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Abstract 

We consider two fundamental problems in dynamic schedul- 
ing: scheduling to meet deadlines in a preemptive multipro- 
cessor setting, and scheduling to provide good response time 
in a number of scheduling environments. When viewed from 
the perspective of traditional worst-case analysis, no good 
on-line algorithms exist for these problems, and for some 
variants no good off-line algorithms exist unless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = "P. 

We study these problems using a relaxed notion of com- 
petitive analysis, introduced by Kalyanasundaram and Pruhs, 
in which the on-line algorithm is allowed more resources 
than the optimal off-line algorithm to which it is compared. 
Using this approach, we establish that several well-known 
on-line algorithms, that have poor performance from an ab- 
solute worst-case perspective, are optimal for the problems 
in question when allowed moderately more resources. For 
the optimization of average flow time, these are the first 
results of any sort, for any MP-hard version of the prob- 
lem, that indicate that it might be possible to design good 
approximation algorithms. 
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1 Introduction 

In this paper, we consider two fundamental multiprocessor 
scheduling problems: 

e on-line multiprocessor scheduling of sequential jobs in 
a hard-real-time environment, in which all jobs must 
be completed by their deadlines, and 

e on-line multiprocessor scheduling of sequential jobs to 
minimize average flow time (average response time) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J preemptive and nonpreemptive settings. 

These problems have defied all previous (worst-case) an- 
alytic attempts to identify effective on-line algorithms for 
solving them. For example, Dertouzos and Mok proved that 
no on-line algorithm can legally schedule all feasible input in- 

ances of the hard-real-time scheduling problem for m 2 2 
machines [3]. Furthermore, there is no obvious notion of 
an approximation algorithm' for this problem since all jobs 
must be completed. For the various versions of the flow time 
problem, while approximations are acceptable, a variety of 
results [13,16] show that no on-line algorithm can guarantee 
a reasonable approximation ratio. The net result is that the 
traditional worst-case analysis techniques have failed in two 
ways: 

e they have failed to identify effective algorithms for 
these problems, and 

e they have failed to differentiate between algorithms 
whose performance is observed empirically to be rather 
different. 

In this paper we give the first encouraging results that 
apply worst-case analysis to these two multiprocessor prob- 
lems. We utilize a new method of analysis, introduced by 
Kalyanasundaram and Pruhs [ll] (for one-processor schedul- 
ing) of comparing the performance of an on-line algorithm 

IThere has been significant work in the area of best-effort red- 
time scheduling, in which one tries to maximize the total weight 
of the jobs scheduled by their deadlines, but this is not really 
an appropriate approximation for hard-real-time scheduling since 
the fundamental assumption of best-effort scheduling is that it 
is acceptable for jobs to not complete by their deadlines. Fur- 
thermore, even if one accepts best-effort real-time scheduling as 
a reasonable way to approximate hard-real-time scheduling, Ko- 
ren et al. showed that the best competitive ratio any on-line 
algorithm can achieve is lower bounded by ( &)m(A1/m - 1) 
where m is the number of machines and A is the ratio between 
the weights of the most important and least important jobs in 
the input instance [14]. 
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, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the performance of an optimal off-line algorithm when 
the on-line algorithm is given extra resources. For example, 
in a preemptive multiprocessor environment, we show that 
when given machines that are twice as fast, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshortest- 
remaining-processing-time algorithm gives optimal perfor- 
mance for average flow time, and the earliest-deadline-first 
and least-lady-first algorithms, give optimal performance 
for meeting deadlines. In the nonpreemptive setting, we 
also show that simple greedy algorithms perform well for 
optimizing average flow time when given more machines. 
Many of our results for average flow time extend to average 
weightedpow time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well. While we analyze our algorithms 
using the metric introduced in [ll], our results differ from 
that work in two fundamental ways: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 we consider the multiprocessor case, and 

we almost always find schedules whose objective func- 
tion value is optimal, rather than near-optimal. 

In addition, our results are in a somewhat different on-line 
model. We assume that when a job arrives, its processing 
time is known; we discuss our model in more detail later in 
this introduction. 

We feel that our results have two practical implications. 
First, our results provide system designers with analytic 
guidelines for coping with lack of knowledge of the future. 
For example, our results that describe the performance of 
an algorithm when given extra machines tell a system de- 
signer how many extra processors are needed to insure a de- 
sired performance level. Our results that describe the per- 
formance of an algorithm when given faster machines not 
only tell a system designer how much faster the processors 
need to be to insure a desired performance level, they also 
have implications for the performance of the original system 
in a setting where job-arrival rate is reduced. In particu- 
lar, we show that, for the problem of minimizing the aver- 
age flow time, on-line algorithms can achieve small constant 
competitive ratios with respect to offline algorithms given 
identical resources if the arrival rate of jobs in the on-line 
system is somewhat slower than the arrival rate of jobs in the 
identical offline system. Thus reduced job-arrival rate is an 
“extra resource” that can compensate for lack of knowledge 
of the future, much as the hardware-based increased speed 
or increased machines can. Second, more speculatively, if 
an algorithm, when allowed a bit more speed or resources, 
performs well on all input instances, then perhaps the in- 
stances on which it performs very poorly under traditional 
worst-case analysis have a special structure, and it is possi- 
ble that such instances may be less likely to arise in practice. 
We suggest, though, that the ultimate decision of whether 
this sort of analysis is meaningful will depend on the sorts of 
algorithms the analysis recommends and whether or not it 
yields interesting and new distinctions between algorithms. 
When evaluated from this perspective, our results provide 
powerful evidence that “extra-resource” analysis is a useful 
tool in the analysis of on-line scheduling problems. 

Although our notion of worst-case analysis is not the 
traditional one, these analytic results for on-line algorithms 
are the first that provide any evidence that it is possible 
to design polynomial-time off-line algorithms for the mini- 
mization of average flow time with performance guarantees 
of good quality for any NP-hard variant of the problem. 
Problem Definitions: We are given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm identical parallel 
machines and an input instance (job set) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  which is a col- 
lection of n independent jobs { J I ,  Jz, . . . , J,,}. Each job J, 
has a release date T, ,  an execution time (also referred to as 

length or processing time) p , ,  possibly a weight w,, and, in 
the real-time setting only, a deadline d3.  The ratio of the 
length of the longest job to that of the shortest job in in- 
stance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is denoted A(I) ,  or simply A when the job set I 
is unambiguous. For any input instance I ,  we let I‘ denote 
the I-stretched input instance where job J, has release time 
IT, instead of r,. A job can run on only one machine at a 
time and a machine can process only one job at a time. We 
will often denote the completion time of job J3 in schedule 
S by C,” and will drop the superscript when the schedule is 
understood from context. The Pow time, or response time 
of a job in schedule S is F,” C,” - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,; the total pow time 

of schedule S is E, FY, whose minimization is equivalent 
to the minimization of average p o w  time k F,. If the 
jobs have weights, we can also define the total weightedpow 
time of schedule S by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, w, F,”, or equivalently the average 

