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Abstract— This paper studies the optimal reference tracking
problems of finite-dimensional, linear, time-invariant (LTI)
systems with an additive white Gaussian noise (AWGN) channel
between the controller and the plant. We consider two types
of the reference signal: a random variable and a Brownian
motion. The power of the tracking error is adopted as the
measure of the performance and is to be minimized over all
stabilizing two-parameter controllers. We assume the power of
the channel input is limited and seek to solve the constrained
optimization problem explicitly. It is shown that, besides the
power constraint, the lowest power of the tracking error hinges
closely on non-minimum phase zeros, the unstable poles and
the plant gain.

I. INTRODUCTION

A somewhat simplified, yet still rather typical configura-

tion of networked control system is shown in Fig. 1. This

scenario may occur when, for example, the controller and

the plant are connected through data networks. It is clear

that the limitations of the communication channel such as

data-rate limit, quantization, time delays and data packet

drop-out will affect the stability as well as performance

of the system fundamentally. It then necessitates a tradeoff

between the control performance and the figures of merit of

the channel. This type of interaction between control theory

and information theory gives rise to a new challenging topic

that has attracted considerable attention.

Recently, numerous papers have been published dealing

with the stabilization issues of the control system over

communication channels [1]–[5]. For example, necessary and

sufficient conditions on the smallest data rate for stabilization

of discrete-time LTI systems have been derived for a noise-

less digital channel model [1], [2] and further generalized

to other noisy channels [5]. The same problem has been

investigated with respect to stochastic linear systems [4] for

noiseless digital channels. In addition, the authors of [6]

have adopted an additive white Gaussian noise channel with

power constraint, and obtained the minimum signal-to-noise

ration (SNR) required to stabilize a given unstable plant. The

AWGN channel in the feedback loop furnishes an appealing

model that not only preserves the system’s linearity, but also

can readily translate the power constraint into one on the

capacity of the channel.

In spite of the significant progress on stabilization issues,

the more inspiring but difficult control performance questions

remain open. And it is fairly essential to understand the
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Fig. 1. General configuration of networked control systems

relations between the control performance and communica-

tion channels before we are able to design a satisfactory

networked control system. The problem poses a daunting

challenge but is a crucial step toward exploring the connec-

tion between control and communication. The present paper

thus focuses on the optimal tracking performance of single-

input single-output (SISO), finite-dimensional, LTI systems

with output feedback over an AWGN channel with power

constraint.

For standard control systems, it is known that the minimal

tracking error is determined by the non-minimum phase zeros

of the plant [7]. For a control system with communication

constraints, it is plausible that other factors such as the plant

gain and the capacity of the communication channel [6] will

play a role as well. In this paper, we derive the expression

for the optimal unconstrained tracking performance in terms

of the weighted sum between the power of the tracking

error and the channel input. As a byproduct, we are able

to obtain the stabilization requirement on the SNR of the

channel which coincides with the earlier result found in [6].

More importantly, we solve the best achievable constrained

tracking performance explicitly.

II. NOTATIONS AND PROBLEM STATEMENT

We first introduce the notation used in this paper. z̄ denotes

the conjugate of a complex number z. The transpose and

conjugate transpose of a vector u are denoted by u
T and u

H

and the boldface type is used to denote vectors. The transpose

and conjugate transpose of a matrix A are denoted by AT

and AH . The open left, open right halves of the complex

plane and the imaginary axis are denoted by C−, C+, and

C0 respectively. The Hilbert Space we shall consider is

L2 ,

{

f : f(s) measurable in C0,

‖f‖2

2
,

1

2π

∫ ∞

−∞

‖f(jω)‖2
dω < ∞

}
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in which the inner product is defined as

〈f, g〉 ,
1

2π

∫ ∞

−∞

fH(jω)g(jω) dω.

It is an important fact that L2 admits an orthogonal decom-

position into the subspaces H2 and H⊥
2 , where

H2 ,

{

f : f(s) analytic in C+,

‖f‖2

2
, sup

ǫ>0

1

2π

∫ ∞

−∞

‖f(ǫ + jω)‖2
dω < ∞

}

and

H⊥
2 ,

{

f : f(s) analytic in C−,

‖f‖2

2
, sup

ǫ<0

1

2π

∫ ∞

−∞

‖f(ǫ + jω)‖2
dω < ∞

}

.

