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Abstract Given a function f on a surface and a tolerance δ > 0, we construct a
function fδ subject to ‖fδ − f ‖∞ ≤ δ such that fδ has a minimum number of crit-
ical points. Our construction relies on a connection between discrete Morse theory
and persistent homology and completely removes homological noise with persis-
tence ≤ 2δ from the input function f . The number of critical points of the resulting
simplified function fδ achieves the lower bound dictated by the stability theorem of
persistent homology. We show that the simplified function can be computed in linear
time after persistence pairs have been computed.

Keywords Discrete Morse theory · Persistent homology · Topological denoising

1 Introduction

Measured data and functions constructed from measured data suffer from om-
nipresent noise introduced during the measuring process. Separating relevant infor-
mation from noise is therefore a widely considered problem.

Taking a topological point of view, we regard noise as a source of critical points.
Indeed, even arbitrarily small amounts of noise (with respect to the supremum norm)
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may give rise to an arbitrarily large number of critical points. We may hence interpret
critical points that can be eliminated by small perturbations as being caused by noise.
Consequently, we consider the following optimization problem:

Problem (Topological simplification on surfaces) Given a function f on a surface
and a real number δ > 0, find a function fδ subject to ‖fδ − f ‖∞ ≤ δ such that fδ

has a minimum number of critical points.

Of course, in order to make this problem precise, one needs to choose a class of
admissible functions that provides a meaningful notion of critical points. We present
a solution to this problem for the class of discrete pseudo-Morse functions, which
generalizes the class of discrete Morse functions introduced by Forman [15]. Our
notion of pseudo-Morse functions incorporates both piecewise linear functions and
pixel data.

The Bottleneck Stability Theorem [6], a fundamental result in the theory of persis-

tent homology [11, 36], provides a lower bound on the number of critical points for
any δ-perturbation of a given input function (see Corollary 15):

Stability bound Let f be a discrete pseudo-Morse function, and let δ ≥ 0. Then the
number of critical points of any pseudo-Morse function fδ with ‖fδ − f ‖∞ ≤ δ is
bounded from below by the number of those critical points of f that have persis-
tence > 2δ.

Our main result is a constructive proof of the tightness of the stability bound on
surfaces (see Theorem 16), providing an optimal solution to the topological simplifi-
cation problem:

Theorem (Tightness of the stability bound) On a combinatorial surface, the stability

bound is tight for every discrete pseudo-Morse function f and for every δ ≥ 0.

A similar statement does not hold in higher dimensions or for non-manifold 2-
complexes, see Sect. 6.5.

1.1 Overview

Our solution to the problem of topological simplification on surfaces relies on a syn-
thesis of two powerful theories of combinatorial and computational topology: discrete

Morse theory and persistent homology.
Discrete Morse theory [15, 16], developed by Forman in the context of CW com-

plexes, provides combinatorial equivalents of several core concepts of classical Morse
theory, such as Morse functions, gradient vector fields, critical points, and a cancela-
tion theorem for the elimination of pairs of critical points from a vector field. The dis-
crete theory maintains the intuition of its classical counterpart while enabling simple
and explicit constructions that are considerably more involved in the smooth setting.

Persistent homology [11, 36] quantifies topological features of a function. It iden-
tifies pairs of birth and death of homology classes at critical points (persistence pairs)
and provides a quantitative notion of the significance (persistence) of such pairs.
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Fig. 1 Cancelation of critical points in a nutshell. Starting with the graph of a function together with the
directions of its gradient vector field (a), the values of the descending set (b) of the upper critical point
(marked with †) and of the ascending set (c) of the lower critical point (marked with ∗) are cut off at
the average value of the two critical points, creating a plateau (d). The old gradient directions are still
consistent with the new function. The gradient vector field can now be reversed along the path between the
critical points, eliminating the pair (e). The resulting function has a plateau, but can be perturbed slightly
to become non-degenerate (f)

In both theories, complementary pairs of critical points of indices (i, i + 1) play
a central role. However, whereas (discrete) Morse theory makes statements about the
homotopy type of the sublevel sets of a function, persistence theory is concerned with
their homology.

In the following, we provide a brief overview of our method and contributions.

Canceling a Single Pair of Critical Points from a Function Forman [15] describes
a simple method for eliminating a pair of critical points from a discrete vector field.
Modifying a function accordingly requires a slight extension of Forman’s method.
We first observe that a discrete gradient vector field in the sense of Forman induces
a partial order on the cells of the underlying complex, giving rise to the notion of
ascending and descending sets (in analogy to the notion of ascending and descending
manifolds in the classical theory). Building on these concepts, we describe a canon-
ical method for eliminating a pair of critical points from a discrete Morse function.
Our construction complements Forman’s cancelation method for discrete gradient
vector fields; in particular, it is applicable to functions on general CW complexes
(Sect. 4.1). An informal description of our cancelation method is depicted in Fig. 1.

In order to cancel a single pair of critical points whose values differ by 2δ, our
method perturbs the function by δ in the supremum norm, which is the minimum
required for canceling such a pair (see Fig. 1). To achieve this minimum, function
values have to be modified on the ascending and descending sets of the canceled pair
of critical points. Since these sets may contain cells of any dimension, other critical

values might also have to be changed in this process.

Degenerate Functions Morse theory, in any of its variations, fundamentally relies
on the assumption that critical points are non-degenerate. This condition prevents
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the theory from being directly applicable to arbitrary input functions. Additionally,
in our construction, the canonical function arising from canceling a single pair of
critical points has a plateau (see Fig. 1) and is hence a degenerate function in the
sense of discrete Morse theory. This necessitates a method to deal with degenerate
functions. To do so, we devise a symbolic perturbation scheme based on discrete
gradient vector fields, which allows to treat the degenerate case in much the same
way as the generic case by introducing the larger class of pseudo-Morse functions

(Sect. 2.2). In order to obtain a notion of critical points for pseudo-Morse functions,
we work with an explicit gradient vector field consistent with the function, which
coincides with the usual discrete gradient vector field in the non-degenerate case.
Our symbolic perturbation scheme can be interpreted as providing a Morse function
that is consistent with the given gradient vector field and is arbitrarily close to the
given pseudo-Morse function.

Multiple Cancelations In principle, multiple pairs of critical points can be elimi-
nated by sequentially applying the above (single pair) cancelation method. However,
as a prerequisite for cancelation, the above method relies on the existence of a unique
gradient path between the pair of critical points to be canceled. For every step in a
cancelation sequence, this poses the problem of finding an admissible pair of critical
points that satisfies this prerequisite. It is natural to ask whether such admissible can-
celation pairs can be related to persistence pairs in some way. In particular, can every
persistence pair eventually be eliminated by a cancelation sequence?

For the case of surfaces, the answer is indeed affirmative if persistence pairs
are canceled in a nested order. Concretely, we show that a persistence pair (σ, τ )

can be canceled after all persistence pairs (σ̃ , τ̃ ) with f (σ ) < f (σ̃ ) < f (τ̃ ) < f (τ)

have been removed (assuming, by symbolic perturbation, that all critical points have
distinct values). This result is established by introducing a certain hierarchy on the
persistence pairs with indices (0,1), which by duality extends to the pairs with in-
dices (1,2), see Sect. 3.3.

We note that in general this statement does neither hold for manifolds of dimension
greater than two nor for non-manifold 2-complexes.

Tightness of the Stability Bound Based on a nested sequence of persistence pairs,
our cancelation method is capable of removing all pairs with persistence ≤ 2δ with-
out removing other critical points. In view of the topological simplification problem,
it remains to show that the corresponding sequential cancelations do not violate the
δ-tolerance constraint. Indeed, we show that a nested cancelation sequence of persis-
tence pairs leads to a function that matches the stability bound (Theorem 16).

The main difficulty in proving this result stems from the fact that even canceling a
single persistence pair might affect an arbitrary number of other critical points. As a
consequence, it is not possible to independently apply the cancelation for persistence
pairs of indices (0,1) and (1,2). This stands in contrast to previous related meth-
ods [2, 13], which modify the function independently on two disjoint subsets of the
surface, corresponding to the cancelation of persistence pairs of indices (0,1) and
(1,2), respectively. These methods do not alter the values of critical points that are
not canceled, at the cost of giving up optimality by having to modify the function
by 2δ instead of δ.
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Efficient Solution Our construction of sequential cancelations is convenient for es-
tablishing tightness of the stability bound but yields an algorithm with quadratic time
complexity. Devising a more efficient algorithm requires a slightly different approach.

Our (inefficient) sequential construction amounts to alternating between two pro-
cesses: (i) canceling persistence pairs from a discrete vector field and (ii) adapting the
function correspondingly. In order to obtain an efficient solution, we perform these
processes separately: In a first step, we compute a fully simplified vector field from
the persistence pairs. In a seconds step, we construct a simplified function from the
input function and the simplified vector field resulting from the first step. Both steps
can be performed in time O(n) using simple graph traversal methods (Sect. 5). Note
that computing persistence pairs takes time O(sort(n)) [2]. Here n denotes the num-
ber of cells of the surface and O(sort(n)) denotes the time complexity of sorting n

numbers.
The existence of an efficient algorithm for the topological simplification problem

is perhaps surprising in view of the fact that the problem is NP-hard when restricted to
simplexwise linear functions on a triangulated surface, which follows from extending
a result by Gray et al. [17]; see [4] for details. Here, a simplexwise linear function on a
triangulated surface is a function that is linear on each simplex of a fixed triangulation,
while a piecewise linear function is only required to be linear on each simplex of
some triangulation of the same surface. In particular, a simplexwise linear function
on a subdivision of a triangulation is piecewise linear but not necessarily simplexwise
linear with respect to the original triangulation. The emphasis on simplexwise linear
as opposed to just piecewise linear functions is crucial here: a multiple saddle can be
split into several non-degenerate saddles by an arbitrarily small perturbation (in the
supremum norm) in the space of piecewise linear functions, but not in the subspace of
simplexwise linear functions. This emphasizes the important role of discrete Morse
theory: the hardness of the problem in the simplexwise linear setting arises from the
possibility that the input contains multiple saddles, which is excluded by definition
in discrete Morse theory. Going from simplexwise linear functions to discrete Morse
functions can be interpreted as splitting multiple saddles (Sect. 2.3).

