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control of such a system more difficult. Our primary interest in this note
is to characterize analytically how tracking performance may be fun-
damentally constrained by plant structure. In turn, the understanding of
this inherent design difficulty will provide rules of thumb and bench-
marks for control designers and thus aid in feedback design.
This note extends [3], [12], and [15]. We first develop a general for-
mula for the minimal tracking error, which is expressed in terms of the
Gang Chen, Jie Chen, and Rick Middleton inner_facto_r of the plant, and is valid fqr both right-invertible_and non-
right-invertible systems. Based on this result, we then derive explicit
expressions for the minimal tracking error concerning SIMO systems.
Abstract—This note studies the optimal tracking problem for linear These results indicate that the achievable tracking performance is con-
time-invariant single-input-multiple-output systems responding to a step  strained not only by the nonminimum phase zeros but also by the total

reference signal. An integral square error criterion is used as the measure 4 iation of the plant direction with frequency: the latter effect is quan-
for tracking performance. Explicit expressions are developed for the

optimal tracking error. These results characterize how nonsquare plants tfied by a weighted integral of the relative angle between the plant
may pose additional difficulties for tracking, other than those resulted ~direction at the frequencies and 0. Indeed, it turns out that a rapid

Optimal Tracking Performance for SIMO Systems

from nonminimum phase zeros and unstable poles. change of plant direction at low frequencies will impose a more severe
Index Terms—Optimal tracking, performance limitation, single- CcOnStraint upon the achievable tracking performance. Furthermore, for
input—-multiple-output (SIMO) systems. unstable SIMO plants, unlike in the case of right-invertible systems, it

will also be shown that the unstable poles may still affect the tracking

performance despite the fact that the plant may be minimum phase.
The rest of this note is organized as follows. In Section I, we
This note studies the optimal tracking performance for linear timélescribe the setup of unity feedback systems and introduce the

invariant single-input—multiple-output (SIMO) systems responding f&/evant mathematical background. Section Ill presents our main

a step reference signal. The cost function employed is the in[egmults. An illustrative example is presented in Section IV. Section V

of the squared norm of tracking error, which is to be optimizegoncludes the discussion.

over all possible stabilizing controllers. Optimal tracking problem is Some of the results in this note were presented previously in [1].

a well-studied topic for single-input-single-output (SISO) systems

[9], and for right—invertible multiple-input—multiple-output (MIMO)

systems [3], [11], [12]. The existing results show that, in general, [l. PRELIMINARIES

_the l_JnstabI_e polgs and nonminimum phase zeros of the plant Imposl?he notation used in this note is collected in the following. We de-

inevitable limitations on tracking performance. More recently, there :

has also been effort to extend these results to nonsquare systems, wﬂ%ﬁ the complex pla_me b&]_and open right half plang b For

to date, has been largely concentrated on singIe-input—two-out;éu‘fomIOIex numbes, its conjugate is denoted byand its real part

. Re(s). Given a matrix/ € C™*", denote its transpose (oY
(SITO) systems. For example, Freudenberg and Middleton [7], [I l’conjugate transpose By, and its range (i.e., column space) by

R(M). The Euclidean vector norm of a vecteris ||v|| = Vviv.
The angle between the directions of two vecterd € C" is de-

. _ ’[ . . .
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R e v Lemma 2.1: Let f(s) € F and denotef(jw) = h(w) + jg(w).
4 ¥ P Suppose thaf(s) is conjugate symmetric, i.ef(s) = f(5). Then
£(0) = tim 1) = l/ M) =00y, (s
w—0 95 T J o w
Lemma 2.2: Let f(s) be a meromorphic function i . Suppose
Fig. 1. The unity feedback tracking system. thatf(s) is conjugate symmetric afidg f(s) € F. Also, suppose that
f(s) hasN. zerosz; € C4+,¢ =1, ..., N.,andN, polesp; € C,
i =1, ..., N,,all counting multiplicities. Then, if (0 0
which further induces th€, norm|| f||2 := \/{f. f). Foranyf, g € ' ’ S g P FO) #
L4, they are orthogonal iff, g) = 0. It is well known that{, can be . (i | de N No oy N
decomposed into two orthogonal subspakiesand?{> given by [5] / log flw) | dw _ o Z — N 4 & (6)
—oo F(0) | w? =z — pi (0)

Ho := {f: f(s) analyticinC,
Here, by a meromorphic functiofi(s) in C4, we mean thaff(s) is
analytic inC_ except for poles [13].

