optimal flowtime in the nonpreemptive, wm-machine set-
ting. We give a polynomial-size lower bound on the gap
between E, F: and c, F P for any constant w 2 2, even
if the w m machines are speed-2. Thus the analysis of any
O(l)-machine 2-speed non-preemptive flow-time algorithm
will require a stronger lower bound than the flow-time of
the preemptive 1-machine 1-speed schedule. In contrast to
this negative result about O(1)-machine algorithms, we give
O(1og n)-machine %speed algorithm that nonpreemptively
achieves the polynomially-loose 1-machine 1-speed preemp-
tive lower bound.

w, F,, but a p-approximation for

Speed and Stretch: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe conclude by showing that any
s-speed papproximation algorithm is also an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps-
approximation algorithm when we consider the problems of
minimizing average flow time or average weighted flow time.
In light of this result, throughout the paper we focus only on
analyzing faster machines and extra machines, but remem-
ber that the flow-time results for faster machines extend to
stretched schedules.
Previous Results: The only previous work on this mode
of analysis of which we are aware is the work of Kalyanasun-
daram and Pruhs who introduced it [ll]. They studied the
minimization of preemptive total flow time and best-effort
firm-real-time scheduling. Their flow time work differs from
ours in several important characteristics. They studied only
the unweighted uniprocessor’ setting where the algorithm
has no knowledge of p, until job zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, completes. For this
problem, they were able to show a simple on-line algorithm
was an s-speed (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ &)-approximation algorithm for min-
imizing flow time. (Note our relationship between faster ma-
chines and stretched schedules implies that this algorithm is
also an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s + &)-approximation algorithm.) This
result is quite dramatic as it was previously shown that no
deterministic on-line algorithm can approximate the opti-
mal flow time within a factor of sZ(n*) [19]. However, their
analysis does not yield an s-speed on-line algorithm for mini-
mizing average flow time for any s. At speed 2, for example,
they only guarantee a Zapproximation. Furthermore, in
our model of on-line scheduling in which processing require-
ments are known, this problem is a simple one that can be
solved optimally by SRPT.

Their real-time problem differs from ours in two signif-
icant ways. First, they assume that jobs have values and
the goal is to maximize the sum of the values of completed
jobs; that is, it is acceptable for jobs to not complete by
their deadlines. Second, they derive results only for the
uniprocessor setting. Again, in contrast to quite strong tra-
ditional on-line lower bounds, they were able to show that
an on-line scheduling algorithm was an s-speed (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5)-
approximation algorithm, for s > 1; at speed 2, this corre-
sponds to a 3-approximation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 On-line preemptive scheduling using faster machines

In this section, we show that SRPT is a (2 - l/m)-speed al-
gorithm for preemptively minimizing average flow time and
that EDF and LLF are (2 - l/m)-speed algorithms for hard-
real-time scheduling. We also show that no (1 + €)-speed
algorithm exists for the hard-real-time scheduling problem
for e < 1/5, and that no (1 + €)-speed algorithm exists for
minimizing average flow time for e < 1/21.

Theorem 2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRPT i s a (2 - $)-speed algorithm for the
preemptive minimization of average flow times on parallel
machines.

Theorem 2.2 EDF and LLF are (2 - I)-speed algorithms
for the preemptive scheduling of jobs w i 8 deadlines on par-
allel machines.

The key to the proof of both theorems is the following
fundamental relationship between machine speed and total
work done by any busy algorithm such as SRPT or EDF.
We let A(j,t) denote the amount of processing algorithm A

21n their extended abstract [ll] they claim parallel machines
results but have retracted this claim [12].

specifies for job Jj by time t. For job set J let A(J, t) =
CjEJ t).

Lemma 2.3 Consider any input instance I , any time t, any

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, and any 1 5 P 5 (2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). Define a = y. For

any busy scheduling algorithm A using m speed-a machines,
A(I ,pt) 2 A’(1,t) for any algorithm A’ using m speed-I
machines.

Proof Sketch: We will prove this by contradiction. Fix an
input instance I , and let t be the smallest time such that
A(I, Pt) 5 A’(1, t). Since A has done less total work than A‘,
A must have done less work on some specific job J,. For A,
consider the time period from time r, to Pt; for A’, consider
the time period from 3 to t . From time r, to time Pt, there
are two types of time intervals: overloaded intervals where
more than m jobs are available to be scheduled by A and
underloaded time periods where at most m jobs are available
to be scheduled. Let the total length of the overloaded time
intervals be x and the total length of the underloaded time
intervals be y.

By the definition of time t, we know that A(I , r ,) 2
A’(1, F). Therefore, we can conclude that the total work
done by A from time r, to time Pt must be strictly less
than the total work done by A‘ from time 3 to time t.
During overloaded intervals, A uses all m machines while
during underloaded intervals, A uses at least one machine
to run job 5,. Therefore, A does at least amx + a y total
work from time r, to time Pt. Algorithm A’ does at most
m(t- 3) work from time 3 to t since A’ only has m speed-1
machines. Thus, we conclude that
d

By the definition of job Jj, we know the work done by
A on Jj from time ~j to time Pt must be strictly less than
the work done by A’ from time 9 to time t . Algorithm A

does at least cry work on Jj from time rj to time Pt, while
algorithm A’ does at most t - 9 work on Jj from time %
to time t. Thus, we conclude that

rj t - - >ay.
P

We now show that (1) and (2) cannot simultaneously be
true. Add (1) to (m - 1) times (2) to obtain

t - - (2m - 1) > am(z + y). (;)
Recall that x + y = Pt - ~ j , and so if we divide the left side
by Pt - rj and the right by x + y, we obtain

2 m - 1

1

> a m
P

* 2 - - m > ap.

