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Optimal Time-varying P-controller for a Class of Uncertain

Nonlinear Systems

M. Suruz Miah and Wail Gueaieb

Abstract: In this manuscript, an optimal time-varying P-controller is presented for a class of

continuous-time underactuated nonlinear systems in the presence of process noise associated with

systems’ inputs. This is a state feedback control strategy where the optimization is performed on

a time-varying feedback operator (herein called the feedback control gain). The main goal of

the current manuscript is to provide a framework for multi-input multi-output nonlinear systems

which yields a satisfactory tracking performance based on the optimal time-varying feedback

control gain. Unlike other feedback control techniques that perform dynamic linearization of

system models, the proposed time-varying P-controller provides the full-state feedback control to

the original nonlinear system model. Hence, this P-controller guarantees global asymptotic state-

tracking. Furthermore, the bounded system’s process noise is taken into consideration to measure

the controller’s robustness. The proposed P-controller is tested for its nonlinear trajectory track-

ing and fixed-point stabilization capabilities with two nonholonomic systems in the presence of

actuators’ noise.

Keywords: Feedback control gain, Gradient descent, Hamiltonian, Lagrange multipliers, Mobile

robots, Optimal control, Robustness.

1. INTRODUCTION

Feedback control design for tracking a pre-defined tra-

jectory or stabilizing to a fixed point using a nonlinear un-

deractuated system is a quite challenging task. The track-

ing problem is usually divided into two sub-problems: state

tracking and output tracking, which deal with the stabi-

lization of the system outputs or states to any reference

output or desired state (especially at an equilibrium point) [1–

4]. The stabilization problem has been extensively stud-

ied for both linear and nonlinear systems due to its rel-

ative simplicity. However, the tracking problem of non-

linear systems still stands as a real challenge, especially

in the face of uncertainties [5]. As such, practical alter-

native control solutions that guarantee acceptable track-

ing performance for systems with input uncertainties are

well motivated. This manuscript contributes to the de-

velopment of an optimal time-varying P-control law for a

class of nonlinear systems in presence of state-dependent

process noise, which guarantees global asymptotic state-

tracking.

Several control laws have been proposed in [6–9], which

are based on basic optimal control theory. A large body of

research work has been conducted on Model Predictive

Control (MPC) schemes that rely on the solution of an

open-loop optimal control problem to predict the system

behavior over a time horizon [10–15]. More specifically,
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of Ottawa, Ottawa, Ontario, K1N 6N5, Canada (e-mail: su-
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robust MPC strategies have been proposed to solve the sta-

bilization problem of nonholonomic systems in the pres-

ence of model uncertainty [16,17]. The authors in [18] de-

signed and analyzed controllers for Lipschitzian nonlinear

systems to eventually derive an adequate observer for such

a class of systems. In order to address stabilization per-

formance, robustness, actuator fault tolerance and distur-

bance attenuation of dynamic systems, LMI-based linear

state feedback has been used extensively [19]. Such tech-

niques are based on a nonlinearity assumption, in the form

of f (x) = 0 at x = 0, for example. Although this makes

the problem handling easier, the issue of stabilization of

classes of systems not satisfying this assumption remains

open [5]. Some non-conventional control laws, such as

those using neural network and fuzzy control logic, for in-

stance, have been proposed to resolve this problem. These

control strategies, however, suffer from their relatively high

computational complexity and the time-consuming man-

ual parameter tuning. In addition, in most cases they were

only applicable to single-input-single-output (SISO) non-

linear systems (see [20–22]). The authors in [23, 24] pre-

sented output feedback control laws for a class of uncer-

tain linear dynamical systems. These laws either assume

a linear system model or the existence of feasible con-

trol inputs (reference control) satisfying certain objectieve

functions for the system to be controlled. Some geometric

control techniques such as differential flatness and back-

stepping have been applied as well [25, 26]. These tech-

niques have been witnessed to have a satisfactory tracking

performance when applied to affine nonlinear systems, but
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they require quite complex feedback laws even for simple

systems, such as a unicycle, for example. A recent and

interesting global optimization approach coupled with the

support vector machine technique has been applied to op-

timize motion of robotic manipulators [27]. This idea has

been extended in the current manuscript through optimiz-

ing a time-varying feedback gain, which does not rely on

sampling-based methods as in [27].

Despite the aforementioned contributions of the con-

trol community, the trajectory tracking problem for uncer-

tain control-affine nonlinear systems still faces significant

technical challenges, (such as the non-existence of smooth

time-invariant feedback laws, relying on model lineariza-

tion and initial perturbations, for example). This paper ad-

dresses the design of a time-varying P-controller for non-

holonomic systems in the presence of bounded state de-

pendent noise associated with the systems’ inputs. The

proposed controller solves, both, the stabilization and tra-

jectory tracking problems in an unified manner. Instead of

optimizing the control inputs directly, the proposed con-

troller optimizes a time-varying feedback operator using a

gradient-based update rule. The approach is different from

most of the controllers suggested in the literature in that it

optimizes a general feedback control gain (feedback oper-

ator) which eventually provides the optimal control inputs

to the system. Unlike similar counterparts [28–30], it does

not require any linearization of the system model.

The rest of the manuscript is outlined as follows. Math-

ematical preliminaries are presented in section 2.. In sec-

tion 3., the system model and problem statement are de-

fined. The main contribution of this paper, which is the

design of the feedback control gain (optimal P-controller),

is illustrated in section 4.. The robustness of the proposed

controller is demonstrated in section 5.. A thorough evalu-

ation of the control strategy is carried out through numer-

ical simulations on two nonlinear systems. The results are

presented and discussed in section 6.. Finally, conclusions

are drawn in section 7..

