Optimal time travel in the Gödel universe

José Natário
(Instituto Superior Técnico, Lisbon)
Based on arXiv:1105.6197

Porto, January 2013

Outline

- Newtonian cosmology
- Rotating Newtonian universe
- Newton-Cartan theory
- The Gödel universe
- Total integrated acceleration
- Rocket theory
- Optimal time travel

Newtonian cosmology

- Choose a galaxy as the center of the universe; all other galaxies are at $\mathbf{r}=a(t) \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^{3}$.
- Equation of motion:

$$
\ddot{\mathrm{r}}=-\frac{4 \pi}{3} r^{3}\left(\rho(t)-\frac{\Lambda}{4 \pi}\right) \frac{\mathrm{r}}{r^{3}} \quad \Leftrightarrow \quad \frac{\ddot{a}}{a}=-\frac{4 \pi \rho}{3}+\frac{\Lambda}{3}
$$

- Could have chosen any other galaxy to be the center of the universe: $\mathbf{r}=a(t)\left(\mathrm{x}_{\mathrm{x}}-\mathrm{x}_{0}\right)$ leads to the same equation.

Rotating Newtonian universe

- Choose an axis $\mathbb{R e}_{\mathbf{z}}$ to be the rotation axis of the universe; all galaxies move with velocity $\dot{\mathbf{r}}=\omega \mathbf{e}_{\mathbf{z}} \times \mathbf{r}$.
- Equation of motion:

$$
\omega^{2} \mathbf{e}_{\mathbf{z}} \times\left(\mathbf{e}_{\mathbf{z}} \times \mathbf{r}\right)=2 \pi\left(\rho-\frac{\Lambda}{4 \pi}\right) \mathbf{e}_{\mathbf{z}} \times\left(\mathbf{e}_{\mathbf{z}} \times \mathbf{r}\right) \quad \Leftrightarrow \quad 2 \omega^{2}=4 \pi \rho-\Lambda
$$

- Could have chosen any other parallel axis to be the rotation axis of the universe: $\dot{\mathbf{r}}=\omega \mathbf{e}_{\mathbf{z}} \times\left(\mathbf{r}-\mathbf{r}_{0}\right)$ leads to the same equation.

Newton-Cartan theory

- What are inertial frames in Newtonian cosmology?
- Newtonian gravity does not respect the principle of equivalence - must introduce Coriolis field \mathbf{H}.
- Equation of motion for a free-falling particle:

$$
\ddot{\mathrm{r}}=\mathrm{G}+\dot{\mathrm{r}} \times \mathrm{H}
$$

- Field equations:

$$
\left\{\begin{array}{l}
\nabla \times \mathbf{G}=-\frac{\partial \mathbf{H}}{\partial t} \\
\nabla \cdot \mathbf{H}=0 \\
\nabla \cdot \mathbf{G}=\frac{1}{2} \mathbf{H}^{2}-4 \pi \rho+\Lambda \\
\nabla \times \mathbf{H}=\mathbf{0}
\end{array}\right.
$$

- Rotating universe in co-rotating frame: $\mathbf{G}=\mathbf{0}, \mathbf{H}=2 \omega \mathbf{e}_{\mathbf{z}}$.

The Gödel universe

- $d s^{2}=\frac{1}{2 \omega^{2}}\left\{-[d t-\sqrt{2}(\cosh (r)-1) d \varphi]^{2}+d r^{2}+\sinh ^{2}(r) d \varphi^{2}+d z^{2}\right\}$
- Solution of the Einstein equations

$$
R i c-\frac{1}{2} R g+\wedge g=8 \pi T
$$

with

$$
\wedge=-\omega^{2}, \quad T=\frac{\omega^{2}}{4 \pi} U \otimes U
$$

- $d s^{2}=\frac{1}{2 \omega^{2}}\left\{-[d t-\sqrt{2}(\cosh (r)-1) d \varphi]^{2}+d r^{2}+\sinh ^{2}(r) d \varphi^{2}+d z^{2}\right\}$
- Solution of the Einstein equations

$$
R i c-\frac{1}{2} R g+\wedge g=8 \pi T
$$

with

$$
\wedge=-\omega^{2}, \quad T=\frac{\omega^{2}}{4 \pi} U \otimes U
$$

- $d s^{2}=\quad-[d t-\sqrt{2}(\cosh (r)-1) d \varphi]^{2}+d r^{2}+\sinh ^{2}(r) d \varphi^{2}$
- Solution of the Einstein equations

$$
R i c-\frac{1}{2} R g+\wedge g=8 \pi T
$$

with

$$
\wedge=-\frac{1}{2}, \quad T=\frac{1}{8 \pi} U \otimes U
$$

- $d s^{2}=-[d t-\sqrt{2} \underbrace{(\cosh (r)-1) d \varphi}_{\theta}]^{2}+\underbrace{d r^{2}+\sinh ^{2}(r) d \varphi^{2}}_{\text {hyperbolic plane }}$
- $d \theta=\sinh (r) d r \wedge d \varphi=d A$