It follows that for any f ∈ H2 and g ∈ H⊥
2 , we have

〈f, g〉 = 0. It is worth pointing out that we shall use the

same notation ‖ · ‖
2

to denote these norms, as the meaning

of each of these norms will be clear from the context. Let

RH∞ denote the set of all stable, proper, rational transfer

function matrices. The expectation operator is denoted by

E[ · ]. Finally, the logarithm used throughout this paper has

base e unless otherwise specified.

The SISO finite-dimensional, LTI unity feedback system

under consideration is depicted in Fig. 2. Here, P is the

plant model and [K1, K2] is a general two-parameter con-

troller. Their transfer functions are P (s) and K1(s),K2(s),
respectively. We shall use the same symbol for the system

and its transfer function and omit the frequency variable s
whenever convenient. The signals r, u, n, y are the reference

input, the channel input, the channel noise and the system

output, respectively. The tracking error signal is defined as

e(t)
.
= r(t) − y(t) and its average power is E[e2(t)]. In the

configuration, the control input u accesses the reference input

r and the output y via two independently designed controllers

K1 and K2. Since the two-parameter controller represents the

most general linear feedback structure available, the optimal

tracking error obtained herein is the smallest achievable

performance. It has two degrees of freedom and offers us

advantage in dealing with tracking error as well as counter-

ing the channel noise. Lastly, the noise n(t) is zero-mean

white Gaussian noise with power spectral density Φ and the

channel is assumed to be AWGN with infinite bandwidth.

The power of the channel input signal is limited by

E[u2(t)] ≤ Γ (1)

and the channel capacity of the AWGN channel is therefore

given by [8] C = 1

2
(log2 e) Γ

Φ
.

In the sequel, we shall focus on the case that all the signals

are wide-sense stationary processes or that the system has

reached its steady state. In other words, this formulation

casts aside any transient behavior. As a result, from this

point onward, we may drop the time variable t in the second

moment expression whenever convenient.

[K1 K2] P+
u(t) u

r
(t)

n(t)

r(t) y(t)

Fig. 2. Two-parameter tracker over an AWGN channel

Next we introduce some important factorizations that will

be frequently used in the development of the result. First, let

the coprime factorization of P be given by

P = NM−1 (2)

where N,M ∈ RH∞ and satisfy the Bezout identity

MX − NY = 1 (3)

for some X,Y ∈ RH∞. It is useful to factorize N(s) as

N(s) = L(s)Nm(s) (4)

where Nm(s) represents the minimum phase part of N(s),
and L(s) represents an all-pass factor which can be con-

structed as

L(s) =

Nz
∏

i=1

z̄i

zi

zi − s

z̄i + s
(5)

where zi, i = 1, . . . , Nz are the non-minimum phase zeros of

P . When so constructed, L(0) = 1. Similarly, a factorization

of M(s) yields

M(s) = B(s)Mm(s) (6)

where Mm(s) is minimum phase, and B(s) is all-pass which

can be constructed as

B(s) =

Np
∏

i=1

s − pi

s + p̄i

(7)

where pi, i = 1, . . . , Np are the unstable poles of P . We

also note that M(∞) = 1. The set of all stabilizing two-

parameter compensators can be characterized by the Youla

parametrization

K .
= {K : K =

[

K1 K2

]

= (X − RN)−1

×
[

Q Y − RM
]

, Q, R ∈ RH∞}. (8)

The optimal tracking problem over an AWGN channel can

be formulated as

inf
K∈K

E[e2], subject to E[u2] < Γ. (9)

The two-parameter controller chosen from K is to be de-

signed such that the power of the tracking error is minimized

while the channel power constraint is satisfied.
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III. TRACKING A RANDOM VARIABLE

In this section, we shall derive an analytical expression

for the best performance of tracking a random variable. The

reference input r is a wide-sense stationary random process

satisfying r(t) = A, −∞ < t < ∞ where A is a random

variable with E[A2] = σ2. The power spectral density of

r(t) is therefore given by Sr(ω) = 2πσ2δ(ω) where δ(ω)
denotes the Dirac delta function. With abuse of notation, in

Fig. 2, the transfer functions from n and r to e and u are

given by

e =
(

1 − (1 − PK2)
−1

PK1

)

r − (1 − PK2)
−1

Pn,

u =(1 − PK2)
−1

K1r + (1 − PK2)
−1

PK2n.

Since we are choosing the controllers from K, we can further

write the above transfer functions as

e =(1 − NQ) r − N(X − RN)n,

u =MQr + (−1 + M(X − RN)) n.

