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Abstract

Effective treatment for tuberculosis (TB) patients on first-line treatment involves triaging those 

with drug-resistant (DR) TB to appropriate treatment alternatives. Patients likely to have DR TB 

are identified using results from repeated inexpensive sputum-smear (SS) tests and expensive but 

definitive drug sensitivity tests (DST). Early DST may lead to high costs and unnecessary testing; 

late DST may lead to poor health outcomes and disease transmission. We use a partially 

observable Markov decision process (POMDP) framework to determine optimal DST timing. We 

develop policy-relevant structural properties of the POMDP model. We apply our model to TB in 

India to identify the patterns of SS test results that should prompt DST if transmission costs 

remain at status-quo levels. Unlike previous analyses of personalized treatment policies, we take a 

societal perspective and consider the effects of disease transmission. The inclusion of such effects 

can significantly alter the optimal policy. We find that an optimal DST policy could save India 

approximately $1.9 billion annually.
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1 Introduction

In 2013, 1.5 million people died from tuberculosis (TB) and, of the estimated 9 million 

people who developed TB, 24% were in India [1]. Most deaths from TB are preventable 

through treatment. Drug-sensitive (DS) TB can be effectively treated with first-line regimens 

using rifampicin, isoniazid, pyrazinamide, and ethambutol antibacterial drugs [2]. Drug-

resistant (DR) strains of TB may not respond to first-line treatment, and patients with DR 

TB may need more toxic and costly DR TB treatment to be cured. In India, 1.53 million 

patients were put on TB treatment in 2009, and approximately 40% of those were new cases 

on first-line treatment [3]. While the majority of these cases are drug-sensitive, the WHO 

estimates that 3% of new TB cases in India are drug-resistant [4].
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Standard sputum-smear (SS) tests used for diagnosing and monitoring TB are inexpensive 

and easy to perform but have low sensitivity and are unable to distinguish bacteriological 

strain. Drug sensitivity testing (DST) has traditionally been done through bacteriological 

culture, which can take months to perform. New advances in diagnosis systems such as the 

Xpert MTB/RIF assay can detect rifampicin resistance within hours, but the optimal time to 

administer these tests for drug strain identification has not been established. The Indian 

government is interested in the diagnostic improvements that Xpert may be able to provide, 

mentioning Xpert in its national strategic plan for TB elimination for 2017–2025 [5] as well 

as listing it as a new tool under evaluation in the most recent TB training module [2].

Several cost-effectiveness analyses have found Xpert adoption to be cost-effective despite its 

high cost [6,7,8,9]. These cost-effectiveness studies use mathematical models of TB to 

project the effect of Xpert adoption. We also use a mathematical model of TB to estimate the 

benefits and costs of TB diagnosis strategies.

Both dynamic compartmental models and individual-level simulations have been used to 

estimate the effect of disease dynamics in the presence of heterogeneous demographic 

characteristics [10,11,12,13,14]. These models can be used to quantify the uncertainty 

around natural disease parameters with scarce data, such as transmission patterns [11]. 

Keeling and Rohani describe how to use who-mixes-with-whom matrices to capture these 

transmission patterns [15], and recently, additional data on mixing patterns for respiratory 

illnesses have been collected [16,17]. However, no studies address when in the TB testing 

algorithm the Xpert test should be used, nor how transmission influences the appropriate 

timing of such testing.

For new first-line patients in India, treatment regimens call for DST only if the patient is still 

SS positive after four months or at the end of treatment [2]. During this delay, patients with 

DR TB may continue to transmit disease and experience declining health and high mortality 

rates. However, this delay also reduces the pool of patients who require relatively expensive 

DST as patients with DS TB respond to treatment.

In this paper we use a finite-horizon, partially observable Markov decision process 

(POMDP) model to determine the optimal timing and frequency of SS test information 

collection and DST testing for smear-positive, treatment-naive pulmonary TB patients on 

first-line treatment. A POMDP is appropriate for this problem because the physician cannot 

observe the patient’s health state directly but can only infer it from SS test result history 

when making a decision about whether to continue first-line treatment or test the patient for 

drug resistance. We maximize net monetary benefits to reflect the desire to reduce costs and 

achieve good health outcomes, and we take a societal perspective, including all costs and 

health outcomes regardless of source or beneficiary. The POMDP allows us to identify a 

social welfare maximizing strategy that provides the expected best action for all possible test 

outcomes in every period.

Our contributions in this research are threefold. First, we provide policy-relevant structural 

properties of the POMDP model that allow our framework to be useful in contexts outside 

our example case of TB in India. To draw general conclusions about when observations (in 
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this case, SS test results) are valuable, we examine the cases where observations are not 

available versus when they are always available for every time period. We determine 

analytical properties of when observations are valueless for changing future decisions, which 

offers insight into when observations should be foregone if they are costly to acquire.

Second, we determine optimal DST policies for India. We examine policies over age- and 

sex-stratified input parameters to determine how demographic differences influence the 

optimal policy, and we provide diagnostic algorithms for regions with little to no TB 

transmission (such as remote rural areas) and regions with transmission rates that reflect the 

national average transmission rate in India. This is the first analysis that uses information 

from repeated SS tests taken over the course of first-line treatment to identify which TB 

patients should undergo DST, and when.

Third, we establish optimal strategies from the societal perspective in both the presence and 

absence of disease transmission. Previous work rarely considers population effects in 

dynamic decision models for personalized treatment. While a number of POMDP studies 

address optimal treatment regimens for noninfectious diseases such as cancer [18,19], 

Parkinson’s disease [20], and dementia [21], studies using a POMDP framework to optimize 

treatment for infectious diseases are rare, and do not include population effects such as 

disease transmission. We find that the inclusion of such effects can significantly alter the 

societal optimal policy, even when costs associated with transmission are statically 

incorporated into the objective function rewards (i.e., dynamic effects are not considered). 

Inclusion of population effects is particularly important for a disease such as TB where 

transmission of DR TB is an increasing threat.

In the next sections, after describing the model structure and notation, we analytically 

examine two classes of problems: cases where no observations (SS test results) are available 

and cases where observations are taken at every time period. We identify structural 

properties of when observations will not change decisions. Using this result, we expand our 

action space in an empirical example in India to include the possibility of not taking 

observations. We determine the optimal testing policy for regions of India with and without 

significant levels of TB transmission. We provide a diagnostic testing flowchart that can be 

used by physicians when treating TB patients. We estimate that the optimal policy will save 

approximately $3000 per patient on first-line treatment, which translates to an annual 

potential savings of approximately $1.9 billion. We conclude with discussion.

2 Model structure

We formulate a POMDP model to determine the optimal time to administer SS tests and 

DST for patients on first-line TB treatment. We assume that SS tests may be administered 

multiple times but DST is used at most once due to its high cost. Since Xpert has high 

sensitivity and specificity, DST results are treated as definitive: a DST-positive patient is 

immediately triaged to DR TB treatment while a DST-negative patient completes the rest of 

the first-line treatment regimen with no further testing. International standards for TB 

treatment currently do not allow for early completion of the standard regimen even if the 

physician believes the patient to be TB-free [2]. We seek to determine when and how many 
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SS tests to administer, and whether and when to administer DST. In this section, we 

introduce our model framework. All notation is summarized in Appendix Table 1.

We use a societal perspective and measure health outcomes using total lifetime discounted 

quality-adjusted life years (QALYs) and total discounted lifetime healthcare costs in US 

dollars. Our objective is to maximize the incremental net monetary benefit (NMB) for each 

policy relative to a reference policy in which no first-line or DR TB treatment is offered. Net 

monetary benefit is defined as QALYs, converted into monetary units using a willingness-to-

pay conversion factor (λ), minus costs.

Since the first-line treatment regimen is six months long, and some time needs to elapse 

between observations for additional treatment to take effect, we allow the decision maker to 

take an action once in every month the patient is on treatment. Thus we index the monthly 

periods by t = 0, 1, …, 6 where t = 0 denotes the time of initial diagnosis, t = 1 denotes the 

end of the first month, etc.

We let st ∈ S = {1, 2, 3, 4, 5, 6, 7} denote the true health of patients on first-line treatment, 

where 1 represents a healthy (cured of TB) patient, 2 represents a patient with DS TB, and 3 

represents a patient with DR TB. States 4, 5, and 6 represent healthy, DS, and DR TB 

patients who have have defaulted from treatment (do not return for subsequent visits; lost to 

followup), and state 7 represents death. The physician cannot directly observe the health 

states 1, 2, or 3 of the patient prior to DST, but can only observe SS test results – which may 

be false positive or false negative. Thus, states 1, 2, and 3 are partially observed health 

states. We assume that the physician can observe if the patient has defaulted (but not whether 

the defaulted patient is healthy, has DS TB, or has DR TB), or if the patient has died.

At the beginning of each time period, the decision maker can choose one of two actions for 

patients on first-line treatment (states 1, 2, and 3): continue on first-line treatment for 

another month with monitoring (using an SS test) or administer DST. We denote by a(s)t the 

action taken at time t, where a(s)t ∈ A(s)t = {DST, wait} for states s = 1, 2, 3. No action is 

possible for patients in states 4, 5, 6, and 7 because such patients are no longer in treatment. 

In our theoretical results, we prove that the option of having the patient remain on treatment 

without taking an SS test observation can sometimes be a better option than taking an SS test 

observation, so for our numerical analysis we expand the action space to incorporate this 

option: thus, A(s)t = {DST, wait and see, wait and not see} for the numerical analysis.

After each time period, patients can stay in the same health state or transition to another 

state. If the physician chooses the wait action at time t, patients in state 2 (patients with DS 

TB who are on first-line treatment) will be cured and move to state 1 with probability cDS,t, 

and patients in state 3 (patients with DR TB who are on first-line treatment) will be cured 

and move to state 1 with probability cDR,t, where 0 ≤ cDR,t ≤ cDS,t ≤ 1. The patient has some 

probability of default d from states 1, 2, and 3 and some probability of death ν from all alive 

states. Defaulted and dead patients remain in their current state. The probabilities of default 

and death can be allowed to change over time. We represent the treatment dynamics in the 

following matrix (we omit the subscript t for readability):
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f
t

=

1 − d
H

− ν
H

c
DS

c
DR

0 0 0 0

0 1 − c
DS

− d
DS

− ν
DS

0 0 0 0 0

0 0 1 − c
DR

− d
DR

− ν
DR

0 0 0 0

d
H

0 0 1 0 0 0

0 d
DS

0 0 1 0 0

0 0 d
DR

0 0 1 0

ν
H

ν
DS

ν
DR

ν
dH

ν
dDS

ν
dDR

1

If the physican chooses the DST action for a patient in treatment, no further actions are 

possible and the problem terminates, as we assume that the test is definitive. At the end of 

the time horizon, patients still on treatment have completed the treatment regimen, and exit 

treatment with no DST.

When deciding whether to wait or administer DST, the physician does not have perfect 

knowledge of a patient’s health state. We denote by βt the belief at time t about the patient’s 

health state. We represent the belief as βt ∈ B, the set of all possible beliefs. Since the 

physician can observe if the patient has defaulted or died, we have:

B =

1 − b
DS

− b
DR

b
DS

b
DR

0

0

0

0

,

0

0

0

1 − b
dDS

− b
dDR

b
dDS

b
dDR

0

,

0

0

0

0

0

0

1

where bDS and bDR are the probabilities the patient has DS or DR TB, respectively, and bdDS 

and bdDR are the probabilities the patient has defaulted with DS or DR TB, respectively. The 

last vector represents the belief if the physician observes that the patient has died. Each 

vector sums to one, since the vectors represent the patient’s true health state as a probability. 