. 1 [ .
I£113- == sup 5— [|f(o +jw)||°dw<oo}
>0 2T J_
and Ill. OPTIMAL TRACKING FOR SIMO SYSTEMS
Hy = {f: f(s) analyticinC_, We consider a step reference signal of the form
v, t>0 7
1 [= . r(t) =
I = sup o [ (o + gl do < oo}, o={y .2, @
<0 2T J_
Finally, we denote the set of all stable, proper, rational transfer functigmerer = [, vs, ..., v,]" € R" is a constant vector with || =
matrices byRM o . 1. Moreover, we assume that the system is initially at rest. For the given

We consider the standard unity feedback, one-parameter conffut signalr, the tracking performance of the system is defined as
scheme depicted in Fig. 1; our subsequent development, however,

extends readily to two-parameter control systems. In this configura- J o= /'°° lle(t)]|2 dt.
tion, P denotes the plant model aid the compensator, with transfer o

function matrices of?(s) andA (s), respectively. Hereafter, whenever ] ) ]
convenient, we omit the dependence of the transfer functions on fdgcause(s) = S(s)7(s), it follows from the Parseval identity that
frequency variables. We shall assume throughout that the feedback 1 [

system is stable, which implies thBtand K" have no hidden modes in J =575 = — / 1S Gw)r(Gw)l? dew. (8)

the closed right half plane. In Fig. 1, the signale;, andy represent 27 ) oo

the command input, the error, and the system output, respectiveije minimal tracking error achievable by all stabilizing compensators
Moreover, define the output open-loop transfer functioby= PK,  5rm the setc is defined by

and the output sensitivity function b := (I + L)™*.

For the rational transfer function matrik, let its right and left J* = inf J.
coprime factorization be given by Kek
P=NM'=M"'N (1) Throughout this section, we make the following assumptions.

Assumption 3.1: P(s) does not have transmission zereat 0.

Assumption 3.2:Forr(t) defined in (7) € R(P(0)).

We note that these assumptions are rather standard and general. To
make the integral in (8) finite with the step reference signal (7), it is

_ - ) - necessary tha(s) has a transmission zeroat= 0, with input zero
for someX, Y, X, V' € RH. Itis well known that to stabilize”  gjrection; here by a transmission zeroof S(s) with input direc-

every compensatak is characterized by the Youla parameterizatiog,, v, we mean thal(z)v = 0. Assumption 3.1 is then necessary

(5] to preclude any hidden pole-zero cancellatior at 0. Furthermore,

K = {Ix”: K=—-Y-MQ)(X - NQ)_l Assumption 3.2 gives the condition of the step reference signal that a
. 1w - nonright-invertible system may track.

= (A -QN) Y -QM), Q¢ RH“} ) We proceed by first developing a general formula J&r which is

In particular, whenP is stable, then we can seledt = N = P, valid for either right-invertible or nonright-invertible systems. Note that

X=M=1X=M=1IandY =Y = 0. As a result, the 0 such a stable plarf, it has an inner-outer factorization

whereN, M, N. M € RH.. and satisfy the double Bezout identity
X -Y } M Y

- . =1 2
-N M||N X @

parameterization (3) reduces to

P= @i@o (9)
K={K:K=QUI-PQ) '=I-QP)"'Q, Q € RH..}. (4)
Furthermore. consider the function class where®;, ©, € RH. are inner and outer factors, respectively. Note
that®,(s)©;(s) = I and©®, admits a right inverse iR ..; see [5,

. ‘]'9
F:z{f: f(s) analyticinC4, lim max [F R :0}. p. 98] for more details.
R—sev€[—~(x/2),(x/2)] R Theorem 3.1: Let r(¢) be given by (7) and suppose that the pl&nt
The following integral formulas play an important role in our subses stable. Then
quent derivation. We remark that Lemma 2.1 can be found directly in

[13] and Lemma 2.2 can be readily derived using the results in [4]. J = —v"0l0)e] (0)w. (10)
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Proof: Using the Youla parameterization (4), we get More generally, Theorem 3.1 is applicable to plants that need not be
, right invertible and, hence, lays the very foundation in our subsequent
J* = inf H([ ~ PQ) ZH‘ study of SIMO systems.
QERH o S 2

inwhich @) is selected such thal — P(0)Q(0))» = 0 in order for.J~ A. Stable SIMO Plants