weighted flow time $ E, w3 F,. For hard real-time schedul- 
ing with deadlines, we say a schedule S is o timaI if each 

are often called feasible schedules. 
We will consider both preemptive and nonpreemptive 

scheduling models. In a preemptive scheduling model, a 
job may be interrupted and subsequently resumed with no 
penalty; in a nonpreemptive scheduling model, a job must 
be processed in an uninterrupted fashion. 
Our On-line Model and Methods of Analysis: We 
consider on-line scheduling algorithms which construct a 
schedule in time, and must construct the schedule up to 
time t without any prior knowledge of jobs that will become 
available at time t or later. When a job arrives, however, 
wgassume that all other relevant information about the job 
is known; this model has been considered by many authors, 
e.g. [S, 9, 10, 22, 231, and is a reasonable model of a number 
of settings from repair shops to timesharing on a supercom- 
puter. (For example, in the latter setting, when one submits 
a job to a national supercomputer center, one must give an 
estimate of the job size.) 

We will analyze our algorithms by considering their per- 
formance when they are allowed to run on more and/or 
faster machines as well as when they are run on I-stretched 
input instances. Given an input I to a scheduling prob- 
lem with m machines and (optimal) objective function value 
V ,  an s-speed p-approximation algorithm finds a solution 
of value pV using m speed-s machines. A w-machine p -  
approximation algorithm finds a solution of value pV using 
wm machines. An I-stretch p-approximation finds a solution 
to I‘ of value pV using machines identical in number and 
speed to the offline algorithm. For a problem with dead- 
lines, we consider V to be the objective of scheduling all 
jobs by their deadlines, so it is always the case that p = 1. 
In fact, for both deadlines and flow-time, we will usually be 
concerned with the case where p = 1, so we will omit the 
term “papproximation” when this is true. 
Results - Preempt ive Problems: We now discuss our 
results, which are summarized in Figure 1. We first study 
on-line preemptive scheduling for both objectives: minimum 
total flow time and hard real-time scheduling with deadlines. 
We show that several simple and widely-used scheduling 
heuristics (for which worst-case analysis yields a pessimistic 
evaluation) are (2 - &)-speed algorithms. These results fol- 
low from a general result that characterizes the amount of 
work done by any “busy” algorithm (one that never allows 
any unforced idle time) run at speed s when compared to 
that done by any algorithm run at speed 1. We also show 

job J, is scheduled by its deadline d,, i.e. C, d 5 d,. These 

that no (1 +e)-speed-algorithms exist for either problem for . < -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- ,* .\.” ,, , .- 1 . k’p .:<,>*.-...A . - 



Speed to Achieve Optimal Extra Machines to Achieve Optimal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(LLF)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 clog A 

cA < w ( E D F )  

hard deadline i < s 5 2 - $  p < W  

' preemptive, ) 1 Fj ! $ - < $ 5 2 - $  
preemptive, ) wjFj, m = 1 $ 5 2  
nonpreemptive, wj Fj w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 clogA 

* w 5 clog zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn [I + o(l)-approx] 

Figure 1: Summary of main algorithms and hardness results. The notation G < s 5 y means the problem can be solved with speed-y 
machines, but cannot be solved optimally with speed-z machines. Similarly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is for w-machine algorithms, and w(EDF) is the number 
of extra machines given to earliest-deadline-fit algorithm. LLF is the least-laxity f i t  algorithm. We use c to denote some constant 
and call to denote all constants. A is the ratio of the longest length to the shortest length. 

small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (1/5 for meeting deadlines and 1/21 for flow time). 
More specifically, for preemptive hard real-time schedul- 

ing, we analyze two simple and widely used on-line algo- 
rithms, earliest-deadline-first (EDF) [2] and least-laxity-first 
(LLF) [18]. At time t i n  an rn-processor system, EDF sched- 
ules the m jobs currently in the system which have the ear- 
liest deadlines while LLF schedules the m jobs currently in 
the system which have the smallest laxities (at time t ,  a job 
5, has l a d y  (d, - t )  - (p j  - 2,) where zj is the amount of 
processing 5, received prior to time t). In the uniprocessor 
setting (m = l ) ,  both EDF [2] and LLF [18] can schedule 
any feasible input instance. In the multiprocessor environ- 
ment (m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2), no on-line algorithm legally schedules all fea- 
sible m-machine input instances [3]. Nonetheless, EDF and 
LLF are likely heuristic choices in practice with EDF being 
simpler to implement and LLF more effective in general. 

In the faster-machine model, we show that both EDF and 
LLF are exactly (2 - $)-speed algorithms for the problem 
of hard-real-time scheduling; this provides some theoretical 
justification for these heuristic choices. We also show that no 
(1 + €)-speed algorithm exists for this problem for e < 1/5 
and m 2 2. In the extra-machine model, we show that 
LLF is an O(1ogA)-machine algorithm while EDF is not a 
o(A)-machine algorithm for any m 2 2. We note that our 
analysis of LLF is fairly tight by showing that LLF is not 
a c-machine algorithm for any constant c. We also show 
that no (1 + €)-machine algorithm exists for this problem 
for E < 1/4 for m 2 2. Comparing these results with those 
in the faster-machine model, we see a contrast between the 
power of extra machines and the power of extra speed in the 
preemptive setting. 

For the problem of minimizing total flow time, we ana- 
lyze the simple and widely used SRPT (Shortest Remain- 
ing Processing Time) Rule which always schedules the m 
jobs with the shortest remaining processing time. In the 
uniprocessor setting (m = l ) ,  SRPT is optimal. In the 
multiprocessor setting ( m  2 2), however, SRPT is only an 
O(1og m)-approximation [16]. Furthermore, Leonardi and 
Raz have shown that no randomized on-line algorithm can 
be any better than an Q(1ogm)- approximation algorithm 
[16]. In contrast, we show that SRPT is a (2 - $)-speed 
algorithm. Thus, we provide encouraging theoretical evi- 
dence to support the use of SRPT in practice. We also 
show that no (1 .+ €)-speed algorithm exists for this problem 
for E < 1/21 for m 2 2. 