Because of r and n are uncorrelated, we could express the

power of e and u as [9]

E[e2] = |1 − N(0)Q(0)|2 σ2 + ‖N(X − RN)‖2

2
Φ,

E[u2] = |M(0)Q(0)|2 σ2 + ‖1 − M(X − RN)‖2

2
Φ.

A. Optimization of the Tracking Error and Channel Input

Combined

We shall use convex optimization to address problem (9).

To that end, we first adopt a performance measure that

weighs the power of the tracking error and and the channel

input jointly, that is,

H(ǫ)
.
= (1 − ǫ)E[e2] + ǫE[u2], (10)

where 0 ≤ ǫ ≤ 1. H(ǫ) can also be considered as the

Lagrangian.

It follows from (10) and a standard algebraic manipulation

that

H = A + J

where

A
.
=(1 − ǫ)σ2 |1 − N(0)Q(0)|2 + ǫσ2 |M(0)Q(0)|2 , (11)

J
.
=

∥

∥

∥

∥

[ √
1 − ǫN(X − RN)√

ǫ (1 − M(X − RN))

]√
Φ

∥

∥

∥

∥

2

2

. (12)

Let H∗(ǫ) denote the infimum of H(ǫ) over all stabilizing

controllers. The optimization problem boils down to two

independent cases

H∗(ǫ) = inf
Q,R∈RH∞

H = inf
Q∈RH∞

A + inf
R∈RH∞

J. (13)

Before stating the main theorem of this paper, we introduce

an inner-outer factorization [10]
[√

1−ǫ
ǫ

Nm

−Mm

]

= ∆i∆o (14)

where ∆i ∈ RH∞ is an inner matrix function, and ∆o ∈
RH∞ is an outer scalar function.

Theorem 1: Let r be a random variable with zero mean

and variance σ2. Suppose that P (s) is a rational scalar

transfer function which admits the factorization (2). Further

assume that the non-minimum phase zeros of P are distinct.

Let zi, i = 1, . . . , Nz be the non-minimum phase zeros and

pi, i = 1, . . . , Np be the unstable poles of P . Then,

H∗(ǫ) = σ2 ǫ(1 − ǫ)

(1 − ǫ)P (0)2 + ǫ
+ ǫΦ

{

2

Np
∑

i=1

pi

+
1

π

∫ ∞

0

log

(

1 +
1 − ǫ

ǫ
|P (jω)|2

)

dω+

Nz
∑

l=1

Nz
∑

i=1

γlγ̄i

zl + z̄i

}

.

(15)

where

γi
.
= 2Re(zi)

[

1 − ∆o(zi)M
−1(zi)

]

Nz
∏

j=1,j 6=i

zi + z̄j

zi − zj

(16)

Proof: We briefly state several key steps of this

proof using the framework established in [11]. First, it is

straightforward to calculate

A∗ = σ2 ǫ(1 − ǫ)

(1 − ǫ)P (0)2 + ǫ
.

Then we consider J . By virtue of the factorizations (4) and

(6), we have

J =

∥

∥

∥

∥

∥

[

0√
ǫB−1

]

+
√

ǫ

[√

1−ǫ
ǫ

Nm(X − RN)

−Mm(X − RN)

]∥

∥

∥

∥

∥

2

2

Φ (17)

With the aid of the inner-outer factorization (14) and by

properly choosing R, we can further simplify J∗ as

J∗ =
∥

∥

√
ǫ
(

B−1 − 1
)∥

∥

2

2
+ Ĵ∗ (18)

where
√

ǫ
(

B−1 − 1
)

∈ H⊥
2 and Ĵ∗ .

= infR∈RH∞ Ĵ with

Ĵ
.
=

∥

∥

∥

∥

[

0√
ǫ

]

+
√

ǫ∆i∆o(X − RN)

∥

∥

∥

∥

2

2

Φ ∈ H2.

To calculate Ĵ∗, define

Ψ(s)
.
=

[

∆T
i (−s)

I − ∆i(s)∆
T
i (−s)

]

,

which satisfies ΨH(jω)Ψ(jω) = I. Then we may pre-

multiply Ĵ by Ψ, yielding

Ĵ =

∥

∥

∥

∥

Ψ

{[

0√
ǫ

]

+
√

ǫ∆i∆o(X − RN)

}∥

∥

∥

∥

2

2

Φ

which, by further calculation, can be reduced to

Ĵ =
∥

∥W1 +
√

ǫ∆o(X − RN)
∥

∥

2

2
Φ + ‖W2‖2

2
Φ.

where

W1

.
= −

√
ǫ∆̄−1

o M̄m,

W2

.
=

[

−
√

1 − ǫNm∆−1
o ∆̄−1

o M̄m√
ǫ
(

1 − Mm∆−1
o ∆̄−1

o M̄m

)

]

.