Energy Minimization of Simplified Functions The solution to the topological sim-
plification problem is not unique in general: both the δ-constraint and the simplified
discrete gradient vector field impose a set of linear inequalities on the simplified func-
tion, so the solution set is a convex polytope. This additionally allows to minimize a
suitable convex energy functional. We employ this technique to remove artifacts from
the initial solution and to improve the similarity to the input function (Sect. 6.4).

1.2 Related Work

Topological simplification of functions within a δ-tolerance constraint has been con-
sidered before by Edelsbrunner et al. [13] and Attali et al. [2]. The problem con-
sidered there differs from ours by a seemingly small but significant detail: in [2,
13] the critical points of the input function f that are not eliminated are additionally
assumed to exactly maintain their original values. This restriction has significant con-
sequences: while it allows for eliminating all critical points of f with persistence ≤ δ,
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it does not in general allow to eliminate all critical points with persistence ≤ 2δ; an
example is given in [13]. Hence, under this restriction it is not always possible to
match the stability bound.

The methods presented in [2, 13] can be interpreted as variants of the so-called
carving method proposed by Soille [33] in the context of terrain simplification. Simi-
larly, there is another popular method for removing extrema from terrains, called fill-

ing or flooding [1, 9, 20]. A combination of both methods has been proposed in [34].
Our method of canceling critical points from a function can be interpreted as a com-
bination of carving and flooding in the realm of discrete Morse theory.

Apart from the above mentioned works, persistent homology provides the basis
for several other methods for computing and simplifying multi-scale structures de-
rived from a function. In their original paper on persistent homology, Edelsbrunner et
al. [11] discuss the closely related problem of simplifying a filtration of a simplicial
complex. Edelsbrunner et al. [12] and Gyulassy et al. [18] consider simplification of
cell decompositions (Morse–Smale complexes) resulting from a given gradient vector
field. Unfortunately, a simplified Morse–Smale complex does not directly give rise to
a simplified function. Indeed, simplifying a Morse–Smale complex is closely related
to simplifying a discrete gradient vector field.

Several statements of this article can also be transferred to the setting of Morse–
Smale complexes. For example, Theorem 13 can be used to show that the successive
simplification of a Morse–Smale complex on a surface proposed by Edelsbrunner et
al. [12] is always possible. This extends the Adjacency Lemma in [12], which shows
a necessary but not sufficient condition for the successive cancelation of persistence
pairs.

The problem of constructing discrete gradient vector fields (as opposed to func-
tions) that minimize the number of critical points without constraints is addressed
by Lewiner et al. [28] for surfaces and by Joswig and Pfetsch [21] for complexes
of arbitrary dimension. King et al. [23] were the first to propose the combination of
persistence with discrete Morse theory to simplify the gradient vector field of an in-
put function on a 3-dimensional simplicial complex. Their method has quadratic time
complexity and produces a simplified discrete gradient vector field but not a function.
It does not aim at optimality since in dimension 3 not every persistence pair can be
canceled.

2 Discrete Morse Theory

Classical (smooth) Morse theory [30] relates the critical points of a generic smooth
real-valued function on a manifold to the global topology of that manifold. For-
man [15, 16] carried over the main ideas of Morse theory to a combinatorial setting.
We briefly review some important notions and results here that are used throughout
this article, together with some extensions to Forman’s theory that provide important
tools for our results.

A CW complex K is a topological space constructed inductively: starting with a
discrete set K0 of 0-cells, the n-skeleton Kn is formed by attaching n-cells (closed
n-dimensional balls) by continuous maps S

n−1 → Kn−1 from their boundary to the
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(n − 1)-skeleton. The set of cells of K is denoted by K . Throughout this article, we
consider only finite CW complexes. Whenever a cell τ ∈ K is attached to a cell σ

(i.e., σ ⊂ ∂τ , where ∂τ denotes the boundary of τ ), we call σ a face of τ ; a face
of codimension 1 is called a facet. If all attaching maps are homeomorphisms, K is
called a regular CW complex. A regular CW complex whose underlying space is
a topological 2-manifold is called a combinatorial surface. We refer to [19, 29] for
details on CW complexes.

2.1 Discrete Vector Fields

One of the central concepts of discrete Morse theory is that of a discrete vector field—
a purely combinatorial analogue of a classical vector field.

Definition (Discrete vector field, critical cell [15, 16]) A discrete vector field V on a
regular CW complex K is a set of pairs of cells (σ, τ ) ∈ K × K , with σ a facet of τ ,
such that each cell of K is contained in at most one pair of V . A cell σ ∈ K is critical

with respect to V if σ is not contained in any pair of V . The dimension of a critical
cell is also called its index.

A pair (σ, τ ) in a discrete vector field V can be visualized as an arrow from σ to τ

(as in Fig. 2). A critical cell is also called a critical point.
In the following, we consider an important subclass of vector fields in which the

arrows do not form closed paths. This can be made precise using the concept of V -

paths.

Definition (V -path [16]) Let V be a discrete vector field. A V -path from a cell σ0

to a cell σr is a sequence Γ = (σ0, τ0, σ1, . . . , τr−1, σr) of cells such that for every
0 ≤ i ≤ r − 1:

σi is a facet of τi with (σi, τi) ∈ V and σi+1 is a facet of τi with (σi+1, τi) /∈ V.

A V -path Γ is called closed if σ0 = σr and nontrivial if r > 0. We call dimσ0 the
dimension of Γ .

By a V -path from ∂ρ to φ we mean a V -path from a facet of ρ to φ (see Fig. 2 for
an example).

Definition (Discrete gradient vector field [16]) A discrete vector field V is a discrete

gradient vector field if it contains no nontrivial closed V -paths.

Fig. 2 Reversing a gradient
vector field along the unique
path from ∂ρ to φ produces a
gradient vector field in which
the 1-cell φ and the 2-cell ρ are
no longer critical
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The main technique for reducing the number of critical points is that of reversing

a gradient vector field V along a V -path (see Fig. 2 for an example). It provides a
discrete analogue of Morse’s cancelation theorem [32]:

Theorem 1 (Forman [15]) Let φ and ρ be two critical cells of a gradient vector

field V with exactly one V -path Γ from ∂ρ to φ. Then there is a gradient vector

field Ṽ obtained by reversing V along the path Γ . The critical cells of Ṽ are exactly

the critical cells of V apart from {φ,ρ}. Moreover, V = Ṽ except along the path Γ .

Gradient vector fields on combinatorial surfaces have additional properties that do
not hold in higher dimensions. The following property is readily checked using the
fact that a 1-cell is only attached to at most two 0-cells, and at most two 2-cells are
attached to a 1-cell:

Lemma 2 Two V -paths of dimension 0 cannot branch at a common cell, and two

V -paths of dimension 1 cannot merge (except at their last cell).

Corollary 3 Let ρ be a critical 1-cell of a discrete vector field V on a combinatorial

surface. Then there are at most two V -paths from ∂ρ to critical 0-cells, each starting

at one of the two 0-cells in ∂ρ. Similarly, there are at most two V -paths from facets

of critical 2-cells to ρ.

2.2 Pseudo-Morse Functions and Symbolic Perturbation

As in smooth Morse theory, a discrete gradient vector field can be understood as the
gradient of some non-degenerate function in the following sense:

Definition (Discrete Morse function [15]) A function f : K → R on the cells of
a regular CW complex K is a discrete Morse function if there is a gradient vector
field Vf such that whenever σ is a facet of τ then

(σ, τ ) /∈ Vf implies f (σ ) < f (τ) and (σ, τ ) ∈ Vf implies f (σ ) ≥ f (τ).

Vf is called the gradient vector field of f .

In contrast to simplexwise linear functions, which are determined by their function
values at the vertices, discrete Morse functions take values on cells of any dimension.

The gradient vector field of a discrete Morse function encodes only the sign of
the difference between function values, not the difference itself. Therefore a discrete
gradient vector field does not uniquely determine a discrete Morse function, but for
every discrete Morse function f there is exactly one gradient vector field Vf .

In order to be able to treat non-generic input functions, it is useful to consider
a more general class of functions, which we call pseudo-Morse functions. Pseudo-
Morse functions substitute the strict inequality in the definition of Morse functions
by a weak one.
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Definition (Pseudo-Morse function, consistency) A function f : K → R on the cells
of a regular CW complex K is a discrete pseudo-Morse function if there is a gradient
vector field V such that whenever σ is a facet of τ then

(σ, τ ) /∈ V implies f (σ ) ≤ f (τ) and (σ, τ ) ∈ V implies f (σ ) ≥ f (τ).

In this case, we call f and V consistent.