We also consider the problem of scheduling a single ma- 
chine preemptively to minimize average weighted flow time. 
This weighted variant reflects the fact that in many settings, 
the jobs to be scheduled have different priorities. In con- 

trast to the unweighted problem, scheduling preemptively 
on a single machine to optimize average weighted flow time 
is "P-hard [15]. Recently there has been much progress 
in developing off-line approximation algorithms for the re- 
lated NP-hard problem of minimizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, w,C, via certain 
classes of linear programming relaxations [I, 9, 201, but no 
non-trivial polynomial-time approximation algorithms are 
known for ~ W J F J .  (Since c w , C ,  = c w , F ,  + ~ W , T , ,  

an optimal schedule for w,C, is also an optimal sched- 
ule for w, C, may be 
a very poor approximation for w, F,.) We show how to 
use the linear-programming relaxations considered by [9] to 
develop an (on-line) %speed algorithm for this problem. 
Nonpreemptive Models: We also consider the problem 
of scheduling nonpreemptively to minimize average weighted 
fly time in both the uniprocessor and multiprocessor set- 
tmgs. Note that the simplest possible variant of this prob- 
lem (off-line, uniprocessor, unweighted) is already a difficult 
problem with very strong nonapproximability results. In 
particular, Kellerer et al. [13] recently showed that there ex- 
ists no polynomial-time o(fi-approximation algorithm for 
this problem unless P = "P, and Leonardi and Raz have 
given analogous hardness results for parallel machines [16]. 
Thus, traditional worst-case analysis has little to offer to 
practitioners. In sharp contrast to these results, we give 
an O(1og A)-machine algorithm and an O(log n)-machine 
(1 +o( 1))-approximation algorithm for the on-line minimiza- 
tion of total weighted flowtime on parallel machines. These 
results generalize further to nonpreemptive scheduling to 
meet due dates. 

We then offer some evidence that indicates it may be 
difficult to improve upon our results. A common method 
of analyzing the performance of a nonpreemptive algorithm 
is with respect to the optimal preemptive solution, which 
is an obvious lower bound [20, 131. Let S, be the sched- 
ule with optimal flowtime in the preemptive m-machine set- 
ting for some instance I ,  and let Sw be the schedule with 
optimal flowtime in the nonpreemptive, wm-machine set- 
ting. We give a polynomial-size lower bound on the gap 
between E, F: and c, F P  for any constant w 2 2, even 
if the w m  machines are speed-2. Thus the analysis of any 
O( l)-machine 2-speed non-preemptive flow-time algorithm 
will require a stronger lower bound than the flow-time of 
the preemptive 1-machine 1-speed schedule. In contrast to 
this negative result about O(1)-machine algorithms, we give 
O(1og n)-machine %speed algorithm that nonpreemptively 
achieves the polynomially-loose 1-machine 1-speed preemp- 
tive lower bound. 

w, F,, but a p-approximation for 



Speed and Stretch: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe conclude by showing that any 
s-speed papproximation algorithm is also an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps- 
approximation algorithm when we consider the problems of 
minimizing average flow time or average weighted flow time. 
In light of this result, throughout the paper we focus only on 
analyzing faster machines and extra machines, but remem- 
ber that the flow-time results for faster machines extend to 
stretched schedules. 
Previous Results: The only previous work on this mode 
of analysis of which we are aware is the work of Kalyanasun- 
daram and Pruhs who introduced it [ll]. They studied the 
minimization of preemptive total flow time and best-effort 
firm-real-time scheduling. Their flow time work differs from 
ours in several important characteristics. They studied only 
the unweighted uniprocessor’ setting where the algorithm 
has no knowledge of p, until job zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, completes. For this 
problem, they were able to  show a simple on-line algorithm 
was an s-speed (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ &)-approximation algorithm for min- 
imizing flow time. (Note our relationship between faster ma- 
chines and stretched schedules implies that this algorithm is 
also an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s + &)-approximation algorithm.) This 
result is quite dramatic as it was previously shown that no 
deterministic on-line algorithm can approximate the opti- 
mal flow time within a factor of sZ(n*) [19]. However, their 
analysis does not yield an s-speed on-line algorithm for mini- 
mizing average flow time for any s. At speed 2, for example, 
they only guarantee a Zapproximation. Furthermore, in 
our model of on-line scheduling in which processing require- 
ments are known, this problem is a simple one that can be 
solved optimally by SRPT. 

Their real-time problem differs from ours in two signif- 
icant ways. First, they assume that jobs have values and 
the goal is to maximize the sum of the values of completed 
jobs; that is, it is acceptable for jobs to  not complete by 
their deadlines. Second, they derive results only for the 
uniprocessor setting. Again, in contrast to quite strong tra- 
ditional on-line lower bounds, they were able to show that 
an on-line scheduling algorithm was an s-speed (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5)- 
approximation algorithm, for s > 1; at speed 2, this corre- 
sponds to  a 3-approximation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 On-line preemptive scheduling using faster machines 

In this section, we show that SRPT is a (2 - l/m)-speed al- 
gorithm for preemptively minimizing average flow time and 
that EDF and LLF are (2 - l/m)-speed algorithms for hard- 
real-time scheduling. We also show that no (1 + €)-speed 
algorithm exists for the hard-real-time scheduling problem 
for e < 1/5, and that no (1 + €)-speed algorithm exists for 
minimizing average flow time for e < 1/21. 

Theorem 2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRPT i s  a (2 - $)-speed algorithm for the 
preemptive minimization of average flow times on parallel 
machines. 

Theorem 2.2 EDF and LLF are (2 - I)-speed algorithms 
for the preemptive scheduling of jobs w i 8  deadlines on par- 
allel machines. 

The key to the proof of both theorems is the following 
fundamental relationship between machine speed and total 
work done by any busy algorithm such as SRPT or EDF. 
We let A(j,t) denote the amount of processing algorithm A 

21n their extended abstract [ll] they claim parallel machines 
results but have retracted this claim [12]. 

specifies for job Jj by time t. For job set J let A( J, t) = 
CjEJ t). 

Lemma 2.3 Consider any input instance I ,  any time t, any 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, and any 1 5 P 5 (2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). Define a = y. For 

any busy scheduling algorithm A using m speed-a machines, 
A(I ,pt)  2 A’(1,t) for any algorithm A’ using m speed-I 
machines. 

Proof Sketch: We will prove this by contradiction. Fix an 
input instance I ,  and let t be the smallest time such that 
A(I,  Pt) 5 A’(1, t). Since A has done less total work than A‘, 
A must have done less work on some specific job J,. For A, 
consider the time period from time r, to Pt; for A’, consider 
the time period from 3 to t .  From time r, to time Pt,  there 
are two types of time intervals: overloaded intervals where 
more than m jobs are available to be scheduled by A and 
underloaded time periods where at most m jobs are available 
to be scheduled. Let the total length of the overloaded time 
intervals be x and the total length of the underloaded time 
intervals be y. 

By the definition of time t, we know that A( I , r , )  2 
A’(1, F). Therefore, we can conclude that the total work 
done by A from time r, to  time Pt must be strictly less 
than the total work done by A‘ from time 3 to time t. 
During overloaded intervals, A uses all m machines while 
during underloaded intervals, A uses at least one machine 
to run job 5,. Therefore, A does at least amx  + a y  total 
work from time r,  to time Pt. Algorithm A’ does at most 
m(t- 3) work from time 3 to t since A’ only has m speed-1 
machines. Thus, we conclude that 
d 

By the definition of job Jj, we know the work done by 
A on Jj from time ~j to time Pt must be strictly less than 
the work done by A’ from time 9 to time t .  Algorithm A 

does at least cry work on Jj from time rj  to time Pt, while 
algorithm A’ does at most t - 9 work on Jj from time % 
to time t. Thus, we conclude that 

rj t - -  >ay. 
P 

We now show that (1) and (2) cannot simultaneously be 
true. Add (1) to ( m  - 1) times (2) to obtain 

t - - (2m - 1) > am(z  + y). ( ;) 
Recall that x + y = Pt - ~ j ,  and so if we divide the left side 
by Pt - rj and the right by x + y, we obtain 

2 m - 1  

1 

> a m  
P 

* 2 - -  m > ap. 