For instance, if the physician believes that the patient who is on treatment has a 10% chance 

of already being cured and a 3% chance of having DR TB, the belief state is: βt = [0.10 0.87 

0.03 0 0 0 0]′.

We assume that the physician has accurate knowledge of the treatment dynamics, and thus 

the beliefs change after the patient undergoes an additional period of treatment. We model 

this by multiplying the pre-treatment belief vector βt with the transition matrix ft. Thus, we 

obtain post-treatment beliefs equal to ftβt.

The vector calculated above provides an update based on treatment dynamics but does not 

take into account any observation obtained during period t. Observations about the patient 

state can come from default or death information, or from SS tests, which are either negative 

or positive. SS tests cannot be performed if the patient is defaulted or dead, and receiving 

more information on the patient’s state does not change the probability of default or death. 
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We let zt denote the observation at time t, where zt ∈ Za, the set of possible observations 

given action a. Thus, Zwait = {SS+, SS−, default, death}, while ZDST = {no default or death, 

default, death} because no SS tests are performed.

The SS tests do not provide perfect information. We let M denote a matrix that provides the 

probability of observing z given that the patient is in state s. These probabilities are 

calculated from the sensitivity of the SS test (probability of a positive test result for a patient 

with TB), which we denote by sens, and its specificity (probability of a negative test result 

for a patient who does not have TB), which we denote by spec. In the matrix M below, the 

first row corresponds to z = SS+, the second row corresponds to z = SS−, the third to z = 

default, and the fourth to z = dead while the columns correspond to health states 1, …, 7, 

respectively.

M =

1 − spec sens sens 0 0 0 0

spec 1 − sens 1 − sens 0 0 0 0

0 0 0 1 1 1 0

0 0 0 0 0 0 1

We assume 0.5 ≤ sens ≤ 1 and 0.5 ≤ spec ≤ 1, which implies (1 − spec) ≤ spec and (1 − sens) 

≤ sens.

Given a prior belief βt, treatment dynamics ft, observation zt, and knowledge of M, the belief 

state is updated according to a function M
z
t
( f

t
β

t
) if the patient is not defaulted or dead. This 

function, composed of a transformation matrix (denoted M+ when zt = SS+ and M− when zt 

= SS−) and a normalization factor (denoted N+ when zt = SS+ and N− when zt = SS−), is 

calculated using Bayes rule, and provides a new belief state βt+1. Let β
∼

t
(i) denote element i 

in the post-dynamics belief vector: β
∼

t
= f

t
β

t
. In the case where the physician has pre-

treatment belief βt and observes SS+, we have:

N+(β
∼

t
) =

1

(1 − spec)β
∼

t
(1) + (sens)(β

∼
t
(2) + β

∼
t
(3))

M+ =

(1 − spec) 0 0 0 0 0 0

0 (sens) 0 0 0 0 0

0 0 (sens) 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Therefore the updated belief βt+1 is given by:

(β
t + 1| f

t
β

t
, z

t
= SS + ) = M+(β

∼
t
) = N+(β

∼
t
)M+β

∼
t

=
1

(1 − spec)β
∼

t
(1) + (sens)(β

∼
t
(2) + β

∼
t
(3))

.
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(1 − spec) 0 0 0 0 0 0

0 (sens) 0 0 0 0 0

0 0 (sens) 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

β
∼

t (1)

The updated belief for an SS− observation is similar, with spec instead of 1−spec and 1−sens 

instead of sens. We use a similar notation for the updated belief for a default observation:

(β
t + 1| f

t
β

t
, z

t
= defaulted) = P(β

∼
t
)Qβ

∼
t

where P(β
∼

t
) =

1

β
∼

t
(4) + β

∼
t
(5) + β

∼
t
(6)

Q =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

(2)

The updated belief for a dead observation is [0, 0, 0, 0, 0, 0, 1]′.

We will use pr( + | β
∼

t
) to denote the probability of seeing a positive observation given post-

dynamics belief β
∼

t
= [p1, p2, p3, 0, 0, 0, 0]′, where 

pr( + | β
∼

t
) = (1 − spec)p1 + (sens)(p1 + p3) = (N+(β

∼
t
))

−1
 and, similarly for a negative 

observation, pr( − | β
∼

t
) = (N−(β

∼
t
))

−1
. Similarly, pr(default | β

∼
t
) = [0, 0, 0, 1, 1, 1, 0]β

∼
t
 and 

pr(death | β
∼

t
) = [0, 0, 0, 0, 0, 0, 1]β

∼
t
 are the probability of observing default or death.

Our objective is to maximize total societal net monetary benefit. We define monthly and 

discounted lifetime NMB values. We let rwait,a be the monthly NMB (relative to the 

reference case of no treatment) for being on first-line treatment for an additional month, 

given action a. This includes costs of treatment (drugs, labor, infrastructure), transmission 

(for the states where the patient has DS or DR TB), as well as test costs if action a involves 

testing. Since all patients incur the same costs to receive the same care regardless of health 

state, and QALY differences over one month are small, we simplify rwait,a to be a negative 

scalar that does not vary over health state or beliefs.

Suen et al. Page 7

Health Care Manag Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We define rewards r as the vector of NMB values that capture all expected future discounted 

lifetime costs and QALYs. We use rDST if at is DST. If DST is chosen, we assume that 

patients in state 3 (patients with DR TB who are on first-line treatment) get triaged to DR 

TB treatment, and previously unconfirmed cured patients on first-line treatment (those in 

state 1) and patients with DS TB on first-line treatment (those in state 2) continue on first-

line treatment without further testing. We assume that DST is 100% sensitive and specific, 

so the health states of patients will be correctly identified. Expected discounted lifetime 

costs and QALYs associated with these life trajectories are used to calculate the NMB. We 

denote these NMB values as:

rDST = [NMBDST , H NMBDST , DS NMBDST , DR NMBdH NMBdDS NMBdDS NMBdead] (3)

Thus, for instance, NMBDST,DR includes the cost of the DST test, the expected costs and 

QALYs associated with getting a positive DST test, undergoing DR TB treatment, defaulting 

or completing DR TB treatment, any transmission costs for this life trajectory, and the costs 

and health outcomes for life thereafter. We discount all values back to the present at a rate δ 
per period.

We also include a terminal NMB that captures all expected future discounted lifetime costs 

and QALYs if a patient does not undergo DST by the end of the time horizon, denoted 

r~DST. We assume all patients exit first-line treatment at this time, regardless of cure. Note 

that the NMB for defaulted and dead patients is the same between DST and ~DST rewards, 

as these patients cannot undergo DST. We denote these NMB values as:

r DST = [NMB DST , H NMB DST , DS NMB DST , DR NMBdH NMBdDS NMBdDS NMBdead] (4)

For instance, NMB~DST,H captures the lifetime QALYs and health costs of a healthy 

individual who has completed first-line treatment and does not undergo DST. The reward 

r~DST includes costs and health outcomes associated with TB transmission (if the patient has 

DS or DR TB). For simplicity, we will assume that these rewards are time independent for 

our theoretical analyses in Section 3. We allow the rewards to vary over time (i.e., we use 

rDST,t and r~DST,t) in our numerical analysis for India (Section 4).

3 Theoretical results

We now develop theoretical results for the case when no SS test results are available 

(Section 3.1), and the case when SS test results are available (Section 3.2). All proofs are in 

the appendix.

3.1 Optimal actions when no SS test results are available

We first examine the simplified case in which no SS test observation is available for the 

duration of treatment (e.g., due to lack of lab technicians or SS test equipment). The 

objective is then to maximize the following:
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V
T

(β
T

) = max r
DST
′ β

T
, r

DST
′ β

T
for t = T

V t(βt) = max rDST′ βt, rwait + δ V t + 1( f tβt) for t = 0, 1, 2, …, T − 1 (5)

In this case, rwait does not include the SS test cost. We show that the optimal action is either 

to administer DST right away or not at all. This result holds when we make some reasonable 

assumptions about the relative value of DST and treatment to patients of different types 

(Assumption 1).

Assumption 1—NMB values: Administering DST to a patient with DS or DR TB 

generates more NMB than administering DST to a healthy patient; administering DST to a 

healthy patient generates more NMB than having the patient defaulted or dead; and a sick 

patient is better off in treatment than defaulted or dead.

When Assumption 1 does not hold, there are still conditions under which the optimal action 

is to administer DST right away or not at all.

Assumption 2—rDST (I − δft−1)βt−1 ≥ rwait for all t = 0, 1, …, T − 1 where I is the identity 

matrix.

Assumption 2 considers the reward tradeoffs looking one period ahead. Assumption 2 holds 

when the expected loss in rewards by waiting to administer DST one period later is greater 

than the stage cost of waiting one period.

Theorem 1—When no observations are available for any time periods and Assumption 1 or 

2 holds, the optimal policy is to administer DST immediately to all patients if the population 

estimate of DR TB prevalence generates initial beliefs that fall in the half-space

H0 = β0: r
DST

− δ
T

r
DST

f
T − 1… f 0 β0 ≥ r

wait ∑
i = 0

T − 1
(δi)

Otherwise, DST should never be administered.

Theorem 1 provides a rule to guide policymakers in determining whether to administer DST 

to patients immediately – or not at all – in situations where no monitoring is available. Since 

no additional information is acquired during the treatment process, it is intuitive that the 

optimal action is to either administer DST right away or never. If the initial belief lies in the 

region H0 as given in the theorem statement, then the optimal action is to administer DST 

right away.

In practice, the belief about a patient’s health state at treatment initiation should be 

consistent with estimates of DR TB prevalence in that geographical area: thus, β0 = [0, 1 − 

bDR, bDR]′ where bDR is set equal to the regional (or national) estimate of DR TB 
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prevalence among first-line treatment patients. Theorem 1 tells us that there is a threshold 

value of β0 – and in particular bDR – above which the optimal policy is to administer DST 

right away and below which it is optimal to never administer DST. This threshold value 

depends on the rewards rDST, r~DST, rwait, the discount factor δ, and treatment dynamics f0, 

f1, …, fT−1. The rewards for administering DST (rDST), for allowing an additional month of 

first-line treatment (rwait), and for never administering DST (r~DST) depend on factors such 

as treatment costs and willingness-to-pay.

3.2 Optimal actions when SS tests are available

We next examine the case when SS tests results are available for every time period. In the 

conventional POMDP model formulation [22], an action is taken, a transition occurs based 

on this action, and then an observation is seen. For our problem, if the decision at the 

beginning of the month is to wait (and thus continue first-line treatment), the patient may be 

cured or remain with DS TB or DR TB, and SS+ or SS- observations will be obtained. If the 

decision is to administer DST, the patient will be triaged into the appropriate treatment (no 

SS tests obtained or needed). Using this classical formulation in which observations are 

always obtained after every decision to continue first-line treatment, we have the following 

objective function:

V
T

(β
T

) = max r
DST
′ β

T
, r

DST
′ β

T

V t(βt) = max rDST′ βt, rwait + δ �

z ∈ Z
V t + 1(βt, zt, f t) for t = 0, 1, 2, …, T − 1 (6)

For example, at time T − 1, the objective function is:

VT − 1(βT − 1) = max rDST′ βT − 1, rwait + δ �

z ∈ Z
VT(βt, zt, f t)

= max rDST(βT − 1), rwait + δ pr( + | f T − 1βT − 1)max[rDSTM+( f T − 1βT − 1), r DSTM+

( f T − 1βT − 1)] + pr( − | f T − 1βT − 1)max[rDSTM−( f T − 1βT − 1), r DSTM−( f T − 1βT − 1)]

+ pr(default | f T − 1βT − 1) + pr(die | f T − 1βT − 1)

(7)

We first identify conditions under which the set of beliefs for which DST is optimal is a 

half-space. A threshold solution will occur when rwait is within a particular range. Let I be 

the identity matrix.