Note that a gradient vector field V consistent with a pseudo-Morse function f

is not unique in general. The following lemma provides a useful characterization of
discrete pseudo-Morse functions.

Lemma 4 Let f : K → R be a function on the cells of a regular CW complex K

and let V be a gradient vector field on K. Then f is a discrete pseudo-Morse func-

tion consistent with V if and only if for every ǫ > 0 there exists a discrete Morse

function fǫ : K → R with ‖fǫ − f ‖∞ ≤ ǫ such that V is the gradient vector field

of fǫ .

Proof Assume that f is a pseudo-Morse function consistent with a gradient vector
field V . There exists a discrete Morse function g whose gradient vector field Vg is
precisely given by V [15]. Let G be the maximum absolute value of g. Given ǫ > 0,
for each cell σ define fǫ(σ ) := f (σ )+ ǫ

g(σ )
G

. Then it is straightforward to check that
fǫ is a discrete Morse function with gradient vector field V and ‖fǫ − f ‖∞ ≤ ǫ.

On the other hand, assume that for every ǫ > 0 there is a discrete Morse func-
tion fǫ : K → R consistent with V and ‖fǫ −f ‖∞ ≤ ǫ. Choose ǫ such that for every
φ,ρ ∈ K with f (φ) 
= f (ρ) we have ǫ <

|f (φ)−f (ρ)|
2 . In this case, one easily verifies

that f is a pseudo-Morse function consistent with V . �

The previous lemma provides a symbolic perturbation scheme based on gradient
vector fields in order to allow for non-generic (degenerate) input functions. Starting
with a pseudo-Morse function f , we can choose a consistent gradient vector field V ,
which may not be unique. Lemma 4 asserts that there is a discrete Morse function fǫ

arbitrarily close to f and consistent with V . Therefore we can work with f as if it
were a discrete Morse function with gradient vector field V . In particular, we use
Lemma 4 to consider critical points associated to a pseudo-Morse function by choos-
ing a consistent gradient vector field.

This first symbolic perturbation scheme is not sufficient for all our purposes; the
definition of persistence pairs (given later in Sect. 3) not only requires a gradient vec-
tor field but also a total order on the critical cells, which again is not always uniquely
defined by a pseudo-Morse function f and a consistent gradient vector field V . We
now derive a second perturbation scheme that meets these requirements.

Since a gradient vector field imposes certain inequality constraints on the functions
consistent with it, we can ask how these inequalities affect the relation between the
function values of any two cells. We observe that any discrete gradient vector field
gives rise to a strict partial order on the set of cells:
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Definition (Induced partial order) Let V be a discrete gradient vector field and con-
sider the relation ←V defined on K such that whenever σ is a facet of τ then

(σ, τ ) /∈ V implies σ ←V τ and (σ, τ ) ∈ V implies σ →V τ.

Let ≺V be the transitive closure of ←V . Then ≺V is called the (strict) partial order

induced by V .

The interpretation of this partial order is that for any pseudo-Morse func-
tion f consistent with V and any two cells φ and ρ, the relation φ ≺V ρ implies
f (φ) ≤ f (ρ). The relation ←V is the covering relation of ≺V , i.e., φ ←V ρ implies
φ ≺V ρ and there is no ψ with φ ≺V ψ ≺V ρ. The covering relation of a partial order
forms a directed acyclic graph called the Hasse diagram. We use the convention that
the edges are oriented as suggested by ←V . The Hasse diagram HV of ≺V is ob-
tained from the Hasse diagram of the face relation on K by inverting the orientation
of all edges corresponding to pairs (σ, τ ) ∈ V , as described by Chari [5]. HV has the
property that φ ≺V ρ if and only if there is a directed path from ρ to φ. Note that
σ ←V τ implies f (σ ) ≤ f (τ), i.e., both the arrow visualizing (σ, τ ) ∈ V and the
arrow symbolizing σ ←V τ point toward a (weakly) decreasing function value of f .

Assume we are given a pseudo-Morse function f consistent with a gradient
vector field V . On the one hand we have the induced partial order ≺V . On the
other hand the function f canonically induces a strict partial order ≺f given by
φ ≺f ρ ⇔ f (φ) < f (ρ). Since the two orders ≺f and ≺V are compatible by as-
sumption (there are no two cells (φ,ρ) with φ ≺V ρ and φ ≻f ρ), we can merge
them into a strict partial order ≺f,V (the transitive closure of (≺f ∪ ≺V ) ⊂ K × K).
A linear extension of this order is now called consistent with both f and V :

Definition (Consistent total order) Let V be a discrete gradient vector field V con-
sistent with a discrete pseudo-Morse function f . Then a strict total order ≺ is called
consistent with (f,V ) if it is a linear extension of ≺f and ≺V .

Such a total order ≺ gives rise to a canonical injective function K → N that is a
discrete Morse function and consistent with V . If we use this function as the func-
tion g in the proof of Lemma 4 to construct fǫ , then fǫ is an injective discrete Morse
function with gradient vector field V and the total order induced by fǫ is ≺ again. We
thus obtain a second symbolic perturbation scheme for situations where a total order
on the cells is required.

We make use of this concept in the following definition. A classical object of
study in smooth Morse theory is the sublevel set {x ∈ M : f (x) ≤ t} of a function
f : M → R on a manifold M . In the discrete theory, the analogous object is the level

subcomplex, and the equivalent construction using our second symbolic perturbation
scheme is the order subcomplex:

Definition (Level subcomplex [15], order subcomplex) Let f be a pseudo-Morse
function on a regular CW complex K. Let the carrier of a subset L ⊂ K be the
smallest subcomplex of K containing all of L. Then for t ∈ R, the level subcomplex
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is

K(t) = carrier

( ⋃

ρ∈K:f (ρ)≤t

ρ

)
.

Similarly, let ≺ be a strict total order on the cells K of a regular CW complex K.
Then for a cell σ ∈ K , the order subcomplex is

K(σ ) = carrier

( ⋃

ρ∈K:ρ�σ

ρ

)
.

Like in the smooth theory, the homotopy type of level subcomplexes changes only
at critical cells. The statement can trivially be rephrased for order subcomplexes:

Theorem 5 (Forman [15]) Let V be a gradient vector field on K and let ≺ be a linear

extension of ≺V . If ρ and ψ are two cells such that ρ ≺ ψ and there is no critical

cell φ with respect to V such that ρ ≺ φ � ψ , then K(ψ) collapses to K(ρ).

The order subcomplexes provide a finer filtration of the complex K (by single cells
or pairs of cells) than the level subcomplexes, in particular if f is degenerate. This
turns out to be useful when working with persistent homology in Sect. 3.

2.3 Piecewise Linear Functions and Discrete Morse Functions

In this section we discuss a canonical relationship between discrete and piecewise
linear (PL) Morse theory. As it turns out, it is possible to translate statements from
one setting to the other seamlessly. Equivalent constructions have been used in [2, 23,
31].

Assume that K is a simplicial complex. Let fPL be a simplexwise linear function
on K and let f0 be its restriction to the 0-skeleton of K. The function f0 induc-
tively gives rise to a discrete pseudo-Morse function f in the following way. For
each 0-cell α, let f (α) = f0(α). For a cell τ with dim τ > 0, let f (τ) be the maxi-
mum value of f on any facet of τ . The function f can easily be seen to be pseudo-
Morse since it is consistent with the empty vector field V = ∅ (all cells are critical).
Note that any level subcomplex of f coincides with the induced subcomplex of K on
the corresponding sublevel set of f0. This induced subcomplex, in turn, is homotopy
equivalent to the corresponding sublevel set of fPL [26, 31]. This means that from a
Morse-theoretic point of view, the PL function fPL and the pseudo-Morse function f

are equivalent. We conclude:

Theorem 6 Let fPL be a simplexwise linear function on a simplicial complex K.
Then there is a canonical pseudo-Morse function f on K such that for every t ∈ R

the sublevel set {x ∈ K : fPL(x) ≤ t} is homotopy equivalent to the level subcom-

plex K(t).

Vice versa, we can interpret any discrete pseudo-Morse function f on a regular
CW complex K as a simplexwise linear function fsd : |sd K| → R on the underlying
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Fig. 3 Illustration to Theorem 7. The level subcomplex K(t) (left) is homotopy equivalent to to the sub-
level set {x ∈ |sd K| : fsd(x) ≤ t} (right), with t = 5. The homotopy equivalence is shown using a sequence
of simplicial collapses of the barycentric subdivision sd K

space of the barycentric subdivision sd K. The barycentric subdivision of a regular
CW complex K is the order complex of the face relation, i.e., the abstract simplicial
complex sd K whose vertices are the cells of K and whose simplices are the totally
ordered subsets of K with regard to the face relation. The underlying space |sd K| is
homeomorphic to K [29]. The function fsd is assumed to linearly interpolate the val-
ues of f at the vertices of |sd K| inside each simplex of |sd(K)|. Again, the sublevel
sets of fsd are homotopy equivalent to the corresponding level subcomplexes of f :

Theorem 7 Let f be a pseudo-Morse function on a simplicial complex K. Then f

induces a simplexwise linear function fsd on |sd K| such that for every t ∈ R the level

subcomplex K(t) is homotopy equivalent to the sublevel set {x ∈ |sd K| : fsd(x) ≤ t}.