But this last inequality is a contradiction, since by definition 

Proof of Theorem 2.1: We will actually prove the following 
more general result. Consider any input instance I .  Let 
S ( I )  be any legal schedule for I using m speed-1 machines 
and SRPT(I )  be the schedule derived by applying SRPT 

a p = 2 - $ .  0 



to I using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm speed-(2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- l / m )  machines. Then for any time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t, the number of completed jobs in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRPT(1) is at least as 
many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the number of completed jobs in S(I) .  This implies 
that for all IC, the kth job completed in SRPT(I) finishes 
no later than the f t h  job completed in OPT(I )  (a specific 
legal schedule), so Theorem 2.1 clearly follows. 

We prove this general result as follows. Define It I 
to be the set of jobs that complete by time t in schedule 
S(I ) .  By Lemma 2.3 and the definition of I t ,  all lItl jobs 
will be completed by time t in SRPT(It).  A lemma from 
[20] proves that if SRPT completes IC jobs of input instance 
I’ by time t and I’ I”, then it completes at least IC jobs 
of input instance I” by time t. We apply this result with 
It = I‘ and I = I“ to conclude that for any time t, at least 
lit[ jobs will be completed by time t in SRPT(1). 

Proof Theorem 2.2: Consider any input instance I which can 
be legally scheduled on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm speed-1 machines. Rename the 
jobs in order of deadlines so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi 5 d j  for 1 5 i < j 5 n. 
Define It to be the set of jobs (51 , .  . . , Jt} .  We prove by 
induction on t that EDF, using m speed-(2-1/m) machines, 
legally schedules It. 

Clearly EDF legally schedules 11. Assume EDF legally 
schedules It for t 2 1. Consider what EDF does with I t+ l .  

Let Q It+l denote the set of jobs which have deadline dt+l 
(note this set may contain only job & + I ) .  Because EDF 
gives priority to jobs with earlier deadlines, we know that 
EDF(It) is identical to EDF(It+l) when we ignore jobs in 
Q in both schedules. Thus, all jobs in It+l - Q complete 
by their deadlines in EDF(I;+1). By Lemma 2.3, EDF has 
done at least as much work as OPT on It+l by time &+I. 

In particular, since OPT has completed all jobs in It+l by 
time &+I, this means EDF has completed all jobs in Q by 
time & + I .  Thus, EDF legally schedules I t+l.  

Thus, by the principle of induction, EDF is a speed- 
( 2 - l l m )  algorithm. The fact that LLF is a speed-(a-l/m) 
algorithm follows from Leung’s result that LLF can legally 
schedule any instance EDF can legally schedule given the 
same number of processors with identical capabilities [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

We observe that Theorem 2.2 is tight as we can show 
that both EDF and LLF are not speed 2 - $ - e  algorithms 
for any E > 0. This raises the question of whether there 
are algorithms which are c-speed algorithms for some c < 2. 
We cannot completely resolve this question, but we do show 
that no ( 1  + €)-speed algorithm exists for either problem for 
small E. 

Theorem 2.4 There is no on-line ( 1  + €)-speed algorithm 
for scheduling with deadlines on m machines, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 and 
m even, for E < 115, and there is no on-line (1 + €)-speed 
algorithm for scheduling to minimize average flow time on 
m machines, m 1: 2 and m even, for E < 1/21 .  

Proof Sketch: For the first part of the theorem, we give a 
simple proof for e = 1/9 and sketch how to extend the result 
to E = 1 / 5 .  The proof for z = 1 / 9  is based on the following 
adversary strategy. At time 0, m jobs of size 1 with deadlines 
at time 2 and m / 2  jobs of size 2 with deadlines at  time 4 are 
released. If an on-line algorithm run with m speed-(1 + e )  
machines does at most 2 m / 9  units of work on jobs of size 2 
from time 0 to time 1, then m jobs of size 2 with deadlines 
at time 4 are released at time 2 (scenario A). Otherwise, m 
jobs of size 1 with deadlines at time 2 are released at time 
1 (scenario B). 

In scenario A, the algorithm does at most 2 m / 9  units of 
work on jobs of size 2 from time 0 to time 1 ,  and at  most 

0 

m ( I + r ) / 2  units of work on size-2 jobs from time 1 to time 2, 
leaving at least 5 m / 1 8 - m e / 2  units of work from the original 
size-2 jobs uncompleted at time 2,  when an additional 2 m  
units of work are released. Therefore, the on-line algorithm 
must complete 2 m  + 5 m / 1 8  - m e / 2  units of work by time 
4. There are 2 m  + 2me units available on the m speed- 
( 1  + e )  machines from time 2 to time 4 .  Therefore we have 
2 m  + 2mr  2 2 m  + 5 m / 1 8  - m e / 2 ,  which implies e 2 1/9. 

In scenario B, from time 0 to 1, the on-line algorithm 
completes at most m + m e  - 2 m / 9  units of work on the size- 
1 jobs. Therefore at  time 1,  there are at least 2 m / 9  - m e  
units of original size-1 work remaining when the additional 
m units of size-1 work are released. These m + 2 m / 9  - me 
units must be completed by time 2 with the m + m e  resources 
available. Therefore m + m e  2 m+2m/9-mme, which implies 

To extend this result to 1 / 5 ,  we use the infinite family 
of input instances I(m,i) for i 2 0 defined i ~ s  follows. At 
time 2 j  for 0 5 j 5 i ,  m jobs are released with execution 
times 1 and deadlines 2 j + 2 ,  and m / 2  jobs are released with 
execution times 2 and deadlines 2 j+4 .  At time 2i+1, m jobs 
are released with execution times 1 and deadlines 2i + 2. A 
careful analysis of this set of input instances reveals that an 
on-line algorithm must complete all 3 m / 2  jobs released at 
time 2 j  by time 2 j  + 2 while leaving enough spare capacity 
from time 2j to 2 j  + 1 to prepare for the possibility that rn 
jobs of size 1 and deadlines of time 2 j  + 2 will be released 
at’ time 2 j  + 1. 