2. PRELIMINARIES

Throughout this paper, scalar quantities will be denoted

by lower-case letters, while vectors will be denoted by

lower-case bold letters. Upper-case bold letters will de-

note matrices. For any positive integer n, Rn denotes the

Euclidean space. For any vector x,y ∈R
n, the 2-norm and

the scalar product are given by

‖x‖ ≡

[

n

∑
i=1

|xi|
2

]1/2

and (x ·y)≡ xT y ≡
n

∑
i=1

xiyi,

respectively. We shall use R
m×n to denote the space of

m × n matrices with entries from R. Let X,Y ∈ R
m×n,

then the 2-norm and their scalar product are also given by

‖X‖ ≡

[

m

∑
i=1

n

∑
j=1

∣

∣xi, j

∣

∣

2

]1/2

, (X ·Y)≡ Tr
[

XT Y
]

≡ Tr
[

XYT
]

,

respectively, where Tr [·] denotes the trace of matrix [·].
Clearly, Tr

[

XT X
]

= ‖X‖2
. If the function J : Rn → R is

differentiable at x ∈ R
n, then for any ν ∈ R

n, dJ(x;ν) de-

notes the Gateaux (directional) derivative in the direction

of ν , which is given by

dJ(x;ν) = νT ∇J = lim
ε→0

J(x+ εν)− J(x)

ε
,

where ∇J denotes the gradient of J. However, if J :Rm×n →
R, then for any X,V ∈ R

m×n, the directional derivative in

the direction of V is defined by

dJ(X;V) = Tr[VT ∇J] = lim
ε→0

J(X+ εV)− J(X)

ε
.

If t0 and t f denote the initial and final time, respectively,

with 0≤ t0 < t ≤ t f <∞; and I ≡ [t0, t f ] denotes the finite

time interval, then C(I ,Rn) denotes the class of all con-

tinuous functions on I taking values in R
n. Let p ∈ [1,∞)

and I be any finite time interval, we use Lp(I ,Rn) to

denote the set of Lebesgue measurable functions {f} de-

fined on I and taking values in R
n whose norms are p-th

power integrable i.e.,

Lp(f) =

(

∫ t f

t0

‖f‖p
dt

)1/p

< ∞,

where Lp(f) denotes the p-th norm of the function f [31,

32]. For p=∞, L∞(I ,Rn) denotes the space of Lebesgue

measurable functions {f} defined on I and taking values

in R
n satisfying ess sup{‖f(t)‖, t ∈ I } < ∞. The nota-

tion diag(a1, . . . ,an) is used to represent a diagonal matrix

whosewith diagonal entries a1, . . . ,an and N denotes the

set of natural numbers.

3. SYSTEM MODEL AND PROBLEM

STATEMENT

For positive integers, n, m, s, with n > m ≥ s, and the

time interval I ≡ [t0, t f ], 0 ≤ t0 < t f , consider a family of

nonlinear systems given by

ẋ(t) = g0[t,x(t)]+
m

∑
j=1

g j[t,x(t)]u j(t)+G[t,x(t)]ξ (t) (1)

where x(t) ∈ R
n is the system state, t ∈ I , the control

input u(t) = [u1(t),u2(t), . . . ,um(t)]
T ∈ R

m, ξ (t) ∈ R
s is

the noise vector associated with the control inputs u(t),
g0, g j : Rn → R

n, G : I ×R
n → R

n×s, and x(t0) = x0 is

the system’s initial state.
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Let xd(t) and ud(t) be the desired (reference) trajectory

and the desired input, respectively. The desired reference

input can be written as

ẋd(t) = g0[t,x
d(t)]+

m

∑
j=1

g j[t,x
d(t)]ud

j (t). (2)

Suppose e(t) = x(t)−xd(t) denotes the tracking error, for

t ∈ I . The objective is to find the optimal admissible

control input u(t) ∈ Uad ⊂ R
m that generate the state tra-

jectory x(t) ∈ X ⊂ R
n while minimizing the average cu-

mulative tracking error, Eavg, given by

Eavg =
1

t f − t0

∫ t f

t0

e(t)dt, t0 6= t f . (3)

In the presence of system’s input noise and input con-

straints, the problem can be stated as

inf
{x∈X , u∈Uad ,∀t∈I }

[Eavg]. (4)

4. OPTIMAL P-CONTROL LAW

This section presents the optimal time-varying P-control

law, which is the main contribution of this manuscript.

Throughout this manuscript, we introduce the following

assumptions.

Assumption 1: The vector field g j[x(t)], for j = 0, . . . ,m,

is globally Lipschitz and satisfies

‖g j[x(t)]−g j[y(t)]‖≤Lc‖x(t)−y(t)‖, ∀ x,y∈R
n, t ∈I ,

where Lc is the Lipschitz constant.

Assumption 2: The noise process ξ : [0,∞) −→ Rs is

any measurable (Lebesgue integrable) stochastic process

taking values from the closed ball B(ξ̄ ,rd) defined by

B(ξ̄ ,rd) =
{

ξ (t) ∈ R
s : ‖ξ (t)− ξ̄‖ ≤ rd

}

, (5)

where rd > 0 is the radius of the noise associated with the

system’s inputs and ξ̄ is the mean of ξ (t), for t ∈ I .

We do not assume any probabilistic structure for the

process {ξ} except that it is a measurable process and es-

sentially bounded and hence locally square integrable [33].