The derivations of the first term makes use of the

factorization (4) and a partial fraction procedure on
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(

∆̄−1
o (∞)M̄m(∞) − ∆oX

)

L−1. After a proper choice of

R ∈ RH∞, we can express

Ĵ∗ =

(

‖W2‖2

2
+ ǫ
∥

∥∆̄−1
o M̄m − ∆̄−1

o (∞)M̄m(∞)
∥

∥

2

2

+ ǫ

∥

∥

∥

∥

∥

Nz
∑

i=1

γi

zi − s

∥

∥

∥

∥

∥

2

2

)

Φ

The summation of the first two terms of the above equation

is equal to [11]

ǫ

π

∫ ∞

0

log

(

1 +
1 − ǫ

ǫ
|P (jω)|2

)

dω

and the last term leads to
∥

∥

∥

∥

∥

Nz
∑

i=1

γi

zi − s

∥

∥

∥

∥

∥

2

2

=

Nz
∑

l=1

Nz
∑

i=1

γlγ̄i

zl + z̄i

.

Observing that

∥

∥

√
ǫ
(

B−1 − 1
)∥

∥

2

2
= 2ǫ

Np
∑

i=1

pi

we proved the theorem.

We present here a brief analysis of Theorem 1. To begin

with, notice that the noise power appears as a positive scaling

factor and therefore amplifies the negative effect resulting

from the unstable poles, the non-minimum phase zeros and

the plant gain. This is unsurprising in that the greater the

noise power, the harder it is to achieve a good performance.

Second, the first term shows a large plant gain at DC is

helpful in countering the power of the input reference signal.

Thirdly, the unstable poles as well as the plant gain constrain

the performance in a way represented by the second and

third term of (15). It is clear that a small plant gain is

desirable for lessening the effect of the channel noise. These

expressions remain largely the same as the optimal regulation

performance derived in [11], despite the fact that there the

control energy is regulated while the performance index (15)

considers the power of the channel input. Finally, the last

term is positive and thus demonstrates the detrimental effect

of the simultaneous presence of unstable poles and non-

minimum phase zeros on the best achievable performance.

It is interesting to examine two extreme cases, i.e. ǫ = 0
and ǫ = 1. When ǫ = 0, H∗ defines the minimal tracking

error without channel input power constraint and

H∗(0) = Φ

Nz
∑

l=1

Nz
∑

i=1

βlβ̄i

zl + z̄i

(19)

where

βi
.
= 2Re(zi)Nm(zi)M

−1(zi)

Nz
∏

j=1,j 6=i

zi + z̄j

zi − zj

. (20)

βi is derived directly from (17) following the same procedure

as in the proof. To achieve the best tracking performance

bound, the channel input power is necessarily infinite, and

thus requires infinite channel capacity.

On the other hand, H∗(1) defines the minimal channel

input power without taking tracking error into consideration

and

H∗(1) = Φ



2

Np
∑

i=1

pi +

Nz
∑

l=1

Nz
∑

i=1

αlᾱi

zl + z̄i



 (21)

where

αi
.
= 2Re(zi)

[

1 − B−1(zi)
]

Nz
∏

j=1,j 6=i

zi + z̄j

zi − zj

. (22)

To obtain the above equation, notice that ∆o = Mm when

ǫ = 1 and therefore in (16), ∆o(zi)M
−1(zi) = B−1(zi).

The equation (21) identifies the minimum SNR of the AWGN

channel below which it is impossible to stabilize the plant

[6]. Let Γth
.
= H∗(1). Since the optimization is derived

over all stabilizing two-parameter controller (8), the plant is

stabilizable if and only if the channel input power constraint

Γ > Γth (23)

or the capacity of the AWGN channel satisfies

C >
1

2
(log2 e)



2

Np
∑

i=1

pi +

Nz
∑

l=1

Nz
∑

i=1

αlᾱi

zl + z̄i



 (24)

B. Tracking under Constraint on the Power of the Channel

Input

Given the solution of the preceding problem, we can now

treat the constrained optimization (9). Let H∗
e (Γ) denote the

optimal cost under the channel power constraint Γ. We seek

to observe a relation between the power constraint of the

channel and the minimal tracking error.