Theorem 2—Threshold solution. If Assumption 1 holds and rwait ≤ (rDST − δ(rDST M+ − 

Kt+1M− + Ct+1)ft)βt holds at β∗ = [1, 0, 0, 0, 0, 0, 0]′ and [0, 1, 0, 0, 0, 0, 0]′, then there 

exists some vector At and scalar kt at time t such that the optimal action is to administer DST 

only if Aβt ≥ kt.
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Here, K
t + 1 = ∑

k = t + 1

T − 1

δ
T − 1 − k

r
wait

+ δ
T − t − 1

r
DST∏i = t + 1

T − 1
f
i
 is the discounted future 

reward vector for not administering DST and 

C
t + 1β

∼
t

= ∑
k = t + 1

T − 1

δ
T − 1 − k(r

DST
Q + r

DST
S)β

∼
t
 is the future reward from observing death or 

default at time t, where S is a 7 × 7 matrix of zeros with a single 1 in the lower right corner 

(thus Sβ = [0, 0, 0, 0, 0, 0, β(7)], where β(7) is the seventh element of the β vector).

Theorem 2 shows that if Assumption 1 and a condition on the expected rewards when the 

patient definitely does not have DR TB are true, we can draw a line on the belief space that 

separates beliefs where one should administer DST and beliefs where one should wait. This 

means that the decision rule to administer DST can be expressed simply as a linear equation 

and that there is at most a single threshold at which the optimal action switches if one moves 

from an initial belief to another belief.

We know that if the decision maker has the additional option of waiting without 

administering an SS test, the NMB cannot decrease. The decision maker may not wish to 

take observations, particularly if they are costly and/or if they do not provide information 

that informs the treatment plan. For which beliefs do test results not change future 

decisions?

We will show that if a linear function separates the beliefs at time t for which it is optimal to 

administer DST from those beliefs where it is optimal to wait, as we discuss in Theorem 2, 

then the set of beliefs at time k < t for which SS test observations are useless for determining 

the optimal decision at time t lie in two convex regions of the belief space that must include 

at least one edge and one corner of the belief space, and the region has linear borders. This 

implies that linear combinations of beliefs in this region must also be in the region, and 

“stronger” beliefs (those closer to the corner within the region) will also be in the region.

Our results in this section are illustrated graphically in Figure 1. We define S
t − 1, H

t
, z

t − 1
 as 

the set of beliefs at time t − 1 that map to half-space Ht at time t with dynamics ftβt and 

observation zt−1. Figure 1 panel a schematically illustrates half-space Ht, a belief region 

where the optimal action at time t is to administer DST, and half-space ~ Ht, the belief 

region where the optimal action at time t is to continue on first-line treatment.

In the appendix, we prove (Proposition 3) that S
t − 1, H

t
, z

t − 1 = SS + and S
t − 1, H

t
, z

t − 1 = SS −

are both half-spaces, which implies that a half-space of beliefs will update onto a half-space 

after disease dynamics and accounting for the SS observation: these beliefs all lie in a 

convex region of the belief space and can be represented using a linear inequality. Then we 

prove (Proposition 4) that one of S
t − 1, H

t
, z

t − 1 = SS + or S
t − 1, H

t
, z

t − 1 = SS − is a subset of 

the other, as illustrated in Figure 1 panels b and c.

This allows us to define Uk,t as the set of beliefs at time k < t such that the optimal action at 

time t will be the same regardless of an SS+ or SS− observation at times k, k + 1, …, t. 
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These are the beliefs at time k where observations do not add value to the decision at time t 

and thus will not change the optimal action at time t. For instance, suppose the optimal 

action at time t is to administer DST for a half-space set of beliefs Ht = {βt: Cβt ≥ 0, 1βt = 

1} and to wait for the complementary set ~Ht. The set Ut−1,t is then 

(S
t − 1, H

t
, SS + ∩ S

t − 1, H
t
, SS −) ∪ (S

t − 1, H
t
, SS + ∩ S

t − 1, H
t
, SS −) (Figure 1 panel d). S

t − 1, H
t

and S
t − 1, H

t
 are both half-spaces on the belief space.

Theorem 3—If the set of beliefs at time t where DST is the optimal action is a half-space, 

then Uk,t for k < t can be represented by the union of two half-spaces.

Theorem 3 tells us that the set of beliefs at time k < t for which SS test observations are 

useless for determining the optimal decision at time t lie in two ‘nice’ regions of the belief 

space: each region is convex, must include at least one edge and one corner of the belief 

space (must include ‘more certain’ beliefs), and has linear borders.

If a belief at time k lies within Uk,t for all t > k, it does not inform the optimal action for any 

future time period, and observations should not be taken. We define Uk as the set of beliefs 

at time k for which observations will not inform any future action.

Theorem 4—If the set of beliefs where DST is the optimal action is a half-space for all 

times t = {0, 1, 2, …, T}, then Uk is the intersection of Uk,k+1, Uk,k+2, …, Uk,T, and is the 

union of at most 2T−k distinct convex regions.

Theorem 4 provides properties of Uk, the set of beliefs at time k for which observations 

should not be taken. These beliefs are the union of possibly one or more convex regions (i.e., 

Uk can be discontinuous). Interestingly, this implies that even if a belief lies between two 

other beliefs known to be in Uk, it may not necessarily be in Uk, and it may be useful to 

collect information despite not needing to collect information for the beliefs it lies between.

4 Empirical example: India

4.1 Model and inputs

In this section we apply our model to the example of patients on first-line TB treatment in 

India. We assume that after the last month of treatment, all patients on first-line treatment 

(those in states 1, 2, 3) enter states 4, 5, or 6 according to their health state, as they have 

completed the treatment regimen.

From our theoretical analyses, we know that an additional month of treatment without an SS 

test can be valuable. This is the default action, which is to follow standard guidelines and 

continue first-line treatment to wait and see how the patient responds. We include this option 

in the action space, which becomes A(s)t = {DST, wait and see, wait and not see} for states 

1, 2, and 3, and A(s)t = {wait and not see} for all other states (no action is possible if the 

patient already had a DST test or has defaulted from treatment (states 4, 5, 6) or has died 

(state 7)). The observation space becomes {SS+, SS−, default, death, no observation taken}.
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The sequence of events is illustrated schematically in Figure 2. At the beginning of period t, 

the physician has a belief βt about the patient’s state and chooses to administer DST or have 

the patient continue on first-line treatment, with or without an SS test. During that period, 

patients who are on first-line treatment may be cured, continue with DS or DR TB, default 

from treatment, or die. If the action in the previous month included administering an SS test, 

then an SS test is administered at the end of the month for those patients who have not 

defaulted or died. The physician then calculates an updated belief βt+1 about the patient’s 

state and, for patients still on first-line treatment, the physician will select a new action at+1 

based on the updated belief.

We assume that at treatment initialization (time 0) the patient has either DS or DR TB, with 

the probability of DR TB equal to the national estimate for the fraction of new cases of TB 

in India that are drug-resistant [4]: thus, β0 = [0, 0.97, 0.03, 0, 0, 0, 0]′. We collapse the 

belief set to only feasible beliefs given the prior belief at time 0 and solve the resulting 

dynamic program that has a finite number of beliefs. Because the state space, observation 

space, and number of periods are small, we use value iteration to find the optimal action 

associated with each feasible belief.

We obtained transition probabilities for the model from the literature (Table 1 and Appendix 

Table 2). We used published cost and QALY values to estimate one-month rewards 

(Appendix Table 3). All costs are reported here in 2015 USD. Costs and health outcomes 

were calculated from a published and validated microsimulation model of TB in India [14], 

which we used to generate discounted lifetime costs and QALYs for the terminal rewards 

(Appendix Table 3). The WHO defines a very cost-effective health intervention as one that 

has positive NMB with λ equal to the GDP per capita in the country under consideration 

[23], so we used this λ value in our analysis for India. We also examined the financial costs 

of both the status quo and optimal policies (to do so, we assigned a value of zero to QALYs 

when calculating NMB).

TB transmission in India may occur at high levels in densely populated urban areas but may 

be close to non-existent in rural communities where few new contacts happen. Significant 

numbers of people live in both environments in India, so we examined both cases. In 

particular, we examined a scenario where TB transmission occurs at nationally estimated 

levels and a scenario where no TB transmission occurs. In the scenario with transmission, 

we hold the probability of transmission constant, as the optimal policy that we identify 

applies only to patients on first-line treatment – a small fraction of the total TB cases in 

India – and is unlikely to change national transmission rates.

Patients on appropriate treatment are generally non-infectious, so for the case in which we 

considered the effects of TB transmission we assumed that transmission costs and QALY 

losses were only incurred for patients defaulting from treatment or DR TB patients on first-

line treatment. We estimated these costs and QALY values for each age group and sex using 

a previously published microsimulation model [14] as follows: we exposed a population of 3 

million susceptible individuals to 8000 infectious TB cases (reflecting the overall observed 

TB prevalence level in India [4]) of the specified age and sex for one month and found the 

net present per-case cost and QALY differences over the next 100 years compared to a 
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scenario where the exposure did not occur. Over the 100 years, individuals transitioned 

between health and treatment states and could potentially infect others according to the 

validated microsimulation transition probabilities, which reflect national estimates for India 

[14]. Finally, we obtained stable estimates of transmission costs and QALY losses by 

averaging over 10 such runs for each age- and sex-specific exposure to reduce the effects of 

stochastic noise.

The model was implemented and solved in MATLAB, 2015a (The Mathworks, Natick, 

MA).

4.2 Results: optimal testing policy

We find that India’s current testing policy, in which patients undergo DST only if they have 

a positive SS test after four months or at the end of first-line treatment, is suboptimal given 

India’s relatively high national estimates of DR TB prevalence and transmission. For areas 

where TB transmission occurs at nationally representative levels, the optimal policy is to 

administer DST to all patients upon initial TB diagnosis, before their first month of 

treatment. While many more patients undergo expensive DST under the optimal policy 

compared to India’s current policy, the reduction in downstream costs and increase in health 

due to averted downstream TB transmission makes the optimal policy superior.

For regions of India where it is reasonable to assume there is no TB transmission, the 

optimal testing protocol is given in Figure 3. The optimal action is to wait without taking SS 

test observations in the first two months, demonstrating that there are belief regions in which 

it is advantageous to not collect costly observations, as discussed in our theoretical results. 

SS tests are administered only after the third, fourth, and fifth months. While the majority of 

patients (80%) are expected to test negative on all three SS tests, patients with a positive SS 

test after the third month of treatment should be given an additional month of first-line 

treatment with no monitoring, and then undergo DST. This is because some DR TB cases 

may be cured on first-line treatment during the fourth month of treatment, and it is cost-

effective to attempt to cure them on first-line treatment despite the risk of delaying DR TB 

treatment. Patients with a positive SS test after the fourth or fifth month of treatment should 

immediately undergo DST. Patients with a negative SS test after the fifth month of treatment 

should finish first-line treatment without further SS testing. This policy incorporates DST 

earlier and gives patients more chances to test positive than India’s current policy, where 

patients undergo DST only if they have a positive SS test after the fourth month or at the end 

of treatment (thus no chance of DST after the third or fifth month). A total of 7.9% of all 

patients who start treatment are expected to undergo DST under the optimal testing protocol.