But this last inequality is a contradiction, since by definition

Proof of Theorem 2.1: We will actually prove the following
more general result. Consider any input instance I . Let
S (I) be any legal schedule for I using m speed-1 machines
and SRPT(I) be the schedule derived by applying SRPT

a p = 2 - $. 0

to I using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm speed-(2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- l / m) machines. Then for any time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t, the number of completed jobs in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRPT(1) is at least as
many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the number of completed jobs in S(I) . This implies
that for all IC, the kth job completed in SRPT(I) finishes
no later than the f t h job completed in OPT(I) (a specific
legal schedule), so Theorem 2.1 clearly follows.

We prove this general result as follows. Define It I
to be the set of jobs that complete by time t in schedule
S(I) . By Lemma 2.3 and the definition of I t , all lItl jobs
will be completed by time t in SRPT(It). A lemma from
[20] proves that if SRPT completes IC jobs of input instance
I’ by time t and I’ I”, then it completes at least IC jobs
of input instance I” by time t. We apply this result with
It = I‘ and I = I“ to conclude that for any time t, at least
lit[jobs will be completed by time t in SRPT(1).

Proof Theorem 2.2: Consider any input instance I which can
be legally scheduled on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm speed-1 machines. Rename the
jobs in order of deadlines so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi 5 d j for 1 5 i < j 5 n.
Define It to be the set of jobs (51 , . . . , Jt} . We prove by
induction on t that EDF, using m speed-(2-1/m) machines,
legally schedules It.

Clearly EDF legally schedules 11. Assume EDF legally
schedules It for t 2 1. Consider what EDF does with I t+ l .

Let Q It+l denote the set of jobs which have deadline dt+l
(note this set may contain only job & + I) . Because EDF
gives priority to jobs with earlier deadlines, we know that
EDF(It) is identical to EDF(It+l) when we ignore jobs in
Q in both schedules. Thus, all jobs in It+l - Q complete
by their deadlines in EDF(I;+1). By Lemma 2.3, EDF has
done at least as much work as OPT on It+l by time &+I.

In particular, since OPT has completed all jobs in It+l by
time &+I, this means EDF has completed all jobs in Q by
time & + I . Thus, EDF legally schedules I t+l.

Thus, by the principle of induction, EDF is a speed-
(2 - l l m) algorithm. The fact that LLF is a speed-(a-l/m)
algorithm follows from Leung’s result that LLF can legally
schedule any instance EDF can legally schedule given the
same number of processors with identical capabilities [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

We observe that Theorem 2.2 is tight as we can show
that both EDF and LLF are not speed 2 - $ - e algorithms
for any E > 0. This raises the question of whether there
are algorithms which are c-speed algorithms for some c < 2.
We cannot completely resolve this question, but we do show
that no (1 + €)-speed algorithm exists for either problem for
small E.

Theorem 2.4 There is no on-line (1 + €)-speed algorithm
for scheduling with deadlines on m machines, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 and
m even, for E < 115, and there is no on-line (1 + €)-speed
algorithm for scheduling to minimize average flow time on
m machines, m 1: 2 and m even, for E < 1/21 .

Proof Sketch: For the first part of the theorem, we give a
simple proof for e = 1/9 and sketch how to extend the result
to E = 1 / 5 . The proof for z = 1 / 9 is based on the following
adversary strategy. At time 0, m jobs of size 1 with deadlines
at time 2 and m / 2 jobs of size 2 with deadlines at time 4 are
released. If an on-line algorithm run with m speed-(1 + e)
machines does at most 2 m / 9 units of work on jobs of size 2
from time 0 to time 1, then m jobs of size 2 with deadlines
at time 4 are released at time 2 (scenario A). Otherwise, m
jobs of size 1 with deadlines at time 2 are released at time
1 (scenario B).

In scenario A, the algorithm does at most 2 m / 9 units of
work on jobs of size 2 from time 0 to time 1 , and at most

0

m (I + r) / 2 units of work on size-2 jobs from time 1 to time 2,
leaving at least 5 m / 1 8 - m e / 2 units of work from the original
size-2 jobs uncompleted at time 2, when an additional 2 m
units of work are released. Therefore, the on-line algorithm
must complete 2 m + 5 m / 1 8 - m e / 2 units of work by time
4. There are 2 m + 2me units available on the m speed-
(1 + e) machines from time 2 to time 4 . Therefore we have
2 m + 2mr 2 2 m + 5 m / 1 8 - m e / 2 , which implies e 2 1/9.