Define λ
.
= ǫ/(1 − ǫ). It follows from the inner-outer

factorization (14) that ∆o is a function of λ. Therefore γi

is also a function of λ through the definition (16). Then we

may further define

R(λ)
.
=

Nz
∑

l=1

Nz
∑

i=1

γl(λ)γ̄i(λ)

zl + z̄i

. (25)

The result is summarized in the following theorem.

Theorem 2: Suppose that P (s) is a transfer function sat-

isfying the assumption in Theorem 1. If the power of the

channel input satisfies the constraint Γ > H∗(1), then the

smallest constrained tracking error is given as

H∗
e (Γ) = σ2 λ∗

P (0)2 + λ∗
+ Φλ∗

{

2

Np
∑

i=1

pi + R(λ∗)

+
1

π

∫ ∞

0

log

(

1 +
|P (jω)|2

λ∗

)

dω

}

− λ∗Γ (26)
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where λ∗ is the positive zero of

σ2P (0)2

(P (0)2 + λ)2
+ Φ

{

2

Np
∑

i=1

pi + R(λ) + λ
d R(λ)

dλ

+
1

π

∫ ∞

0

[

log

(

1 +
|P (jω)|2

λ

)

− |P (jω)|2

λ + |P (jω)|2

]

dω

}

−Γ.

(27)

Proof: As defined in (10), 1

1−ǫ
(H∗(ǫ) − ǫΓ) gives a

lower bound on H∗
e (Γ) [12]. Since the feasibility region for

the existence of a stabilizing controller in the E[e2]-E[u2]
space is convex [13], the bound is tight and the equality can

be attained by some ǫ. More specifically,

H∗
e (Γ) = sup

0<ǫ<1

{

1

1 − ǫ
(H∗(ǫ) − ǫΓ)

}

.

It follows that

H∗
e (Γ) = sup

λ>0

{φ(λ)} (28)

where

φ(λ)
.
=

σ2λ

P (0)2 + λ
+ Φλ

{

2

Np
∑

i=1

pi + R(λ)+

1

π

∫ ∞

0

log

(

1 +
|P (jω)|2

λ

)

dω

}

− λΓ. (29)

which is a convex function with respect to λ. The derivative

of φ(λ) is then a monotonically decreasing function given

by (27). It can be shown that limλ→∞ φ(λ) = H∗(1) − Γ
and limλ→0 φ(λ) = ∞. Thus the positive solution of

d φ(λ)

dλ
= 0

exists when H∗(1)−Γ < 0 and it will be the maximizer λ∗

of φ(λ). We thus arrive at (26) which is valid for Γ > Γth,

i.e. when the system is stable.

Theorem 2 sheds light on the effect of the AWGN channel

on the performance of the control system. The channel SNR

is related to the tracking performance in a quite intriguing

way. To better understand it, we may assume that P (0) = 0
and P does not have non-minimum phase zeros. We thus

obtain from (27) that λ∗ is the positive solution of

1

π

∫ ∞

0

[

log

(

1 +
|P (jω)|2

λ

)

− |P (jω)|2

λ + |P (jω)|2

]

dω

=
Γ

Φ
− 2

Np
∑

i=1

pi. (30)

And therefore λ∗ depends on the SNR of the channel and

the the plant gain. Then, by inserting λ∗ to (26), we obtain

the best constrained tracking performance.

Numerically, λ∗ is easy to calculate because of the mono-

tonicity of the function (d/(dλ))φ(λ). Once λ∗ is found,

H∗
e (Γ) can be calculated directly using (26).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

λ

φ
(λ

)

Γ increasing

Fig. 3. Constrained tracking error when Γ > Γth

C. Numerical Example

We now use a simple example to illustrate the preceding

result.

Example 1: Consider the plant

P (s) =
s − 1

s2 − s − 6
. (31)

Assume that the reference input signal has unit variance

and the power spectral density of the white noise Φ = 1.

When the channel input power constraint satisfies Γ > Γth,

by computing the expression (29) we obtain the curves in

Fig. 3. According to (28), the maxima of the concave curves

gives the constrained optimal tracking errors. The figure also

shows that as the channel input power constraint increases,

the tracking error decreases, which is expected.

IV. TRACKING A BROWNIAN MOTION

In this section, we shall deal with the problem of tracking

a slowly varying “constant”. To be more specific, we assume

that the reference input r is the integral of a standard white

noise which can be non-rigorously considered as a Brownian

motion [14]. Then, the problem resembles the tracking of a

deterministic step signal.