As such, the total energy in the noise is
∫ t f

t0
‖ξ (t)‖2

dt ≤

r2
d(t f − t0).

Assumption 3: System (1) has constraint on its input

as
∣

∣u j(t)
∣

∣≤ umax, for j = 1, . . . ,m, t ∈ I , (6)

where umax is the upper bound of the systems’ inputs. In

other words, u(t) must be chosen from a set of admissible

controls, Uad , i.e., u(t) ∈ Uad ⊂ R
m which are used to

generate the set of admissible state trajectories X .

Without loss of generality, let us assume that the con-

trol input u and the noise vector ξ have the same dimen-

sions, i.e., m = s. Defining the input error as ũ(t) = u(t)−
ud(t), the error dynamics can easily be derived from mod-

els (1) and (2), which is given by

ė = g0[t,e(t)+xd(t)]−g0[t,x
d(t)]+

{

G[t,e(t)+xd(t)]−G[t,xd(t)]
}{

ũ(t)+ud(t)
}

+G[t,xd(t)]ũ(t)+G[t,e(t)+xd(t)]ξ (t).

(7)

The optimal P-control law is defined as

ũ(t) = KP(t)e(t), (8)

subject to (6), where KP(t)∈R
m×n is the feedback control

gain for the system (7). KP(t) must be chosen from a

bounded matrix set K ⊂ R
m×n. Furthermore, due to the

constraint on the system inputs, KP(t) has to be chosen

from the admissible matrix space Kad ⊂ K .

Substituting (8) in (7), yields the following full-state

feedback system:

ė(t) = f0[t,e(t)]+ f1[t,e(t),KP(t)]+ f2[t,e(t),ξ (t)]

≡ f[t,e(t),KP(t),ξ (t)],
(9)

with e(t0) = e0, where

f0[t,e(t)]≡ g0[t,e(t)+xd(t)]−g0[t,x
d(t)],

f1[t,e(t),KP(t)]≡
{

G[t,e(t)+xd(t)]−G[t,xd(t)]
}

×
{

KP(t)e(t)+ud(t)
}

+G[t,xd(t)]KP(t)e(t),

f2[t,e(t),ξ (t)]≡ Θ[t,e(t)]ξ (t)≡ G[t,e(t)+xd(t)]ξ (t).

Lemma 1 (Solutions of feedback system): Given as-

sumptions (1)–(3), for every initial condition e(t0) ∈ R
n,

and the feedback control gain KP(t)∈Kad , the system (9)

has a unique absolutely continuous solution e(t)∈C(I ,Rn).
Furthermore, the solution set

E ≡ {e(t)≡ e[t,KP(t),ξ (t)] ∈C(I ,Rn) : KP(t) ∈ Kad}

is a bounded subset of C(I ,Rn).

The proof of this Lemma is classical and follows from a

similar technique in [34, p. 89]. Lemma 1 follows that the

actual trajectory of the feedback system (9) can be sym-

bolically represented by

e(t) = e(t0)+
∫ t

t0

f[τ,e(τ),KP(τ),ξ (τ)]dτ, t ∈ I . (10)

In order to solve the problem (4), let us introduce the

quadratic cost functional as

J(KP,ξ ) =
1

2

{

eT (t f )P(t f )e(t f )+
∫ t f

t0

eT (t)Q(t)e(t)dt

}

≡ φ [t f ,e(t f )]+
∫ t f

t0

ℓ[t,e(t)]dt,

(11)
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where P(t f ) ∈R
n×n and Q(t) ∈R

n×n are symmetric posi-

tive definite matrices that indicate the relative importance

of the error components along R
n. The performance index

J(KP,ξ ) in (11) depends on the feedback control gain ma-

trix KP(t) and noise vector ξ (t) through the state variable

e(t) as it is clear from the feedback system (9).

The task now becomes solving the following regulator

problem:

inf
{KP∈Kad ,ξ∈B(ξ̄ ,rd)}

[J(KP,ξ )], (12)

which yields e(t) → 0, for t ∈ I . Note that solving the

problem (12) will eventually solve the problem (4). This

point will be clearer later. Hence, the problem (12) can

be solved if there exists an optimal time-varying feedback

gain K∗
P(t), for t ∈ I .

Theorem 1 (Existence of optimal feedback gain K∗
P(t)):

For the feedback system (9), suppose the basic assump-

tions (1)-(3) hold. For any fixed noise ξ c ∈ B(ξ̄ ,rd),
there exists an optimal time-varying feedback control gain

K∗
P(t) ∈ Kad that solves the regulator problem (12).

Proof: Using the well known Alaoglu’s theorem, Kad ⊂
K ⊂ R

m×n is a (weak star) w∗ compact set and it suf-

fices to prove that KP 7−→ J(KP,ξ c) is sequentially weak

star continuous. Let {Ki
P, i ∈ N } ∈ Kad be a sequence

and suppose Ki
P

w∗

7−→ K∗
P. Since Kad is w∗ closed, we have

K∗
P ∈ Kad [33].

For simplicity of the proof, we suppress the variable t

for clarity. Let {ei, i ∈ N } and e∗ denote the solutions

of the system (9) corresponding to {Ki
P, i ∈ N } and K∗

P,

respectively. Hence, the corresponding state equation be-

comes

ėi = f(ei,Ki
P,ξ c) and ė∗ = f(e∗,K∗

P,ξ c), ei
0 = e∗0 = e0.