S]

to be finite. Itis easy to verify thdt 7 _ ] is an inner matrix. Hence We now derive an analytical gxprgssion of the minimal tracking error
1-9:9, J* for SIMO systems. We consider first stable plants, and subsequently
. 5 extend the results to unstable plants in Section I1I-B. P&tnd K™ be
. Jq v
J* = inf I — PQ)— ) T
! @&“wa_eiez I=PO P(s) = [Pi(s). Po(s). ... Pa(s)]
. 6, - 0,07 I K(s) =[K1(s), Ka(s), ..., K,(s)]
= 1n N —
QERMw ||| 1 —-0,0; | 5|, whereP;(s) andI;(s),1 < i < n, are scalar transfer functions.
, , Theorem 3.2: Let»(¢) be given by (7), and suppose that the SIMO
= inf ‘ (0: — 0,0) ZH‘ + H(I -0,0,) 2" plant P is stable. Also, suppose th&(s) has nonminimum phase
QERH s llz s llz zeros atz;x, k = 1, ..., N;. Then
Note that(®; — ©,(0))v/s € Hy . We may picky) € RH.. such that i 9 Re(zp)
6,(0) — 0,(0)Q(0) = 0, and hence®, (0) — ©,Q)v/s € Ha. Asa J* = 3,2 3 21l
result, = "= |l
‘ 1 2 [T |Pi(O)] [[PG)]* dw
* . ~ V|2 + = Z/f/ 100‘< - — (12)
T =, @=L, =2 ) PO RGer)

@z +fu-oe ]

2

+|

whereZ is the index set defined by := {i: P;(0) # 0}.
Proof: The stable SIMO planP has an inner—outer factorization
Becaus®, is outer, we havenfoern. [|(©;(0)—0,Q)(v/s)||2 = ©i0.. Denote the inner factdd. as

0. A direct calculation then yields ) "
61(5) = [91(5) 92(5)7 ceey 6'”(5)] .

. . . 2 T
= ‘ (©; = ©,(0)) :H + HU— ©:0;) :H Sincer € R(P(0)), v = ¢P(0) = ¢©:(0)0,(0) for somec € R.
) . Furthermore, sinchr||* = |c©,(0)]* = 1, we may take, with no loss
oC H . A H _
__1 Re(v O’(J““)Zol O =1, of generalityy = ©,(0). Plugging this- into (10) yields
T J_ w
7= -0 0)0L(0) = - 2 0:(0)

Define f(s) = v70,(s)07(0)r. Under Assumption 3.2, we have TT==07(0)0:(0) = sz 6:(0)"

£(0) = 1. Invoking Lemma 2.1 then gives et

Becausd; (s) has the same set of nonminimum phase zerd3 &9,

J*==f(0) = ~v"6[(0)6] (0)r. ® by invoking Lemma 2.2 we obtain
Remark 3.1: As shown in [3], [9], for SISO and right-invertible sys- 9.(0) Ny 1 [ 9:(jw) | dw
tems, the nonminimum phase zeros of the plant impose fundamental 9‘(01) =—- Z — + ;/ 9‘(0)‘ R
constraints on tracking performance. Since the inner part of the plant ' k=1"" '
contains all the nonminimum phase zeros, it comes as no surprise thgtiiy a1t (11) then follows by noting thafi(jw)| =
(10) the inner facto®; is involved. It is easy to show that for right-in- P(Ga)/IIPGw)]l. - -

vertible systems Theorem 3.1 reduces to the known result in [3]. |
deed, for a right-invertible planP, suppose that it has nonminimum
phase zeros at,i = 1, ..., N.. The inner part of° can be formed
as

“The expression of the optimal tracking error for SIMO systems
shares some similarities with its counterparts for SISO and right-in-
vertible MIMO systems, in that the nonminimum phase zeros of the
plant are also seen to constrain the achievable tracking performance.

ot However, it is interesting to note that the zerod?fs) have an effect

' dependent onv;. Indeed, since the reference signal is confined in
|:Ui”:| R(P(0)), the first term on the right-hand side of (11) may still be
zero if P;(s) does not have nonminimum phase zerosifer Z. The
where the unitary vectoy; can be iteratively computed from the zeroextra integral term on the right-hand side of (11) points to the main
direction vectors of’, andU; is a matrix whose columns, together withdifference between the right-invertible MIMO and SIMO systems. We
1:, form an orthonormal basis of the corresponding Euclidean spaggjl see shortly that this second term, which is nonnegative, accounts
we refer the reader to [2] for this iterative procedure. Therefore, ifor the effect brought about by changes in the plant direction with

