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Optimal Tracking Performance for SIMO Systems

Gang Chen, Jie Chen, and Rick Middleton

Abstract—This note studies the optimal tracking problem for linear
time-invariant single-input–multiple-output systems responding to a step
reference signal. An integral square error criterion is used as the measure
for tracking performance. Explicit expressions are developed for the
optimal tracking error. These results characterize how nonsquare plants
may pose additional difficulties for tracking, other than those resulted
from nonminimum phase zeros and unstable poles.

Index Terms—Optimal tracking, performance limitation, single-
input–multiple-output (SIMO) systems.

I. INTRODUCTION

This note studies the optimal tracking performance for linear time-
invariant single-input–multiple-output (SIMO) systems responding to
a step reference signal. The cost function employed is the integral
of the squared norm of tracking error, which is to be optimized
over all possible stabilizing controllers. Optimal tracking problem is
a well-studied topic for single-input–single-output (SISO) systems
[9], and for right—invertible multiple-input–multiple-output (MIMO)
systems [3], [11], [12]. The existing results show that, in general,
the unstable poles and nonminimum phase zeros of the plant impose
inevitable limitations on tracking performance. More recently, there
has also been effort to extend these results to nonsquare systems, which,
to date, has been largely concentrated on single-input–two-output
(SITO) systems. For example, Freudenberg and Middleton [7], [8]
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considered “algebraic” design tradeoffs between feedback properties
examined at different loop-breaking points, in which the analysis is
focused on a single frequency. Woodyatt [15] studied Bode integral
relations and an optimal tracking problem for SITO systems. For
general nonright-invertible systems, Woodyattet al. [14] discussed
the problem of cheap control performance.

A performance study of nonright-invertible systems bears both prac-
tical and theoretical relevance. While in the majority of multivariable
control research the plants are assumed to be square, many systems are
not [10]. Furthermore, some square MIMO systems [6], [8] may ex-
hibit a behavior of nonsquare systems, due to almost rank deficiency
resulted from actuator faults and constraints and, thus, are essentially of
a nonright-invertible nature. Intuitively, the nonsquare structure brings
about a distinctively new class of constraints. Indeed, when the optimal
tracking problem is considered for a nonright-invertible system, the fact
that fewer inputs are available to control more outputs will make the
control of such a system more difficult. Our primary interest in this note
is to characterize analytically how tracking performance may be fun-
damentally constrained by plant structure. In turn, the understanding of
this inherent design difficulty will provide rules of thumb and bench-
marks for control designers and thus aid in feedback design.

This note extends [3], [12], and [15]. We first develop a general for-
mula for the minimal tracking error, which is expressed in terms of the
inner factor of the plant, and is valid for both right-invertible and non-
right-invertible systems. Based on this result, we then derive explicit
expressions for the minimal tracking error concerning SIMO systems.
These results indicate that the achievable tracking performance is con-
strained not only by the nonminimum phase zeros but also by the total
variation of the plant direction with frequency; the latter effect is quan-
tified by a weighted integral of the relative angle between the plant
direction at the frequencies! and 0. Indeed, it turns out that a rapid
change of plant direction at low frequencies will impose a more severe
constraint upon the achievable tracking performance. Furthermore, for
unstable SIMO plants, unlike in the case of right-invertible systems, it
will also be shown that the unstable poles may still affect the tracking
performance despite the fact that the plant may be minimum phase.

The rest of this note is organized as follows. In Section II, we
describe the setup of unity feedback systems and introduce the
relevant mathematical background. Section III presents our main
results. An illustrative example is presented in Section IV. Section V
concludes the discussion.

Some of the results in this note were presented previously in [1].

II. PRELIMINARIES

The notation used in this note is collected in the following. We de-
note the complex plane by and open right half plane by+. For
a complex numbers, its conjugate is denoted bys and its real part
by Re(s). Given a matrixM 2 m�n, denote its transpose byMT ,
its conjugate transpose byMH , and its range (i.e., column space) by
R(M). The Euclidean vector norm of a vector� is k�k =

p
�H�.