Expected NMB for an individual patient is shown in Table 2 for three different policies: the 

status quo (India’s current testing policy), the optimal policy (for the case of no TB 

transmission and the case of average TB transmission, as described above), and a policy 

which assumes that DST is not available at diagnosis but is administered after the first 

month of treatment. For a value of λ equal to India’s GDP per capita, the NMB of the 

optimal policy when there is no TB transmission is larger, although very similar, to the NMB 

of India’s current policy ($6368 vs. $6365). This is not surprising, as the optimal testing 

algorithm for regions of India with insignificant levels of TB transmission is somewhat 
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similar to India’s current policy. Both policies have positive incremental NMB, which means 

that they would be considered cost-effective for this value of λ (see appendix for further 

discussion of the relationship between NMB and cost-effectiveness). However, when TB 

transmission rates are at levels similar to India’s national average, India’s current policy is 

not cost-effective (the NMB is negative) due to the costs and health effects associated with 

potential downstream transmission, nor is it optimal. In this case, the optimal policy (to 

administer DST at the time of TB diagnosis) would generate more than $7000 in NMB per 

patient compared to the status quo ($6335 vs. −$1157).

The rightmost columns of Table 2 show the costs of each policy in an environment with and 

without TB transmission; with λ = 0, NMB incorporates only costs. While the status quo 

and optimal policies with and without TB transmission are not cost-saving (the NMB is 

negative), the optimal policy when there is TB transmission would save almost $3000 in 

health expenditures per patient compared to the status quo ($1971 vs. $5015) due to reduced 

downstream TB transmission. This is particularly significant given the hundreds of 

thousands of patients who enter first-line TB treatment in India every year.

In some circumstances, it may not be possible to administer DST at initial diagnosis: for 

example, if the initial diagnosis site does not have the appropriate equipment or lacks 

properly trained personnel. In this case, the optimal policy in areas with average levels of TB 

transmission is to administer DST to patients as soon as possible, which we assume would 

be after the first month of treatment. For this policy, the NMB declines by approximately 

$1900 per patient to $4406, but is still a significant improvement over the status quo. 

Similarly, costs are larger than those of the optimal policy ($2752 vs. $1971), but smaller 

than those of the current policy ($5015).

Table 3 shows the additional annual number of SS and DST tests, NMB, and incremental 

cost for the optimal testing policy in regions with and without significant levels of TB 

transmission. Using 2014 data from India, we estimate that approximately 1,174,000 SS 

tests and 30,000 DST tests are administered annually to first-time TB treatment patients with 

smear-positive pulmonary TB [24]. Under the optimal policy without transmission, these 

values would increase to 1,623,000 and 52,000 tests, respectively (thus, 449,000 and 22,000 

incremental tests, respectively). In the case with transmission, each patient would not receive 

any SS tests and would only receive one DST test, totaling 628,000 DST tests per year (thus 

598,000 additional tests). However, while the numbers of SS and DST tests are higher than 

the status quo in both cases, the annual net monetary benefits increase substantially.

In regions with transmission, the optimal policy requires spending an additional $16M 

annually on administering additional DSTs compared to the status quo (598, 000 × $26.57). 

While this expense is substantial, this policy generates a net savings ($1.89 billion in net 

present dollars) once averted TB cases are taken into account: preventing the transmission of 

DR TB averts large future TB treatment costs.

Although the optimal policy would ultimately be cost-saving for regions with transmission, 

it would require a substantial initial investment to implement, and initial per-person total 

costs would be higher than long-run per-person costs. In the appendix we explore the 
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amount of time needed for an upfront investment in Xpert testing to break even given the 

cost savings from onward transmission. If total costs per patient to administer Xpert at the 

optimal time are $100, and 3% of patients have DR TB, it would take between 1–3 years to 

recover the original investment; at $500 per patient, it would take 5–10 years to recover the 

initial investment. These time frames are within the typical planning periods for TB control 

divisions, which often publish strategic 5- or 10-year plans (e.g., see [5]). In practice, a 

staggered roll-out where investment in a few Xpert systems is made every few years until the 

majority of patients are covered could be feasible.

In some sparsely populated regions it may be difficult to identify whether DR TB 

transmission occurs and which policy should be used. We find that in most cases, early DST 

is preferable. If DST is used at initial diagnosis in a region with no transmission, an 

additional $22 per patient is spent compared to the optimal no-transmission policy (and $30 

more than the status quo policy), reducing NMB by $33 per patient ($30 less than the status 

quo). In contrast, if the no-transmission optimal policy is used in a region with transmission, 

the policy costs $2820 extra per patient, mainly due to costly downstream transmission, and 

generates $6926 less per patient in NMB. While this is still an improvement over using the 

status quo policy in transmissive environments (the status quo would cost $3044 extra per 

patient and generate $7492 less NMB per patient), it would be better to err on the side of 

using the transmission-optimal policy when the level of transmission is uncertain as the early 

DST policy is less suboptimal when used in an inappropriate region. Indeed, only if the 

probability of transmission is lower than about 0.5% would using the optimal policy without 

transmission have higher expected NMB than using the optimal policy for regions with 

transmission. This is underscored by our finding that early DST is optimal even for low 

levels of transmission, as described in the sensitivity analysis section below.

4.3 Sensitivity analysis

We performed extensive sensitivity analysis on all model parameters. In this section we 

describe parameters to which the optimal testing policies were most sensitive.

We find that the optimal policy for regions with transmission is generally robust to changes 

in uncertain parameters while the optimal policy for regions without transmission is more 

sensitive. For instance, variation in the timing and probability of DR cure on first-line 

treatment can change the optimal time to administer DST in cases when there is no 

transmission, but DST at initial diagnosis remains the optimal policy when there is TB 

transmission even with unrealistically high values for the probability of DR cure (90% of 

DR patients cured in one month of treatment).

We examined how the optimal policy changes due to age-related variations in death and 

default rates for patients on first-line treatment. Using data from the Indian state of Bihar, 

and reported national TB program performance measures [3,26], we estimated that 

approximately 5.6% of patients who enter first-line treatment will die while on treatment and 

5.6–12.6% will default, with variation over age and sex; this is consistent with national 

estimates that report 4.1% of new smear-positive patients died while on treatment and 5.8% 

defaulted [3]. When we use age- and sex-specific death and default rates (rather than 

averages as in the baseline analysis), we find that the optimal policy in regions with average 
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TB transmission is unchanged, whereas the optimal policy for regions without TB 

transmission can change. Appendix Figure 1 shows the optimal testing policy by age and sex 

for regions without TB transmission. Compared to the baseline policy, older individuals, 

who have higher death and default rates and who have less to gain from DST and DR TB 

treatment, are not monitored as often using the SS test (the SS test is omitted at month 4, 

then at month 2, and then entirely as age increases) and correspondingly are not identified as 

needing DST.

Transmission costs and the proportion of patients entering first-line treatment with DR TB 

are particularly uncertain and can vary by region. Two-way sensitivity analysis on these 

parameters shows that the optimal policy is to administer DST at initial diagnosis even with 

very small transmission costs and low DR TB prevalence (Appendix Figure 2). Specifically, 

DST should be administered at initial diagnosis if the transmission cost is above $422 

(which is approximately 4% of the $10,550 average transmission cost calculated by the 

microsimulation) or if DR TB prevalence among patients on first-line treatment is 0.9% or 

greater (which is approximately one-third as high as the 3.0% average DR TB prevalence in 

India). Below these values, the optimal action depends on a patient’s SS test result history, 

as illustrated in the optimal policy when there are no transmission costs. We conclude from 

this sensitivity analysis that if there is doubt about whether DR TB prevalence among first-

line patients is zero, DST should be administered as soon as possible.

Our baseline analysis assumed that the DST test is 100% sensitive and specific. In sensitivity 

analysis we reduced these test characteristics to the lower bounds of the 95% confidence 

interval given by a WHO survey of Xpert performance in regions around the world (97% 

sensitivity, 90% specificity) [27]. We estimated cost and QALY parameter values for patients 

who are misdiagnosed (see appendix). We find that decreased Xpert sensitivity and 

specificity does not change the optimal policy in regions with TB transmission: physicians 

should still administer DST as soon as possible, at initial diagnosis. However, in regions 

without transmission, additional confirmation of DR TB is required before a patient 

undergoes DST compared to the baseline case: if negative SS tests are observed after the 

second and third months, the patient completes treatment without further testing, but if a 

positive test is observed, observations should be taken after the fourth, fifth, and sixth 

months of treatment, at which point any positive SS test triggers DST at the next available 

opportunity (Appendix Figure 3). With perfect DST outcomes, one positive SS test triggers 

the decision to administer DST, whereas with imperfect DST sensitivity and specificity, two 

positive SS tests must occur before it is optimal to administer DST (one after months 2 or 3, 

and one after month 4).

5 Discussion

In our theoretical analysis, we found that under some conditions when observations are not 

available, there is a half-space Ht at each time period such that the optimal action is to 

administer DST if βt is in that half-space and to never administer DST otherwise. When the 

prior belief at treatment initiation – which may reflect national estimates of DR prevalence – 

falls in H0, the optimal action is to administer DST at initial diagnosis.
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We also found that when observations are always taken, there are two half-spaces of beliefs 

for which observations will be uninformative for determining the optimal action at time t in 

the future. The intersection of all these half-spaces for all times t greater than the current 

time forms a union of convex regions where observations will not be useful for determining 

decisions at any time. This result furthers our understanding of the value of information over 

repeated decisions, as it shows that costly information should not be collected on certain 

belief regions (a union of convex belief sets with linear borders). Interestingly, this implies 

that even if a belief lies between two other beliefs for which no information should be 

collected, it may still be useful to collect information despite not needing to collect 

information for the beliefs it lies between.

In our empirical analysis for India, we found that in regions with TB transmission at 

nationally representative levels, the optimal action is to administer DST to all patients as 

soon as possible after initial TB diagnosis, before their first month of treatment. We project 

that this would save more than $3000 per patient on first-line TB treatment compared to 

India’s current testing protocol, due to health care savings from averted downstream TB 

transmission. This result demonstrates the importance of incorporating transmission effects 

into policies for individualized treatment of infectious diseases: externalities from 

transmission can have an important impact on the resulting societal benefit. If transmission 

rates are known to be close to negligible, the optimal policy is SS-test-history dependent 

with SS tests taken after the second, third, and fourth months of treatment. In this case, 

information from the repeated SS tests allows decision makers to separate probable-DR 

patients from cured and DS patients, thus reducing unnecessary DST testing.

Our proposed policy of administering DST to patients at diagnosis in regions with non-

negligible TB transmission has significant budget implications. Expansion of DST testing 

will increase the up-front costs of diagnosis. Additionally, to implement such a policy, 

equipment would have to be purchased and personnel trained. Implementing the optimal 

policy nationwide would require substantial capital investment and might not be affordable, 

even though such a policy is ultimately cost-saving. For this reason, India may wish to 

gradually roll out the change, prioritizing areas that are likely to have high DR TB 

prevalence and transmission, such as densely populated urban environments.

We note that, even with broad implementation of the optimal DST testing policy, DR TB 

transmission may not decrease significantly. Many DR TB patients in India do not enter into 

federal, first-line TB treatment and thus would remain outside the reach of these 

improvements [30]. Therefore, implementation of the optimal testing policy would likely not 

be sufficient to control the growing DR TB epidemic in India, although it would be an 

important positive step in that direction.

Our analysis has several limitations. Our numerical analysis is limited to first-line treatment 

in the federal Indian TB treatment program, and TB patients in India may use other 

treatment programs (private clinics, second-line treatment). However, federally funded, first-

line TB treatment remains an important regimen for analysis as many patients use this 

service and it may be the first time TB patients are exposed to World Health Organization-

approved TB treatment regimens. We do not consider false positive tests in the initial 
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diagnosis that may incorrectly triage healthy patients into first-line TB treatment, as we 

assume all patients have either DS or DR TB. This is a reasonable assumption as the 

specificity of the SS test is relatively high (98% [30]).