0 I

voking (10) yields frequency. This can be attributed to the deficiency in the freedom of
control.
N. 2 Re(zi) H . — .
. SN T B 0 UH We next illustrate Theorem 3.2 by considering a special case, where
I == v Ul E) ol Lo7 v the plantP satisfies
=1 7

P(0) = [P.(0), 0, ..., 0] . (12)

The following corollary is immediate from Theorem 3.2.
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Corollary 3.1: Letr(¢) be given by (7), and suppose that the SIMQve complete the proof by obtaining
plant P is stable and satisfies (12). Also, suppose fAdts) has non-

minimum phase zeros aj, k =1, ..., N;. Then 7> il 2Re(zx) | 1 ‘“’01 cw? dw
2 - T og + - T2 )
S 2Re(z) 1 [, (IPGL)IY de = W) w
[ — |Z/€|‘ T Jo |P1(]LL))| w= 9R€‘ /«L Zlog (1+ é) rwo 1
! > Z = dw. |
|2k |? T 0o witw?

Remark 3.2: Corollary 3.1 illustrates in a more explicit manner the
nature of the tracking performance limitation encountered in SIMO Corollary 3.3: Assume that for some constartsk, w. > 0
systems. Note that the second term on the right side of (13) is non-

negative, and is zero if and only if L k
Pulio) = , |P1(jw)l We
Z(.]u)):(), ZSI’SN'
Then, under the assumptions in Corollary 3.1

Under this circumstance, the plant does not change its direction with
frequency. Rewrite (13) as 2 Re( 21

JE > ). 17

§j|”2 ) (17)

Ny oo
. 2Re(zx) 1 [ 1 dw
T = Z R + ;/0 log <r0s2 (/’)(w)) w?

k=1

Proof: In light of (16), the proof is completed by weakenifg

to
whereg(w) is the angle between the plant directions at the frequencies

0 andw with 2 Re( ~k) e w\MY dw
J > log |6 — :
Z |2 |? T L 8 <wc) w?

5 (0) i (jw) PG|
||P(0)||||P(J»’)|| PG _ ZZRe(n)

|26 |?

cos 6(w) =

) ]

In this sense, the second term in (13) describes the total variation of the
plant direction in the whole frequency range. This observation extends
to general SIMO plants. Indeed, for any given SIMO pl&ntve may B. Unstable SIMO Plants

construct the projection matrix More generally, by using the technique developed in [3], we further

P0) extend the preceding results to unstable SIMO plants. Suppose that
{HP(())H" } P(s) has simple unstable polesgt ¢ = 1, ..., N, and factorize
P(s) as

whereP(0)/||P(0)|| and the columns df form an orthonormal basis
of R*. Let P* = A¥ P. Then P* possesses the structure of (12), P(s) = Pu(s)B™'(s) = ©:(5)O0(s)B ' (5) (18)
to which the above remarks apply. It is straightforward to verify that N
the performance foP to trackv is the same as that fdP* to track WhereP is stable B(s) := [[;.2%, ((s — p:)/(s+p;)), andO;, ©, are
Ay, while the latter performance depends on the direction chantj inner and outer factors ét,.
of P*(jw) with frequency. Since the projection preserves the relevantTheorem 3.3:Letr(¢) be given by (7) and’(s) by (18). Then
angles, i.e.,

T =J0+ T (19)

L(P(0), P(jw)) = £(P*(0), P"(jw))
where.J; is the optimal tracking error correspondingRe, and

it follows that the performance fd? to trackv depends on the direction

change of(jw) in general. LI - Z M(l — 0:(7,)0.(0))
Furthermore, since the weighting functidfiw® decays fast as i GeT (P; +pj)piD; @iy '
increases, Corollary 3.1 implies that a rapid change of plant direction (1 e.(p 10:(0)) (20)
i\Fj7 i

at low frequencies will have a more detrimental effect on the achievable
tracking performance. This observation is reinforced by the followingiip . .— cs ;2:iB;/05) (w5 — p)/(F; + pi)), where is the
. Je .J' 7 7 ¥, ¥, 3 7 2 1 -

corollaries. ) index set defined by7 := {i: M(p;)v = 0}.
Corollary 3.2: Assume that for some constamrtswy > 0 Proof: Using Youla parameterization (3) yieldss _

