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Abstract— In this paper we consider the least time–
frequency product necessary to transmit a small finite symbol
packet such that the symbols can be independently detected.
The system model assumed is offset QAM-OFDM, based on
a finite duration pulse shape. The outcome is that the optimal
pulse shape is of very short duration and that the optimal
symbol allocation strategy is often to use as many subcarriers
as there are symbols to transmit. Symbol packets up to 150
symbols are considered.

I. INTRODUCTION

In this paper we consider a fundamental problem in digi-

tal communication theory: what is the least time–frequency

product needed to transmit a finite number of data symbols

over an additive white Gaussian noise (AWGN) channel,

such that the symbols can be independently detected?

When the number of symbols, hereinafter referred to as

the blocklength, tend to infinity, the answer is well known:

0.5 Hz-s must (at least) be spent per symbol. This is a clas-

sical result which underlies Shannon’s capacity results for

bandlimited channels, however, the result seems to have

been first speculated by Nyquist in [1]. Both Shannon and

Nyquist assumes perfectly bandlimited systems. Slepian

[2] went further and considered systems where a fraction

δ of the power is allowed to escape outside the official

bandwidth and time supports. The outcome is that, as the

blocklength tends to infinity, the needed product is 0.5

Hz-s.

Practical systems assume a specific signal generation

form; this can only increase the needed product. Halpern

[3] considered single carrier linear modulation based on

finite duration pulses, and found pulses that minimize the

fractional out of band energy (FOBE) outside of a certain

bandwidth. In [4] optimal pulses for multicarrier (OFDM)

setups are derived, again with the FOBE constraint. In [5],

pulses that minimize bandwidth with root-mean-square

(RMS) and minimum-maximum-magnitude criterions are

derived. In [6] a simple method for designing time-limited

orthogonal pulses for multicarrier modulation, without any

optimality constraint, is given. Common for the above

mentioned papers is that the blocklength is not considered.

In [7], a more general problem is considered: what is

the least bandwidth needed in order to support K or-

thogonal signals of finite time duration; several different

bandwidth measures are used. The outcome of [3]– [5]

can theoretically never be any better than [7], because

particular system models are assumed. But from a practical

point of view, OFDM systems are frequently used and

it is intresting to investigate their ultimate performance.

Moreover, there is only a single pulse shape needed instead

of K shapes in [7].

This paper attacks the problem of designing pulses

that are optimal in an OFDM scheme, implemented with

offset quadrature amplitude modulation (OQAM), when

the blocklength is small; blocklengths in the range 16–

150 symbols are considered. In this case it is no longer

true that the signaling can be supported with only 0.5 Hz-s

time–frequency product.

In this paper we are not interested in the benefits of

OFDM for multipath fading etc. We are investigating

the capabilities of OFDM to transmitt finite blocklengths

over the Gaussian channel with small time–frequency

occupancy.

II. OPTIMUM TIME–FREQUENCY PRODUCT

DERIVATION

A. System Model

Assume that the blocklength is K symbols. The signal

generation form in this paper is OFDM/OQAM [8], [9].

The transmitted signal s(t), in complex baseband notation,

equals

s(t) =

Nf−1
∑

k=0

Nt−1
∑

n=0

ak,njk+nej(2π/T+π/2)kh(t − nT/2),

(1)

where j is the imaginary unit and ak,n denotes the symbol

at subcarrier k and time n. Nf is the number of subcarriers

and Nt is the number of “time carriers”. Since there are

K symbols, we must have K = NfNt. T/2 is the time

needed to transmit one symbol, although, the pulse h(t)
can have longer duration. Note that all symbols ak,n are

real valued.

We are only interested in systems that are orthogonal,

that is, there should be no interchannel interference (ICI)



and no intersymbol interference (ISI). This can be mathe-

matically stated as

[
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where R{} and I{} denotes real and imaginary part and

δk,m is the two dimensional Kronecker function. If the

transmitter filters are real and symmetric, and the receiver

filters are taken as

g(t) = h(−t), (6)

then (3) and (4) are always satisfied. Moreover, (5) is

now equivalent to (2) and is always satisfied when m is

an odd number. Therefore the constraints (2)–(5) can be

summarized into

Gm,k �
∫

∞

−∞

h(t)h(t − kT ) cos

(

2π

T
2mt

)

dt = δm,k.

(7)

While the equations (7) are present in the general case of

an infinite blocklength, it is here not necessary to fullfill

(7) for all m and k. Inspecting the signal generation form

(1) and the constraints (7), it can be seen that for finite

blocklength, the constraints that must be fullfilled are

Gm,k = δm,k, 0 ≤ k ≤
⌊

Nt−1

2

⌋

, 0 ≤ m ≤
⌊

Nf−1

2

⌋

.