We assume that no drug resistance is acquired during treatment. Inclusion of this 

complication could mean that it is optimal to administer DST multiple times (e.g., once at 

the beginning of treatment and again later on to identify patients with treatment-generated 

DR) or that it is optimal to administer DST later if DST can only be performed once. 

However, since treatment-acquired drug resistance is much more likely to occur in defaulted 

patients, who are generally lost to follow-up, even expanding the decision space to allow 

multiple DST times may not improve NMB significantly from only allowing one DST.

We also do not consider resistance to DR TB treatment, as information on acquiring such TB 

strains is lacking. The NMB and costs of the policies with transmission may decline in the 

future if the probability of transmission decreases over time due to reductions in 

demographic and social factors such as crowding and sanitation and improvements in TB 

treatment. However, our current analysis indicates that significant improvements in NMB 

and cost savings may accrue with current national estimates of transmission.

The optimal policies we have identified for regions with and without transmission are based 

on average values observed over age and sex groups, and thus are optimal for patients who 

behave similarly to their group average. If patients do not behave similarly to their group 

average, our policies may not be optimal. However, given the robustness of the results in 

regions with transmission, it is unlikely that deviating from the early DST policy will be 

beneficial in regions with transmission, even when additional information about patients is 

available.

Despite these limitations, our findings are robust for typical scenarios for first-line TB 

treatment in India. For most metropolitan areas in India, where transmission is close to the 

nationally estimated levels, and where the majority of TB patients are seen, we find that 

early DST will be a significant improvement on the status quo and could save India up to 

$1.89 billion annually.

Our model can also be used to determine the optimal timing of drug sensitivity testing for 

TB in other settings. Such analysis would be particularly valuable for countries in regions 

such as Southeast Asia, Eastern Europe, and southern Africa with high TB prevalence and 

where drug resistance is an emerging threat [28]. While our empirical example is country-

specific, as it includes measures (such as default, death, diagnosis characteristics) and costs 

specific to India, our framework can be readily adapted to other settings if the requisite data 

are available.

Finally, our model could be applied to other diseases where identification of drug resistance 

during first-line treatment is important. For example, HIV drug resistance is an increasing 

concern as antiretroviral drugs are used more ubiquitously for pre-exposure prophlyaxis 

[29], as well as for shorter-term treatments, such as those for hospital-acquired infections. To 

apply our model to another disease, the simulation model that generated the lifetime costs 
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and health outcomes would need to be restructured to reflect the natural history of that 

disease.

APPENDIX

Relationship between Net Monetary Benefits and Incremental Cost-

Effectiveness Ratios

We aim to maximize net monetary benefit (NMB), which is defined as NMB = λ * QALYs - 

Costs. In our analysis for India, we set λ, the willingness-to-pay threshold, equal to India’s 

per capita GDP. The WHO defines per capita GDP as a “very cost-effective” willingness-to-

pay threshold [23]. We observe that, if the NMB for one policy is larger than another, that 

policy is cost-effective relative to the other policy.

Cost-effectiveness is typicially defined using incremental cost-effectiveness ratios (ICERs). 

To show that this is equivalent to our NMB analysis, let Qi and Ci be the QALYs and costs, 

respectively, associated with policy i. If policy 2 is cost-effective relative to policy 1, its 

ICER, defined as the ratio of the difference in costs to the difference in QALYs, will be less 

than the willingness-to-pay threshold, λ. Assuming all costs, QALYs, and differences to be 

positive, we have:

ICER < λ

C2 − C1
Q2 − Q1

< λ

C2 − C1 < λ(Q2 − Q1)

λ(Q1) − C1 < λ(Q2) − C2

NMB for policy 1 < NMB for policy 2

In our analysis, we find the NMB for the optimal policy to be larger than that of the status 

quo. We also find that the absolute costs for the optimal policy are larger than those of the 

status quo, which implies that the absolute QALYs in the optimal policy are larger since the 

NMB is larger with the same λ. So all costs, QALYs, and differences are positive, and this 

relationship between ICERs and NMB holds. Using this rationale, we conclude that the 

optimal policy is very cost-effective.

Additional discussion of cost-effectiveness thresholds, NMB, and ICERs can be found 

elsewhere [23,31,33].
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Xpert Initial Costs: Breakeven Calculations

Our results indicate that the optimal policy in regions with transmission would be cost-

saving due to averted transmission costs. However, widespread implementation of this policy 

would incur substantial initial startup costs, and initial per-patient costs may be high due to 

low initial patient volume as the system rolls out. Here we estimate how long it would take 

to recoup initial costs.

Appendix Figure 4 shows expected cost savings from onward transmission from detecting 

one DR TB case four months early over the 10 years after the case is detected, broken down 

by age of the detected case. These values take into account the likelihood of onward 

transmission, the likelihood of seeking care, treatment default, competing mortality, and 

other population dynamics using the simulation described in the main manuscript. Over 

time, the expected cost savings increase, as secondary, tertiary, and higher-order 

transmissions are averted. The cost savings vary, as some age groups are more likely to 

contact and transmit TB to others, and different ages have different probabilities of seeking 

care or dying. In some cases, averting a case of DR TB may not necessarily save costs in the 

short term, as an early death can also save costs compared to the situation where the patient 

has a longer life but incurs large medical expenses (this explains the slightly negative values 

for age group 20 in the first year).

Appendix Table 4 shows the number of years until an initial investment of $100/patient, 

$500/patient, or $1000/patient to implement Xpert could be recovered through averted costs 

from downstream transmission, broken down by the age of the detected DR TB case. In 

most cases, the initial investment cost would be recovered within 10 years, and in many 

cases within 5 years.

Cost and QALY Calculations for Patients Misdiagnosed by Xpert

We assume that non-DR patients misdiagnosed to DR TB treatment behave similarly to 

those in first-line treatment: cure, death, and default rates are the same as for non-DR in 

first-line treatment, with the same long-term health outcomes, in expectation, as DR TB 

treatment can still cure DS patients. We assign a QALY decrement and cost increase due to 

misdiagnosis of non-DR patients due to being exposed to DR TB treatment (which is more 

expensive and uses harsher drugs than first-line treatment). Misdiagnosed DR TB patients, 

who are incorrectly identified as not having DR TB, continue on first-line treatment and exit 

treatment with DR TB upon default or treatment completion.

The QALY decrement and cost increase associated with misdiagnosed non-DR patients are 

calculated as follows. The cost increase is the difference between the cost of DR TB 

treatment and first-line treatment. The cost of a full DR TB treatment regimen (24 months) 

is $3649.58 [14], although the average duration of exposure to DR TB treatment is only 19.5 

months due to deaths and default (death and default rates taken from [14]). A full first-line 

treatment regimen costs $183.33. We therefore approximate the expected cost increase due 

to using DR TB treatment as $2781.95 (= ($3649.58)(19.5/24) − $183.33). We assume that 

patient QALY values decrease to levels similar to having untreated TB due to the harsh 

Suen et al. Page 21

Health Care Manag Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drugs used for DR TB treatment, which can cause severe side effects. This results in a 

monthly decrease of ((0.843–0.663)/12), as the yearly QALY value of a TB patient on first-

line treatment is 0.843 and without treatment is 0.663. This monthly QALY decrease is 

applied for 19.5 months, the average number of months of exposure to DR TB treatment, for 

a lifetime QALY decrement of 0.2925 from being exposed to DR TB treatment.

Proofs

To prove Theorem 1, we first establish several preliminary results (Lemma 1 and 

Propositions 1 and 2) for patients still on treatment. Lemma 1 establishes that when DST 

yields greater NMB for patients with DR TB than for patients with DS TB or healthy 

patients (Assumption 1), rewards associated with DST cannot increase over the course of 

treatment.

Lemma 1

If administering DST to non-healthy patients generates more NMB than administering DST 

to healthy patients (NMBDST,DR ≥ NMBDST,H, NMBDST,DS ≥ NMBDST,H); administering 

DST to a healthy patient generates more NMB than having the patient defaulted or dead 

(NMBDST,H dHNMBdH and NMBDST,H ≥ NMBdead); and sick patients are better off in 

treatment (NMBDR ≥ NMBdDR, NMBDR ≥ NMBdead, NMBDS ≥ NMBdDS, and NMBDS ≥ 

NMBdead); then rDST (ftβt) < rDST (βt).

Proof—We omit the subscript t for cDR,t, cDS,t, and ft as we are only concerned with the 

transition between time t to t + 1. We prove the result by contradiction.

Suppose rDST (fβ) ≥ rDST (β).

NMB
DST , H

NMB
DST , DS

NMB
DST , DR

NMB
dH

NMB
dDS

NMB
dDS

NMB
dead

′

1 − d
H

− ν
H

c
DS

c
DR, t

0 0 0 0

0 1 − c
DS

− d
DS

− ν
DS

0 0 0 0 0

0 0 1 − c
DR

− d
DR

− ν
DR

0 0 0 0

d
H

0 0 1 0 0 0

0 d
DS

0 0 1 0 0

0 0 d
DR

0 0 1 0

ν
H

ν
DS

ν
DR

ν
dH

ν
dDS

ν
dDR

1

⋅

1 − b
DS

− b
DR

b
DS

b
DR

0

0

0

0

≥

NMB
DST , H

NMB
DST , DS

NMB
DST , DR

NMB
dH

NMB
dDS

NMB
dDS

NMB
dead

′ ⋅

1 − b
DS

− b
DR

b
DS

b
DR

0

0

0

0

However, this cannot hold. The weighted sum of NMBDST,H, NMBdH, and NBdead must be 

less than NMBDST,H, and the weighted sum of NMBDST,DS, NMBDST,H, NMBdDS, and 
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NMBdead must be less than NMBDST,DS, and the weighted sum of NMBDST,DR, NMBDST,H, 

NMBdDR, and NMBdead must be less than NMBDST,DR. Therefore we have reached a 

contradiction and the assumption must not be true. Thus, rDST (ftβ) < rDST (β).

Proposition 1

When no observations are available for any time periods and Assumption 1 holds, then the 

optimal action is to either administer DST immediately or not at all.

Proof—Proof by induction. For a patient still on treatment at time T, we can either 

administer DST or not ever administer DST. If the optimal action at time T given belief βT is 

to administer DST (VT = rDST βT), then at time T − 1 the value function is:

max(r
DST

β
T − 1, r

wait
+ δ(V

T
(β

T
))) max(r

DST
β

T − 1, r
wait

+ δ(V
T

( f
T − 1β

T − 1))) max(r
DST

β
T − 1,

r
wait

+ δ(V
DST

( f
T − 1β

T − 1)))

Lemma 1 states that rDST βt−1 ≥ rDST (ft−1βt−1). The term rwait is negative and the discount 

factor δ is less than one, so the optimal action at time T − 1 is DST and VT−1 = rDST βT−1. 

This follows similarly for time T − 2, T − 3, …, 0. Therefore if it is optimal to administer 

DST at all, the best time to do so is as soon as possible, before the first month of treatment.

Corollary 1

If Assumption 1 does not hold, then Proposition 1 can still hold if Assumption 2 holds.

Proof—This ensures that the induction step from the proof of Proposition 1 holds without 

Lemma 1. DST is the optimal action at time t if:

max(r
DST

β
t − 1, r

wait
+ δ(r

DST
( f

t − 1β
t − 1))) = r

DST
β

t − 1 r
DST

β
t − 1 ≥ r

wait
+ δ(r

DST
( f

t − 1β
t − 1))

r
DST

(I − δ f
t − 1)β

t − 1 ≥ r
wait

where I is the identity matrix.