Using (10), the solutions of the above two state-space

model can be described by

ei(t) = e0 +
∫ t

t0

f[ei(τ),Ki
P(τ),ξ c(τ)]dτ, and

e∗(t) = e0 +
∫ t

t0

f[e∗(τ),K∗
P(τ),ξ c(τ)]dτ.

Subtracting one from another, we get

ei(t)− e∗(t) =
∫ t

0

{

f[ei(τ),Ki
P(τ),ξ c(τ)]− f[e∗(τ),K∗

P(τ),ξ c(τ)]
}

dτ.

Taking the Euclidean norm in both sides of the above ex-

pression and using the triangle inequality yield

‖ei(t)− e∗(t)‖ ≤ vi(t)+
∫ t

t0

Lβ (τ)‖ei(τ)− e∗(τ)‖dτ,

where vi(t) can be symbolically represented as

vi(t)=
∥

∥

∥

∫

I

[

∫

K

f(e∗(τ),Γ,ξc)(K
i
P(dΓ)−K∗

P(dΓ))

]

dτ
∥

∥

∥
,

for Γ∈K and Lβ (t)∈L
+

1 (I ) (see Theorem 8.3.4 of [34,

p. 273] for more details). Thus, it follows from Gronwall

inequality that

‖ ei(t)− e∗(t) ‖≤ vi(t)+
∫ t

t0

exp{
∫ t

τ
Lβ (τ1)dτ1}Lβ (τ)v

i(τ)dτ.
(13)

Clearly, vi(t)→ 0, for t ∈I , i∈N , as Ki
P

w∗

7−→K∗
P. Thus,

it follows from inequality (13) that ei KP7−→ e∗.

Since both ℓ(t, ·) and φ(t, ·) are continuous on R
n, we

have ℓ[t,ei(t)]−→ ℓ[t,e∗(t)] for almost all t ∈I and φ [t,ei(t f )]
−→ φ [t,e∗(t f )] as i→∞. Thus, it follows from the expres-

sion (11) that limi→∞ J(Ki
P,ξ c) = J(K∗

P,ξ c) proving weak

star continuity of J on Kad . Since Kad weak star compact,

J attains its minimum on Kad . �

Theorem 1 guarantees that there exists an optimal feed-

back gain K∗
P for the system (9). In the following, we drop

the argument (t) when no ambiguity arises. To solve for

the optimal trajectory that minimizes the objective func-

tional (11), we need to derive the necessary conditions of

optimality. These necessary conditions are most readily

found if the integrand of the cost functional (11) is recast

in terms of Hamiltonian H : I ×R
n×R

n×R
m×n −→R,

which is expressed by

H [t,e,φ ,KP] = φ T f0(t,e)+

φ T {f1(t,e,KP)+ f2(t,e,ξ )}+ ℓ(t,e),
(14)

where φ ∈ R
n, t ∈ I , is a vector of Lagrange multipliers

whose elements are the co-states of the system.We now

derive the necessary conditions of optimality for the error

feedback model (9).

Theorem 2 (Necessary Conditions of Optimality): Based

on Theorem 1, it follows that e(t)
K∗

P(t)−→ e∗(t) and the opti-

mal error trajectory e∗(t), t ∈I for the feedback model (9)

can be obtained if there exists an optimal multiplier φ ∗(t)∈
C(I ,Rn) such that the triple {e∗,φ ∗,K∗

P} satisfies the fol-

lowing necessary conditions:

H t,e∗,φ ∗,KP)≥ H (t,e∗,φ ∗,K∗
P), KP ∈ K , (15)

ė∗ =
∂H

∂φ
(t,e∗,φ ∗,K∗

P), e∗(t0) = e0, (16)

φ̇
∗
=−

∂H

∂e
(t,e∗,φ ∗,K∗

P, φ ∗(t f ) =
∂φ

∂e
[t f ,e(t f )]. (17)

Proof: Let e(t)≡ e[t,KP(t),ξ (t)] be the solution of the

feedback system (9), with the cost functional (11) for any

choice of KP(t) ∈ Kad . For simplicity of the proof, and

without loss of generality, assume that the noise vector

ξ (t)≡ ξ c is fixed. Since K∗
P(t) is optimal with the associ-

ated trajectory e∗(t), it is clear that

J(K∗
P,ξ c)≤ J(KP,ξ c), ∀ KP(t) ∈ Kad , t ∈ I .
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Suppressing the variable (t) for clarity and for any ε ∈
[0,1], we define Kε

P = K∗
P + ε(KP −K∗

P). Since KP is a

closed convex set, Kad is also a closed convex subset of

L∞(I,R
m×n) and therefore Kε

P ∈ Kad . Thus J(K∗,ξ c) ≤
J(Kε

P,ξ c), which follows that

dJ(KP,ξ c;KP −K∗
P) = Tr

[

(KP −K∗
P)

T
∇J(K∗

P,ξ c)
]

≥ 0,

(18)

where dJ denotes the Gateaux (directional) derivative of J

in the direction of (KP −K∗
P).

Let eε be the solution of the feedback system (9) corre-

sponding to the gain Kε
P with the same initial state eε(t0)=

e0. It is easy to verify that

lim
ε→0

Kε
P(t) = K∗

P(t), and lim
ε→0

eε(t) = e∗(t).