To extend the 1 / 9  lower bound for real-time scheduling 
to a 1 / 2 1  lower bound for average flow time, we utilize a 
similar adversary strategy, but the analysis is more complex. 
0 

We note Lemma 2.3 has two other implications. First, 
Theorem 2.1 can be generalized to show that for 1 5 CY 5 
2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, SRPT is an a-speed *-approximation algorithm 
for preemptively minimizing the sum of completion times. 
When a = 1,  SRPT is a ( 2  - $)-approximation algorithm 
which improves slightly a bound of 2 from [20]. Second, 
Lemma 2.3 can be viewed as a generalization of Graham’s 
proof that List Scheduling is a ( 2  - $)-approximation al- 
gorithm for minimizing the makespan [7]; it is an a-speed 
(2  - $)/a-approximation algorithm. 

E 2 1/9. 

3 On-line preemptive scheduling using more machines 

Another natural way in which to augment resources is to 
add extra machines of the same speed rather than increas- 
ing machine speed. In the preemptive setting, it is easy 
to verify that augmenting with extra machines of the same 
speed is not superior to augmenting with faster machines 
and may in fact be worse. More precisely, in the preemp 
tive setting, any c-machine algorithm can be simulated by 
a c-speed algorithm by doing a unit of work from each ma- 
chine during each time unit, while the reverse is not true. 
In particular, the natural analogue to Lemma 2.3 for extra 
machines is not true; in particular, it is not true that there 
exists some constant c such that a busy algorithm given cm 
machines will always do as much work by any time t as an 
optimal algorithm given only m machines on any input in- 
stance. We exploit this difference to  show that LLF is not a 
c-machine algorithm for any constant c and that EDF is not 
an o(A)-machine algorithm. We then show that LLF is an 
O(1og A)-machine algorithm and is thus significantly better 
than EDF for online preemptive real-time scheduling in this 
model. Finally, we show that no ( 1  + €)-machine algorithm 



exists for this problem for e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 114. 
To show that LLF is not a c-machine algorithm for any 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2, we require the following lemma showing that LLF 
cannot offer a guarantee similar to that of Lemma 2.3. That 
is, we will show there exist input instances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
where an algorithm (particularly the optimal one), using 
only m machines, completes more work by time t when run zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (in particular, the algorithm finishes all jobs in I by 
time t )  than LLF using cm machines for any constant c (in 
particular, LLF has not completed all jobs in I by time t ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition 3.1 Define the job set I ( t ,  c, y, m)  as follows. 
There are 7 type-A jobs with length2cy, release times t, and 
deadlines t + (2c + l )y (and thus laxities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof y). Meanwhile, 
there are cm “delay” jobs with release times t + 2ci, length 
1, and deadlines t + 2c(i + 1) (and thus laxities of 2c - 1) 
for 0 5 i 5 y - 1 (and thus ycm delay jobs altogether). 

Lemma 3.1 For all m 2 2, integers c 2 1, y 2 2c, and 
t 2 0, job set I ( t ,  c, y, m) can be legally scheduled by time 2cy 
on m machines, but if LLF is run on I ( t ,  c, y, m) with cm 
machines, at time 2cy + t, the 7 type-A jobs of I ( t ,  c, y, m) 
will each have y-2c+l remainingprocessing time and 2c-1 
laxity. 

Proof: For 0 5 +i 5 y - 2c, at time t + i, the laxity of 
each of the type-A jobs is at least 2c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso LLF will schedule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all the delay jobs at their release dates. Thus the type-A 
jobs will not be executed at time t + 2ci for 0 5 i 5 y - 2c. 
At time t + 2cy, the F type-A jobs will still each require 
y - 2c + 1 units of processing and will have laxities 2c - 1. 
However, all jobs can be completed legally by time t + 2cy 
on m machines by executing the type-A jobs on machines 
from time t to t + 2cy, and packing the delay jo%s greedily 
on the remaining 7 machines. 0 

Theorem 3.2 LLF is not a c-machine algorithm for schedul- 
ing with deadlines for any constant c. 

Proof Sketch: Let y1 = 4(2c - 1)(2c + l)4c-1 (the key 
property is that y1 > 2(2c - l)(2c + l)4c-1). We recursively 
define y, = y,-1/(2c + 1) for 2 <_ i 5 4c (note y,-1 = 
(2c + l)y, and yl = (2c + 1)4c-1 ~ 4 ~ ) .  Let t ,  = 2 c c ;  y, for 
0 5 i 5 4c (note t o  = 0). Consider the input instance I 
consisting of &1I(t,-l, c, ya, m). 

The key to the proof is the observation that at time t, 
for 1 5 i 5 4c, LLF will still have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf jobs with at least 
yi -2c+l required units of processing remaining and laxities 
of at most 2c - 1 whereas the optimal m machine algorithm 
finishes all jobs by their deadlines. We omit the inductive 
proof of this observation in this writeup. 

Thus, at time t 4 c  = 2cx:f1 y,, there will be 2cm jobs 
with ~4~ - 2c + 1 required units of processing remaining and 
laxities 2c - 1 for LLF. If ~4~ > 2(2c - l), LLF will not be 
able to legally schedule this instance. Working backwards, 
we see that since we defined y1 = 4(2c - l)(2c + l)4c-1, 
~4~ = 4(2c - 1) > 2(2c - l), and the lemma follows. 

Note the lower bound instance has extremely large A. 
We can show this is necessary. We can also give an upper 
bound on the performance of LLF. 

Theorem 3.3 LLF is 
scheduling with deadlines. 

0 

O(log A)-machine algorithm for 

In contrast, we can show that EDF cannot offer a similar 
guarantee. 

Theorem 3.4 EDF i s  not a ( i A e ] ) - m a c h i n e  algorithm 
for scheduling with deadlines. 

Proof: For all m 2 2 and all A 2 1, we define an infinite 
set of input instances I (m,A)  such that I (m ,A)  can be 
scheduled by a static algorithm on m machines but cannot 
be scheduled by EDF on cm machines where c = LA?]. 

The input instance I (m ,A)  consists of cm jobs with 
deadlines of 2 A  and execution times of 2 and one job with 
a deadline of 2A + 1 and an execution time of 2A (i.e. this 
job must be executed by time 1 in order to complete by its 
deadline). All the jobs are released at time 0. 

Clearly, EDF will fail to legally schedule the input in- 
stance I(m, A) on cm machines because it will initially de- 
vote a l l  cm machines to the scheduling of the short jobs with 
length 2 and will not schedule the long job until time 2 at 
which point it can no longer be completed by its deadline. 

The input instance I(m, A), however, is clearly schedu- 
lable on m machines as we can put the one job with deadline 
2A + 1 on a machine at time 0 and devote the remaining 
m - 1 machines to completing the remaining cm jobs of 
length 2 by their deadlines. 0 

Finally, we also can show that no algorithm is a (1 + e)- 
machine algorithm for this problem. In the theorem below, 
we assume that em is an integer. 

Theorem 3.5 There i s  no on-Zine (1 + e)-machine algo- 
rithm for scheduling with deadlines on m machines, m 2 1 
and even, for any E < f. 