In scenario B, from time 0 to 1, the on-line algorithm
completes at most m + m e - 2 m / 9 units of work on the size-
1 jobs. Therefore at time 1, there are at least 2 m / 9 - m e
units of original size-1 work remaining when the additional
m units of size-1 work are released. These m + 2 m / 9 - me
units must be completed by time 2 with the m + m e resources
available. Therefore m + m e 2 m+2m/9-mme, which implies

To extend this result to 1 / 5 , we use the infinite family
of input instances I(m,i) for i 2 0 defined i ~ s follows. At
time 2 j for 0 5 j 5 i , m jobs are released with execution
times 1 and deadlines 2 j + 2 , and m / 2 jobs are released with
execution times 2 and deadlines 2 j+4 . At time 2i+1, m jobs
are released with execution times 1 and deadlines 2i + 2. A
careful analysis of this set of input instances reveals that an
on-line algorithm must complete all 3 m / 2 jobs released at
time 2 j by time 2 j + 2 while leaving enough spare capacity
from time 2j to 2 j + 1 to prepare for the possibility that rn
jobs of size 1 and deadlines of time 2 j + 2 will be released
at’ time 2 j + 1.

To extend the 1 / 9 lower bound for real-time scheduling
to a 1 / 2 1 lower bound for average flow time, we utilize a
similar adversary strategy, but the analysis is more complex.
0

We note Lemma 2.3 has two other implications. First,
Theorem 2.1 can be generalized to show that for 1 5 CY 5
2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, SRPT is an a-speed *-approximation algorithm
for preemptively minimizing the sum of completion times.
When a = 1, SRPT is a (2 - $)-approximation algorithm
which improves slightly a bound of 2 from [20]. Second,
Lemma 2.3 can be viewed as a generalization of Graham’s
proof that List Scheduling is a (2 - $)-approximation al-
gorithm for minimizing the makespan [7]; it is an a-speed
(2 - $)/a-approximation algorithm.

E 2 1/9.

3 On-line preemptive scheduling using more machines

Another natural way in which to augment resources is to
add extra machines of the same speed rather than increas-
ing machine speed. In the preemptive setting, it is easy
to verify that augmenting with extra machines of the same
speed is not superior to augmenting with faster machines
and may in fact be worse. More precisely, in the preemp
tive setting, any c-machine algorithm can be simulated by
a c-speed algorithm by doing a unit of work from each ma-
chine during each time unit, while the reverse is not true.
In particular, the natural analogue to Lemma 2.3 for extra
machines is not true; in particular, it is not true that there
exists some constant c such that a busy algorithm given cm
machines will always do as much work by any time t as an
optimal algorithm given only m machines on any input in-
stance. We exploit this difference to show that LLF is not a
c-machine algorithm for any constant c and that EDF is not
an o(A)-machine algorithm. We then show that LLF is an
O(1og A)-machine algorithm and is thus significantly better
than EDF for online preemptive real-time scheduling in this
model. Finally, we show that no (1 + €)-machine algorithm

exists for this problem for e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 114.
To show that LLF is not a c-machine algorithm for any

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2, we require the following lemma showing that LLF
cannot offer a guarantee similar to that of Lemma 2.3. That
is, we will show there exist input instances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt
where an algorithm (particularly the optimal one), using
only m machines, completes more work by time t when run zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (in particular, the algorithm finishes all jobs in I by
time t) than LLF using cm machines for any constant c (in
particular, LLF has not completed all jobs in I by time t) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition 3.1 Define the job set I (t , c, y, m) as follows.
There are 7 type-A jobs with length2cy, release times t, and
deadlines t + (2c + l)y (and thus laxities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof y). Meanwhile,
there are cm “delay” jobs with release times t + 2ci, length
1, and deadlines t + 2c(i + 1) (and thus laxities of 2c - 1)
for 0 5 i 5 y - 1 (and thus ycm delay jobs altogether).

Lemma 3.1 For all m 2 2, integers c 2 1, y 2 2c, and
t 2 0, job set I (t , c, y, m) can be legally scheduled by time 2cy
on m machines, but if LLF is run on I (t , c, y, m) with cm
machines, at time 2cy + t, the 7 type-A jobs of I (t , c, y, m)
will each have y-2c+l remainingprocessing time and 2c-1
laxity.

Proof: For 0 5 +i 5 y - 2c, at time t + i, the laxity of
each of the type-A jobs is at least 2c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso LLF will schedule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all the delay jobs at their release dates. Thus the type-A
jobs will not be executed at time t + 2ci for 0 5 i 5 y - 2c.
At time t + 2cy, the F type-A jobs will still each require
y - 2c + 1 units of processing and will have laxities 2c - 1.
However, all jobs can be completed legally by time t + 2cy
on m machines by executing the type-A jobs on machines
from time t to t + 2cy, and packing the delay jo%s greedily
on the remaining 7 machines. 0

Theorem 3.2 LLF is not a c-machine algorithm for schedul-
ing with deadlines for any constant c.

Proof Sketch: Let y1 = 4(2c - 1)(2c + l)4c-1 (the key
property is that y1 > 2(2c - l)(2c + l)4c-1). We recursively
define y, = y,-1/(2c + 1) for 2 <_ i 5 4c (note y,-1 =
(2c + l)y, and yl = (2c + 1)4c-1 ~ 4 ~) . Let t , = 2 c c ; y, for
0 5 i 5 4c (note t o = 0). Consider the input instance I
consisting of &1I(t,-l, c, ya, m).