Proof Let V be a discrete gradient vector field on K that is consistent with f and
let ≺ be a total order consistent with (f,V ). Let K(t) and K(ρ) denote the cells of
the level and order subcomplexes K(t) and K(ρ), respectively. Let �(U) denote the
induced subcomplex of sd K on a vertex set U . The induced subcomplex �(K(t)) is
easily seen to be identical to sd K(t). Let F(t) = {φ ∈ K : f (φ) ≤ t} ⊂ K(t). We now
show that �(K(t)) collapses simplicially onto �(F(t)). See Fig. 3 for an example.

Let σ ∈ K(t) \ F(t) and let σ− denote its predecessor with respect to ≺. We write
�(ρ) for �({φ ∈ K : φ ≺ ρ}). We first show that �(σ) collapses onto �(σ−). It
follows from the definition of a level subcomplex that a cell σ with f (σ ) > t can only
be contained in K(t) if it is a free face of some cell τ with f (τ) ≤ t , i.e., σ has no
other cofaces than τ . Consequently, we have τ ≺ σ , and for every simplex S ∈ �(σ)

with σ ∈ S and τ 
∈ S the simplex T = S ∪{τ } is also contained in �(σ). Hence, these
pairs (S,T ) constitute a discrete gradient vector field W on �(σ) such that exactly
the simplices containing σ (the vertex star of σ ) are non-critical. This vector field W

provides a simplicial collapse of �(σ) onto �(σ−) by applying Theorem 5 with an
arbitrary linear extension of ≺W . By repeatedly applying this argument, we find that
�(K(t)) collapses onto �(F(t)). This implies that the underlying spaces |�(K(t))|

and |�(F(t))| are homotopy equivalent.
Finally, let fsd be the simplexwise linear extension of f from the vertices of sd K

to the whole complex. Recall that |�(F(t))| is homotopy equivalent to the sublevel
set {x ∈ |sd K| : fsd(x) ≤ t}, see [26, 31]. The claim now follows. �

This equivalence allows us to translate back and forth between piecewise linear
functions and pseudo-Morse functions, and to use theorems of piecewise linear Morse
theory in the context of discrete Morse theory.
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In a similar fashion, a discrete pseudo-Morse function can be constructed from a
function defined on the set of 2-cells of a combinatorial surface by defining f (σ ) as
the minimum value of all cells that contain σ as a facet. This can be used to con-
struct discrete pseudo-Morse functions from functions defined on cubical grids, such
as pixel images, by interpreting each pixel as a 2-cell. The resulting level subcom-
plexes correspond to the cubical complexes extracted from images as described by
Kaczynski [22]. Vice versa, a pseudo-Morse function on a cubical complex can be
interpreted as a function defined on a subdivided grid. This construction has been
used in the examples in Sect. 6.

Note that starting with a PL function and constructing a pseudo-Morse function
consistent with the empty vector field means that initially all cells are considered crit-
ical. King et al. [23] propose to construct an initial discrete gradient vector field with
critical cells corresponding to the critical vertices (in the PL sense, see [3, 14, 24]) of
a (non-degenerate) input PL function instead.

We do not consider the problem of finding such an initial gradient vector field sep-
arately, since this is a special case of the topological simplification problem discussed
in Sect. 4 with δ = 0. In this case, the problem reduces to minimizing the number of
critical points among all gradient vector fields consistent with the input function. We
discuss the simplification of a gradient vector field in Sects. 3.3 and 5.3. As it turns
out, a solution to the topological simplification problem can be found independently
of the gradient vector field consistent with the input function. Therefore we do not
require a simplified initial gradient vector field but use the empty vector field instead.

3 Persistent Homology of Discrete Morse Functions

The notions of persistent homology and persistence pairs were introduced in [6, 11,
36] in order to investigate the change of the homology groups in a filtration of a topo-
logical space (a nested sequence of subspaces). This concept can naturally be applied
to discrete pseudo-Morse functions. The following definitions are concerned with
cellular homology with coefficients in an arbitrary field F ; however, in all our state-
ments we assume Z2 coefficients when working with non-orientable surfaces. For
definitions we refer to [19, 29]. We write Hd(K) as a shorthand for the d th homology
group Hd(K;F) of K and H∗(K) =

⊕
d Hd(K).

Convention and Notation Throughout Sect. 3 we consider a pseudo-Morse func-
tion f consistent with a gradient vector field V on a regular CW complex K and a
strict total order ≺ consistent with (f,V ).

3.1 Birth, Death, and Persistence Pairs

As a consequence of Theorem 5, the homology groups of order subcomplexes
change only at critical cells of V . Let σ and τ be critical cells such that σ ≺ τ

and consider the inclusion map iσ,τ : K(σ ) →֒ K(τ ) between the order subcom-
plexes with regard to the total order ≺. This map induces a homomorphism
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i
σ,τ
∗ : H∗(K(σ )) → H∗(K(τ )) between homology groups. For every cell ρ, let ρ−

denote its predecessor with regard to ≺. Now consider the sequence

H∗

(
K(σ−)

)
→ H∗

(
K(σ )

)
→ H∗

(
K(τ−)

)
→ H∗

(
K(τ )

)

of induced homomorphisms. Here we allow for the cases σ = τ− and K(σ−) = ∅ (if
σ is the first cell in ≺).

Definition (Positive/negative cell, birth/death, persistence pair [11]) We say that σ

is a positive cell and a class h ∈ H∗(K(σ )) is born at σ (or created by σ ) if

h /∈ im
(
i
σ−,σ
∗

)
.

Moreover, we say that τ is a negative cell and a class h ∈ H∗(K(σ )) that is born at σ

dies entering τ (or gets merged by τ ) if there is a class h̃ ∈ H∗(K(σ−)) such that

i
σ,τ−
∗ (h) /∈ im

(
i
σ−,τ−
∗

)
but iσ,τ

∗ (h) = i
σ−,τ
∗ (h̃) ∈ im

(
i
σ−,τ
∗

)
.

If there exists a class h that is born at σ and dies entering τ , then (σ, τ ) is a persistence

pair. The difference f (τ) − f (σ ) is called the persistence of (σ, τ ).

Note that in this definition we always have dim τ = dimσ + 1. On combinatorial
surfaces, the only possible cases for (dimσ,dim τ) are (0,1) or (1,2).

3.2 Duality and Persistence

For any closed combinatorial surface K, there is an associated dual complex K∗,
a combinatorial surface homeomorphic to K whose i-cells correspond to (2 − i)-
cells of K [19]. A discrete pseudo-Morse function f on K gives rise to a discrete
pseudo-Morse function f ∗ on K∗ via σ ∗ �→ −f (σ ) [15].

Moreover, the persistence pairs of dimension (1,2) for K correspond to the per-
sistence pairs of dimension (0,1) for the dual complex K∗ (with τ ∗ ≺ σ ∗ ⇔ σ ≺ τ )
when using Z2 coefficients or if K is orientable [2, 7, 10].

The homology groups H0(K(ρi)) (generated by the connected components
of K(ρi)), and hence the persistence pairs of dimension (0,1), are determined solely
by the 1-skeleton of K, also called the (primal) graph of K. Consequently, the per-
sistence pairs of dimension (1,2) are determined by the 1-skeleton of K∗, called the
dual graph. This means that all persistence pairs of a surface can be determined in
terms of Morse functions on graphs.

In order to treat surfaces with boundary, we employ the canonical construction of
attaching an additional 2-cell (with function value ∞) to each boundary component.
In this way we obtain a closed surface having the same sequence of order subcom-
plexes (up to the additional cells) and hence the same persistence pairs as the original
surface.
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3.3 The Persistence Hierarchy and Sequential Cancelations

Persistence pairs on surfaces carry a certain hierarchical structure that allows us to
establish a connection to the cancelation theorem of discrete Morse theory. The main
result of this section is that persistence pairs on surfaces can always be canceled
sequentially if the order of cancelations respects this hierarchy.

Definition (Parent, child, persistence hierarchy) On a combinatorial surface K,
let (σ, τ ) be a persistence pair with dimσ = 0, and let [σ ] ∈ H0(K(σ )) be the
class created by σ (considered as a 0-cycle). Let σ̃ be the unique cell creating the

class [σ̃ ] ∈ H0(K(τ )) into which [σ ] gets merged by τ , i.e., [σ̃ ] 
∈ im(i
σ̃−, τ
∗ ) and

[σ̃ ] = i
σ, τ
∗ ([σ ]). Then σ̃ is called the parent of σ (in the persistence hierarchy), and

σ is called the child of σ̃ . The transitive closure of the child relation is called descen-

dant.

Let (σ, τ ) and (σ̃ , τ̃ ) be two persistence pairs. If either dimσ = dim σ̃ = 0 and σ̃

is the parent of σ or dim τ = dim τ̃ = 2 and τ̃ ∗ is the parent of τ ∗ (with regard to
the persistence hierarchy on the dual complex), then we also call the pair (σ̃ , τ̃ ) the
parent of (σ, τ ) and (σ, τ ) the child of (σ̃ , τ̃ ). The following definition and lemma
justify this nomenclature:

Definition (Nested pairs) On a combinatorial surface K, let (σ, τ ) and (σ̃ , τ̃ ) be two
persistence pairs. We say that (σ, τ ) is nested in (σ̃ , τ̃ ) if σ̃ ≺ σ ≺ τ ≺ τ̃ .

Lemma 8 Let (σ, τ ) be a descendant of (σ̃ , τ̃ ) in the persistence hierarchy. Then

(σ, τ ) is nested in (σ̃ , τ̃ ).

Proof Without loss of generality, assume dimσ = 0; otherwise, by duality, the argu-
ment can be applied to (τ ∗, σ ∗) instead of (σ, τ ).