.t 

4 

In this section we give an on-line extra-resource algorithm 
for the preemptive scheduling of one machine to minimize 
average weightedflow time. Our approach will build upon 
the work of Hall et. al. [9] who recently showed that a 
variety of linear programming formulations can be used to 
give approximation algorithms to minimize the w,C, ob- 
jective. As we observed earlier, while an optimal algorithm 
for c w , C ,  is also an optimal algorithm for C w , F , ,  a p 
approximation algorithm for czv,C, in no way is guaran- 
teed to be a p-approximation algorithm for c w 3 F 3 .  No 
non-trivial polynomial-time algorithm is known for this prob- 
lem. 

Let N denote denote the entire set of jobs (1,. . . , n} .  For 
any subset S E N ,  we use the notation p ( S )  = CJESp3, and 
T * , ~ ( S )  = min,Es T ~ .  For any schedule of N ,  let C, denote 
the completion time of job j. The following lemma places 
constraints on legal values for C,. 

Lemma 4.1 [ZI] Given a preemptive schedule for instance 
N on one machine, let 4,. . . , Cn denote the job completzon 
times in this schedule. Then the C, satisfy the inequalities 

On-line preemptive weighted flow time 
4 

We now form the following linear program R: 

n 

Minimize ~ w j C ,  subject to (3) and the 

n constraints Cj 2: rj + p j  for j = 1, . . . , n. 

j=1 

(3) 



While zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR has an exponential number of constraints, Goemans 
has shown that R is a linear transformation of a supermod- 
ular polyhedron. This means we may obtain an optimal 
solution to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR in polynomial time by applying the greedy 
algorithm[4]; in fact, Goemans shows we can solve it in 
O ( n  log n )  time. 

Hall et. al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] show that the solution to this relaxation 
can be used to produce a 2-approximation algorithm for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,C,; this has been improved to a 1.466-approximation 
algorithm [6]. We show here that a similar approach yields a 
%speed algorithm for E, w, F,. We first present an off-line 
algorithm and then convert it into an on-line algorithm. 

Compute the optimal linear programnning solution to R 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and denote this solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1, . . . , Cn. We use 
this solution to induce a set of priorities onthe niobs; specif- 
ically, job i has priority over job j if Gi < C,. At any 
time, our algorithm schedules one-hal fo f  the available job 
with highest priority; clearly a machine of speed 2 could 
schedule the entire job in this tiEe. We call this algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Preemptively-Schedule-Halves-by-C,. 

Lemma 4.2 Let ZI 5 - - 5 Z,, be an optimal solution to 
R, and let E l , .  . . , E n  denote the_completion t imes found by 
Preemptively-Schedule-Halves-by-C,. Then, f o r  j = 1,. . . , n ,  
E, <E, .  
Proof Sketch: Consider the schedule formed on the first j 
jobs. Let t be the latest time before E, at which the machine 
is idle. (If no such time exists, t = 0). Let S denote the set 
of jobs that are at least partially processed in the interval 
[ t ,  E,], in the partial schedule. We observe that all jobs in 
S were released after time t because if not, they would be 
running at time t .  Therefore, t = rmin(S), and since there 
is no idle time between t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,, E, 5 rmin(S) + i p ( S ) .  

Now consider inequality (3) on set S. Since we are only 
conside&ng tke partial schedule of the first S jobs, for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k E S, ck 5 C,. Plugging this into ( 3 )  gives that C , p ( S )  2 
E k E S ~ k E k  2 rmin(S)p(S)  + $ P ( S ) ~ ,  or C, 2 rmin(S)  + 
$ p ( S ) .  Thus 5, 5 E,, as we wished to show. 

We convert this into an on-line algorithm as follows. At 
any time, we have a set of released jobs. We form the linear 
program for these jobs, solve it to compute priorities on jobs, 
and greedily schedule according to these priorities until a 
new job arrives. This on-line algorithm performs identically 
to the off-line algorithm because the relative priorities of jobs 
that arrive before any time t are unaffected by the arrival of 
jobs after time t [5] .  

Theorem 4.3 Preemptively-Schedule-Halves-by-E, i s  an on- 
line 2-speed algorithm fo r  scheduling preemptively to mini- 
mrze w3 F, . 

- 
0 

5 On-line nonpreemptive scheduling 

In this section, we consider the significantly more difficult 
problem of nonpreemptive scheduling. The main problem 
we address is minimizing total weighted flow time, though 
we do consider others as well. We first give algorithms that 
show how to schedule nonpreemptively using more resources. 
Our approach is to group jobs into groups of similar-sized 
jobs and use a greedy algorithm to schedule similar sized 
jobs on the same machines. We then give a lower bound on 
nonpreemptive scheduling and some comments relating the 
upper and lower bounds. 

5.1 Algorithms 

In this section, we will use f low-t ime problem to refer to the 
problem of nonpreemptively minimizing the total weighted 
flow time on m identical parallel machines. We will compare 
several different algorithms and the schedules that they pro- 
duce. Given an input I, we will denote 

0 O(I )  - the optimal schedule on m machines, 

0 G( I )  - the greedy algorithm on m machines. When a 
machine is idle, any available job is run, 

0 Gp(I) - a modified greedy algorithm on m machines. 
When a machine becomes idle, at the next time which 
is an integer multiple of p ,  the available job with largest 
weight is scheduled. 

We wiU slightly overload the notation, and use O(I) ,  G( I ) ,  
Gp( I )  to refer both to the algorithms and to the schedules 
that they produce. We use the notation FF(') to denote the 
flow time of job j when algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is run on input I, and 
Sx(') to denote the starting time of job j when algorithm 
x' is run on input I. 

We first focus on input instances consisting of similar- 
sized jobs. We will then discuss how to generalize this algo- 
rithm to schedule arbitrary-sized jobs. 

S'i;nilar Sized Jobs: We begin with the case when all p ,  are 
the same and all w, = 1, and observe that in this case, the 
greedy algorithm G is optimal since if a job is held up for 
the release of another job of the same size, the two can be 
swapped, improving the flow time. 

mma 5.1 Let p be a positive integer. Let I be a flow- 
t ime problem with w, = 1 a n d p ,  = p for all jobs j .  Then 
E, F:(') = E, 2''"). 

We now extend this to the case when all p ,  are within a 
factor of 2 of each other. 

Lemma 5.2 Let p be a positive integer. Let I be a f low 
tame problem on m machines with w, = 1 and p 5 p ,  5 2p 
fo r  all jobs j .  There i s  an on-line algorithm U, run on 
2m machines, that given input I produces a schedule with 
E, FY(') 5 E, FP('). Further, there exists an optimal 

schedule 0 fo r  which Sy(') 5 Sy(') fo r  all jobs j .  