The key to the proof is the observation that at time t,
for 1 5 i 5 4c, LLF will still have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf jobs with at least
yi -2c+l required units of processing remaining and laxities
of at most 2c - 1 whereas the optimal m machine algorithm
finishes all jobs by their deadlines. We omit the inductive
proof of this observation in this writeup.

Thus, at time t 4 c = 2cx:f1 y,, there will be 2cm jobs
with ~4~ - 2c + 1 required units of processing remaining and
laxities 2c - 1 for LLF. If ~4~ > 2(2c - l), LLF will not be
able to legally schedule this instance. Working backwards,
we see that since we defined y1 = 4(2c - l)(2c + l)4c-1,
~4~ = 4(2c - 1) > 2(2c - l), and the lemma follows.

Note the lower bound instance has extremely large A.
We can show this is necessary. We can also give an upper
bound on the performance of LLF.

Theorem 3.3 LLF is
scheduling with deadlines.

0

O(log A)-machine algorithm for

In contrast, we can show that EDF cannot offer a similar
guarantee.

Theorem 3.4 EDF i s not a (i A e]) - m a c h i n e algorithm
for scheduling with deadlines.

Proof: For all m 2 2 and all A 2 1, we define an infinite
set of input instances I (m,A) such that I (m ,A) can be
scheduled by a static algorithm on m machines but cannot
be scheduled by EDF on cm machines where c = LA?].

The input instance I (m ,A) consists of cm jobs with
deadlines of 2 A and execution times of 2 and one job with
a deadline of 2A + 1 and an execution time of 2A (i.e. this
job must be executed by time 1 in order to complete by its
deadline). All the jobs are released at time 0.

Clearly, EDF will fail to legally schedule the input in-
stance I(m, A) on cm machines because it will initially de-
vote a l l cm machines to the scheduling of the short jobs with
length 2 and will not schedule the long job until time 2 at
which point it can no longer be completed by its deadline.

The input instance I(m, A), however, is clearly schedu-
lable on m machines as we can put the one job with deadline
2A + 1 on a machine at time 0 and devote the remaining
m - 1 machines to completing the remaining cm jobs of
length 2 by their deadlines. 0

Finally, we also can show that no algorithm is a (1 + e)-
machine algorithm for this problem. In the theorem below,
we assume that em is an integer.

Theorem 3.5 There i s no on-Zine (1 + e)-machine algo-
rithm for scheduling with deadlines on m machines, m 2 1
and even, for any E < f.

.t

4

In this section we give an on-line extra-resource algorithm
for the preemptive scheduling of one machine to minimize
average weightedflow time. Our approach will build upon
the work of Hall et. al. [9] who recently showed that a
variety of linear programming formulations can be used to
give approximation algorithms to minimize the w,C, ob-
jective. As we observed earlier, while an optimal algorithm
for c w , C , is also an optimal algorithm for C w , F , , a p
approximation algorithm for czv,C, in no way is guaran-
teed to be a p-approximation algorithm for c w 3 F 3 . No
non-trivial polynomial-time algorithm is known for this prob-
lem.

Let N denote denote the entire set of jobs (1,. . . , n} . For
any subset S E N , we use the notation p (S) = CJESp3, and
T * , ~ (S) = min,Es T ~ . For any schedule of N , let C, denote
the completion time of job j. The following lemma places
constraints on legal values for C,.

Lemma 4.1 [ZI] Given a preemptive schedule for instance
N on one machine, let 4,. . . , Cn denote the job completzon
times in this schedule. Then the C, satisfy the inequalities

On-line preemptive weighted flow time
4

We now form the following linear program R:

n

Minimize ~ w j C , subject to (3) and the

n constraints Cj 2: rj + p j for j = 1, . . . , n.

j=1

(3)

While zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR has an exponential number of constraints, Goemans
has shown that R is a linear transformation of a supermod-
ular polyhedron. This means we may obtain an optimal
solution to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR in polynomial time by applying the greedy
algorithm[4]; in fact, Goemans shows we can solve it in
O (n log n) time.

Hall et. al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] show that the solution to this relaxation
can be used to produce a 2-approximation algorithm for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,C,; this has been improved to a 1.466-approximation
algorithm [6]. We show here that a similar approach yields a
%speed algorithm for E, w, F,. We first present an off-line
algorithm and then convert it into an on-line algorithm.

Compute the optimal linear programnning solution to R
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and denote this solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1, . . . , Cn. We use
this solution to induce a set of priorities onthe niobs; specif-
ically, job i has priority over job j if Gi < C,. At any
time, our algorithm schedules one-hal fo f the available job
with highest priority; clearly a machine of speed 2 could
schedule the entire job in this tiEe. We call this algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Preemptively-Schedule-Halves-by-C,.

Lemma 4.2 Let ZI 5 - - 5 Z,, be an optimal solution to
R, and let E l , . . . , E n denote the_completion t imes found by
Preemptively-Schedule-Halves-by-C,. Then, f o r j = 1,. . . , n ,
E, <E, .
Proof Sketch: Consider the schedule formed on the first j
jobs. Let t be the latest time before E, at which the machine
is idle. (If no such time exists, t = 0). Let S denote the set
of jobs that are at least partially processed in the interval
[t , E,], in the partial schedule. We observe that all jobs in
S were released after time t because if not, they would be
running at time t . Therefore, t = rmin(S), and since there
is no idle time between t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,, E, 5 rmin(S) + i p (S) .