The angle between the directions of two vectorsa; b 2 n is de-
fined as6 (a; b) = arccos(jaHbj=(kakkbk)). Given a matrix function
f(s) 2 m�n, let f ~(s) = fT (�s). For any signalu(t), denote its
Laplace transform bŷu(s). Throughout this note, the vectors and ma-
trices are assumed to have compatible dimensions, and the dimensions
are thus omitted for simplicity. The spaceL2 is the Hilbert space with
inner product

hf; gi := 1

2�

1

�1

fH(j!)g(j!)d!
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Fig. 1. The unity feedback tracking system.

which further induces theL2 normkfk2 := hf; fi. For anyf; g 2
L2, they are orthogonal ifhf; gi = 0. It is well known thatL2 can be
decomposed into two orthogonal subspacesH2 andH?2 given by [5]

H2 := f : f(s) analytic in +;

kfk22: := sup
�>0

1

2�

1

�1

kf(� + j!)k2 d! <1

and

H?2 := f : f(s) analytic in �;

kfk22 := sup
�<0

1

2�

1

�1

kf(� + j!)k2 d! <1 :

Finally, we denote the set of all stable, proper, rational transfer function
matrices by H1.

We consider the standard unity feedback, one-parameter control
scheme depicted in Fig. 1; our subsequent development, however,
extends readily to two-parameter control systems. In this configura-
tion,P denotes the plant model andK the compensator, with transfer
function matrices ofP (s) andK(s), respectively. Hereafter, whenever
convenient, we omit the dependence of the transfer functions on the
frequency variables. We shall assume throughout that the feedback
system is stable, which implies thatP andK have no hidden modes in
the closed right half plane. In Fig. 1, the signalsr, e, andy represent
the command input, the error, and the system output, respectively.
Moreover, define the output open-loop transfer function byL := PK,
and the output sensitivity function byS := (I + L)�1.

For the rational transfer function matrixP , let its right and left
coprime factorization be given by

P = NM
�1 = ~M�1 ~N (1)

whereN; M; ~N; ~M 2 H1 and satisfy the double Bezout identity
~X � ~Y

� ~N ~M

M Y

N X
= I (2)

for someX; Y; ~X; ~Y 2 H1. It is well known that to stabilizeP
every compensatorK is characterized by the Youla parameterization
[5]

K := K: K = �(Y �MQ)(X �NQ)�1

= �( ~X �Q ~N)�1(~Y �Q ~M); Q 2 H1 : (3)

In particular, whenP is stable, then we can selectN = ~N = P ,
~X = M = I , X = ~M = I , andY = ~Y = 0. As a result, the

parameterization (3) reduces to

K = fK: K = Q(I �PQ)�1 = (I �QP )�1
Q; Q 2 H1g: (4)

Furthermore, consider the function class

:= f : f(s) analytic in +; lim
R!1

max
�2[�(�=2); (�=2)]

jf(Rej�)j

R
=0 :

The following integral formulas play an important role in our subse-
quent derivation. We remark that Lemma 2.1 can be found directly in
[13] and Lemma 2.2 can be readily derived using the results in [4].

Lemma 2.1: Let f(s) 2 and denotef(j!) = h(!) + jg(!).
Suppose thatf(s) is conjugate symmetric, i.e.,f(s) = f(s). Then

f
0(0) = lim

!!0

g(!)

!
=

1

�

1

�1

h(!)� h(0)

!2
d!: (5)

Lemma 2.2: Let f(s) be a meromorphic function in+. Suppose
thatf(s) is conjugate symmetric andlog f(s) 2 . Also, suppose that
f(s) hasNz zeroszi 2 +, i = 1; . . . ; Nz , andNp polespi 2 +,
i = 1; . . . ; Np, all counting multiplicities. Then, iff(0) 6= 0

1

�1

log
f(j!)

f(0)

d!

!2
= 2�

N

i=1

1

zi
� 2�

N

i=1

1

pi
+ �

f 0(0)

f(0)
: (6)

Here, by a meromorphic functionf(s) in +, we mean thatf(s) is
analytic in + except for poles [13].