Proof Sketch: Let I' denote a modified instance of I ,  with 
all p j  = p .  By Lemma 5.1, if we run the greedy algorithm 
G on I' we get t h a t E j  F:(") = FP(") and hence there 
exists an optimal schedule (namely G )  in which for ail j ,  

Since I' is formed from I by decreasing processing times, we 
can show that there exist optimal schedules for I' and I for 
which S;('') 5 and so, combining with(4) we have 

( 5 )  

and also that Fy('') 5 E F:('). In other words, G, run 
on I' does "better" than the optimal schedule for I .  

Now, we form the on-line 2m machine algorithm U on I 
by simulating G on 1'. We devote 2 machines in U for the 



jobs scheduled on each machine in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(I ' ) ,  and alternate plac- 
ing the jobs from a machine in G(I') on the corresponding 
two machines in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Even though, in converting from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' back 
to I processing times can double, we are guaranteed that, 
because of the alternation, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be able to schedule each 
job at exactly its start time in G, that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASy(') = S:('" for 

all j .  Combing with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 ) ,  we conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI So(') for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

all j, and thus cj FY(') 5 cj F'('). 
We now consider input instances in which the jobs have 

different weights. We again begin by focusing on the case 
when all jobs have the same processing time p .  In this case 
greedy is not an optimal algorithm, but we can show that a 
slightly modified version, in which jobs start at times which 
are integral multiples of p ,  comes close to optimal. The 
following lemma shows that considering such schedules does 
not increase the objective function much. 

Lemma 5.3 Letp be a positive integer. Let I be a flow time 
problem with pl = p for all jobs j. Then 

Proof Sketch: We first constrain ourselves to schedules in 
which each job is required to start at a time which is an 
integral multiple of p ,  and we let O p ( I )  be the optimal 
schedule in this setting. We first show that w,Fpd') I 

w,(F:(') + p ) .  To prove this, take optimal schedule 0, 
and on each machine, move each job later so that it begins 
at an integral multiple of p.  Clearly we still have a valid 
schedule, and the completion time of each job has increased 
by no more than p .  Thus we have a schedule in which each 
job begins at a time which is an inte ral multiple of p and 

optimal such schedule has flow time no greater than this. 
We can then show that G p  is indeed an optimal schedule in 
the setting in which each job is required to start at a time 
which is an integral multiple of p .  We omit the details. 

Since FP(') 2 p for all 3 ,  G p  finds a schedule for weighted 
flow time with all p,  = p with flow time within a factor of 2 
of optimal. We now use a proof similar to that of Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2 
to bound the performance of an on-line 2 m  machine version 
of Gp, on the input instances where p 5 p3 I 2p for some p .  

Lemma 5.4 Let p be a positive integer. Let I be a pow 
time problem on m with p I p,  5 2p. There i s  an on- 
line algorithm U ,  that given I and 2m machines, produces a 

schedule U with w,F;(') 5 2 w,FP('). 

Proof Sketch: Form I' from I by rounding the processing 
times down to p .  We know by Lemma 5.3 that if we run 
G p  on 1', that w,Fp(" )  < w,(FP(") + p ) .  On-line 
algorithm U is formed exactly-as in the proof of Lemma 5.2: 
we assign two machines t o  each one and then simulate G p  
on I' and use this to obtain starting times in the on-line 
algorithm. Thus we have that Sy(') = SF("). We also 
know that in 1', all jobs have processing time exactly p ,  and 
so S:p(") = FGp(") - p .  Combining these bounds, we get 

has flow time no more than c w 3 ( F 3  8 + p ) .  Thus O p ,  the 

3 

The results of this section also hold with speed-2 ma- l 

chines instead of doubling the number of machines. 

General Algorithms: We now give algorithms for jobs with 
arbitrary-sized-processing times. We split the jobs into groups 
of similarly sized jobs, and put each group on its own ma- 
chine. There will be a logarithmic number of groups, and 
for each group we can use the algorithms for when the pro- 
cessing times are all between p and 2p. 

Let Pmin = min, p ,  and pmax = max, p, .  Recall that A 
is defined as maxp,/ minp,, the ratio between the minimum 
and maximum processing times. 

Theorem 5.5 There is an on-line 2 [log A1 -machine algo- 
rithm for minimizing total flow time on m machines, an on- 
line O(1og n)-machines (1 + o(1))-approximation algorithm 
for minimizing total flow time, and an on-line O(1ogn)- 
machine (1 +o(l))-speed aZgorithm for minimizing total flow 
time. 

Proof Sketch: We divide the jobs into pog A1 groups, where 
the ith group contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the jobs with 2i-1pmin 5 pl 5 

min. Within each group, processing times M e r  by at 
most a factor of 2 and hence Lemma 5.2 can be applied. 
When A is large, we can replace pog A1 by 3 log n + 1 while 
sacrificing a small factor in the total flow time. To do so, we 
use only the 3 log n largest groups and one additional group 
for all the remaining small jobs. More precisely, there are 
groups for jobs in the ranges 
(Pmax, ~rnax/2),(prnax/2, ~ m a x / 4 ) , .  . .,(2pmax/n3,pmax/n3) and 
one group for all the remaining jobs. We schedule all the 
groups except for the last optimally using Lemma 5.2. For 
the final group, the total amount of processing is no more 
than n(pmax/n3) = pmax/n2. Therefore, each job has flow 
time no more than pmax/n2, and the total flow time is no 
more than n(pmax/n2) = pmax/n. Since the total flow time 
for the original input is clearly at least pmsx, this multiplies 
the total flow time by a 1 + o(1) factor. If we instead use 
speed-( 5) machines, since the jobs are scheduled nonpre- 
emptively, the flowtime of the largest job is reduced by a 
factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, which by itself is enough to absorb the total 

For weighted flow time, we divide the processing times 
into groups differing by factors of two and apply Lemma 5.4 
to obtain the following theorem: 

flow time of the small jobs. 

Theorem 5.6 There i s  an on-line 2 pog A1 -machine 
2-approximation algorithm for minimizing weightedflow time 
on m machines. 

Unfortunately, we do not know how to convert this into 
an algorithm using O(1ogn) machines, as it might be the 
case that all the weight is on the jobs with small processing 
times. 

We can also apply these techniques to the problem of 
nonpreemptive scheduling with deadlines. We omit the de- 
tails in this extended abstract. 



Theorem 5.7 There is a 4-speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(1og A)-machine algo- 
rithm for scheduling to nonpreemptively meet deadlines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 Lower Bounds 

We now present a theorem that indicates that it may be 
difficult to improve upon our results. A fundamental lower 
bound for nonpreemptive average flow time is the optimum 
for the corresponding preemptive problem; in this section 
we show that any extra-machine algorithm whose analy- 
sis is based on a comparison to this lower bound must do 
poorly. Specifically, we give a lower bound on the power of 
additional machines when we are nonpreemptively schedul- 
ing and wish to achieve the same flow time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the optimal 
preemptive schedule. Obviously, there are input instances 
where the optimal nonpreemptive flow time on c machines 
can be significantly better than the optimal preemptive flow 
time on a single machine. We now show the surprising result 
that there are input instances where the optimal nonpreemp 
tive flow time on c machines is significantly worse than the 
optimal preemptive flow time on a single machine for any 
natural number c. This generalizes the result of [13], who 
show that there exist input instances where the optimal non- 
preemptive flow time on a single machine may be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(al l2 )  
times greater than the optimal preemptive flow time on a 
single machine. 