Proposition 2

When no observations are available for any time periods and Assumption 1 or 2 holds, then 

there is a half-space Ht at each time period such that the optimal action is to administer DST 

if βt is in that half-space and to wait otherwise. Ht is given by:

H
t

= β
t
: r

DST
− δ

T − t
r

DST
f
T − 1 f

T − 2… f
t

β
t

≥ r
wait ∑

i = 0

T − t − 1
(δi)

Proof—From Proposition 1 or Corollary 1 we know it will never be optimal to wait and 

then administer DST, so the only choices at any time t are to either administer DST or wait 

forever. Therefore it will only be optimal to administer DST in time period t if:
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r
DST

(β
t

≥ r
wait

+ δ(r
wait

+ δ(r
wait

…δ(r
DST

f
T − 1… f

t
β

t
))

= ∑
i = 0

T − t − 1
(δi

r
wait

) + δ
T − t

r
DST

f
T − 1… f

t
β

t
H

t

= β
t
: r

DST
− δ

T − t
r

DST
f
T − 1 f

T − 2… f
t

β
t

≥ ∑
i = 0

T − t − 1
(δi

r
wait

)

Note that this is a half-space as the left-hand side is linear in βt, making the expression a 

single affine inequality.

Proof of Theorem 1—Theorem 1 follows directly from Proposition 2.

Proof of Theorem 2—We use a proof by induction. Initialization: for all patients still on 

treatment at time T, there is a threshold solution at time T, where the optimal action is to 

DST if (rDST – r~DST)βT ≥ 0.

Induction step: if there is a threshold solution at time t+1, at time t there can be at most five 

belief regions, on which the optimal actions will be to DST at time t, wait and DST at time t

+1, wait and DST at t+1 only if there is a positive observation, wait and DST at t+1 only if 

there is a negative observation, and wait and not DST (and if death or default is observed, no 

action is possible).

We first show that if the left inequality in the threshold condition holds, there cannot be a 

region where the optimal action is to wait and DST at t+1 only if there is a negative 

observation (“the counterintuitive action”). Let rwait = rwait[1, 1, 1, 0, 0, 0, 0] be the 

vectorized form of rwait, and K
t + 1 = ∑

k = t + 1

T − 1

δ
T − 1 − k

r
wait

+ δ
T − t − 1

r
DST∏i = t + 1

T − 1
f
i
 be 

the discounted future reward vector for waiting (no DST).

The expected future reward from default or death for the post-dynamics belief state β
∼

t
 is 

pr(z
t

= default | β
∼

t
)(future NMB from defaulting) P(β

∼
t
)Qβ

∼
t
+ pr(z

t
= dead | β

∼
t
) (future NMB 

from dying) Rβ
∼

t
. This simplifies to (future NMB from defaulting) Qβ

∼
t
+(future NMB from 

dyingR)S) β
∼

t
, where S is a 7 × 7 matrix of zeros with a single 1 in the lower right corner 

(thus Sβ = [0, 0, 0, 0, 0, 0, β(7)]). The future NMB from defaulting and dying can be found 

in the appropriate elements of ∑
k = t + 1

T − 1

δ
T − 1 − k

r
DST

, since r~DST contains NMBdH, …, 

NMBdead. Therefore let C
t + 1β

∼
t

= ∑
k = t + 1

T − 1

δ
T − 1 − k

r
DST

Q + ∑
k = t + 1

T − 1

δ
T − 1 − k

r
DST

S)β
∼

t
, or 

∑
k = t + 1

T − 1

δ
T − 1 − k(r

DST
Q + r

DST
S)β

∼
t
 be all the future rewards from observing death or 

default at time t.
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Then generally, the reward at time t is:

r
wait

+ δ(C
t + 1β

∼
t

+ ∑
i = + , −

pr(see i | β
∼

t
)[r

DST
M

i
β
∼

t
+ K

t + 1M
i
β
∼

t
])

r
wait

+ δ(C
t + 1β

∼
t

+ ∑
i = + , −

N
i
−1[r

DST
N

i
M

i
β
∼

t
+ K

t + 1N
i
M

i
β
∼

t
])

r
wait

+ δ(C
t + 1β

∼
t

+ ∑
i = + , −

[r
DST

M
i
β
∼

t
+ K

t + 1M
i
β
∼

t
])

So, the reward for wait and not DST is r
wait

+ δ(C
t + 1β

∼
t
+ K

t + 1(M+ + M−)β
∼

t
]), and 

similarly, the reward for wait and DST at t+1 only if there is a negative observation is 

r
wait

+ δ(C
t + 1β

∼
t
+ r

DST
M−β

∼
t
+ K

t + 1M+β
∼

t
), and the reward for wait and DST at time t+1 is: 

r
wait

+ δ(C
t + 1β

∼
t
+ r

DST
(M+ + M−)β

∼
t
).

Using a proof by contradiction, we will show that the reward for the counterintuitive action 

cannot be better than both the rewards for wait and DST regardless of observation or wait 

and not DST. Therefore we begin by assuming the reward for the counterintuitive action is 

better than both.

The reward for the counterintuitive action is better than wait and not DST, so:

r
wait

+ δ(C
t + 1β

∼
t

+ r
DST

M−β
∼

t
+ K

t + 1M+β
∼

t
) > r

wait
+ δ(C

t + 1β
∼

t
+ K

t + 1(M+ + M−)β
∼

t
) r

DST
M−β

∼
t

+ K
t + 1M+β

∼
t

> K
t + 1(M+ + M−)β

∼
t

(r
DST

− K
t + 1)M−β

∼
t

> 0 (r
DST , H

− K
t + 1
1 )(spec)β

∼
t
1

+

(r
DST , DS

− K
t + 1
2 )(1 − sens)β

∼
t
2

+ (r
DST , DR

− K
t + 1
3 )(1 − sens)β

∼
t
3

> 0

where the superscripts denote the element number. If the left inequality in the threshold 

condition holds, then r
DST , H

− K
t + 1
1 ≤ 0, and β

∼
t

1
≥ 0, and 1 ≤ spec > 0.5 so 1−sens < spec 

and is positive, so (r
DST , H

− K
t + 1
1 )(spec)β

∼
t

1
≤ (r

DST , H
− K

t + 1
1 )(1 − sens)β

∼
t

1
. Then:

(r
DST , H

− K
t + 1
1 )(1 − sens)β

∼
t
1

+ (r
DST , DS

− K
t + 1
2 )(1 − sens)β

∼
t
2

+ (r
DST , DR

− K
t + 1
3 )(1 − sens)β

∼
t
3

> 0

(r
DST

− K
t + 1)(1 − sens)β

∼
t

> 0 (r
DST

− K
t + 1)β

∼
t

> 0

Also, the reward for the counterintuitive action is better than the reward for wait and DST 

regardless of observation, so:
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r
wait

+ δ C
t + 1β

∼
t

+ r
DST

M−β
∼

t
+ K

t + 1M+β
∼

t
> r

wait
+ δ C

t + 1β
∼

t
+ r

DST
M+ + M− β

∼
t

r
DST , H

− K
t + 1 1 − spec β

∼
t
1

+ r
DST , DS

− K
t + 1
2

sens β
∼

t
2

+ r
DST , DR

− K
t + 1
3

sens β
∼

t
3

< 0

r
DST

− K
t + 1 β

∼
t

< 0

using a very similar procedure but noting that 1 − spec < sens. However, r
DST

+ K
t + 1 β

∼
t

cannot be both greater than and less than zero, so there is a contradiction and our assumption 

is false.

This shows that the counterintuitive action cannot be the optimal action. We next show that 

DST at time t is better than waiting to DST at time t+1. Since M+ + M− equals the identity, it 

must be that rDST βt ≥ rwait + δrDST ftβt since rwait is negative, δ is less than 1, and from 

lemma 1 we know rDST βt > rDST ftβt.

Finally, we need to find a condition such that the reward at DST at time t is greater than the 

reward for waiting and only DST after a positive observation.

r
DST

β
t

≥ r
wait

+ δ C
t + 1β

∼
t

+ r
DST

M+ f
t
β

t
+ K

t + 1M− f
t
β

t
r
wait

+ δK
t + 1M− f

t
β

t
+ δC

t + 1 f
t
β

t

≤ r
DST

− δr
DST

M+ f
t

β
t

r
wait

≤ r
DST

− δ r
DST

M+ − K
t + 1M− + C

t + 1 f
t

β
t

We only need this last inequality to hold on the “corners” of the feasible space. This is 

because if it is true at [1,0,0,0,0,0,0]’ and [0,1,0,0,0,0,0]’ it holds for all beliefs since 

Assumption 1 ensures DST gives the largest reward at [0,0,1]’ and the reward rDST βt is a 

plane on the belief space.

This means that if this condition is met, the only possible action regions left are to DST at 

time t or to wait and not DST, and therefore there must exist a threshold solution: it is 

optimal to DST if Atβt ≥ kt where At = (rDST − δKt+1ft) and kt = rwait.

We now establish several preliminary results that we use to prove Theorem 3.

Proposition 3

For a patient who is still on treatment at time t, beliefs on a half-space at time t − 1 map to a 

half-space at time t after accounting for disease dynamics and sputum smear observations, 

and vice versa (beliefs on a half-space at time t can only be reached by beliefs on a half-

space at time t − 1).

Proof—Suppose a belief βt−1 = [x1 x2 x3 0 0 0 0]′ is in a half-space S, defined as all βt−1 

such that Aβt−1 ≤ 0 for some 3 × 1 vector A = [a1 a2 a3 0 0 0 0]. Since we are concerned 

with only patients who are in treatment at time t, and must therefore have been in treatment 

at time t − 1, there is no possibility of the patient being in states 4–7. We therefore restrict 

our notation to show states 1 to 3 for clarity and omit the zeros in the states and transitions 

associated with states 4 to 7. The belief state therefore becomes βt = [1 − bDS − bDR, bDS, 

bDR].
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Note that we can use the homogeneous inequality Aβt−1 ≤ 0 to express the half-space 

(instead of Āβt−1 ≤ c for 3 × 1 vector Ā and scalar c) without loss of generality. We can 

express any Āβt−1 ≤ c as Aβt−1 ≤ 0: we know that 1βt−1 = 1 since βt −1 is a belief and its 

elements must sum to one. Subtracting c from both sides, we see that [ā1 – c ā2 – c ā3 – c] 

βt−1 ≤ 0, and we define [a1 a2 a3] = [ā1 – c ā2 – c ā3 – c]. We therefore use the homogeneous 

inequality throughout.

At time t, the updated belief will be M+ f
t − 1β

t − 1  if we observe an SS+ test result, or 

M− f
t − 1β

t − 1  if we observe an SS- test result. Recall that

β
t
| f

t − 1β
t − 1, z

t − 1 = SS + = M+ f
t − 1β

t − 1 = N+ f
t − 1β

t − 1 M+ f
t − 1β

t − 1

where N+(ft−1βt−1) is a positive scalar, and M+ and ft−1 are matrices:

N+(

p1

p2

p3

) =
1

1 − spec p1 sens p1 + p3

M+ =

1 − spec 0 0

0 sens 0

0 0 sens

f
t − 1 =

1 c
DS, t − 1 c

DR, t − 1

0 1 − c
DS, t − 1 0

0 0 1 − c
DR, t − 1

Therefore we have:

M+
−1 =

1
1 − spec

0 0

0
1

sens
0

0 0
1

sens

f
t − 1
−1 =

1
c
DS, t − 1

c
DS, t − 1 − 1

c
DR, t − 1

c
DR, t − 1 − 1

0
1

1 − c
DS, t − 1

0

0 0
1

1 − c
DR, t − 1
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Letting C = A f
t − 1
−1

M+
−1, we see that:

 Aβt−1 ≤0 Start with the half-space in time t − 1

A f
t − 1
−1

M+
−1

M+ f
t − 1β

t − 1

≤0
Substitute AI = A f

t − 1
−1

M+
−1

M+ f
t − 1

⇔CM+ft−1βt−1 ≤0 Use definition of C

⇔N+(ft−1βt−1)CM+ft−1βt−1 ≤ (N+(ft−1βt−1))(0) Multiply both sides by positive scalar

⇔CN+(ft−1βt−1)M+ft−1βt−1 ≤0 Move scalar

⇔Cβt ≤0 Use definition of (βt|βt−1, zt−1 = SS+)

Thus, beliefs at time t − 1 in half-space S described by {βt−1: Aβt−1 0} will map to beliefs in 

half-space Ht at time t described by {βt: Cβt ≤ 0}, where C = A f
t − 1
−1

M+
−1, given an SS+ 

observation, and a half-space at time t can only be reached after a positive observation by a 

half-space of beliefs at time t − 1. The proof is identical for a negative SS test observation 

except we use N− and M−.