Hence, the state trajectories eε(t) and e∗(t) can be defined

as

ėε = f0(t,e
ε)+ f1(t,e

ε ,Kε
P)+ f2(t,e

ε ,ξ c) and

ė∗ = f0(t,e
∗)+ f1(t,e

∗,K∗
P)+ f2(t,e

∗,ξ c), with

eε(t0) = e∗(t0) = e0 and t ∈ I . Subtracting one from the

other and by straight forward algebra, one can derive the

following equation

ėε − ė∗ =f0(t,e
ε)− f0(t,e

∗)+ f1(t,e
ε ,K∗

P)− f1(t,e
∗,K∗

P)+

f2(t,e
ε ,ξ c)− f2(t,e

∗,ξ c)+ ε f̂(t,eε ,KP −K∗
P),

(19)

where f̂(t,eε ,KP −K∗
P) = G(t,eε +xd)(KP −K∗

P)eε . Di-

viding by ε and denoting

η(t)≡ lim
ε→0

(

eε(t)− e∗(t)

ε

)

,

it follows from the expression (19) that η(t) must satisfy

the following initial value problem

η̇ = ∆e(t,e
∗,K∗

P,ξ c)η(t)+ f̂(t,e∗,KP −K∗
P), (20)

with η(t0) = 0, where

∆e(t,e
∗,K∗

P,ξ c) =

∂ f0

∂e
(t,e∗)+

∂ f1

∂e
(t,e∗,K∗

P)+
∂ f2

∂e
(t,e∗,ξ c).

Equation (20) is a linear non-homogeneous equation

with f̂(t,e∗,KP −K∗
P) being the driving force. As a re-

sult, it has a continuous solution η(t) ∈C(I ,Rn), which

is continuously dependent on f̂(t,e∗,KP −K∗
P).

By definition of Gateaux (directional) derivative, we

can derive the following expression

Tr
[

(KP −K∗
P)

T
∇J(K∗

P,ξ c)
]

=

ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt.

Hence, inequality (18) yields

ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt ≥ 0. (21)

Since η(t) of the variational equation (20) is continu-

ously dependent on f̂(t,e∗,KP−K∗
P), the map f̂(t,eε ,KP−

K∗
P)−→η(t) is continuous from L1(I ,Rn) to C(I ,Rn) [34,

p. 260]. Hence, the map

η(t)−→ ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt

is a continuous linear functional on C(I ,Rn). Thus, the

composition map

f̂(t,e∗,KP −K∗
P)−→ ηT (t)

∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt

is a continuous linear functional on L1(I ,Rn), where

f̂(t,eε ,KP −K∗
P) ∈ L1(I ,Rn). Therefore, by the Riesz

representation theorem or by the duality between L1(I ,Rn)
and L∞(I ,Rn), we may conclude that there exists an el-

ement φ ∗ ∈ L∞(I ,Rn) such that

Tr
[

(KP −K∗
P)

T
∇J(K∗

P,ξ c)
]

=

ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt

=
∫ t f

t0

(φ ∗(t))T
f̂(t,e∗,KP −K∗

P)dt.

(22)

It follows from the inequality (21) that

∫ t f

t0

(φ ∗)T
f̂(t,e∗,KP −K∗

P)dt ≥ 0, ∀ KP ∈ Kad . (23)

Using the variational equation (20), it follows from the

second identity of (22) that

ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt =

∫ t f

t0

{

(φ ∗)T [η̇ −∆e(t,e
∗,K∗

P,ξ c)η(t)]
}

dt.

(24)

Integrating by parts and since η(t0) = 0,

∫ t f

t0

(φ ∗)T [η̇(t)−∆e(t,e
∗,K∗

P,ξ c)η(t)]dt = ηT (t f )φ
∗(t f )

+
∫ t f

t0

ηT (t)
{

−φ̇
∗
−∆T

e (t,e
∗,K∗

P,ξ c)φ
∗
}

dt.

Expression (24) can now be written as

ηT (t)
∂φ

∂e
[t f ,e(t f )]+

∫ t f

t0

ηT (t)
∂ℓ

∂e
[t,e(t)]dt =

ηT (t f )φ
∗(t f )+

∫ t f

t0

ηT (t)
{

−φ̇ −∆T
e (t,e

∗,K∗
P,ξ c)φ

∗
}

dt

(25)



6 Submission to International Journal of Control, Automation, and Systems

It is clear from (25) that

φ̇
∗
=−∆T

e (t,e
∗,K∗

P,ξ c)φ
∗−

∂ℓ

∂e
[t,e∗(t)], (26)

with φ ∗(t f ) =
∂φ
∂e
[t f ,e(t f )]. The co-state dynamics (26)

is linear along the optimal error trajectories. Thus, the

necessary conditions of optimality is given by the integral

inequality (23), the co-state dynamics (26), and the state

equation (9). In other words, the choice of KP ∈ Kad de-

termines the optimality conditions (23), (26), and (9).

Consider the optimality condition (23) and rewriting it

as follows

∫ t f

t0

(φ ∗)T
f̂(t,e∗,KP)dt ≥

∫ t f

t0

(φ ∗)T
f̂(t,e∗,K∗

P)dt, (27)

∀ KP ∈ Kad . From integral inequality (27), it is easy to

derive the point-wise inequality [34]

(φ ∗)T
f̂(t,e∗,KP)dt ≥ (φ ∗)T

f̂(t,e∗,K∗
P), (28)

∀ KP ∈ Kad . Now adding the terms (φ ∗)T f0(t,e
∗),

(φ ∗)T [G(t,e∗+xd)−G(t,xd)]ud , (φ ∗)T f2(t,e
∗,ξ c),

and ℓ[t,e∗(t)] in both sides of (28) yields the Hamilto-

nian inequality

H [t,e∗(t),φ ∗(t),KP(t)]≥ H [t,e∗(t),φ ∗(t),K∗
P(t)].