III. OPTIMAL TRACKING FOR SIMO SYSTEMS

We consider a step reference signal of the form

r(t) =
�; t � 0

0; t < 0
(7)

where� = [�1; �2; . . . ; �n]
T 2 n is a constant vector withk�k =

1. Moreover, we assume that the system is initially at rest. For the given
input signalr, the tracking performance of the system is defined as

J :=
1

0

ke(t)k2 dt:

Becausêe(s) = S(s)r̂(s), it follows from the Parseval identity that

J = kSr̂k22 =
1

2�

1

�1

kS(j!)r̂(j!)k2 d!: (8)

The minimal tracking error achievable by all stabilizing compensators
form the setK is defined by

J
� := inf

K2K
J:

Throughout this section, we make the following assumptions.
Assumption 3.1:P (s) does not have transmission zero ats = 0.
Assumption 3.2:For r(t) defined in (7),� 2 R(P (0)).
We note that these assumptions are rather standard and general. To

make the integral in (8) finite with the step reference signal (7), it is
necessary thatS(s) has a transmission zero ats = 0, with input zero
direction�; here by a transmission zeroz of S(s) with input direc-
tion �, we mean thatS(z)� = 0. Assumption 3.1 is then necessary
to preclude any hidden pole-zero cancellation ats = 0. Furthermore,
Assumption 3.2 gives the condition of the step reference signal that a
nonright-invertible system may track.

We proceed by first developing a general formula forJ�, which is
valid for either right-invertible or nonright-invertible systems. Note that
for such a stable plantP , it has an inner-outer factorization

P = �i�o (9)

where�i; �o 2 H1 are inner and outer factors, respectively. Note
that�~i(s)�i(s) = I and�o admits a right inverse inH1; see [5,
p. 98] for more details.

Theorem 3.1:Let r(t) be given by (7) and suppose that the plantP

is stable. Then

J
� = ��H�0i(0)�

H
i (0)�: (10)
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Proof: Using the Youla parameterization (4), we get

J� = inf
Q2 H

(I � PQ)
�

s

2

2

in whichQ is selected such that(I�P (0)Q(0))� = 0 in order forJ�

to be finite. It is easy to verify that[
�

I�� �
] is an inner matrix. Hence

J� = inf
Q2 H

�~i

I ��i�
~

i

(I � PQ)
�

s

2

2

= inf
Q2 H

�~i ��oQ

I ��i�
~

i

�

s

2

2

= inf
Q2 H

(�~i ��oQ)
�

s

2

2

+ (I ��i�
~

i)
�

s

2

2

:

Note that(�~i��~i(0))�=s 2 H?
2 . We may pickQ 2 H1 such that

�~i(0)��o(0)Q(0) = 0, and hence(�~i(0)��oQ)�=s 2 H2. As a
result,

J� = inf
Q2 H

(�~i(0)��oQ)
�

s

2

2

+ (�~i ��~i(0))
�

s

2

2

+ (I ��i�
~

i)
�

s

2

2

:

Because�o is outer, we haveinfQ2 H k(�~i(0)��oQ)(�=s)k22 =
0. A direct calculation then yields

J� = (�~i ��~i(0))
�

s

2

2

+ (I ��i�
~

i)
�

s

2

2

=�
1

�

1

�1

Re(�H�i(j!)�
H
i (0)�)� 1

!2
d!:

Define f(s) := �H�i(s)�
H
i (0)�. Under Assumption 3.2, we have

f(0) = 1. Invoking Lemma 2.1 then gives

J� =�f 0(0) = ��H�0i(0)�
H
i (0)�:

Remark 3.1: As shown in [3], [9], for SISO and right-invertible sys-
tems, the nonminimum phase zeros of the plant impose fundamental
constraints on tracking performance. Since the inner part of the plant
contains all the nonminimum phase zeros, it comes as no surprise that in
(10) the inner factor�i is involved. It is easy to show that for right-in-
vertible systems Theorem 3.1 reduces to the known result in [3]. In-
deed, for a right-invertible plantP , suppose that it has nonminimum
phase zeros atzi, i = 1; . . . ; Nz . The inner part ofP can be formed
as