Caustic

Closed timelike curve

Timelike geodesic

Null geodesic

- $\Delta t=\oint_{\gamma} d t=\oint_{\gamma} \sqrt{2} \theta+\sqrt{d \tau^{2}+d l^{2}}=\sqrt{2} A+\oint_{\gamma} \frac{d l}{v}$
- So the projection γ of a closed timelike curve must be traversed clockwise and satisfy

$$
l<\sqrt{2}|A|
$$

and so (using the isoperimetric inequality)

$$
|A|>4 \pi, \quad l>4 \pi \sqrt{2}
$$

and

$$
v_{\max }>\frac{\sqrt{2}}{2}
$$

Total integrated acceleration

- Rocket equation: $m\left(\tau_{1}\right)=m\left(\tau_{0}\right) \exp \left(-\frac{1}{v_{e}} \int_{\tau_{0}}^{\tau_{1}} a(\tau) d \tau\right)$
- $\frac{m\left(\tau_{0}\right)}{m\left(\tau_{1}\right)} \geq \exp (T A), \quad T A=\int_{\tau_{0}}^{\tau_{1}} a(\tau) d \tau$
- Malament (1985) proved that

$$
T A \geq \ln (2+\sqrt{5}) \simeq 1.4436
$$

for any CTC, and conjectured that in fact

$$
T A \geq 2 \pi \sqrt{9+6 \sqrt{3}} \simeq 27.6691
$$

This would mean (Gödel, 1949)

$$
\frac{m\left(\tau_{0}\right)}{m\left(\tau_{1}\right)} \gtrsim 10^{12}
$$

- Manchak (2011) gave a non-periodic counter-example.

Rocket theory

- Problem: minimize $T A=\int_{\tau_{0}}^{\tau_{1}} a(\tau) d \tau$
- Issue: $L=a=\left|\nabla_{U} U\right|$ is not differentiable along geodesics
- Issue: one has to deal with instantaneous accelerations, unlike for, say, $L=a^{2}$ (elastic curves)
- $\left\{\begin{array}{l}\nabla_{U} U^{\mu}=a P^{\mu} \\ \nabla_{U} P^{\mu}=-q^{\mu}+a U^{\mu} \\ \nabla_{U} q_{\mu}=R_{\mu \alpha \beta \gamma} U^{\alpha} P^{\beta} U^{\gamma}\end{array}\right.$
(Henriques and Natário, 2012)
- $P^{\mu} P_{\mu} \leq 1$ with $P^{\mu} P_{\mu}=1$ if $a \neq 0$ and at instantaneous accelerations
- If the initial/final U^{μ} is not specified then $P^{\mu}=0$ at the beginning/end
- $\left\{\begin{array}{l}\nabla_{U} U^{\mu}=a P^{\mu} \\ \nabla_{U} P^{\mu}=-q^{\mu}+a U^{\mu} \\ \nabla_{U} q_{\mu}=R_{\mu \alpha \beta \gamma} U^{\alpha} P^{\beta} U^{\gamma}\end{array}\right.$
- $P^{\mu} P_{\mu} \leq 1$ with $P^{\mu} P_{\mu}=1$ if $a \neq 0$ and at instantaneous accelerations
- If the initial/final U^{μ} is not specified then $P^{\mu}=0$ at the beginning/end
- $\left\{\begin{array}{l}\nabla_{U} U^{\mu}=0 \\ \nabla_{U} P^{\mu}=-q^{\mu} \\ \nabla_{U} q_{\mu}=R_{\mu \alpha \beta \gamma} U^{\alpha} P^{\beta} U^{\gamma}\end{array}\right.$
- $P^{\mu} P_{\mu} \leq 1$ with $P^{\mu} P_{\mu}=1$ if $a \neq 0$ and at instantaneous accelerations
- If the initial/final U^{μ} is not specified then $P^{\mu}=0$ at the beginning/end

Optimal time travel

- $P^{\mu}=0$ at the beginning/end means that we must begin/end with a geodesic arc
- Start with an ansatz depending on finitely many parameters, (numerically) minimize $T A$ with respect to those parameters

- Satisfies the minimum conditions
- $T A \simeq 24.9927$
- $T A \simeq 28.6085$ if we make it periodic
- $T A \simeq 27.6691$ for Malament's conjecture
- Is $T A \simeq 24.9927$ the minimum?
- Does Malament's conjecture still hold for periodic CTCs?

Bibliography

- [1] K. Gödel, A remark about the relationship between relativity theory and idealistic philosophy, in Albert Einstein: Philosopher-Scientist, Open Court (1949), 560-561.
- [2] D. Malament, Minimal acceleration requirements for "time travel" in Gödel space-time, J. Math. Phys. 26 (1985), 774-777.
- [3] J. Manchak, On efficient "time travel" in Gödel spacetime, Gen. Rel. Grav. 43 (2011), 51-60.
- [4] P. Henriques and J. Natário, The rocket problem in general relativity, J. Optim. Theory Appl. 154 (2012), 500-524 (arXiv:1105.5235).
- [5] J. Natário, Optimal time travel in the Gdel universe, Gen. Rel. Grav. 44 (2012), 855-874 (arXiv:1105.6197).