By definition of the persistence hierarchy, the class [σ ] gets merged into the
class [σ̃ ] ∈ H0(K(τ )) created by σ̃ . This implies that σ̃ ≺ σ . It also implies that
the class created by σ̃ has not been merged by any cell of K(τ ), hence τ ≺ τ̃ . �

We now turn our attention to the sequential cancelation of persistence pairs. Note
that the cancelation theorem (Theorem 1) applies to vector fields, which only provide
a partial order on the cells, while the notion of persistence is based on a total order.
After canceling a persistence pair, the new vector field is no longer consistent with the
initial total order. It is important to keep in mind that we only talk about persistence
pairs of the initial total order ≺, which is consistent with (f,V ); we do not consider
a new total order after applying a cancelation (which would complicate things con-
siderably). Applying several cancelations results in a sequence of simplified vector
fields:

Definition (Persistence cancelation sequence) A persistence cancelation sequence is
a sequence of gradient vector fields (V0,V1, . . . , Vn) such that each Vi is constructed
from Vi−1 by canceling a persistence pair (σi, τi) using Theorem 1.
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Fig. 4 The persistence
hierarchy. Both (σ, τ ) and (σ̂ , τ̂ )

are children of, and hence nested
in, (σ̃ , τ̃ ). Only (σ, τ ) needs to
be canceled before (σ̃ , τ̃ ) can be
canceled

A persistence cancelation sequence is called nested if in this construction every
pair (σi, τi) nested in another pair (σj , τj ) is canceled first, i.e.,

σj ≺ σi ≺ τi ≺ τj ⇒ i < j.

A persistence cancelation sequence is called a δ-persistence cancelation sequence

if exactly those persistence pairs are canceled that have persistence ≤ δ.

A persistence pair (σ, τ ) can be canceled from a vector field as soon as all descen-
dants have been canceled (compare also to Edelsbrunner et al. [12] for the existence
part of the following statement in a special case):

Lemma 9 On a combinatorial surface K, let (V0,V1, . . . , Vi) be a persistence can-

celation sequence. Assume that a persistence pair (σ, τ ) has not been canceled in the

sequence but that every descendant of (σ, τ) has been canceled. Then there exists a

Vi -path from ∂τ to σ and this path is unique.
Assume further that every persistence pair nested in (σ, τ) has been canceled. If

there is a unique Vi -path from ∂τ to another cell σ̃ 
= σ that is critical in Vi then we

have σ ≻ σ̃ .

Figure 4 shows that the condition is sufficient but not necessary. The proof of
Lemma 9 relies on a few auxiliary lemmas and is given after Lemma 12.

Lemma 10 Let (V0,V1, . . . , Vi) be a persistence cancelation sequence and let (σ, τ )

be a persistence pair with dimσ = 0 that has not been canceled in the sequence.
Let C be the connected component of the subcomplex K(τ−) containing σ , and let C

denote the cells of C . Then every (φ,ρ) ∈ Vi with dimφ = 0 satisfies φ ∈ C ⇔ ρ ∈ C.

Proof The claim is shown by induction over i. The base case follows from con-
sistency of the total order ≺ with (f,V ). Consider the cancelation of a persistence
pair (σi, τi). If dimσi 
= 0, the pairs in Vi of dimensions (0,1) stay unchanged and the
claim immediately follows from the induction hypothesis. Now assume dimσi = 0.
We show that the claim holds for every (φ,ρ) ∈ Vi \ Vi−1.

The non-critical cells of the vector field Vi \ Vi−1 are τi and the cells on the
Vi−1-path (φ0, ρ0, φ1, . . . , ρr−1, φr ) from φ0 ∈ ∂τi to φr = σi . By the induction
hypothesis we have φk ∈ C ⇔ ρk ∈ C. Because C is a subcomplex, we also have
ρk−1 ∈ C ⇒ φk ∈ C (with ρ−1 = τi ). Moreover, if σi ∈ C, then σi is a descendant
of σ and by Lemma 8 (σi, τi) is nested in (σ, τ ), implying that σi and τi are in the
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same connected component of K(τ−). Hence we also have σi ∈ C ⇒ τi ∈ C. Conse-
quently, either all or none of the non-critical cells of Vi \Vi−1 are contained in C and
the claim immediately follows. �

We also require the notion of the restriction of a vector field to a subcomplex:

Definition (Restriction of a vector field to a subcomplex) Let V be a discrete vector
field on K and let K̃ be a subcomplex of K with cells K̃ . The restriction of V to K̃ is
Ṽ = V ∩ (K̃ × K̃), i.e., the pairs of cells in V that are both in K̃ .

As a direct consequence of this definition, new critical cells may arise when re-
stricting a vector field to a subcomplex:

Lemma 11 Let Ṽ be the restriction of a discrete vector field V on K to a sub-

complex K̃. The critical d-cells of Ṽ are exactly the critical d-cells of V that

are contained in K̃ if and only if each pair (σ, τ ) ∈ V with dimσ = d satisfies

σ ∈ K̃ ⇔ τ ∈ K̃ .

Moreover, we use the following fact:

Lemma 12 Let V be a discrete gradient vector field V on K with only one critical

0-cell σ . Then there is a V -path from every 0-cell σ̃ to σ .

Proof Each V -path of dimension 0 ending at a non-critical cell σ̃ 
= σ , (σ̃ , τ̃ ) ∈ V ,
can be extended by τ̃ and the unique 0-cell σ̂ ∈ ∂τ̃ , σ̂ 
= σ̃ . Since K is finite and V

does not contain nontrivial closed paths, the extension will eventually end up at σ . �

Proof of Lemma 9 Without loss of generality, assume dimσ = 0; otherwise, by du-
ality, the argument can be applied to (τ ∗, σ ∗) instead of (σ, τ ).

Let C be the connected component of the subcomplex K(τ−) corresponding to the
homology class [σ ] ∈ H0(K(τ−)) created by σ . Apart from σ , every 0-cell in C that
is critical in V is a descendant of σ . By assumption, all descendants of σ have been
canceled, and hence σ is the only 0-cell in C that is critical in Vi . By Lemmas 10
and 11, σ is also the only critical 0-cell in the restriction of Vi to C . By Lemma 12,
there is a Vi -path to σ from every 0-cell in C , in particular from exactly one of the
two 0-cells in ∂τ , since ∂τ ∩ C contains exactly one cell. By Lemma 2, this path is
unique.

Now assume that every persistence pair nested in (σ, τ ) has been canceled and
there is a unique Vi -path from ∂τ to another cell σ̃ 
= σ that is critical in Vi . By
assumption, σ̃ is not a descendant of σ , meaning that σ̃ and σ are in different con-
nected components of K(τ−). Moreover, the component C̃ 
= C of K(τ−) containing
σ̃ is created by σ̃ , because otherwise there would be a persistence pair (σ̃ , τ̃ ) nested
in (σ, τ ). This persistence pair would have been canceled in Vi , contradicting the as-
sumption that σ̃ is critical. Since τ is paired with σ and merges C̃ and C , we know
that σ is a descendant of σ̃ and σ ≻ σ̃ . �
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As a consequence of Lemma 9, we can construct a sequence of cancelations to
eliminate all persistence pairs below a certain persistence threshold:

Theorem 13 Let f be a pseudo-Morse function on a combinatorial surface K and

let δ ≥ 0. Then there exists a nested δ-persistence cancelation sequence.

Proof If the subsequence (V0,V1, . . . , Vi−1) satisfies the assumptions of Lemma 9
for some persistence pair (σi, τi), we can use Theorem 1 to construct Vi from Vi−1.
A canonical choice satisfying these assumptions is given by canceling the persistence
pairs (σi, τi) with persistence ≤ δ according to the order ≺ on the negative cells, i.e.,
τi ≺ τi+1 for every i. The claim follows by induction. �

3.4 The Stability Bound

Cohen-Steiner et al. [6] studied properties of persistence diagrams, which are a repre-
sentation of the value pairs (f (σ ), f (τ )) corresponding to the persistence pairs (σ, τ )

of a function f . Here we use R = R ∪ {−∞,∞}.

Definition (Persistence diagram [6]) The persistence diagram D(f ) of a pseudo-

Morse function f is the multiset on ⊂ R
2

containing one instance of (f (σ ), f (τ ))

for each persistence pair (σ, τ ) of f , one instance of (f (σ ),∞) for each unpaired
positive cell σ , and each point on the diagonal with countably infinite multiplicity.

The main result of [6] is the Bottleneck Stability Theorem for persistence diagrams:
if two functions are close in the supremum norm, then their persistence diagrams are
also close with respect to the following metric:

Definition (Bottleneck distance) Let X and Y be two multisets of R
2
. The bottleneck

distance is dB(X,Y ) := infγ supx∈X ‖x −γ (x)‖∞, where γ ranges over all bijections
from the individual elements of X to the individual elements of Y .

Here we assume (a,∞)− (b,∞) = (a − b,0), (a,∞)− (b, c) = (a − b,∞), and
‖(a,∞)‖∞ = ∞ for a, b, c ∈ R. By the individual elements of a multiset S we mean
the disjoint union of m(e) instances of each e ∈ S, where m(e) is the multiplicity of e.

Due to the correspondence between piecewise linear functions and discrete
pseudo-Morse functions (see Sect. 2.3), the statement translates as follows using the
language of discrete Morse theory:

Theorem 14 (Cohen-Steiner et al. [6]) Let f,g : K → R be two discrete pseudo-

Morse functions. Then the respective persistence diagrams satisfy

dB

(
D(f ),D(g)

)
≤ ‖f − g‖∞.