This is the same as inequality (15) stated in Theorem 2.

Differentiating H with respect to the co-state variable φ ,

we get

∂H

∂φ
[t,e∗(t),φ ∗(t),K∗

P(t)] = f[t,e∗(t),K∗
P(t),ξ c],

which leads to the state equation

ė∗ =
∂H

∂φ
[t,e∗(t),φ ∗(t),K∗

P(t)], e∗(t0) = e0,

as defined in (16).

Differentiating H with respect to the error state vari-

able e yields

∂H

∂e
[t,e∗(t),φ ∗(t),K∗

P(t)] =

∆T
e (t,e

∗,K∗
P,ξ c)φ

∗+
∂ℓ

∂e
[t,e∗(t)].

Hence, the co-state dynamics (26) can be expressed in

terms of Hamiltonian as

φ̇
∗
=−

∂H

∂e
[e∗(t),φ ∗(t),K∗

P(t)], φ ∗(t f ) =
∂φ

∂e
[t f ,e(t f )],

which is condition (17).

�

Theorem 2 states that the feedback control gain K∗
P ∈

Kad satisfies the necessary conditions for optimality. In

order to solve for K∗
P, we express the gradient of the Hamil-

tonian defined in (14) and set it to zero, i.e.,

HKP
≡

∂H

∂KP

= 0. (29)

Hence, the problem boils down to finding KP(t), t ∈ I ,

such that the actual error trajectory from (10) and the co-

state trajectory from (17) satisfy (29). The optimal feed-

back control gain K∗
P can be determined by satisfying the

Hamiltonian inequality (15). In other words, the choice

of KP is to be adaptively tuned to minimize the system’s

tracking error.

Corollary 1 (Adapting the gain KP): Consider the feed-

back system (9) defined over the time horizon I . Adapt-

ing the gain KP according to the following offline update

rule

Knew
P = Kold

P −αHKP
, for 0 < α < 1 (30)

satisfies the Hamiltonian inequality (15) and, hence, guar-

antees the convergence of the system’s error trajectory to

solve the problem (12).

Proof: Let

K∗
P = KP −αHKP

, (31)

for some KP ∈ R
m×n and 0 < α < 1. The correspond-

ing Hamiltonian is H (t,e∗,φ ∗,K∗
P) = H (t,e∗,φ ∗,KP −

αHKP
) , where e∗ and φ ∗ are the system’s error state and

the co-state variable corresponding to K∗
P. Taking the Tay-

lor series expansion of the right hand side about KP, we

get

H (t,e∗,φ ∗,K∗
P) = H (t,e∗,φ ∗,KP)

+Tr
[

H
T

KP
(K∗

P −KP)
]

+O(α) .

Neglecting the higher order terms of the above expression

yields H (t,e∗,φ ∗,K∗
P)< H (t,e∗,φ ∗,KP). �

Hence, update rule (31) guarantees that the Hamilto-

nian H is monotonically decreasing, which proves that

the adaptation law (30) eventually leads to the optimal

control operator K∗
P yielding the solution of (12). Note

that the feedback gain K∗
P(t), t ∈ I , is now used to find

the optimal input error signal ũ(t) using (8). The actual

optimal control input can then be found simply by u∗(t) =
ud(t)+ ũ(t). This u∗(t) is the solution of (4) which mini-

mizes the average cumulative tracking error defined in (3).

5. ROBUSTNESS

This section illustrates the robustness of the feedback

control law (8). The robustness result for model (1) pre-

sented in this section is an immediate consequence of con-

trolling semi-linear dynamic systems with limited uncer-

tainty illustrated in [33]. We show that the feedback gain
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K∗
P(t) is robust with respect to the noise process {ξ (t)},

t ∈ I as long as ξ (t) ∈ B(ξ̄ ,rd), for rd > 0. In other

words, if we can show that the feedback law (8) is robust

for the worst case scenario of the system’s process noise ξ ,

then it is robust for all ξ (t) ∈ B(ξ̄ ,rd).
It is interesting to notice that extreme scenarios corre-

spond to the worst-case situations of the Hamiltonian de-

fined in (14). This happens when the noise vector ξ is

co-linear with the vector (ΘT [t,e(t)]φ(t)) and lies on the

boundary of the ball B(ξ̄ ,rd). This is given by the vector

ξ = rdϒ(ΘT [t,e(t)]φ(t)) where the function ϒ : Rm −→
R

m is defined as

ϒ(z) =

{

z
‖z‖ , if ‖z‖ 6= 0 and

0, if ‖z‖= 0.

Considering this worst-case scenario and noting that
∣

∣

∣
ξ T

ΘT [t,e(t)]φ(t)
∣

∣

∣

Rm
≤ rd‖ΘT [t,e(t)]φ(t)‖

Rm ,

the Hamiltonian in (14) takes the following form

H [t,e(t),φ(t),KP(t)] = φ T (t){f0[t,e(t)]+ f1[t,e(t),KP(t)]}

+rd‖ΘT [t,e(t)]φ(t)‖+ ℓ[t,e(t)].

(32)

In this case, the state feedback system in (9) becomes

ė(t) = f0[t,e(t)]+ f1[t,e(t),KP(t)]+

rdΘ[t,e(t)]ϒ(ΘT [t,e(t)]φ(t)), e(t0) = e0.
(33)

Hence, the least tracking error in the case of a potentially

worst situation can be achieved if the triple {e∗,φ ∗,K∗
P}

satisfies the state feedback model (33), co-state dynam-

ics (26), and the optimality condition (23) simultaneously.