PR o X — NQ)M. Hence
PG cw? (

Ty = 1+ s w € [0, wol. 14

PGP 2T e [0, ol (19) ) i e

J = inf |(x» - Nom) Y|,
Then, under the assumptions in Corollary 3.1 QERH sli2
2 Re(z0) . It is easy to verify that
e(zk c
J > + —log(l4+=). 15 N . N
Z k" 2w P ( 2) (15) XM=I+PYM=I+0,0,B 'Y}, N=0,C
Proof: With the inequality whereC(s):=0,B ! M is stable and minimum phase. Consequently

) . 1 . N 2
log(1 + cx) > 2log (1 + %) x, x € {(), 5} J = QGiHIQ}}f:{ H([+ 0,(0,B7'Y — CQ)M) ZH .
H oo s ll2
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©;
1-9,0,

251

By premultiplying| ], we obtain -
o—=o J, via Theorem3.2

5 pemm xJ via pToolbox

J*

Il

-
1=

=

O+ (©,B7'Y —CQM ] v
o I - @,@;

Sll2

(@, — 6:(0)) %Hz +]la-e0)?

2
2 15+ TR

+ inf ‘
QERH o

(6:(0) + (0, B~'Y — CQ)I) EHZ -
5 112

2 10_ . P, :

(©,(0) + (0,B~'Y — CQ)M) %

=J 4+ in .
Q 2

ERH ‘
It then remains to show (20). For this purpose, defifi® := M (s)v. s+
Sinceg(p;) = 0 for anyi € J, we can factorize it ag(s) = :
gm($)a(s), whereg,,(s) is the minimum phase part and has a left : ;?
inverse analytic inC [3], and«(s) is a scalar allpass factor defined POPN

by a(s) := [T,c; (B:/p:)((pi = 5)/(P; + 5)). Consequently

b0
@
~

2

o o R-1v 1
J = inf H(O,(())—I—OOB YM
QERH o o

v — Cng> 1

5

2 [ T e T PRI

e J: via Theorem 3.2
{ e J via puToolbox

Now, as in [3], by following a partial-fraction expansion procedure, it
then gives rise to

— -~ 50
=t [ (z; Bitsl- oxp,)oz(m)
QERH o et P; pi— S a7 45
+ R—Cng> z o O ................ ................ 3 ...............
) 2
_ _ P U U UUUUUUNE ST - PN SOOIt SOUPUUOUPTRN SOROPROPIO
whereR € RH... By properly selecting) € RH .., we obtain
) ) a0k e S IR -
Ju = Z((};pi+5_1> 1_(—){(})”@1(0))1 z ; r 5 : z
. P, Di— 5 o, s 28k T S IISTSPINNIS TP
ed 2 : : : :
) 9 : : : :
Z <2R€(pi)(1—@i(pi)®i(0)) 1 )‘ 2 2 4 s ) 10 12
€T picti b s 2 (b)
The result then follows by realizing that Fig. 2. (a)J* with respect te;. (b) J* with respect toz, .
< 1 1 > _ 1 /” dw
pi—s pj—s 21 J_ o (B +jw)(py — jw) Let the directiorv of the step reference input i, 0, 0]” such that
1 Assumption 3.2 is satisfied. We first fixx = 1, and letz; vary from
= P+ o, B _3to-0.1andfrom0.1to 3, subsequently. It is clear tRats) pos-
7 J

sesses a nonminimum phase zero whep 0. For this plant, Fig. 2(a)
Since J;, is nonnegative, the unstable poles in the plant furtheshows the minimal tracking errors obtained via Theorem 3.2 and that by
worsen the tracking performance, but in a rather complicated walving the correspondiritf. optimal control problem with the cost (8)
First, an unstable pole will not affect the tracking performance unlessing the MATLAB ;. Toolbox. These two results match rather well.
the direction of this pole coincides with the direction of the inpuNotably, the plantP(s) yields a worse tracking performance in the
signal, namelyR (P(0)). Second, unlike in the case of right-invertiblepresence of the nonminimum phase zero, especially when the zero is
MIMO systems, here unstable poles may affect the tracking perfaloser to the origin. Itis also worth pointing out that for the smalthe
mance even for minimum phase plants as long as the direction of tligection of the plant does not vary much in the low frequency range.
plant varies with frequency; in contrast, for right-invertible plantsConsequently, it can be seen that the effect of the nonminimum phase
unstable poles will have an effect only when the plant is nonminimueero dominates.
phase. Next, we fixz; = 0.1 and then vary, from 0.1 to 10. It is straight-
forward to verify that for a larger., the direction of the plant changes
IV. |LLUSTRATIVE EXAMPLE more in the low frequency range. Computation resultgfoare plotted
in Fig. 2(b), which shows that it increases with. Thus, the results