�i(s) =

N

i=1

[�i Ui]

zi
zi

zi � s

zi + s
0

0 I

�Hi

UH
i

where the unitary vector�i can be iteratively computed from the zero
direction vectors ofP , andUi is a matrix whose columns, together with
�i, form an orthonormal basis of the corresponding Euclidean space;
we refer the reader to [2] for this iterative procedure. Therefore, in-
voking (10) yields

J� =�

N

i=1

�H [�i Ui]
�
2Re(zi)

jzij2
0

0 0

�Hi

UH
i

�

=

N

i=1

2Re(zi)

jzij2
j�Hi �j2:

More generally, Theorem 3.1 is applicable to plants that need not be
right invertible and, hence, lays the very foundation in our subsequent
study of SIMO systems.

A. Stable SIMO Plants

We now derive an analytical expression of the minimal tracking error
J� for SIMO systems. We consider first stable plants, and subsequently
extend the results to unstable plants in Section III-B. LetP andK be

P (s) = [P1(s); P2(s); . . . ; Pn(s)]
T

K(s) = [K1(s); K2(s); . . . ; Kn(s)]

wherePi(s) andKi(s), 1 � i � n, are scalar transfer functions.
Theorem 3.2:Let r(t) be given by (7), and suppose that the SIMO

plant P is stable. Also, suppose thatPi(s) has nonminimum phase
zeros atzik, k = 1; . . . ; Ni. Then

J� =
i2I

�2i

N

k=1

2Re(zik)

jzikj2

+
1

�
i2I

�2i

1

0

log
jPi(0)j

2

kP (0)k2
kP (j!)k2

jPi(j!)j2
d!

!2
(11)

whereI is the index set defined byI := fi: Pi(0) 6= 0g.
Proof: The stable SIMO plantP has an inner–outer factorization

�i�o. Denote the inner factor�i as

�i(s) = [�1(s); �2(s); . . . ; �n(s)]
T :

Since� 2 R(P (0)), � = cP (0) = c�i(0)�o(0) for somec 2 .
Furthermore, sincek�k2 = jc�o(0)j

2 = 1, we may take, with no loss
of generality,� = �i(0). Plugging this� into (10) yields

J� = ��H
i (0)�0i(0) = �

i2I

�2i
�0i(0)

�i(0)
:

Because�i(s) has the same set of nonminimum phase zeros asPi(s),
by invoking Lemma 2.2 we obtain

�0i(0)

�i(0)
= �2

N

k=1

1

zik
+

1

�

1

�1

log
�i(j!)

�i(0)

d!

!2
:

The result (11) then follows by noting thatj�i(j!)j =
jPi(j!)j=kP (j!)k.

The expression of the optimal tracking error for SIMO systems
shares some similarities with its counterparts for SISO and right-in-
vertible MIMO systems, in that the nonminimum phase zeros of the
plant are also seen to constrain the achievable tracking performance.
However, it is interesting to note that the zeros ofPi(s) have an effect
dependent on�i. Indeed, since the reference signal is confined in
R(P (0)), the first term on the right-hand side of (11) may still be
zero ifPi(s) does not have nonminimum phase zeros fori 2 I. The
extra integral term on the right-hand side of (11) points to the main
difference between the right-invertible MIMO and SIMO systems. We
will see shortly that this second term, which is nonnegative, accounts
for the effect brought about by changes in the plant direction with
frequency. This can be attributed to the deficiency in the freedom of
control.

We next illustrate Theorem 3.2 by considering a special case, where
the plantP satisfies

P (0) = [P1(0); 0; . . . ; 0]
T : (12)

The following corollary is immediate from Theorem 3.2.
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Corollary 3.1: Let r(t) be given by (7), and suppose that the SIMO
plantP is stable and satisfies (12). Also, suppose thatP1(s) has non-
minimum phase zeros atzk, k = 1; . . . ; N1. Then

J� =

N

k=1

2Re(zk)

jzkj2
+

1

�

1

0

log
kP (j!)k2

jP1(j!)j2
d!