One can easily show that the necessary conditions (15)–

(17) of Theorem 2 can be obtained using the state equa-

tion (33) and its corresponding worst case Hamiltonan (32).

Moreover, it is important to articulate that instead of con-

sidering the random process {ζ (t), t ∈ I }, in the feed-

back model (9), one can choose the maximum noise ra-

dius rd in the model (33), for which the feedback law (8),

with KP(t) = K∗
P(t), guarantees minimizing the average

cumulative tracking error defined in (3). In other words,

the optimal feedback law (8), with KP(t) = K∗
P(t), min-

imizes the state tracking errors in the presence of max-

imum process noise defined by the radius rd . This con-

cludes the fact that feedback law (8) is robust in the face

of any ξ (t) ∈ B(ξ̄ ,rd).
In the following, we provide the key steps taken by the

controller to numerically solve for the feedback control

gain KP, aggregating the components described earlier.

Ki
P(t), t ∈ I , denotes the gain at the i-th iteration of the

optimization procedure.

Step 0 (initialization): Subdivide the time interval I ≡
[

t0, t f

]

into N subintervals. Assume a piecewise-contant

Ki
P(t) = Ki

P(tk), t ∈ [tk, tk+1], for k = 0, . . . ,N −1.

Step 1: Integrate the feedback system (33) with KP ≡
Ki(t), t ∈ I .

Step 2: Solve co-state equation (17) backward for φ i.

Step 3: Define the Hamiltonian H (t,ei,φ i,K
i
P) as in (32).

Step 4: Compute the cost function J(Ki
P,ξ ) using (11)

and HKP
using (29).

Step 5: If J(Ki
P,ξ ) ≤ δ , for a pre-defined small positive

tolerance constant δ , then Ki
P is regarded close enough

to its optimal value, and so the algorithm is halted. Other-

wise, use the update rules: Ki+1
P (tk)=Ki

P(tk)−α HKP(tk)+

λ ∆Ki
P(tk) and ∆Ki

P(tk) = Ki
P(tk)−Ki−1

P (tk), where α and

λ are the step size and the momentum constant (for faster

convergence), respectively. Go back to Step 1.

6. NUMERICAL RESULTS

In this section, we apply the proposed controller on two

nonlinear systems to validate its effectiveness in track-

ing pre-defined trajectories and stabilizing the system to

a fixed configuration.

6.1. Example 1: Wheeled Mobile Robot

In this example, we aim to solve the trajectory tracking

problem of a wheeled mobile robot. The robot configura-

tion is taken as x(t)≡ [x(t),y(t),θ(t)]T , where [x(t),y(t)]T ∈
R

2 are the coordinates of the robot’s center point on the

plane, and θ(t)∈ [−π,π) is its heading angle, relative to a

ground-fixed inertial reference frame X-Y. The linear and

angular velocities of the robot are represented by ν and

ω , respectively. At any time t ∈ I , the robot kinematic

model is given by

ẋ(t) =
2

∑
j=1

g j[x(t)]u j(t)+G[x(t)]ξ (t) (34)

where u(t) = [ν(t),ω(t)]T is the control input. The vector

fields g1[x(t)] = [cosθ ,sinθ ,0]T and g2[x(t)] = [0,0,1]T

follow assumption 1, and G[x(t)] = [g1[x(t)],g2[x(t)]]
T .

The actuator noise ξ (t) ≡ [ξ1(t),ξ2(t)]
T ∈ B(ξ̄ ,rd) areis

associated with the robot’s linear and angular velocities.

Note how (34) is similar to the system model (1) with

the drift term g0[x(t)] = 0, n = 3, and m = s = 2. The

robot is set to track a feasible and smooth desired trajec-

tory defined in the task space by (xd(t),yd(t)), for t ∈I ≡
[0 60] s, satisfying

ẋd(t) =
2

∑
j=1

g j[x
d(t)]ud

j (t), xd(0) = xd
0 , (35)

where xd(t) = [xd(t),yd(t),θ d(t)]T , t ∈ I is the desired

state, and ud
1(t) = νd(t) and ud

2(t) = ωd(t) are the desired

linear and angular velocities. Solving for νd(t) and ωd(t)
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from (35) yields

νd(t) =±
√

[ẋd(t)]2 +[ẏd(t)]2,

θ d(t) = ATAN2

{

ẏd(t)

νd(t)
,

ẋd(t)

νd(t)

}

, and

ωd(t) = θ̇ d(t) =
ÿd(t)ẋd(t)− ẍd(t)ẏd(t)

[νd(t)]2

with codomain in all four quadrants [35]. In order to con-

trol (34) to track (35), the error state dynamic model in a

rotated coordinate frame can be written as [36, 37]:





ėx

ėy

ėθ



=





0 ωd −ωe 0

−ωd +ωe 0 0

0 0 0









ex

ey

eθ



+





νe

νd sineθ

ωe



 ,

(36)

which is equivalent to (7). We now form the robot’s feed-

back system as in (9) using the feedback control (8). Hence,

the optimal time-varying feedback gain K∗
P(t) ∈ Kad ⊂

R
2×3, for t ∈ I ≡ [0,60] s, will drive the system (36)

such that e(t) → 0, and ũ(t) → 0, for t ∈ I . An exag-

gerated actuator noise ξ (t) ∈ B(0,rd)⊂ R
2, t ∈ I , with

rd = 24 ◦·s−1 (see (33)) is deliberately chosen to empha-

size the effectiveness of the controller.