Since the proof is valid in the opposite direction, the opposite is also true: a half-space at 

time t, Ht = βt: Cβt ≤ 0} can only be reached by beliefs at time t−1 on a half-space 

S
t − 1, H

t,zt − 1 = SS + = β
t − 1: Aβ

t − 1 ≤ 0  where A = CM+f after a positive observation and 

half-space S
t − 1, H

t,zt − 1 = SS − = β
t − 1: A

∼
β

t − 1 ≤ 0  where A
∼

= CM− f  after a negative 

observation.

Proposition 4

S
t − 1, H

t
, z

t − 1 = SS + ∩ S
t − 1, H

t
, z

t − 1 = SS − = S
t − 1, H

t
, z

t − 1 = SS +orS
t − 1, H

t
, z

t − 1 = SS −.

Proof—Since we are again concerned with the set of beliefs for which there are positive or 

negative SS test results, we again only need to consider patients who are in treatment at time 

t, and must therefore have been in treatment at time t − 1. There is no possibility of the 

patient being in states 4–7, and we therefore restrict our notation to show states 1 to 3 for 

clarity and omit the zeros in the states and transitions associated with states 4 to 7, as given 

in the previous proof (Proposition 3).

Suppose we have a set of beliefs at time t in a half-space Ht = {βt: Cβt ≤ 0}. The line of 

demarcation Cβt = 0 intersects at least twice with the “edges” of the feasible belief space 

–

k

0

1 − k

, 
k

1 − k

0

, or 
0

1 − k

k

− for some value k, i.e., points for which at least one element of 

the 3 × 1 vector is 0 (points on the red triangle in Appendix Figure 5). The line Cβt = 0 can 

therefore be expressed as the linear combination of any two of these intersection points.

Proposition 3 established that the set of beliefs at time t − 1 that map to half-space Ht at time 

t is a half-space itself, which we denote S
t − 1, H

t
, SS + or S

t − 1, H
t
, SS −. The demarcation line 
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that describes S
t − 1, H

t
, SS + and the line for S

t − 1, H
t
, SS − can therefore also be expressed as a 

linear combination of two edge points (see Appendix Figure 5).

Let a be in the intersection of the line of demarcation (Cβt ≤ 0) with the line segment 
k

0

1 − k

, 

point b the intersection with 
k

1 − k

0

, and the point c the intersection with 
0

1 − k

k

 where k ∈ 

(0, 1). Let a+′  be the point that maps to a after disease dynamics ftβt and a positive SS 

observation, similarly for a−′  except after a negative SS observation, and similarly for b and 

( b+′  and b−′ ) and c ( c+′  and c−′ ). Additionally, to simplify terminology, let us define the “DR 

direction” as the direction to travel from 
1

0

0

 to 
0

0

1

 and the “DS direction” the direction to 

travel from 
1

0

0

 to 
0

1

0

. See Appendix Figure 5.

In order show that one region is a subset of the other, we first find the points a+′ , a−′ , b+′ , b−′ , 

c+′ , c−′  relative to points a, b, and c. We will show that c+′ = c−′ , so we can restrict our analysis 

to points a and b. We will then show that the third element (the probability the patient has 

DR TB) is smaller for a+′  than a−′ , and similarly for b+′ , and b−′ ,. This means the line for 

S
t − 1, H

t
, SS − is “below” the one for S

t − 1, H
t
, SS +, as depicted in Appendix Figure 5, and 

therefore one belief set must be a subset of the other.

Step 1:

Let the point a be given by 
h

0

1 − h

, point b by 
h
∼

1 − h
∼

0

, and point c by 
h

1 − h

0

. As before, we 

have:

β
t
| z

t − 1 = + , β
t − 1 = M+ f

t − 1β
t − 1 β

t − 1 = f
t − 1
−1

M+
−1

β
t
| z

t − 1

and β
t
| z

t − 1 = − , β
t − 1 = M− f

t − 1β
t − 1 β

t − 1 = f
t − 1
−1

M−
−1

β
t
| z

t − 1

f
t − 1
−1  is defined as above, and M+

−1 and M−
−1 can be found to be:
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M+
−1(

x1

x2

x3

) =
1

sens x1 + 1 − spec x2 + x3

sens x1

1 − spec x2

1 − spec x3

M−
−1(

x1

x2

x3

) =
1

1 − sens x1 + spec x2 + x3

1 − sens x1

spec x2

spec x3

We can then find a+′ , a−′ , b+′ , and b−′  to be:

a+′ = f
t − 1
−1

M+
−1

h

0

1 − h

=

1 − 1 − h
1

1 − c
DR

1 − spec

h sens + 1 − h 1 − spec

0

1 − h
1

1 − c
DR

1 − spec

h sens + 1 − h 1 − spec

a−′ = f
t − 1
−1

M−
−1

h

0

1 − h

=

1 − 1 − h
1

1 − c
DR

spec

h 1 − sens + 1 − h spec

0

1 − h
1

1 − c
DR

spec

h 1 − sens + 1 − h spec

b+′ = f
t − 1
−1

M+
−1

h
∼

1 − h
∼

0

=

1 − 1 − h
∼ 1

1 − c
DR

1 − spec

h
∼

sens + 1 − h
∼

1 − spec

1 − h
∼ 1

1 − c
DR

1 − spec

h
∼

sens + 1 − h
∼

1 − spec

0

b−′ = f
t − 1
−1

M−
−1

h
∼

1 − h
∼

0

=

1 − 1 − h
∼ 1

1 − c
DS

spec

h
∼

1 − sens + 1 − h
∼

spec

1 − h
∼ 1

1 − c
DS

spec

h
∼

1 − sens + 1 − h
∼

spec

0
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c+′ = f
t − 1
−1

M+
−1

0

1 − h

h

=

1 −
1 − h

1 − c
DS

−
h

1 − c
DR

1 − h

1 − c
DS

h

1 − c
DR

= f
t − 1
−1

M−
−1

0

1 − h

h

= c−′

c+′ = c−′ , so whether one belief set is a subset of the other is not determined by this 

intersection (see panel b of Appendix Figure 5). We therefore turn to analyzing a, a+′ , a−′ , b, 

b+′ , and b−′ .

Step 2:

We first examine a, a+′ , and a−′ . As expected, a+′  and a−′  lie on the same leg of the belief 

space as a – the probability the patient has DS TB, the second element of the belief vector, is 

0 for all three vectors. Since each vector sums to one, we can use the third element of each 

vector to determine their relative ordering on the line between 
1

0

0

 and 
0

0

1

.

Note that:

−
1

1 − c
DR

≥ 1 since 0 ≤ cDR ≤ 1.

− spec ≥1 – sens since 0.5 < sens < 1 and 0.5 < spec <1

spec

h 1 − sens + 1 − h spec
≥ 1 since 0 ≤ h ≤ 1

1 − h ≤ 1 − h
1

1 − c
DR

spec

h 1 − sens + 1 − h spec

⇒ a−′  is in the DR direction from a

− sens ≥ 1 − spec

1 − spec

h(sens) + (1 − h)(1 − spec)
≤ 1

(1 − h)
1

1 − c
DR

1 − spec

h(sens) + (1 − h)(1 − spec)
≤ (1 − h)

1
1 − c

DR

spec

(h(1 − sens) + (1 − h)spec)

⇒ a−′  is in the DR direction from a+′

− Additionally, if 1 − spec

h sens + 1 − h 1 − spec
≤ 1 − c

DR
:

1 − h
1

1 − c
DR

1 − spec

h sens + 1 − h 1 − spec
≤ 1 − h

⇒ a is in the DR direction from a+′
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So we have shown that to travel from a+′  and a−′  we need to move in the DR direction, and a 

will lie between those points if 1 − spec

h sens + 1 − h 1 − spec
≤ 1 − c

DR
.

Note that the form of the third element of a+′  and the second element of b+′  are the same, 

except cDS is used instead of cDR, and similarly for a−′  and b−′ . Our assumptions about cDR 

also hold for cDS – namely that 0 ≤ cDS ≤ 1 – so our conclusions about the relative position 

of a, a+′ , and a−′  also apply to b, b+′ , and b−′ , namely that to travel from b+′  to b−′ , we need to 

move in the DS direction, and b will lie between those points if 
1 − spec

h sens + 1 − h 1 − spec
≤ 1 − c

DS
. See Appendix Figure 5.

Since the half-space Ht must include the point 
0

0

1

 (because if the patient has DR TB the 

optimal action is to administer DST, by assumption), i.e., Ht is “below” the line ab̄ in 

Appendix Figure 5, then S
t − 1, H

t
, SS − is a subset of S

t − 1, H
t
, SS +. Similarly, the half-spaces 

that map to the complementary half-space ∼ Ht have the opposite relationship: S
t − 1, H

t
, SS +

is a subset of S
t − 1, H

t
, SS −. Then since one set is the subset of the other, the intersection 

between subsets will just be the smaller subset, as we desired to show.

Proof of Theorem 3—Proof by induction.

Initialization step: Let Ht be the half-space of beliefs at time t where the optimal action is to 

administer DST and ∼ Ht be the half-space of beliefs where the optimal action is to continue 

first-line treatment. Ut−1,t is defined as 

S
t − 1, H

t
, SS + ∩ S

t − 1, H
t
, SS − ∪ S

t − 1, H
t
, SS + ∩ S

t − 1, H
t
, SS − . Proposition 4 tells us that 

S
t − 1, H

t
, SS + ∩ S

t − 1, H
t
, SS −  is a half-space and that S

t − 1, H
t
, SS + ∩ S

t − 1, H
t
, SS −  is also 

a half-space, so Ut−1,t is the union of two half-spaces.

Induction step: Let the two half-spaces of Uk,t be called Lk and Mk. Proposition 4 tells us 

that S
t − 1, L

t
, SS + ∩ S

t − 1, L
t
, SS −  is a half-space and similarly, 

S
k − 1, M

k
, SS + ∩ S

k − 1, H
k
, SS −  is also a half-space.

U
k − 1, t = S

t − 1, H
t
, SS + ∩ S

t − 1, H
t
, SS − ∪ S

k − 1, M
k
, SS + ∩ S

k − 1, H
t
, SS −  since these are the 

areas that map to Lk and Mk regardless of SS test results, and in turn Lk and Mk in map to Ht 

and ~Ht regardless of any SS results between periods k and t. Therefore Uk−1,t is the union 

of two half-spaces.
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Proof of Theorem 4—Suppose the set of beliefs where DST is the optimal action is a 

half-space for all times t = {0, 1, 2, …, T}. Beliefs at time k that lie in Uk,t for some t > k 

will be useless for determining the optimal decision at time t. For an observation to be 

useless in determining any future decisions, it must lie within Uk,t for all t > k. Therefore the 

set of beliefs that are useless in determining any future decisions is the intersection of Uk,t 

for all t > k. Theorem 3 tells us that Uk,t for each t is the union of two convex regions. Since 

each Uk,t can generate at most double the number of convex regions when intersected with 

Uk,~k, the maximum number of convex regions in the set of beliefs at time k for which 

observations do not inform future actions is 2T−k.