!2
: (13)

Remark 3.2: Corollary 3.1 illustrates in a more explicit manner the
nature of the tracking performance limitation encountered in SIMO
systems. Note that the second term on the right side of (13) is non-
negative, and is zero if and only if

Pi(j!) � 0; 2 � i � n:

Under this circumstance, the plant does not change its direction with
frequency. Rewrite (13) as

J� =

N

k=1

2Re(zk)

jzkj2
+

1

�

1

0

log
1

cos2 �(!)

d!

!2

where�(!) is the angle between the plant directions at the frequencies
0 and! with

cos�(!) =

n

i=1

Pi(0)Pi(j!)

kP (0)kkP(j!)k
=
jP1(j!)j

kP (j!)k
:

In this sense, the second term in (13) describes the total variation of the
plant direction in the whole frequency range. This observation extends
to general SIMO plants. Indeed, for any given SIMO plantP , we may
construct the projection matrix

� :=
P (0)

kP (0)k
; U

whereP (0)=kP (0)k and the columns ofU form an orthonormal basis
of n. Let P � = �HP . ThenP � possesses the structure of (12),
to which the above remarks apply. It is straightforward to verify that
the performance forP to track� is the same as that forP � to track
�H�, while the latter performance depends on the direction change
of P �(j!) with frequency. Since the projection preserves the relevant
angles, i.e.,

6 (P (0); P (j!)) = 6 (P �(0); P �(j!))

it follows that the performance forP to track� depends on the direction
change ofP (j!) in general.

Furthermore, since the weighting function1=!2 decays fast as!
increases, Corollary 3.1 implies that a rapid change of plant direction
at low frequencies will have a more detrimental effect on the achievable
tracking performance. This observation is reinforced by the following
corollaries.

Corollary 3.2: Assume that for some constantsc; !0 > 0

kP (j!)k2

jP1(j!)j2
� 1 +

c!2

!2 + !2
0

; ! 2 [0; !0]: (14)

Then, under the assumptions in Corollary 3.1

J� �

N

k=1

2Re(zk)

jzkj2
+

1

2!0
log 1 +

c

2
: (15)

Proof: With the inequality

log(1 + cx) � 2 log 1 +
c

2
x; x 2 0;

1

2

we complete the proof by obtaining

J� �

N

k=1

2Re(zk)

jzkj2
+

1

�

!

0

log 1 +
c!2

!2 + !2
0

d!

!2

�

N

k=1

2Re(zk)

jzkj2
+

2 log 1 + c

2

�

!

0

1

!2 + !2
0

d!:

Corollary 3.3: Assume that for some constants�; k; !c > 0

kP (j!)k2

jP1(j!)j2
� �

!

!c

k

; ! 2 [!c; 1]: (16)

Then, under the assumptions in Corollary 3.1

J� �

N

k=1

2Re(zk)

jzkj2
+

1

�!c
(log � + k): (17)

Proof: In light of (16), the proof is completed by weakeningJ�

to

J� �

N

k=1

2Re(zk)

jzkj2
+

1

�

1

!

log �
!

!c

k
d!

!2

=

N

k=1

2Re(zk)

jzkj2
+

1

�!c
(log � + k):

B. Unstable SIMO Plants

More generally, by using the technique developed in [3], we further
extend the preceding results to unstable SIMO plants. Suppose that
P (s) has simple unstable poles atpi, i = 1; . . . ; Np and factorize
P (s) as

P (s) = Ps(s)B
�1(s) = �i(s)�o(s)B

�1(s) (18)

wherePs is stable,B(s) :=
N

i=1((s�pi)=(s+pi)), and�i,�o are
the inner and outer factors ofPs.