Now consider inequality (3) on set S. Since we are only
conside&ng tke partial schedule of the first S jobs, for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k E S, ck 5 C,. Plugging this into (3) gives that C , p (S) 2
E k E S ~ k E k 2 rmin(S)p(S) + $ P (S) ~ , or C, 2 rmin(S) +
$ p (S) . Thus 5, 5 E,, as we wished to show.

We convert this into an on-line algorithm as follows. At
any time, we have a set of released jobs. We form the linear
program for these jobs, solve it to compute priorities on jobs,
and greedily schedule according to these priorities until a
new job arrives. This on-line algorithm performs identically
to the off-line algorithm because the relative priorities of jobs
that arrive before any time t are unaffected by the arrival of
jobs after time t [5] .

Theorem 4.3 Preemptively-Schedule-Halves-by-E, i s an on-
line 2-speed algorithm fo r scheduling preemptively to mini-
mrze w3 F, .

-
0

5 On-line nonpreemptive scheduling

In this section, we consider the significantly more difficult
problem of nonpreemptive scheduling. The main problem
we address is minimizing total weighted flow time, though
we do consider others as well. We first give algorithms that
show how to schedule nonpreemptively using more resources.
Our approach is to group jobs into groups of similar-sized
jobs and use a greedy algorithm to schedule similar sized
jobs on the same machines. We then give a lower bound on
nonpreemptive scheduling and some comments relating the
upper and lower bounds.

5.1 Algorithms

In this section, we will use f low-t ime problem to refer to the
problem of nonpreemptively minimizing the total weighted
flow time on m identical parallel machines. We will compare
several different algorithms and the schedules that they pro-
duce. Given an input I, we will denote

0 O(I) - the optimal schedule on m machines,

0 G(I) - the greedy algorithm on m machines. When a
machine is idle, any available job is run,

0 Gp(I) - a modified greedy algorithm on m machines.
When a machine becomes idle, at the next time which
is an integer multiple of p , the available job with largest
weight is scheduled.

We wiU slightly overload the notation, and use O(I) , G(I) ,
Gp(I) to refer both to the algorithms and to the schedules
that they produce. We use the notation FF(') to denote the
flow time of job j when algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is run on input I, and
Sx(') to denote the starting time of job j when algorithm
x' is run on input I.

We first focus on input instances consisting of similar-
sized jobs. We will then discuss how to generalize this algo-
rithm to schedule arbitrary-sized jobs.

S'i;nilar Sized Jobs: We begin with the case when all p , are
the same and all w, = 1, and observe that in this case, the
greedy algorithm G is optimal since if a job is held up for
the release of another job of the same size, the two can be
swapped, improving the flow time.

mma 5.1 Let p be a positive integer. Let I be a flow-
t ime problem with w, = 1 a n d p , = p for all jobs j . Then
E, F:(') = E, 2''").

We now extend this to the case when all p , are within a
factor of 2 of each other.

Lemma 5.2 Let p be a positive integer. Let I be a f low
tame problem on m machines with w, = 1 and p 5 p , 5 2p
fo r all jobs j . There i s an on-line algorithm U, run on
2m machines, that given input I produces a schedule with
E, FY(') 5 E, FP('). Further, there exists an optimal

schedule 0 fo r which Sy(') 5 Sy(') fo r all jobs j .

Proof Sketch: Let I' denote a modified instance of I , with
all p j = p . By Lemma 5.1, if we run the greedy algorithm
G on I' we get t h a t E j F:(") = FP(") and hence there
exists an optimal schedule (namely G) in which for ail j ,

Since I' is formed from I by decreasing processing times, we
can show that there exist optimal schedules for I' and I for
which S;('') 5 and so, combining with(4) we have

(5)

and also that Fy('') 5 E F:('). In other words, G, run
on I' does "better" than the optimal schedule for I .

Now, we form the on-line 2m machine algorithm U on I
by simulating G on 1'. We devote 2 machines in U for the

jobs scheduled on each machine in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(I ') , and alternate plac-
ing the jobs from a machine in G(I') on the corresponding
two machines in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Even though, in converting from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' back
to I processing times can double, we are guaranteed that,
because of the alternation, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be able to schedule each
job at exactly its start time in G, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASy(') = S:('" for

all j . Combing with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) , we conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI So(') for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3

all j, and thus cj FY(') 5 cj F'(').
We now consider input instances in which the jobs have

different weights. We again begin by focusing on the case
when all jobs have the same processing time p . In this case
greedy is not an optimal algorithm, but we can show that a
slightly modified version, in which jobs start at times which
are integral multiples of p , comes close to optimal. The
following lemma shows that considering such schedules does
not increase the objective function much.

Lemma 5.3 Letp be a positive integer. Let I be a flow time
problem with pl = p for all jobs j. Then

Proof Sketch: We first constrain ourselves to schedules in
which each job is required to start at a time which is an
integral multiple of p , and we let O p (I) be the optimal
schedule in this setting. We first show that w,Fpd') I

w,(F:(') + p) . To prove this, take optimal schedule 0,
and on each machine, move each job later so that it begins
at an integral multiple of p. Clearly we still have a valid
schedule, and the completion time of each job has increased
by no more than p . Thus we have a schedule in which each
job begins at a time which is an inte ral multiple of p and

optimal such schedule has flow time no greater than this.
We can then show that G p is indeed an optimal schedule in
the setting in which each job is required to start at a time
which is an integral multiple of p . We omit the details.