Appendix Figure 1. 
Optimal testing policy for regions of India without TB transmission, by age and sex

Appendix Figure 2. 
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Earliest DST month (at end of month) across all possible patient SS test histories for 

transmission costs between 0 and 10% of the base case ($0 – $1393) and initial DR TB 

prevalence among first-line TB patients between 0 and 50% of the base case (0 – 0.015)

Appendix Figure 3. 
Optimal testing policy for regions of India without TB transmission, with imperfect Xpert 

sensitivity and specificity (97% sensitivity, 95% specificity)

Appendix Figure 4. 
Expected costs saved over time from early detection of a DR TB case, by age group
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Appendix Figure 5. 
Schematic of belief regions described in proofs of Propositions 3 and 4 and Theorem 3. 

Panel a: The line demarking half-space Ht, Cβt = 0, intersects the lines that form the edges 

of the belief space at points a, b and c. Panel b: The lines that define half-spaces 

S
t − 1, H

t
, SS + and S

t − 1, H
t
, SS − can be expressed as linear combinations of a+′  and b+′ , and 

similarly for a−′  and b−′  (panel c). Panel d: We define the union of the two intersections 

(given in panel b and c) as Ut−1,t.

Appendix Table 1

Summary of notation

Value Description

t Time epochs, t = 0, 1, 2, 3, 4, 5, T = 6

st Patient health state at time t. States are: s1 = Healthy on treatment (H), s2 = DS TB on treatment (DS), s3 = 
DR TB on treatment (DR), s4 = healthy defaulted (dH), s5 = DS TB defaulted (dDS), s6 = DR TB 
defaulted (dDR), s7 = dead. States 4, 5, 6, and 7 are directly observable. Can be in the set S = 1, 2, 3, 4, 5, 
6, 7

at Action at time t. Can be one of DST (administer DST to the patient), wait and see (continue on first-line 
treatment with an SS test), wait and not see (continue on first-line treatment without an SS test).

δ Discount factor

ft 7 × 7 transition matrix describing treatment dynamics. Element ft,ij provides probability of being in state j 
at time t + 1 if in state i at time t. The terms d, c, and ν represent probabilities of default, cure, and death, 
respectively.
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Value Description

zt Observations at time t. Can be one of {SS+, SS−, default, death} if at = wait, and {No default or death, 
default, death} if at = DST.

Beliefs and Belief Updates

Sens SS test sensitivity

Spec SS test specificity

βt Belief state at time t. A vector of probability values over each of the health states at time t.

M
z
t

f
t
β

t
Function that updates the belief given observation zt, dynamics ft, and prior belief βt: βt

= M
z
t

f
t
β

t

N+(x)
1

1 − spec x 1 + sens x 2 + x 3
. Used in the belief update: M

zt = +
−

x = N+ x M+x

M+
1 − spec 0 0 0 0 0 0

0 sens 0 0 0 0 0

0 0 sens 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

. Used in the belief update: M
zt = +
−

x = N+ x M+x

N−(x)
1

spec x 1 + 1 − sens x 2 + x 3
. Used in the belief update: M

zt = −
−

x = N− x M−x

M−
spec 0 0 0 0 0 0

0 1 − sens 0 0 0 0 0

0 0 1 − sens 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

. Used in the belief update: M
zt = −
−

x = N− x M−x

P(x)
1

x 4 + x 5 + x 6
. Used in the belief update: M

zt = default
−

x = P x Qx

Q
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

. Used in the belief update: M
zt = default
−

x = P x Qx

Rewards

rwait,a Stage reward.

rDST Terminal rewards if at = DST. A 1 × 7 vector of net monetary benefits (NMB):

[NMBDST,H NMBDST,DS NMBDST,DR NMBdH NMBdDS NMBdDS NMBdead].

r∼DST Terminal reward if patient never undergoes DST. A 1 × 7 vector of net monetary benefits (NMB):

[NMB~DST,H NMB~DST,DS NMB~DST,DR NMBdH NMBdDS NMBdDS NMBdead]
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Appendix Table 2

Transition parameters for India example1

Description Value Reference

Sputum smear test

 Sensitivity 0.60 [30]

 Specificity 0.98 [30]

Cure and default in first-line treatment

 Cumulative probability of cure After Month: DS DR [37]

1 0.35 0.00

2 0.88 0.00

3 0.97 0.00

4 1.00 0.30

5 1.00 0.30

6 1.00 0.30

 Monthly probability of default Age Males Females [3,26,32]

0 0.0229 0.0229

20 0.0222 0.0192

30 0.0219 0.0173

40 0.0216 0.0155

50 0.0212 0.0136

60 0.0209 0.0118

70 0.0205 0.0099

Mortality

 Monthly mortality in treatment, DS or DR TB 0.0101 [3,26,32]

 Monthly mortality, DS or DR TB without treatment (selected 
ages shown)

Age Males Females [35]

0 0.0289 0.0290

10 0.0248 0.0248

20 0.0249 0.0249

30 0.0250 0.0249

40 0.0252 0.0250

50 0.0257 0.0252

60 0.0270 0.0264

70 0.0303 0.0292

80 0.0360 0.0345

90 0.0473 0.0462

99 1.0000 1.0000

 Monthly mortality, no TB and no treatment (selected ages 
shown)

Age Males Females [48]

0 0.0043 0.0044

10 0.0001 0.0001

20 0.0002 0.0002

30 0.0003 0.0002
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Description Value Reference

40 0.0005 0.0003

50 0.0010 0.0006

60 0.0024 0.0018

70 0.0057 0.0047

80 0.0116 0.0100

90 0.0231 0.0220

99 1.0000 1.0000

1
Transition probabilities for calculation of the post-first-line treatment dynamics, used in the simulation that generates 

lifetime costs and QALYs, are given in Suen et. al [14]

Appendix Table 3

QALY values and costs2 for India example

Description Value Reference

Test costs ($)

 Sputum smear test 4.93 [7]

 GeneXpert test 26.57 [7]

Monthly first-line treatment costs ($)

 Patient costs 6.33 [40]

 Drug costs 3.60 [2,43,38]

 Clinic costs 31.71 [41]

Discount factor

 Annual discount rate 3% [46]

Societal losses due to an additional month of transmissibility

 Drug-sensitive TB transmission Age Costs ($) QALYS Calculated from simulation

10 2,469 −9 [14]

20 11,346 −28

30 11,460 −32

40 10,499 −41

50 11,539 −32

60 7,381 −30

70 10,424 −28

80 11,024 −16

90 11,024 −16

 Drug-resistant TB transmission Age Costs ($) QALYS Calculated from simulation

10 9,400 −9 [14]

20 14,957 −28

30 31,027 −31

40 31,867 −31

50 23,021 −30

60 23,604 −21

70 18,774 −17

80 20,036 −25
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Description Value Reference

90 20,036 −24

Quality-of-life multipliers

 Healthy, treatment naive 1.00 [47]

 Healthy, with past treatment 0.94 [26]

 Healthy, on first-line treatment 0.85 Assumed

 DS TB, not on treatment 0.66 [42]

 DS TB, on first-line treatment 0.84 [34]

 DR TB, not on DR TB treatment 0.66 [42]

 DR TB, on DR TB treatment 0.75 3

Willingness-to-pay

 GDP per capita in India ($) 1450 [44]

Monthly background healthcare costs when not on TB treatment

Age Males Females [39]

0 0.20 0.19

10 0.17 0.26

20 1.23 2.63

30 1.62 2.78

40 1.66 2.92

50 2.53 2.37

60 3.31 2.44

70 4.76 4.18

Lifetime discounted costs and QALYs

 At the end of first-line treatment for a 30-year-old male by health and treatment state

Costs ($) QALYs Calculated from simulation

 Healthy (cured) 421.79 16.530 [14]

 DS TB, exiting all treatment 171.71 4.353

 DR TB, exiting all treatment 115.56 4.084

 DR TB, entering DR TB treatment 1560.00 7.079

 For a 30-year-old male DR patient successfully triaged to DR TB treatment

After Month Costs ($) QALYs Calculated from simulation

0 1559.10 7.117 [14]

1 1559.30 7.111

2 1559.40 7.105

3 1559.50 7.098

4 1559.70 7.092

5 1559.80 7.086

6 1560.00 7.079

2
Costs in this table are reported in 2012 USD, following [14], as this is the simulation used to estimate lifetime costs. Final 

reported results are scaled to 2015 USD using data from [45] and [36].
3
Average of no treatment and first-line treatment for patients with DS TB (effective treatment but toxic).
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Appendix Table 4

Years until initial costs for Xpert implementation are recovered

Years until initial costs are recovered, as a function of per patient initial cost

Age of detected DR TB case $100 $500 $1,000

10 1.8 9.8 37.5

20 2.9 5.2 9.2

30 1.6 4.0 5.9

40 2.1 4.4 6.8

50 0.8 3.8 6.3

60 2.3 5.3 10.3

70 0.7 5.5 12.0

80 0.8 4.3 7.0
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Figure 1. 
Belief regions. Panel a visualizes possible values of states 1, 2, and 3 in βt (area enclosed by 

red lines); these are represented as points in R3. We depict only the first three states for 

visual clarity and because we are concerned with the belief regions where the optimal action 

is to DST or not (no actions are possible in states 4–7). The corners of the feasible space 

represent beliefs that the patient is cured, has DS TB, or has DR TB with certainty. Suppose 

it is optimal to administer DST for all beliefs in region Ht and remain on treatment in region 

~Ht (panel a). Panels b and c show that the regions that map to Ht and ~Ht at time t − 1 

regardless of what SS test result is observed are the intersection of subsets. Panel d 

illustrates Ut−1,t, the union of the two intersections given in panels b and c.
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Figure 2. 
Model schematic: empirical example of TB in India. This figure depicts the belief update 

process used in the model at every time period.
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Figure 3. 
Results: Optimal diagnosis algorithm in a region with no TB transmission (with expected 

percentage of patients shown on each path). The POMDP solution provides the optimal 

action for every possible combination of no observation, SS+, and SS− results. We represent 

these results in flowchart form.
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Table 1

Selected model parameters for India (see appendix for full table and citations)

Description Value

SS test sensitivity  0.60

SS test specificity  0.98

Cumulative probability of cure for DS TB patient after month:

 1  0.35

 2  0.88

 3  0.97

 4  1.00

 5  1.00

 6  1.00

Cumulative probability of cure for DR TB patient after month:

 1  0.00

 2  0.00

 3  0.00

 4  0.30

 5  0.30

 6  0.30

SS test cost $4.93

DST test cost $26.57

Monthly patient costs $6.33

Monthly drug costs $3.60

Monthly clinic costs $31.71

Annual discount rate   3%
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Table 2

Net monetary benefits compared to no treatment ($). Status quo is India’s current policy.

λ = GDP/capita λ= 0

No Trans. With Trans. No Trans. With Trans.

Status quo 6365 −1157 −1943 −5015

Optimal policy 6368 6335 −1949 −1971

Optimal policy, no 6368 4406 −1949 −2752

DST at diagnosis
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Table 3

Additional national number of tests, NMB, and costs (compared to the status quo) for the optimal testing 

policy over one year

Values for optimal policy

No Trans. With Trans.

# Additional SS Tests 449,000 −1,174,000

# Additional DST Tests 22,000 598,000

Additional NMB $1.4M $4710M

Additional Costs $3.8M −$1890M
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