Theorem 3.3:Let r(t) be given by (7) andP (s) by (18). Then

J� = J�s + J�u (19)

whereJ�s is the optimal tracking error corresponding toPs, and

J�u =
i; j2J

4Re(pi)Re(pj)

(pi + pj)pipj�i�j
(1��~i(pi)�i(0))

� (1��~i(pj)�i(0)) (20)

with �i := j2J ; j 6=i
(pj=pj)((pj � pi)=(pj + pi)), whereJ is the

index set defined byJ := fi: ~M(pi)� = 0g.
Proof: Using Youla parameterization (3) yieldsS =

(X � NQ) ~M . Hence

J� = inf
Q2 H

(X ~M �NQ ~M)
�

s

2

2

:

It is easy to verify that

X ~M = I + PY ~M = I +�i�oB
�1Y ~M; N = �iC

whereC(s):=�oB
�1M is stable and minimum phase. Consequently

J� = inf
Q2 H

(I +�i(�oB
�1Y � CQ) ~M)

�

s

2

2

:
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By premultiplying[
�

I�� �
], we obtain

J� = inf
Q2 H

�~i + (�oB
�1Y � CQ) ~M

I ��i�
~
i

�

s

2

2

= (�~i ��~i(0))
�

s

2

2

+ (I ��i�
~
i)
�

s

2

2

+ inf
Q2 H

(�~i(0) + (�oB
�1Y � CQ) ~M)

�

s

2

2

=J�s + inf
Q2 H

(�~i(0) + (�oB
�1Y � CQ) ~M)

�

s

2

2

:

It then remains to show (20). For this purpose, defineg(s) := ~M(s)�.
Sinceg(pi) = 0 for any i 2 J , we can factorize it asg(s) =
gm(s)�(s), wheregm(s) is the minimum phase part and has a left
inverse analytic in + [3], and�(s) is a scalar allpass factor defined
by �(s) :=

i2J
(pi=pi)((pi � s)=(pi + s)). Consequently

J�u = inf
Q2 H

�~i(0) + �oB
�1Y ~M

�
� � CQgm

1

s

2

2

:

Now, as in [3], by following a partial-fraction expansion procedure, it
then gives rise to

J�u = inf
Q2 H

i2J

pi
pi

pi + s

pi � s

1��~i(pi)�i(0)

�i

+ R� CQgm
1

s

2

2

whereR 2 H1. By properly selectingQ 2 H1, we obtain

J�u =
i2J

pi
pi

pi + s

pi � s
� 1

1��~i(pi)�i(0)

�i

1

s

2

2

=
i2J

2Re(pi)(1��~i(pi)�i(0))

pi�i

1

pi � s

2

2

:

The result then follows by realizing that

1

pi � s
;

1

pj � s
=

1

2�

1

�1

d!

(pi + j!)(pj � j!)

=
1

pi + pj
:

SinceJ�u is nonnegative, the unstable poles in the plant further
worsen the tracking performance, but in a rather complicated way.
First, an unstable pole will not affect the tracking performance unless
the direction of this pole coincides with the direction of the input
signal, namelyR(P (0)). Second, unlike in the case of right-invertible
MIMO systems, here unstable poles may affect the tracking perfor-
mance even for minimum phase plants as long as the direction of the
plant varies with frequency; in contrast, for right-invertible plants,
unstable poles will have an effect only when the plant is nonminimum
phase.

IV. I LLUSTRATIVE EXAMPLE

We now illustrate our results with an example. Consider the plant

P (s) =

P1(s)

P2(s)

P3(s)

=

(s� z1)(s+ 2)

s(s+ z2)

s

1

(s+ 1)3
: (21)

(a)

(b)

Fig. 2. (a)J with respect toz . (b) J with respect toz .

Let the direction� of the step reference input be[1; 0; 0]T such that
Assumption 3.2 is satisfied. We first fixz2 = 1, and letz1 vary from
�3 to�0.1 and from 0.1 to 3, subsequently. It is clear thatP1(s) pos-
sesses a nonminimum phase zero whenz1 > 0. For this plant, Fig. 2(a)
shows the minimal tracking errors obtained via Theorem 3.2 and that by
solving the correspondingH2 optimal control problem with the cost (8)
using the MATLAB� Toolbox. These two results match rather well.
Notably, the plantP (s) yields a worse tracking performance in the
presence of the nonminimum phase zero, especially when the zero is
closer to the origin. It is also worth pointing out that for the smallz2, the
direction of the plant does not vary much in the low frequency range.
Consequently, it can be seen that the effect of the nonminimum phase
zero dominates.