Assuming that r and n are uncorrelated, we have

E[e2] = ‖(1 − NQ) r̂‖2

2
+ ‖N(X − RN)‖2

2
Φ,

E[u2] = ‖MQr̂‖2

2
+ ‖1 − M(X − RN)‖2

2
Φ,

where r̂ = 1/s is the transfer function of the integrator. The

performance index (10) is then given by

H = B + J

in which

B
.
=

∥

∥

∥

∥

[√
1 − ǫ(1 − NQ)√

ǫMQ

]

r̂

∥

∥

∥

∥

2

2

(32)

and J is the same as (12). It is then clear that in order for H
to be finite, we need to have M(0) = 0 and thus P needs to
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have a pole at s = 0 and no zero at the origin. The optimal

performance becomes H∗ = infQ∈RH∞ B + infR∈RH∞ J.
We then state the following result without proof, as it is

analogous to that for Theorem 1 in the previous section and

Theorem 4 in [11].
Theorem 3: Let r be the random process specified above.

Suppose that

P (s) =
P0(s)

sn

for some integer n ≥ 1, such that P0(s) is proper and has

no zero at s = 0. Let zi, i = 1, . . . , Nz be the non-minimum

phase zeros and pi, i = 1, . . . , Np be the unstable poles of

P . Assume further that the non-minimum phase zeros of P
are distinct. Then,

H∗ = (1−ǫ)

{

1

π

∫ ∞

0

1

ω2
log

(

1 +
ǫ

(1 − ǫ) |P (jω)|2

)

dω

+ 2

Nz
∑

i=1

1

zi

}

+ ǫΦ

{

1

π

∫ ∞

0

log

(

1 +
1 − ǫ

ǫ
|P (jω)|2

)

dω

+ 2

Np
∑

i=1

pi +

Nz
∑

l=1

Nz
∑

i=1

γlγ̄i

zl + z̄i

}

, (33)

where γi is given by (16).
Theorem 3 shows that besides the effect of non-minimum

phase zeros and unstable poles, the best achievable tracking

performance exhibits a tradeoff between the high and low

plant gain. Because of the factor 1/ω2, we may expect that

a plant with large gain at low frequency and small gain

at high frequency is beneficial for our purposes. Tracking

and constraining the channel input power are thus competing

objectives that depend heavily on the plant gain.
In an analogous fashion to Theorem 2, we solve the

corresponding constrained optimization problem (9) and

summarize the result in the following theorem.
Theorem 4: Suppose that P (s) satisfies the assumption

in Theorem 3. Let Γ > Γth, then the optimal constrained

tracking error is given by

H∗
e (Γ) = 2

Nz
∑

i=1

1

zi

+
1

π

∫ ∞

0

1

ω2
log

(

1 +
λ∗

|P (jω)|2

)

dω

+ λ∗Φ

{

2

Np
∑

i=1

pi +
1

π

∫ ∞

0

log

(

1 +
|P (jω)|2

λ∗

)

dω

+ R(λ∗)

}

− λ∗Γ (34)

where λ∗ is the positive solution of

∫ ∞

0

1

ω2(|P (jω)|2 + λ)
dω + Φ

{

2

Np
∑

i=1

pi

+

∫ ∞

0

[

log

(

1 +
|P (jω)|2

λ

)

− |P (jω)|2

λ + |P (jω)|2

]

dω

+ R(λ) + λ
dR(λ)

dλ

}

= πΓ. (35)

V. CONCLUSION

In this paper we have investigated the best tracking per-

formance of a linear system over an AWGN channel with

constraint on the power of the input. We have derived explicit

expressions for both unconstrained and constrained optimal

tracking performance using H2 optimization techniques. Not

surprisingly, the constrained tracking performance depends

on the unstable poles, non-minimum phase zeros, the plant

frequency response and the SNR of the channel. The simul-

taneous presence of the unstable poles and non-minimum

zeros plays an important role in not only the performance

achievable but also the stabilization requirement on the SNR

of the channel. Besides, in the case of tracking a Brownian

motion, we have observed the tradeoff caused by the plant

gain.

The current work can be extended to deal with the per-

formance issues over more general additive noise channels

such as bandlimited AWGN or additive channel with colored

noise. Although much more complicated, it is interesting to

derive the similar results for multivariable plants with parallel

channels in the feedback loop where certain directional

characteristics will come into play.
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