(8)

The choice of symbol and carrier spacing in (1) needs

a few words. In the asymptotic case K = ∞, it is well

known that the product of the symbol and carrier spacing

must be 0.5 Hz-s in order to have an ICI/ISI free system.

In (1) the symbol spacing is T/2 seconds and the carrier

spacing is 1/T Hz, thus, the product is indeed 0.5. For

a finite number of symbols, there are only finitely many

constraints in (8) to be fullfilled. Therefore the product can

in principle be smaller than 0.5. However, in this paper we

only investigate the case of a product equal to 0.5.

B. System Optimization

Assume that the pulse h(t) is of duration LT . The total

time consumed by (1) is

Ttot � Nt
T

2
+

(

L − 1

2

)

T = Nt
T

2
+ ǫtT, (9)

where we have introduced the time overshoot1

ǫt � L − 1

2
. (10)

In this paper we measure bandwidth with a FOBE

constraint; by this we mean the frequency interval in which

the pulse h(t) holds, say, 99 % of the power. The choice

of bandwidth measure will subsequently lead the paper to

make use of derivations from [4] rather than those in [5].

For a given pulse h(t), define WC as

WC � W :

∫ W

−W
|H(f)|2df

∫

∞

−∞
|H(f)|2df = C. (11)

Note that WC is dependent on h(t). The total consumed

bandwidth becomes

Wtot �
Nf − 1

T
+ 2WC =

Nf

T
+

ǫf

T
, (12)

where we have introduced the frequency overshoot

ǫf � (2WC − 1)T. (13)

Note that we use perfectly time limited signals. A more

general approach would be to use pulses that are allowed to

take nonzero values at the entire time axis, and to measure

time consumption by time out of band energy (TOBE).

The objective function to minimize becomes

WtotTtot =

(

Nt
T

2
+ ǫtT

)(

Nf

T
+

ǫf

T

)

=
K

2
+

Nt

2
ǫf + ǫtNf + ǫtǫf (14)

This is a constrained optimization over h(t), Nt and Nf ,

the constraint being that h(t) should be ICI/ISI free. For

a fixed blocksize K , we should optimize the number of

subcarriers such that NtNf = K .

To find the theoretical solution of optimization (14), take

the derivative of WtotTtot with respect to Nt.

∂WtotTtot

∂Nt
=

ǫf

2
− ǫtK

N2
t

(15)

Setting the derivative to zero gives Nt =
√

2Kǫt/ǫf .

Inserting this into (14) gives

(WtotTtot)min =
K

2
+

√

2ǫtǫfK +

√

ǫtǫf

2K
+ ǫtǫf

=
K

2
+
√

ǫ2K +

√

ǫ

2K
+ ǫ (16)

where ǫ � ǫtǫf .

This shows that in order to minimize (14), we should

minimize ǫ. This is closely related to time–frequency

localization of pulses; the pulse with the smallest time-

frequency occupancy is the Gaussian pulse which satisfies

Heisenberg’s uncertainty principle. But since the Gaussian

1To be technically correct, ǫt is a function of L, but this notation is
omitted.



pulse is not ICI/ISI free, it is not the solution we are

seeking in this paper.

The minimum (16) is in general achieved for non

integer Nt and Nf , which is not possible in practice.

The number of time- and subcarriers must be integers,

so the optimization is over a combinatorial domain. The

optimization problem can be formulated as

(WtotTtot)min = min
ǫt,ǫf ,Nt,Nf

K + Ntǫf + ǫtNf + ǫtǫf

such that NtNf = K, Nt, Nf integers

h(t) satisfies (8). (17)

It is obvious that for any combination ǫ t, Nt, and Nf ,

the minimum of (17) is achieved by minimizing ǫ f . This is

in turn achieved by finding the pulse h(t) with the smallest

possible bandwidth WC . Therefore we need to solve the

optimization

ǫf,opt � min
h(t)

(2WC − 1)T

such that h(t) satisfies (8)

h(t) has duration

(

ǫt +
1

2

)

T. (18)

The objective of (18) can be reformulated as (assume

h(t) is unit energy)

WC,opt�
ǫf,opt

2T
+

1

2

=arg min
W

:

[

max
h(t)

∫ W

−W

|H(f)|2df =C

]

(19)

The innermost optimization of (19) is exactly the op-

timization problem considered in [4]. For given N t, Nf

and L, the value ǫf,opt is uniquely defined. This value is

therefore denoted the Vahlin-Holte solution, and we write

ǫf,opt = VH(ǫt, Nt, Nf ). (20)