A numerical simulation was conducted to test the robot’s

tracking performance on an eight-shaped trajectory de-

fined by xd(t) = sin(πt/4.8), yd(t) = sin(πt/9.5), with

an initial position and orientation of (1,0.2) m and 0◦, re-

spectively. The weight matrices of the cost functional (11)

were chosen as P(t f ) = Q(t) = diag(1,1,2), for t ∈ I .

The maximum iterations for the optimization procedure

was set to 50. However, more iterations would obviously

yield a finer tracking performance. The results are shown

in Fig. 1. It is interesting to see that the tracking errors

[ex(t),ey(t),eθ (t)]
T (Fig. 1(b)) decayed to zero in about

3s and remained practically nil for the rest of the trajec-

tory. The initial convergence phase is essential for the con-

troller to filter out the speed noise by selecting the optimal

feedback gain K∗
P(t). The variation of KP(t), t ∈ I , sig-

nificantly affects the cost functional (11). Initially, the cost

is relatively high due to the initial perturbation of the robot

from its desired initial position and remains approximately

zero once the robot reaches the desired trajectory, as ex-

pected. In each iteration, the value of KP(t) is updated

according the update rule (30) yielding monotonically de-

creasing Hamiltonian (14). Since the Hamiltonian (14)

depends on KP(t) and the cost function (11) is an indi-

rect function of KP and ξ , it is natural that the overall

system cost J (position and orientation error, in this case)

gradually decreases after each iteration, yielding a better

tracking performance.

6.2. Example 2: Hopping Robot

Now, we validate the controller’s ability to regulate the

posture of a hopping robot in flight mode [38, p. 366].
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Fig 1: Tracking performance (a) eight-shaped trajectory

(hollow arrow: initial pose, solid arrow: final pose)

and (b) error.

The robot state is defined as x , [x1,x2,x3]
T = [ψ, l +

1,θ ]T , where ψ is the robot’s hip angle with respect to its

body, l is the length of the leg extension, and θ is the body

angle from the horizontal axis [39]. The robot’s kinematic

model is given by

ẋ = G(x)(u+ξ ) =







1 0

0 1

−
x2

2

1+x2
2

0







[

u1 +ξ1

u2 +ξ2

]

, (37)

which is in the form of (1) with g0(x) = 0, n = 3, and

m = s = 2. The variable (t) is dropped for clarity. The

control inputs are the hip angular rate u1 and the leg ex-

tension velocity u2. The goal is to stabilize the robot at a

fixed configuration xd(t f ) = [0,0,0]T from an initial state

x(0) = x0 as t → t f = 60 s in the presence of process noise
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bounded by a sphere of radius rd = 0.1. Since xd(t f ) = 0,
model (37) is in the form of the generalized kinematic

model (9) with u(t) = KP(t)x(t), where u = [u1,u2]
T and

x = [x1,x2,x3]
T . The simulation was run with an initial
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Fig 2: Stabilization performance of a hopping robot in

flight phase, (a) state trajectory and (b) control sig-

nals.

state x0 = [0.5,0.5,0.5]T . The sampling time T , num-

ber of iterations for computing optimal K∗
P(t), α , and λ ,

are chosen as 0.6s, 200, 0.02, and 0.1, respectively. The

weight matrices of the cost function (11) are set to P(t f ) =
20Q(t) and Q(t) = diag(1,1,2). Since the goal is to stabi-

lize the robot to a fixed configuration, this choice is driven

by the fact that more weight is to be assigned to the matrix

corresponding to the posture regulation, P, than to the one

controlling the tracking, Q.

The stabilization performance of the hopping robot in

flight phase is shown in Fig. 2. It took about 5s for the

controller to stabilize the robot to the target configura-

tion (Fig. 2(a)) while forcing the control signals to prac-

tically decay to zero (Fig. 2(b)). The initial fluctuations

in the state trajectory and the control signals are due to

the initial posture error. The embedded process noise led

to small fluctuations in both signals but didn’t prevent the

controller to converge to the desired posture. Since we

considered the system’s process noise, ξ , to be additive

to the control inputs, it is theoretically impossible for the

controller to achieve a zero steady-state error in a finite

time. Furthermore, the current set of simulations consid-

ered maximum noise as they yield the worst Hamiltonian

defined in (32). The control law, K∗
P(t), t ∈ I , was un-

able to tolerate noise bigger than the one chosen for simu-

lations herein while maintaining practically zero tracking

error almost everywhere. This makes sense as we claimed

in section 5. that the process noise has to be chosen from

the closed ball of radius rd (maximum).

7. CONCLUSION

In this paper, an optimal time-varying P-controller is

proposed for simultaneously solving the state tracking and

fixed-point stabilization problems of a class of nonlinear

systems taking into account their input noise. Its nov-

elty is based on optimizing the feedback gain to compute

the optimal control inputs without having to linearize the

system’s model. Numerical simulations showed the con-

troller’s efficiency and asymptotic convergence in the face

of unstructured uncertainties which didn’t have to be ex-

plicitly modeled. It is worth pointing out that the same

controller can also be applied to track the system’s output

(instead of the states) by simply replacing the state feed-

back gain with the output feedback gain. Note that the

controller is not meant to replace the robust MPC. It rather

can be regarded as an alternative MPC strategy which is

capable of solving both stabilization and trajectory track-

ing problems for linear and nonlinear nonholonomic sys-

tems in an unified manner. It has the ability to solve these

problems even for a class of semi-linear partially-observed

systems.
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