Note that the bottleneck distance provides a metric on the persistence diagrams of
pseudo-Morse functions on K, in particular, dB(D(f ),D(g)) = 0 if and only if
D(f ) = D(g). Therefore, in contrast to the persistence pairs, the persistence diagram
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of a discrete pseudo-Morse function f is well-defined; in particular, it is independent
of the total order ≺ chosen and even independent of the gradient vector field V con-
sistent with f . Theorem 14 provides a lower bound on the number of critical points
among all pseudo-Morse functions fδ with ‖fδ − f ‖∞ ≤ δ:

Corollary 15 (Stability bound) Let f be a discrete pseudo-Morse function and

let δ ≥ 0. For any pseudo-Morse function fδ with ‖fδ − f ‖∞ ≤ δ, the number of

critical points of fδ is bounded from below by the number of those critical points

of f that have persistence > 2δ.

Proof Let D and Dδ be the persistence diagrams of f and fδ , respectively. By The-
orem 14 we have dB(D,Dδ) ≤ δ. This means that there is a bijection γ between D

and Dδ with ‖p − γ (p)‖∞ ≤ δ for all p ∈ D. Let

p = (p∗,p†) =
(
f (σ ), f (τ )

)
∈ D

represent a persistence pair (σ, τ ) of f with persistence p† − p∗ > 2δ. Letting

q = (q∗, q†) := γ (p),

this implies that p∗ + δ ≥ q∗ and p† − δ ≤ q†. Together with p† − p∗ > 2δ, this
yields q† − q∗ > 0. Hence there must be a persistence pair of fδ corresponding to
each persistence pair of f with persistence > 2δ. Since moreover ‖p−γ (p)‖∞ ≤ ∞

implies that γ must map the unpaired critical cells of f exactly to those of fδ , the
claim follows. �

4 Function Simplification Guided by Discrete Gradient Vector Fields

We are interested in functions that achieve the lower bound of Corollary 15:

Definition (Perfect δ-simplification) Let f be a pseudo-Morse function on a combi-
natorial surface K and let δ ≥ 0. A perfect δ-simplification of f is a pseudo-Morse
function fδ such that ‖fδ −f ‖∞ ≤ δ and the number of persistence pairs of fδ equals
the number of those persistence pairs of f that have persistence > 2δ.

In this section, we prove the following central result:

Theorem 16 (Tightness of the stability bound) Let f be a discrete pseudo-Morse

function on a combinatorial surface and let δ ≥ 0. Then there exists a perfect
δ-simplification of f . In particular, the stability bound is tight for every discrete

pseudo-Morse function f on a combinatorial surface and for every δ ≥ 0.

The proof of Theorem 16 is constructive and hence leads to an algorithm. The
corresponding construction is outlined in Sect. 4.1. However, the resulting algorithm
has a running time that is quadratic in the input size. We present a more efficient
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algorithm in Sect. 5. Nevertheless, our proof of correctness for this algorithm will
make use of the fact that Theorem 16 has already been established.

Using Lemma 4, the result of Theorem 16 can also be stated for (non-degenerate)
discrete Morse functions (in a slightly different form, because only critical points
with persistence < 2δ can be eliminated within a tolerance of δ in the set of discrete
Morse functions):

Corollary 17 Given a discrete Morse function f on a surface and δ > 0, there ex-

ists a discrete Morse function fδ such that ‖fδ − f ‖∞ < δ and the number of crit-

ical points of fδ equals the number of those critical points of f that have persis-

tence ≥ 2δ.

Convention and Notation Throughout this section we consider a given pseudo-
Morse function f consistent with a gradient vector field V on a combinatorial sur-
face K, a strict total order ≺ consistent with (f,V ), and a nested 2δ-persistence
cancelation sequence (V0, . . . , Vn) with V0 = V . Moreover, we let ≺j :=≺Vj

denote
the partial order induced by Vj .

4.1 The Plateau Function

For every Vi in the cancelation sequence, we inductively define a pseudo-Morse func-
tion fi consistent with Vi , see Fig. 1 for an illustration. By assumption we start with
a pseudo-Morse function f0 := f consistent with V0 := V . Suppose that we have
constructed a pseudo-Morse function fi−1 consistent with Vi−1. Let (σ, τ ) be the
persistence pair that is canceled in the construction of Vi from Vi−1 using Theorem 1.

mi =
f (σ ) + f (τ)

2
and fi(ρ) :=

⎧
⎪⎨
⎪⎩

mi if ρ �i−1 σ and fi−1(ρ) < mi

or ρ �i−1 τ and fi−1(ρ) > mi,

fi−1(ρ) otherwise.

This means that the ascending set {ρ : ρ �i−1 σ } of σ in Vi−1 is raised to at least the
value mi , and analogously the descending set {ρ : ρ �i−1 τ } of τ is lowered. Hence,
fi creates a local plateau at the value mi . The following lemma is a direct conse-
quence of the way we construct fi from fi−1 and the fact that fi is constant along
the path from ∂τ to σ . It can be proven using a straightforward induction argument.

Lemma 18 The plateau function fi is consistent with both Vi−1 and Vi .

Note that the construction of the plateau function does not depend on the prop-
erties of combinatorial surfaces but can be applied to regular CW complexes of ar-

bitrary dimensions. Moreover, it is not restricted to the cancelation of persistence
pairs: whenever we have a pseudo-Morse function f consistent with a gradient vec-
tor field V and Ṽ is constructed from V by a cancelation using Theorem 1, we can

obtain a plateau function f̃ that is consistent with both V and Ṽ .
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4.2 Checking the Constraint

It remains to show that the plateau construction above produces admissible functions
for the topological simplification problem, i.e., that each of the functions fi satisfies
the δ-constraint.

Lemma 19 Each plateau function fi satisfies ‖fi − f ‖∞ ≤ δ.

Proof We show the statement by induction. The base case is trivial since f0 = f .
Let (σ, τ ) be the persistence pair that is canceled when constructing Vi from Vi−1.

We show that the δ-constraint is neither violated by increasing the value of any cell ρ

in the ascending set of σ in Vi−1, nor by decreasing the value of any cell in the
descending set of τ . Since fi(ρ) = fi−1(ρ) for all cells ρ not treated in these two
cases, the claim follows.

We first show |fi(ρ) − f (ρ)| ≤ δ for any cell ρ �i−1 σ with fi−1(ρ) < mi . By
induction hypothesis we have a lower bound fi−1(ρ) ≥ f (ρ)−δ. By the construction
of fi , the value of ρ is increased: fi(ρ) = mi > fi−1(ρ). Therefore, the lower bound
remains valid after step i:

fi(ρ) > fi−1(ρ) ≥ f (ρ) − δ.

To show the upper bound fi(ρ) ≤ f (ρ) + δ, we first use f (τ) − f (σ ) ≤ 2δ to obtain

fi(ρ) = mi =
f (σ ) + f (τ)

2
≤

f (σ ) + (f (σ ) + 2δ)

2
= f (σ ) + δ.

This is almost the desired inequality except that the right hand side contains f (σ )

instead of f (ρ). To finish the proof, it therefore suffices to show that f (σ ) ≤ f (ρ).
This, in turn, is a consequence of the facts that, according to the upcoming Lemma 21,
σ ≺i−1 ρ implies σ ≺ ρ, and that ≺ is consistent with (f,V ).

It remains to show |fi(ρ) − f (ρ)| ≤ δ for any cell ρ �i−1 τ with fi−1(ρ) > mi .
The proof of this statement is analogous to the above. �

In order to prove Lemma 21, we first need to investigate how the reversal of a
gradient vector field may change the induced partial order (see Fig. 5 for an example):

Fig. 5 Example illustrating Lemma 20. Left: gradient vector field W (before reversing the path from ∂ν

to μ). Right: gradient vector field W̃ (after path reversal). Note that we have the new relation φ ≺W̃ ψ

(corresponding in this example to a W̃ -path from ψ to φ). In the example, the conclusion φ �W ν and
μ �W ψ of Lemma 20 is reflected by the two W -paths from ∂ν to φ and from ψ to μ, respectively
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Lemma 20 Let μ,ν,φ,ψ be not necessarily disjoint cells of a regular CW com-

plex K. Let W and W̃ be two gradient vector fields such that the cells μ and ν are

critical for W . Assume further that there is a unique W -path from ∂ν to μ, and W̃ is

constructed by reversing W along this path. If φ 
≺W ψ and φ ≺W̃ ψ , then φ �W ν

and μ �W ψ .

Proof By definition of the induced partial order, φ ≺W̃ ψ implies that there exists a
sequence (ρ1, . . . , ρk) with ρ1 = φ, ρk = ψ and ρi ←W̃ ρi+1 for all 1 ≤ i ≤ k − 1.
Here either ρi is a facet of ρi+1 or ρi+1 is a facet of ρi , and we therefore also have
either ρi ←W ρi+1 or ρi →W ρi+1. But since φ 
≺W ψ , there exists a smallest in-
dex j such that ρj →W ρj+1. Since the relations ←W and ←W̃ differ only along the
W -path from ∂ν to μ (including ν), it follows that the cells ρj and ρj+1 are con-
tained in this W -path. Hence we have ρj �W ν. Moreover, by the choice of j we
have φ = ρ1 �W ρj . Therefore we conclude that φ �W ν. By an analogous argument
one also shows that μ �W ψ . �

Lemma 21 Let (V0, . . . , Vn) be a nested persistence cancelation sequence and

let (σ, τ ) be a persistence pair of ≺ with σ and τ critical cells of Vi . Then for

any ρ ∈ K ,

(a) ρ ≻i σ implies ρ ≻ σ , and

(b) ρ ≺i τ implies ρ ≺ τ .