Since FP(') 2 p for all 3 , G p finds a schedule for weighted
flow time with all p, = p with flow time within a factor of 2
of optimal. We now use a proof similar to that of Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2
to bound the performance of an on-line 2 m machine version
of Gp, on the input instances where p 5 p3 I 2p for some p .

Lemma 5.4 Let p be a positive integer. Let I be a pow
time problem on m with p I p, 5 2p. There i s an on-
line algorithm U , that given I and 2m machines, produces a

schedule U with w,F;(') 5 2 w,FP(').

Proof Sketch: Form I' from I by rounding the processing
times down to p . We know by Lemma 5.3 that if we run
G p on 1', that w,Fp(") < w,(FP(") + p) . On-line
algorithm U is formed exactly-as in the proof of Lemma 5.2:
we assign two machines t o each one and then simulate G p
on I' and use this to obtain starting times in the on-line
algorithm. Thus we have that Sy(') = SF("). We also
know that in 1', all jobs have processing time exactly p , and
so S:p(") = FGp(") - p . Combining these bounds, we get

has flow time no more than c w 3 (F 3 8 + p) . Thus O p , the

3

The results of this section also hold with speed-2 ma- l

chines instead of doubling the number of machines.

General Algorithms: We now give algorithms for jobs with
arbitrary-sized-processing times. We split the jobs into groups
of similarly sized jobs, and put each group on its own ma-
chine. There will be a logarithmic number of groups, and
for each group we can use the algorithms for when the pro-
cessing times are all between p and 2p.

Let Pmin = min, p , and pmax = max, p, . Recall that A
is defined as maxp,/ minp,, the ratio between the minimum
and maximum processing times.

Theorem 5.5 There is an on-line 2 [log A1 -machine algo-
rithm for minimizing total flow time on m machines, an on-
line O(1og n)-machines (1 + o(1))-approximation algorithm
for minimizing total flow time, and an on-line O(1ogn)-
machine (1 +o(l))-speed aZgorithm for minimizing total flow
time.

Proof Sketch: We divide the jobs into pog A1 groups, where
the ith group contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the jobs with 2i-1pmin 5 pl 5

min. Within each group, processing times M e r by at
most a factor of 2 and hence Lemma 5.2 can be applied.
When A is large, we can replace pog A1 by 3 log n + 1 while
sacrificing a small factor in the total flow time. To do so, we
use only the 3 log n largest groups and one additional group
for all the remaining small jobs. More precisely, there are
groups for jobs in the ranges
(Pmax, ~rnax/2),(prnax/2, ~ m a x / 4) , . . .,(2pmax/n3,pmax/n3) and
one group for all the remaining jobs. We schedule all the
groups except for the last optimally using Lemma 5.2. For
the final group, the total amount of processing is no more
than n(pmax/n3) = pmax/n2. Therefore, each job has flow
time no more than pmax/n2, and the total flow time is no
more than n(pmax/n2) = pmax/n. Since the total flow time
for the original input is clearly at least pmsx, this multiplies
the total flow time by a 1 + o(1) factor. If we instead use
speed-(5) machines, since the jobs are scheduled nonpre-
emptively, the flowtime of the largest job is reduced by a
factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, which by itself is enough to absorb the total

For weighted flow time, we divide the processing times
into groups differing by factors of two and apply Lemma 5.4
to obtain the following theorem:

flow time of the small jobs.

Theorem 5.6 There i s an on-line 2 pog A1 -machine
2-approximation algorithm for minimizing weightedflow time
on m machines.

Unfortunately, we do not know how to convert this into
an algorithm using O(1ogn) machines, as it might be the
case that all the weight is on the jobs with small processing
times.

We can also apply these techniques to the problem of
nonpreemptive scheduling with deadlines. We omit the de-
tails in this extended abstract.

Theorem 5.7 There is a 4-speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(1og A)-machine algo-
rithm for scheduling to nonpreemptively meet deadlines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 Lower Bounds

We now present a theorem that indicates that it may be
difficult to improve upon our results. A fundamental lower
bound for nonpreemptive average flow time is the optimum
for the corresponding preemptive problem; in this section
we show that any extra-machine algorithm whose analy-
sis is based on a comparison to this lower bound must do
poorly. Specifically, we give a lower bound on the power of
additional machines when we are nonpreemptively schedul-
ing and wish to achieve the same flow time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the optimal
preemptive schedule. Obviously, there are input instances
where the optimal nonpreemptive flow time on c machines
can be significantly better than the optimal preemptive flow
time on a single machine. We now show the surprising result
that there are input instances where the optimal nonpreemp
tive flow time on c machines is significantly worse than the
optimal preemptive flow time on a single machine for any
natural number c. This generalizes the result of [13], who
show that there exist input instances where the optimal non-
preemptive flow time on a single machine may be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(al l2)
times greater than the optimal preemptive flow time on a
single machine.

Theorem 5.8 There exists a family zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof input instancesI(c, N)
with O(N) jobs such that the optimal nonpreemptive flow

time for input instance I(c, N) on c machines is n(N&)
times greater than the optimalpreemptive flow time for input
instance I(c, N) on one machine, for large enough N .