This implies that the optimization (17) can be expressed

in the more compact notation

(WtotTtot)min = min
L,Nt

K + NtVH(ǫt, Nt, K/Nt)

+ ǫtK/Nt + ǫtVH(ǫt, Nt, K/Nt)

such that Nt, K/Nt integers (21)

If Nf > N ′

f , then it follows that VH(ǫt, Nt, Nf) >
VH(ǫt, Nt, N

′

f) because there are more constraints

present; the same is true for Nt and N ′

t . When ǫt > ǫ′t
it follows that VH(ǫt, Nt, Nf ) < VH(ǫ′t, Nt, Nf). This is

true because the pulses of duration L ′T = (ǫ′t + 1/2)T
are avaliable as solutions also for the longer duration

LT = (ǫt + 1/2)T .

A lemma on the optimal (Nt, Nf ) combination closes

this section.

Lemma 1: For finite duration pulses LT ≤ L∗T and a

finite blocklength K , there exists a value C ∗ < 1 such

that if the power bandwidth is measured with C ≥ C ∗,

then the optimal number of subcarriers is Nf = K .

Proof The optimal frequency overshoot is a function of

ǫt, ǫf,opt = VH(ǫt, Nt, Nf). To obtain Nt = 1 as optimal

solution, for some L, it follows from (15) and (16) that

ǫf,opt > 2Kǫt. But since the pulse duration is finite,

its Fourier transform must be infinite and it follows that

ǫf,opt → ∞, as C → 1. Moreover, ǫt is finite as well.

Therefore, the value C ∗ can be taken as C∗ = arg minC :
VH(ǫt, Nt, Nf )/2Kǫt > 1, ∀L ≤ L∗, with Nt = Nf = 1
because this give a lower bound on VH(ǫt, Nt, Nf).

From the proof of Lemma 1, the following corollary is

obtained.

Corollary 1: Assume a finite duration pulse, LT ≤
L∗T . If K → ∞ but C → 1 so fast that ǫf,opt >
2Kǫt, ∀L ≤ L∗, then the optimal number of subcarriers

is Nf = K .

The implication of Lemma 1 and its corollary is that

the OFDM symbol-lattice collapses into a single column

of symbols when bandwidth is measured with a large C.

Thus, OFDM, in the normal sense, is not the solution to

the minimum time–frequency product in this case.

III. NUMERICAL RESULTS

We will only consider the case C = 0.99, i.e. the 99 %

power bandwidth, in this paper.

The smallest pulse duration LT such that the constraints

(7) can be fullfilled is 0.5T . The unique solution is then

a rectangular pulse. But with finite blocklength, there are

only finitely many constraints in (8), and durations smaller

than 0.5T can in principle be used.

In [4] it is shown that the solution h(t) to the innermost

optimization in (19) is of the form

h(t) =

∞
∑

m=0

cmψm(t), (22)

where ψm(t) is the mth even prolate spheroidal wave

function truncated to the (time) interval −(ǫ t + 1)/2 ≤
t/T ≤ (ǫt + 1)/2.

We follow [4] to actually find a numerical solution

{cm}. The problem is reduced to finite dimensionality; we

have used 14 dimensions, that is, we allow 14 coefficients

cm. The optimization method we used is a MATLAB-built-

in SQP method. As in [4] we have accepted a deviation

σ2 = 10−6 from (8) where

σ2 =
∑

m,k

|Gm,k − δm,k|2 . (23)

In order to solve (21), complete knowledge of

VH(ǫt, Nt, K/Nt) must first be obtained. It turns out that

this is a major difficulty when L is close to 0.5 or when

Nf is large. This is why 14 dimensions are needed. It is

possible to use branch and bound ideas prior to Lemma 1,

to reduce the computational burden .
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To illustrate the behaviour of the optimized pulses, we

plot W0.99,opt for L = 0.50, 0.52, 0.56 and 0.64 against

⌊(Nf −1)/2⌋, which is the number of constraints in (8), in

Figure 1. It is seen that the bandwidth W0.99,opt essentially

saturates for a certain number of subcarriers (this will

eventually also occur for L = 0.5). This occurs because

the optimized pulses are well localized in frequency, and

are already almost orthogonal to pulses Nf + M subcar-

riers away (M > 0) even if they were only optimized for

Nf subcarriers.

While Figure 1 shows the optimal bandwidth as a

function of Nf , Figure 2 shows the optimal bandwidth as

a function of L, for the case Nt = 2⌈L⌉− 1 and Nf = 7.