Next, we fixz1 = 0:1 and then varyz2 from 0.1 to 10. It is straight-
forward to verify that for a largerz2, the direction of the plant changes
more in the low frequency range. Computation results forJ� are plotted
in Fig. 2(b), which shows that it increases withz2. Thus, the results
agree to the previous conclusion that the variation of the plant direction
with frequency contributes to the tracking difficulty in SIMO systems.
Furthermore, it can be seen that this effect can be rather significant.
Note that the computational result via the� Toolbox yields a more
conservative tracking error for it leads to only a suboptimal controller.
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V. CONCLUSION

In this note, we have examined the optimal tracking problem for
linear time-invariant SIMO systems. Our results characterize analyt-
ically how the nonminimum phase zeros, the unstable poles, and more
importantly, the plant structure may inherently constrain the optimal
tracking performance. Specifically, it is shown that the variation of the
plant direction with frequency has a close pertinence on the tracking
error. Generally, the more it changes with frequency, the more difficult
it is to track the reference input. This is especially so for plants whose
direction changes rapidly in the low frequency range.

It is useful to note that our results herein can be extended readily to
two-parameter control systems, in a manner similar to [12]. Similarly,
in the two-parameter control setting, the plant unstable poles will no
longer affect the tracking performance. Moreover, analogous results
can be derived in parallel for energy regulation problems associated
with multiple-input–single-output plants.
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A New LMI Condition for Robust Stability of Polynomial
Matrix Polytopes

Paulo J. de Oliveira, Ricardo C. L. F. Oliveira, and Pedro L. D. Peres

Abstract—A sufficient condition for checking the robust stability of a
polytope of polynomial matrices is proposed in this note. A simple feasi-
bility test performed in a convex set of linear-matrix inequalities defined
at the vertices of the polytope yields sufficient conditions for the robust
stability of the entire domain. Both continuous-time (left half-plane) and
discrete-time stability (unit disk) are investigated. Numerical comparisons
with quadratic stability results and with another method recently appeared
in the literature show that the conditions proposed provide, in general, less
conservative results.

Index Terms—Linear-matrix inequalities (LMIs), parameter dependent
Lyapunov functions, polynomial matrices, robust stability, uncertain
polynomials.

I. INTRODUCTION

Polynomial matrices are an important tool for control systems,
being capable of representing more naturally the system dynamics in
many cases [1]. Several methods for analysis and control are based
in polynomial matrices, and it is well-known that the denominator
polynomial matrix in a matrix fraction description possesses useful
information about stability and performance of the system [2], [3].

When uncertain parameters affect the system, the analysis of robust
stability requires the verification of the stability of uncertain polyno-
mial matrices, and if polytopic uncertainty is considered, the poly-
tope of polynomial matrices need to be checked. In fact, polytopic
domains are a quite general representation of parameter uncertainty
[4]. During the last two decades, several papers dealing with robust
control of linear systems in convex bounded (polytopic) domains have
appeared, in both state space and polynomial representation. One of
most useful techniques for dealing with uncertainty is without doubt
the Lyapunov-based approach (see, for instance, [4]–[6]). For a dis-
cussion about polynomial matrices and related numerical methods for
stability tests, see [7].

As a matter of fact, the robust stability of polynomials has been
largely addressed in the last years, as in the very known result of
Kharitonov for testing polynomials with coefficients inside an interval
and in the edge theorem [4], [5]. The extension of these results to the
case of polynomial matrices does not seem to be immediate, and it has
been proven that checking stability of multilinear polynomial families
is anNP -hard problem [8].

In [7], linear matrix inequality (LMI) conditions, which had recently
appeared in the literature for testing the robust stability of a polytope
of matrices [9], [10], have been extended to the case of polynomial
matrix polytopes. More recently, new LMI conditions which turn to be
less conservative have been provided for checking the robust stability
of continuous-time [11] and discrete-time [12] uncertain systems.

In this note, sufficient conditions for the robust stability of polyno-
mial matrix polytopes are given in terms of LMIs, which are obtained as
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