Proof: Given N and constant c, define n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N k . We
will construct instance I(c, N) with between N and 2N jobs
such that the optimal preemptive flow time for I (c , N) on
one machine is O (N) while the optimal nonpreemptive flow
time for I(c, N) on c machines is n(Nn) .

The instance I(c, N) is constructed using c + 1 different
types of jobs which we number from 0 to c. For each job
type i, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i 5 c, there are n u a (i) = n2'+1-2 different jobs,
each of length len(i) = .&. Jobs of type a arrive every
a len(i) time units starting at time 0 until all of the num(i)
type i jobs have arrived. A key property of instance I(c, N)
is that during any time interval of length len(i) between
time 0 and time N n , & type i + 1 jobs arrive.

We first observe that the optimal preemptive flow time
for I (c , N) on one machine is lower bounded by the sum
of the lengths of all jobs which is (c + l)N . We now show
that the optimal preemptive flow time is upper bounded
by Z(c + l)N . Consider the algorithm in which we greedily
schedule each job type in turn, starting with the jobs of type
c, and going down. A simple induction proof shows that this
algorithm delays no job for more than its execution time and
the Z(c + 1)N upper bound on the optimal preemptive flow
time follows.

We now show that the optimal nonpreemptive flow time
for I (c , N) is n(Na) . We do this by showing, for each k,
1 5 k 5 c, that there must be some time between time 0 and
time N n during which k jobs, one type i job for 0 5 i < k,
must be run simultaneously for len(k - 1) time or else the
nonpreemptive flow time is Q(Nn).

We prove this by induction on k. For the base case k = 1,
this means the one type 0 job must complete execution be-
fore time N n or else the flow time of the schedule is ~ (N P z) .

This is clearly true since if the one type 0 job which is re-
leased at time 0 does not complete before time N n , its flow
time is Nn.

For the inductive case, assume we have shown, for 1 5
k < c, that there exists a time interval from time 0 to time
N n during which k jobs, one type i job for 0 5 i < k,
must be run simultaneously for len(k - 1) time or else the
nonpreemptive flow time is n (N n) We now show this must
hold as well for k = c.

Consider the time interval of length Zen(k - 1) during
which k jobs are running simultaneously. From the key prop-
erty we described earlier, we know that * type k jobs
are released during this time interval. If none of these jobs
complete before the end of this time interval, the flow time
of these jobs is O(Nn) . Therefore, one of these jobs must
complete before the end of this time interval. Since these
jobs arrived after the beginning of the interval, the induction
hypothesis holds for k + 1.

Therefore, we know either the optimal nonpreemptive
schedule has flow time N n or there must be some time
len(c - 1) time interval prior to time N n when c jobs exe-
cute simultaneously on the c machines. Therefore, the ,F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77
type c jobs that arrive during this time interval cannot be-
gin execution until this interval ends. This means these jobs
have a flow time of a t best O (N n) . Thus, the optimal non-
preemptive flow time for I(c, N) is n (N n) .

The proof of Theorem 5.8 can be modified to show a
polynomial-size gap between the preemptive flow time on
one machine and the nonpreemptive flow time on any con-
stant number of machines even if the machines are speed-
2. Thus the logarithmic-machine speed-(1 + o(1)) algorithm
of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.5 produces a nonpreemptive schedule with
dwt ime potentially polynomially better than the optimal
speed-2 schedule for any constant number of machines.

In the nonpreemptive setting, additional speed may not
be as powerful as additional machines. We can give an ex-
ample in which adding a single extra machine is a signifi-
cantly better approach as we can show that there exists a
set of jobs for which the optimal preemptive average flow
time can be achieved on 2 speed-1 machines, but cannot be
achieved on a single speed-c machine for any c < (n/Z)1/4.

0
3

6 Translating faster machine results to stretch results

In this section we show how algorithms for minimizing av-
erage flow time in the faster-machine model translate to al-
gorithms on machines of the same speed for stretched input
instances .
Theorem 6.1 If A is an s-speed p-approximation algorithm
for minimizing average f low time in any model (preemptive
or nonpreemptive, clairvoyant or nonclairvoyant, on-line or
ofline), then there exists an algorithm A' which is an s-
stretch ps-approximation algorithm for minimizing average
flow time.

Proof: Remember that for any input instance I , I" is the
identical input instance except job Ji has release time T,S

for 1 5 i 5 a. The basic idea is that at any time t s , A'
behaves exactly as A did at time t. Because of the above
relationship between I and I", A' is well defined.

Let C, and FJ denote the completion time and flow time,
respectively, of job JJ when A schedules input instance I ,
and Ci and Fj denote the completion time and flow time,
respectively, of job JJ when A' schedules input instance Is.

It is not hard to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASCj for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 j 5 n. Combining
this with the above release time relationship, we see that
Fj = sF3 for 1 5 j 5 n, and the result follows.

Note the theorem holds for any scheduling model and
leads to the following series of results.

Corollary 6.2 The Balance algorithm [I l l is an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(s + 5) -approximation algorithm for minimizing average
pow time on a single processor when execution times of jobs
are unknown until they complete. In particular, the value
s = 2 leads to a minimum approximation ratio of 4.