We now illustrate our results with an example. Consider the plantagree to the previous conclusion that the variation of the plant direction

Pi(s) (5—21)(s+2) with frequency contributes to the tracking difficulty in SIMO systems.
1 Furthermore, it can be seen that this effect can be rather significant.
Ps)= | 2(s) | = s(s+22) (s+1)3° (1) Note that the computational result via theToolbox yields a more

Pi(s) s conservative tracking error for it leads to only a suboptimal controller.
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V. CONCLUSION A New LMI Condition for Robust Stability of Polynomial
Matrix Polytopes

. In th!s nqte, vye have examined the optimal tracking prpblem foll-:’aulo J. de Oliveira, Ricardo C. L. F. Oliveira, and Pedro L. D. Peres
linear time-invariant SIMO systems. Our results characterize analyt-

ically how the nonminimum phase zeros, the unstable poles, and more

importantly, the plant structure may inherently constrain the optimal Apstract—A sufficient condition for checking the robust stability of a
tracking performance. Specifically, it is shown that the variation of thelytope of polynomial matrices is proposed in this note. A simple feasi-
plant direction with frequency has a close pertinence on the traCkiSE\ty test performed in a convex set of linear-matrix inequalities defined

G llv. th it ch ith f th difi the vertices of the polytope yields sufficient conditions for the robust
error. Generally, tne more It changes with irequency, the more aitiic bility of the entire domain. Both continuous-time (left half-plane) and

it is to track the reference input. This is especially so for plants whoggcrete-time stability (unit disk) are investigated. Numerical comparisons
direction changes rapidly in the low frequency range. with quadratic stability results and with another method recently appeared

It is useful to note that our results herein can be extended readilyfdhe literature show that the conditions proposed provide, in general, less

- . ... _‘conservative results.
two-parameter control systems, in a manner similar to [12]. Similarly,

in the two-parameter control setting, the plant unstable poles will nolndex Terms—tinear-matrix inequalities (LMIs), parameter dependent
longer affect the tracking performance. Moreover, analogous resuft punoylfunctlons, polynomial matrices, robust stability, uncertain
. . . ’ ~ polynomials.
can be derived in parallel for energy regulation problems assomape
with multiple-input—single-output plants.
I. INTRODUCTION

Polynomial matrices are an important tool for control systems,
being capable of representing more naturally the system dynamics in
many cases [1]. Several methods for analysis and control are based
in polynomial matrices, and it is well-known that the denominator
polynomial matrix in a matrix fraction description possesses useful
[1] G.Chen,J. Chen, and R. Middleton, “Optimal tracking performance fanformation about stability and performance of the system [2], [3].
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[2] J. éhen, “Sens’itiF:/ri)tyintegral relations and design tradeoffs in Iinearmu?—t‘.f:lblllty rgquwes the_ verlflcatlpn of the s_tabll_lty of upcertaln polyno-
tivariable feedback systemsEEE Trans. Automat. Confol. 40, pp. mial matrices, and if polytopic uncertainty is considered, the poly-
1700-1716, Oct. 1995. tope of polynomial matrices need to be checked. In fact, polytopic
[3] J.Chen, L. Qiu, and O. Toker, “Limitations on maximal tracking accudomains are a quite general representation of parameter uncertainty
racy,”IEEE Trans. Automat. Confivol. 45, pp. 326-331, Feb. 2000. [4]. During the last two decades, several papers dealing with robust

(4] J. Chen, G. Chen, Z. Ren, and L. Qiu, “Extended argument principie, o of linear systems in convex bounded (polytopic) domains have
and integral design constraints, Part I: A unified formula for classme%{ eared. in both state space and polvnomial representation. One of
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