Proof We only present the proof of part (a), which is done again by induction: We
show that ρ ≻i σ implies ρ ≻ σ for all 0 ≤ i ≤ n. Part (b) can be shown analogously.

The base case i = 0 is trivial since ≻ is a linear extension of ≻0. Assume
that ρ ≻i σ . If ρ ≻i−1 σ , the claim follows directly from the induction hypothe-
sis. Hence we assume that ρ 
≻i−1 σ . Let (σ̃ , τ̃ ) be the persistence pair that is can-
celed when constructing Vi from Vi−1; this implies σ̃ ≺i−1 τ̃ . From Lemma 20
with (W, W̃ ) = (Vi−1,Vi) and (μ, ν,φ,ψ) = (σ̃ , τ̃ , σ, ρ), we infer that σ �i−1 τ̃

and σ̃ �i−1 ρ. This has two consequences:

(i) σ ≺i−1 τ̃ (since σ is critical in Vi while τ̃ is not), and
(ii) σ̃ � ρ (by the induction hypothesis).

To finish the proof of the claim, by (ii) it suffices to show that σ ≺ σ̃ . We proceed
by case analysis on the dimensions of σ̃ and σ . Since these two cells are paired by
assumption, they have dimension less than 2.

Case 1 (dimσ = 1, dim σ̃ = 0): This case cannot occur since reversing the
Vi−1-path from the 1-cell τ̃ to the 0-cell σ̃ does not change the ascending set of
any critical 1-cell (and in particular σ ), contradicting ρ 
≻i−1 σ and ρ ≻i σ .

Case 2 (dimσ = 0, dim σ̃ = 1): First assume τ ≺ τ̃ . If additionally σ̃ ≺ σ , this
contradicts the assumption that the cancelation sequence is nested and (σ, τ ) is can-
celed after (σ̃ , τ̃ ). Therefore τ ≺ τ̃ implies σ ≺ σ̃ .

Now assume τ ≻ τ̃ . This means that σ creates a connected component that is not
yet merged in K(τ̃ ). Since σ ≺i−1 τ̃ by (i), there is a sequence (ρ1, . . . , ρk) with
ρ1 = σ , ρk = τ̃ , and ρj ←Vi−1 ρj+1 for all 1 ≤ j ≤ k − 1. For each ρj we triv-
ially have ρj ≺i−1 τ̃ and hence ρj ≺ τ̃ by the induction hypothesis, implying that
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ρj ∈ K(τ̃ ). Moreover, since either ρj is a facet of ρj+1 or ρj+1 is a facet of ρj , we
know that all ρj , and in particular σ and τ̃ , are in the same connected component
of K(τ̃ ). In an analogous way one shows that σ̃ and τ̃ , and hence σ and σ̃ , are in one
and the same connected component. Since we know that σ created that component,
it follows that σ ≺ σ̃ .

Case 3 (dimσ = dim σ̃ ∈ {0,1}): The relation σ ≺i−1 τ̃ from (i) above implies
the existence of a Vi−1-path from ∂τ̃ to σ . We will show by contradiction that this
path must be unique. To see this, assume that there are two Vi−1-paths from τ̃ to σ .
Without loss of generality, assume that dimσ = dim σ̃ = 0 (and hence dim τ̃ = 1);
otherwise, by duality the following argument can be applied to σ ∗, τ̃ ∗ instead of
τ̃ , σ . By Corollary 3, each of the 0-cells in ∂τ̃ must belong to exactly one of the two
Vi−1-paths from ∂τ̃ to σ . Now by a similar argument as in Case 2 above, we see
that each cell of these two Vi−1-paths is contained in the same connected component
of K(τ̃−) as σ . But since τ̃ is a negative 1-cell, the two 0-cells in its boundary belong
to different connected components of K(τ̃−), a contradiction.

Hence, there is a unique Vi−1-path from ∂τ̃ to σ . Lemma 9 asserts that σ̃ is the
largest cell (with regard to ≺) with a unique Vi−1-path from ∂τ̃ to σ̃ . Since σ 
= σ̃ ,
we obtain σ ≺ σ̃ . �

Proof of Theorem 16 According to Theorem 13 there exists a nested 2δ-persistence
cancelation sequence (V0,V1, . . . , Vn) for the gradient vector field V0 = V consistent
with the pseudo-Morse function f . Let fn be the plateau function corresponding
to Vn. Since fn is consistent with Vn by Lemma 18 and ‖fn−f ‖∞ ≤ δ by Lemma 19,
it is a perfect δ-simplification. �

5 An Efficient Algorithm

The definition of the plateau function in Sect. 4.1 canonically leads to an algorithm
that runs in time quadratic in the input size. In this section we present a method
for computing a perfect δ-simplification in time dominated by the computation of
persistence pairs, i.e., O(sort(n)), where n = |K| is the number of cells of K. Apart
from this computation, all steps of our algorithm take linear time O(n). We stress that
pre- and post-processing steps, like conversion from and to PL functions, also require
only linear time O(n).

The algorithm can be summarized as follows. First, persistence pairs are computed
using a variant of Kruskal’s algorithm for minimum spanning trees. Next, the persis-
tence pairs are used to construct a simplified gradient vector field by graph traversals
of both the primal and dual 1-skeleton. In a third step, the simplified vector is used
to compute the simplified function by a graph traversal on the Hasse diagram of the
partial order induced by the simplified vector field.

5.1 Defining a Consistent Total Order

Assume we are given a pseudo-Morse function f consistent with a discrete gradient
vector field V as input. Let ≺T be a linear extension of ≺V . If f is constructed
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from data given as a PL or piecewise constant function as explained in Sect. 2.3,
then V can be assumed to be the empty vector field (all cells are critical), meaning
that φ ≺V ρ if and only if φ is a face of τ . In this case, ≺T can be constructed
by choosing an arbitrary total order on the d-cells for each d and letting φ ≺T ρ

whenever dimφ < dimρ.
We define a total order ≺ by combining ≺f (the order induced by f ) and ≺T

lexicographically: we have φ ≺ ρ if and only if either

(a) f (φ) < f (ρ), or
(b) f (φ) = f (ρ) and φ ≺T ρ.

Notice that ≺ is consistent with (f,V ) by construction.

5.2 Computing Persistence Pairs

Recall that the persistence pairs of dimension (0,1) are determined solely by the
1-skeleton of K. Therefore, persistence pairs can be computed by applying a variant
of Kruskal’s algorithm [25] for finding a minimum spanning tree to both the primal
and the dual 1-skeleton [2, 11]. Let G be the 1-skeleton of K and let M(G) be the min-
imum spanning tree of G (using the total order ≺ for determining the edge weights,
which implies uniqueness of M(G)). Kruskal’s algorithm for computing M(G) ini-
tializes a graph T with the vertices of G, sweeps over the edges of G in order ≺, adds
to T every edge of G that does not create a 1-cycle, and returns the final graph T .
Note that the set of edges of M(G) consists of all negative 1-cells together with all
1-cells τ such that (σ, τ ) ∈ V for some σ ; all other 1-cells create a cycle in T . When
encountering a negative 1-cell, we compute the persistence of the corresponding di-
mension (0,1) pair by storing for each connected component of the intermediate
graph T the 0-cell that created it. Clearly we obtain all dimension (0,1) persistence
pairs this way. Simultaneously, we construct the subgraph Mδ(G) of M(G) by re-
moving the negative 1-cells with persistence > 2δ. In an analogous way, for the dual
1-skeleton G∗ we can compute the minimum spanning tree M(G∗) and obtain the
subgraph Mδ(G

∗) together with all dimension (1,2) persistence pairs.
Kruskal’s algorithm has a time complexity of O(n logn) when using comparison-

based sorting. Assuming that the function values are represented by a small (i.e.,
O(logn)) word size, Attali et al. [2] point out that persistence pairs on a graph can be
computed in linear time O(n).

5.3 Extracting the Gradient Vector Field

We now explain how to construct a simplified gradient vector field Vδ . To this end,
we traverse (using depth-first search) each of the connected components of the primal
graph Mδ(G) (constructed in Sect. 5.2) from the 0-cell that created the component.
During this traversal, whenever we encounter an edge (1-cell) ψ that connects a pre-
viously visited vertex (0-cell) ρ with an unvisited vertex φ, we add (φ,ψ) to the
gradient vector field Vδ . This construction takes O(n) time.

We perform an analogous traversal for the dual graph Mδ(G
∗). Again, whenever

we encounter an edge ψ∗ that connects a visited vertex ρ∗ with an unvisited vertex φ∗
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(i.e., ψ is a 1-cell and ρ,φ are 2-cells of the original complex), we add (ψ,φ) to the
gradient vector field Vδ . Note that the final Vδ results from both the primal and dual
traversals and is a vector field on K.

Theorem 22 The gradient vector field Vδ is identical to the final vector field Vn of a

2δ-persistence cancelation sequence (V0, . . . , Vn).