Corollary 6.3 SRPT is a (2 - l/nz)-stretch (2 - l /m)-
approximation algorithm for minimizing average pow time
on multiple processors.

Corollary 6.4 The algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPreern ptively-Schedule-Halves
by-Cj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a %stretch 2-approximation algorithm for minimiz-
ing average weightedpow time on a single processor.

0

Note faster machine results for real-time scheduling ex-
tend to stretched input results for real-time scheduling if
and only if the deadlines of jobs are multiplied by a factor
of s as well. Also, while extra machine results translate to
stretched input results in a preemptive environment, extra
machine results do not seem to translate to stretched input
results in a nonpreemptive environment. Thus, our results
in Section 5 do not translate into stretched input results for
nonpreemptive scheduling.

Acknowledgments We are grateful to Bala Kalyanasun-
daram, Stavros Kolliopoulos, Stefan0 Leonardi, Rajeev Mot-
wani, Steven Phillips, Kirk Pruhs, and David Shmoys for
useful discussions.

References

[l] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B.
Shmoys, C. Stein, and J. Wein. Improved scheduling
algorithms for minsum criteria. In F. Meyer auf der
Heide and B. Monien, editors, Automata, Languages
and Programming, number 1099 in Lecture Notes in
Computer Science. Springer, Berlin, 1996. Proceedings
of the 23rd International Colloquium (ICALP’96).

[2] M. Dertouzos. Control robotics: the procedural control
of physical processes. In Proc. IFIF Congress, pages

Multiprocessor on-line
scheduling of hard-real-time tasks. IEEE Transactions
on Software Engineering, 15:1497-1506, 1989.

[4] M. Goemans. A supermodular relaxation for scheduling
with release dates. In Proceedings of the 5th Conference
on Integer Programming and Combinatorial Optimiza-
tion, pages 288-300, June 1996. Published as Lecture
Notes in Computer Science 1084, Springer-Verlag.

[5] M. Goemans. Improved approximation algorithms for
scheduling with release dates. In Proceedings of the 8th
ACM-SIAM Symposium on Discrete Algorithms, pages

Ran-
domized algorithms for improved preemptive schedul-
ing. Working paper, 1996.

[7] R.L. Graham. Bounds for certain multiprocessor
anomalies. Bell System Technical Journal, 45:1563-
1581, 1966.

807-813, 1974.
[3] M. Dertouzos and A. Mok.

59 1-598 , 1997.
[6] M. Goemans, J. Wein, and D. P. Williamson.

[8] D. Gusfield. Bounds for naive multiple machine
Journal

[9] L. A. Hall, A.S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Off-
line and on-line algorithms. To appear in Math of OR,
1996.

[lo] J.A. Hoogeveen and A.P.A. Vestjens. Optimal on-line
algorithms for single-machine scheduling. In Proceed-
ings of the 5th Conference on Integer Programming
and Combinatorial Optimization, pages 404-414, 1996.
Published as Lecture Notes in Computer Science 1084,
Springer-Verlag.

[ll] B. Kalyanasundaram and K. Pruhs. Speed is as power-
ful as clairvoyance. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pages

[12] Bala Kalyanasundaram and K. Pruhs, 1996. Personal
Communication.

[13] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Ap-
proximability and nonapproximability results for mini-
mizing total flow time on a single machine. In Proceed-
ings of the 28th Annual ACM Symposium on Theory of
Computing, pages 418-426, May 1996.

[14] G. Koren, D. Shasha, and S.-C. Huang. Moca: A mul-
,, tiprocessor on-line competitive algorithm for real-time

system scheduling. In Proc. 14th Real- Time Systems
Symposium, pages 172-181, 1993.

[15] J. Labetode, E.L. Lawler, J.K. Lenstra, and
A.H.G. Rinooy Kan. Preemptive scheduling of uniform
machines subject to release dates. In W.R. Pulleyblank,
editor, Progress in Combinatorial Optimization, pages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 245-261. Academic Press, 1984.
[16] S. Leonardi and D. Raz. Approximating total flow time

on parallel machines. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, 1997. Ap-
pears in this Conference Proceedings.

[17] J. Leung. A new algorithm for scheduling periodic, real-
time tasks. Algorithmica, 4:209-219, 1989.

[18] A. Mok. Task scheduling in the control robotics envi-
ronment. Technical Report TM-77, Laboratory of Com-
puter Science, Massachusetts Institute of Technology,
1976.

[19] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant
scheduling. Theoretical Computer Science, 130(1):17-
47, 1994.

[20] C. Phillips, C. Stein, and J. Wein. Minimizing average
completion time in the presence of release dates. To
appear in Math Programming, 1995.

[21] M. Queyranne and A.S. Schulz. Polyhedral approaches
to machine scheduling. Technical Report Technical Re-
port 474/1995, Technical University of Berlin, 1994.

[22] S. Sahni and Y. Cho. Nearly on line scheduling of a
uniform processor system with release times. SIAM
Journal on Computing, 8:275-285, 1979.

[23] David B. Shmoys, Joel Wein, and David P. Williamson.
Scheduling parallel machines on-line. SIAM Journal on
Computing, 24(6):1313-1331, December 1995.

scheduling with release times and deadlines.
of Algorithms, 5:l-6, 1984.

214-221, 1995.