Theorem 5.8 There exists a family zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof input instancesI(c, N )  
with O(N) jobs such that the optimal nonpreemptive flow 

time for input instance I(c, N )  on c machines is n(N&) 
times greater than the optimalpreemptive flow time for input 
instance I(c, N )  on one machine, for large enough N .  

Proof: Given N and constant c, define n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N k .  We 
will construct instance I(c,  N )  with between N and 2N jobs 
such that the optimal preemptive flow time for I ( c , N )  on 
one machine is O ( N )  while the optimal nonpreemptive flow 
time for I(c, N )  on c machines is n(Nn) .  

The instance I(c, N )  is constructed using c + 1 different 
types of jobs which we number from 0 to c. For each job 
type i, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i 5 c, there are n u a ( i )  = n2'+1-2 different jobs, 
each of length len(i) = .&. Jobs of type a arrive every 
a len(i) time units starting at time 0 until all of the num(i) 
type i jobs have arrived. A key property of instance I(c,  N )  
is that during any time interval of length len(i) between 
time 0 and time N n ,  & type i + 1 jobs arrive. 

We first observe that the optimal preemptive flow time 
for I ( c , N )  on one machine is lower bounded by the sum 
of the lengths of all jobs which is (c + l )N .  We now show 
that the optimal preemptive flow time is upper bounded 
by Z(c + l )N .  Consider the algorithm in which we greedily 
schedule each job type in turn, starting with the jobs of type 
c, and going down. A simple induction proof shows that this 
algorithm delays no job for more than its execution time and 
the Z(c + 1)N upper bound on the optimal preemptive flow 
time follows. 

We now show that the optimal nonpreemptive flow time 
for I ( c , N )  is n(Na) .  We do this by showing, for each k, 
1 5 k 5 c, that there must be some time between time 0 and 
time N n  during which k jobs, one type i job for 0 5 i < k, 
must be run simultaneously for len(k - 1) time or else the 
nonpreemptive flow time is Q(Nn).  

We prove this by induction on k. For the base case k = 1, 
this means the one type 0 job must complete execution be- 
fore time N n  or else the flow time of the schedule is ~ ( N P z ) .  

This is clearly true since if the one type 0 job which is re- 
leased at  time 0 does not complete before time N n ,  its flow 
time is Nn. 

For the inductive case, assume we have shown, for 1 5 
k < c, that there exists a time interval from time 0 to time 
N n  during which k jobs, one type i job for 0 5 i < k, 
must be run simultaneously for len(k - 1) time or else the 
nonpreemptive flow time is n ( N n )  We now show this must 
hold as well for k = c. 

Consider the time interval of length Zen(k - 1) during 
which k jobs are running simultaneously. From the key prop- 
erty we described earlier, we know that * type k jobs 
are released during this time interval. If none of these jobs 
complete before the end of this time interval, the flow time 
of these jobs is O(Nn) .  Therefore, one of these jobs must 
complete before the end of this time interval. Since these 
jobs arrived after the beginning of the interval, the induction 
hypothesis holds for k + 1. 

Therefore, we know either the optimal nonpreemptive 
schedule has flow time N n  or there must be some time 
len(c - 1) time interval prior to time N n  when c jobs exe- 
cute simultaneously on the c machines. Therefore, the ,F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 
type c jobs that arrive during this time interval cannot be- 
gin execution until this interval ends. This means these jobs 
have a flow time of a t  best O ( N n ) .  Thus, the optimal non- 
preemptive flow time for I(c,  N )  is n ( N n ) .  

The proof of Theorem 5.8 can be modified to show a 
polynomial-size gap between the preemptive flow time on 
one machine and the nonpreemptive flow time on any con- 
stant number of machines even if the machines are speed- 
2. Thus the logarithmic-machine speed-(1 + o(1)) algorithm 
of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.5 produces a nonpreemptive schedule with 
dwt ime potentially polynomially better than the optimal 
speed-2 schedule for any constant number of machines. 

In the nonpreemptive setting, additional speed may not 
be as powerful as additional machines. We can give an ex- 
ample in which adding a single extra machine is a signifi- 
cantly better approach as we can show that there exists a 
set of jobs for which the optimal preemptive average flow 
time can be achieved on 2 speed-1 machines, but cannot be 
achieved on a single speed-c machine for any c < (n/Z)1/4. 

0 
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6 Translating faster machine results to stretch results 

In this section we show how algorithms for minimizing av- 
erage flow time in the faster-machine model translate to al- 
gorithms on machines of the same speed for stretched input 
instances . 
Theorem 6.1 If A is an s-speed p-approximation algorithm 
for minimizing average f low time in any model (preemptive 
or nonpreemptive, clairvoyant or nonclairvoyant, on-line or 
ofline), then there exists an algorithm A' which is an s- 
stretch ps-approximation algorithm for minimizing average 
flow time. 

Proof: Remember that for any input instance I ,  I" is the 
identical input instance except job Ji has release time T,S  

for 1 5 i 5 a. The basic idea is that at any time t s ,  A' 
behaves exactly as A did at time t. Because of the above 
relationship between I and I", A' is well defined. 

Let C, and FJ denote the completion time and flow time, 
respectively, of job JJ when A schedules input instance I ,  
and Ci and Fj denote the completion time and flow time, 
respectively, of job JJ when A' schedules input instance Is. 



It is not hard to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASCj for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 j 5 n.  Combining 
this with the above release time relationship, we see that 
Fj = sF3 for 1 5 j 5 n, and the result follows. 

Note the theorem holds for any scheduling model and 
leads to the following series of results. 

Corollary 6.2 The Balance algorithm [ I l l  is an s-stretch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(s + 5) -approximation algorithm for minimizing average 
pow time on a single processor when execution times of jobs 
are unknown until they complete. In particular, the value 
s = 2 leads to a minimum approximation ratio of 4.  

Corollary 6.3 SRPT is a (2 - l/nz)-stretch (2 - l /m)- 
approximation algorithm for minimizing average pow time 
on multiple processors. 

Corollary 6.4 The algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPreern ptively-Schedule-Halves 
by-Cj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a %stretch 2-approximation algorithm for minimiz- 
ing average weightedpow time on a single processor. 

0 

Note faster machine results for real-time scheduling ex- 
tend to stretched input results for real-time scheduling if 
and only if the deadlines of jobs are multiplied by a factor 
of s as well. Also, while extra machine results translate to 
stretched input results in a preemptive environment, extra 
machine results do not seem to translate to stretched input 
results in a nonpreemptive environment. Thus, our results 
in Section 5 do not translate into stretched input results for 
nonpreemptive scheduling. 
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