Proof First observe that if (σ, τ ) ∈ Vn and dimσ = 0, then both σ and τ are cells
of Mδ(G) since all non-critical cells of Vn either are non-critical in V as well or
have persistence ≤ 2δ (with respect to f and ≺). Moreover, the 0-cells creating a
connected component of Mδ(G) are the only critical 0-cells of Vn (by definition) and
of Vδ (by construction). Since Mδ(G) is a forest, the pairs (σ, τ ) ∈ Vn with dimσ = 0
are uniquely defined by this property. Thus the dimension (0,1) pairs of Vn and Vδ

coincide. By applying the dual argument to Mδ(G
∗), the statement follows. �

5.4 Constructing the Simplified Function

Finally, we construct a function fδ (different from the plateau function defined in
Sect. 4.1) that is consistent with the simplified gradient vector field Vδ . Consider the
Hasse diagram H := HVδ of the strict partial order ≺Vδ as described in Sect. 2.2.
We visit the vertices K of H in a linear extension of ≺Vδ . The problem of finding
a linear extension of a partial order is also called topological sorting and can be
solved using depth-first search on H [8]. At each visited cell σ , we define fδ(σ ) as
the minimum value that satisfies the lower bound fδ(σ ) ≥ f (σ ) − δ and renders fδ

consistent with Vδ , i.e.,

fδ(σ ) = max
(
f (σ ) − δ, max

ρ←Vδ
σ
fδ(ρ)

)
.

The construction of fδ also takes O(n) time.

5.5 Correctness of the Algorithm

Theorem 23 The function fδ constructed using the above algorithm is a perfect

δ-simplification of f .

Proof By construction fδ is consistent with Vδ . At the same time, by Theorem 22,
Vδ is the final vector field of a 2δ-persistence cancelation sequence. Therefore, by
the definition of a perfect δ-simplification, it only remains to show that the constraint
‖fδ − f ‖∞ ≤ δ is satisfied. The lower bound fδ ≥ f − δ is satisfied by construction.
It thus remains to show the upper bound fδ ≤ f + δ.

Observe that the set of all perfect δ-simplifications consistent with Vδ is defined by
a set of linear inequalities: the upper and lower bounds on the function values given
by f ± δ, and the inequalities imposed by consistency with Vδ . Therefore, the set of
δ-simplifications is a convex polyhedron P ⊂ R

n with n = |K|. The polyhedron P is
bounded since it is a subset of the product of intervals

∏
σ∈K [f (σ ) − δ, f (σ ) + δ].
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From Theorem 16, we know that P is not empty. We now show that fδ is contained
in P .

First, consider the (unbounded) convex polyhedron P̃ defined by the lower bound
fδ ≥ f − δ and the inequalities induced by Vδ . By construction, fδ is contained in P̃ .
Moreover, again by construction, fδ minimizes the function value of any cell among
all functions in P̃ . In other words, for any function f̃ in P ⊂ P̃ , we have f̃ ≥ fδ .
This implies the upper bound fδ ≤ f̃ ≤ f + δ. �

6 Discussion

6.1 Computational Results

We implemented the algorithm of Sect. 5 in C++. For a complex with over 4 million
cells (the cubical complex for a 1025 × 1025 pixel image), we obtained a running
time of about 15 seconds for computing a perfect δ-simplification on a 2.4 GHz Intel
Core 2 Duo laptop.

6.2 Symmetrizing the Algorithm

The method described in Sect. 5 assigns to each cell the smallest possible value. As a
consequence, the output function differs from the input function f even if the input
function is already a perfect δ-simplification. Moreover, the method is not symmetric
in the sense that we obtain an output function which maximizes the values if we
apply the algorithm to the function −f on the dual complex and return the negative
of the simplified function. Since both the minimal and maximal solutions are points
of a convex polyhedron as explained in Sect. 5.5, we can take the component-wise
arithmetic mean to obtain another perfect δ-simplification.

With this modification, if the input function f is already a perfect δ-simplification,
then the minimal solution is given by f −δ, while the maximal solution equals f +δ,
so the arithmetic mean of both solutions returns f again as desired.

6.3 Flooding and Carving Artifacts

The methods presented in the present article can be seen as combinations of the so-
called carving and flooding approaches. Consequently, they also inherit some charac-
teristics of these methods that may not always be desirable in practical applications
(see Fig. 6).

Carving methods [2, 13, 33] cancel a pair of critical cells by changing only the
descending or ascending set of the 1-cell (saddle). This results in a noticeable thin
path being carved in the function. On the other hand, modifying only the descending
or ascending set of extrema, i.e., lowering maxima and raising minima, produces
regions with constant function value; this is called filling or flooding [9, 20]. Although
this effect is less disturbing, it might appear unnatural in certain applications. In the
next section, we propose a way to remedy both kinds of artifacts.



Discrete Comput Geom (2012) 47:347–377 373

Fig. 6 Visualization of simplification artifacts. Function values are indicated by gray levels. Left: Original
function. Middle: Function obtained by the algorithm of Sect. 5. Note the bright path joining the two spots.
Right: Function obtained after constraint energy minimization according to Sect. 6.4. While the simplified
topological structure is maintained, the visual appearance is closer to the original function

6.4 Combining Topological Simplification and Energy Methods

As mentioned in Sect. 5.5, the set of perfect δ-simplifications consistent with the
simplified gradient vector field Vδ is a convex polyhedron P . Hence, the presented
method can be combined with energy minimization methods, since the polyhedron P

can be used as the feasible region for an arbitrary convex optimization problem. For
example, we used the interior point solver Ipopt [35] to minimize (a discretization
of) the Dirichlet energy of the difference fδ − f in order to obtain a function fδ that
looks as similar as possible to the input function f (see Figs. 6 and 7). Alternatively,
we minimized the Dirichlet energy of the simplified function itself in order to obtain
smooth contour lines. Note, however, that solving a constraint optimization problem
is much more expensive than finding an initial perfect δ-simplification. Computing
the function shown in Fig. 7 took about an hour, while the initial simplification took
only five seconds to compute.

6.5 A Counterexample for General 2-Complexes

The example of Fig. 8 shows that a perfect δ-simplification may not exist on a non-
manifold 2-dimensional cell complex. For the sake of simplicity, the example is given
for a non-regular CW complex; it is straightforward to rephrase this example us-
ing a regular CW complex by subdividing the cells. The complex consists of two
0-cells ζ and γ with f (ζ ) = f (γ ) = 0, three 1-cells a, b, and c with f (a) = 1,
f (b) = 2, and f (c) = 0, and two 2-cells A and B with f (A) = 2 and f (B) = 3.
Note that the complex is not manifold since it is not locally Euclidean at the 1-cell b.
A canonical ordering leads to the persistence pairs (a,A), (b,B), and (γ, c). To ob-
tain a perfect δ-simplification for δ = 0.5, one would need to set fδ(b) = fδ(B) = 2.5
and fδ(a) = fδ(A) = 1.5. The corresponding simplified gradient vector field would
be Vδ = {(a,A), (b,B)}. But since b is a facet of A, we must have fδ(b) ≤ fδ(A).
Hence, we cannot cancel both (a,A) and (b,B) at the same time. This constellation
also appears in [11] under the name conflict of type (1,2).

Since such a 2-complex can also appear as a level subcomplex of an n-manifold
CW complex for n ≥ 3 (e.g., a triangulated 3-ball), the example also shows that a
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Fig. 7 Top: Topographic map of elevation data set “Puget Sound” [27], showing the region around
Tacoma. Contour lines shown every 500 meters. Elevation data are converted from a 512 × 512 grid
into a pseudo-Morse function on 1050625 cells. 33120 critical cells have persistence > 0 (persistence
diagram shown on the right). Bottom: Simplified elevation function obtained after constraint energy min-
imization according to Sect. 6.4 with δ = 500 meters. The function has one minimum, three saddles, and
three maxima



Discrete Comput Geom (2012) 47:347–377 375

Fig. 8 A discrete Morse
function on a 2-complex that
does not have a perfect
δ-simplification. The function
values of the cells are indicated
in parentheses

perfect δ-simplification does not always exists for functions on manifolds. Thus the
topological simplification problem is more difficult in higher dimensions.

6.6 Removing Local Extrema from Functions on Manifolds

As a concluding remark, we want to mention that the constructions and proofs pre-
sented in this article can also be adapted to the problem of minimizing the number of
local extrema of a pseudo-Morse function within a δ-tolerance on any d-dimensional
manifold CW complex.

Problem (Extrema simplification on manifolds) Given a pseudo-Morse function f

on a regular manifold CW complex and a real number δ ≥ 0, find a function fδ subject
to ‖fδ − f ‖∞ ≤ δ such that fδ has a minimum number of local extrema.

By a local extremum we mean a critical cell of dimension 0 or d of a gradient
vector field consistent with f . We obtain the following theorem, which can be proven
by a straightforward modification of the proof of Theorem 16.

Theorem 24 Given a pseudo-Morse function f on a finite regular closed manifold

CW complex and a real number δ ≥ 0, there exists a pseudo-Morse function fδ such

that ‖fδ − f ‖∞ ≤ δ and the number of local extrema of fδ equals the number of

those local extrema of f that have persistence > 2δ. This number is minimal.

Note that in the case d = 2 this problem is equivalent to the topological simplifica-
tion problem by the following argument. Let ci denote the number of critical cells of
dimension i. Since the Euler characteristic χ = c0 − c1 + c2 is a topological invariant
and we have c0 + c1 + c2 = 2(c0 + c2) − χ , the number of critical points is minimal
if and only if the number of extrema is minimal.
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