The choice for Nt implies that h(t) must be orthogonal

to all its T -shifts. Note that the curve in Figure 2 is not

monotonically decreasing. At L ≈ 1.8, this is a result of
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Fig. 3. Mimimum time–frequency product, relative to 0.5, as a function
of pulse duration L. The circles mark the optimal durations.

the finitely many dimensions in the pulse optimization.

When L is an integer, new constraints are introduced in

(8) which makes the outcome worse; this explaines the

increase of W0.99,opt at L = 1 and 2.

From Figure 2 it is seen that the optimal pulse shape

cannot possibly be of duration 1 < L � 1.8. This is true

since in this region, ǫf,opt in (17) is almost constant, but ǫt

is increasing. WtotTtot will therefore take a smaller value

at L = 1.

In Figure 3 the outcome of the optimization (21) is

shown, for several blocklengths. We plot the minimum

possible time-frequency product per symbol, relative to

the asymptotic case 0.5, versus the pulse duration L. The

pulses are here assumed to be exactly of duration LT ; thus

pulses of duration L′T < LT are not available for duration

LT . The optimal pulse durations are marked with circles.

We have tested L ≤ 11, but the optimal L is never above

1. The optimal pulse turns out to be of shorter duration

when the blocklength increases. For a blocklength of 100

symbols, the excess time–frequency product is roughly 20

%.

It remains to discuss the optimal (Nt, Nr) combinations

that corresponds to the optimal points in Figure 3. We

give the combinations as well as the the actual time–

frequency products in Table I. An interesting fact is that,

for blocklengths from 48 up to at least 150 symbols, the

optimal systems have Nf = K and Nt = 1. Thus, the

rectangular symbol lattice in OFDM collapses into a single

column of symbols. Thus, it seems that the value C = 0.99
suffices as c∗ in Lemma 1.

Finally we show the excess time–frequency product per

symbol as a log–log plot in Figure 4. The asymptotic prod-

uct is 0.5, and by ’excess’ we mean (WtotTtot)min /K −
0.5. It is interesting to observe that the excess product can

be very well approximated with a straight line, for the



K (WtotTtot)min
/K Opt. L (Nt, Nr)

16 1.629 1 (4,4)

24 1.497 0.92 (4,6 )

36 1.396 0.92 (4,9 )

48 1.334 0.56 (1,48)

90 1.216 0.53 (1,90)

96 1.206 0.53 (1,96)

100 1.201 0.53 (1,100)

112 1.185 0.53 (1,112)

120 1.177 0.53 (1,120)

150 1.154 0.53 (1,150)

TABLE I

OPTIMAL TIME–FREQUENCY PRODUCT PER SYMBOL AND SYSTEM

PARAMETERS FOR VARIOUS BLOCKLENGTHS.
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Fig. 4. Log-log plot of the minimum excess time-frequency product
per symbol as a function of the blocklength K .

range of blocklengths presented in Figure 4. This leads to

the empirical excess product law

(WtotTtot)min

K
− 0.5 ≈ αKβ , β < 0 (24)

IV. PROBLEM GENERALIZATIONS

We list some possible generalizations of the optimiza-

tion problem considered in this paper.

Intentional Intersymbol Interference: Some of the con-

straints in (8) can be omitted, resulting in ICI or ISI. In

this case the symbol and carrier spacing can have a product

less than 0.5 Hz-s. Thus, the system has higher bandwidth

efficiency. In the literature this is referred to as faster-

than-Nyquist signaling. The ISI can be designed to be

so mild that the BER of the system is unaffected. This

can be achived by adding the constraint that the minimum

distance of the system d2
min must still equal the matched

filter bound. In [10], h(t) is taken as a root raised cosine

pulse, the outcome is that the product can be as low as

0.25 Hz-s, without any performance degradation. In [11],

the finite packet problem is considered.

Other time and bandwidth measures: As explained

previously, the outcome of the paper is affected by the

bandwidth measure. A straightforward approach is to

measure bandwidth with other criteria, such as RMS etc.

The time duration of a pulse can be measured in the same

way as frequency is measured.

V. CONCLUSIONS

In this paper we have investigated the minimum time–

frequency product needed to transmit K symbols over an

AWGN channel by means of an OFDM/OQAM system.

The bandwidth measure is the 99 % power bandwidth.

The outcome is that for blocklengths from 48 up to, at

least, 150 symbols, the optimal system has K subcarriers;

only a single symbol interval in time is used. Thus, the

rectangular symbol lattice in a normal OFDM system

collapses. If the blocklength is 100 symbols, the time–

bandiwdth penalty is roughly 20 %.

Moreover, the optimal pulse shape to use is very short,

0.51T–T seconds for the blocklengths considered here. The

needed excess time–frequency product per symbol, seems

to obey a power law.
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