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Abstract—This paper describes a least squares (LS) channel es-
timation scheme for multiple-input multiple-output (MIMO) or-
thogonal frequency division multiplexing (OFDM) systems based
on pilot tones. We first compute the mean square error (MSE) of
the LS channel estimate. We then derive optimal pilot sequences
and optimal placement of the pilot tones with respect to this MSE.
It is shown that the optimal pilot sequences are equipowered, eq-
uispaced, and phase shift orthogonal. To reduce the training over-
head, an LS channel estimation scheme over multiple OFDM sym-
bols is also discussed. Moreover, to enhance channel estimation,
a recursive LS (RLS) algorithm is proposed, for which we derive
the optimal forgetting or tracking factor. This factor is found to
be a function of both the noise variance and the channel Doppler
spread. Through simulations, it is shown that the optimal pilot se-
quences derived in this paper outperform both the orthogonal and
random pilot sequences. It is also shown that a considerable gain
in signal-to-noise ratio (SNR) can be obtained by using the RLS al-
gorithm, especially in slowly time-varying channels.

Index Terms—Channel estimation, MIMO, multipath fading
channels, OFDM.

I. INTRODUCTION

H IGH-DATA rate techniques in communication systems
have gained considerable interest in recent years. A tech-

nique that has attracted a lot of attention is orthogonal frequency
division multiplexing (OFDM), which is a multicarrier modula-
tion technique. This is due to its simple implementation, and
robustness against frequency-selective fading channels, which
is obtained by converting the channel into flat fading subchan-
nels. OFDM has been standardized for a variety of applica-
tions, such as digital audio broadcasting (DAB), digital tele-
vision broadcasting, wireless local area networks (WLANs),
and asymmetric digital subscriber lines (ADSLs). Combining
OFDM with multiple antennas has been shown to provide a
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significant increase in capacity through the use of transmitter
and receiver diversity [8]. However, such systems rely upon the
knowledge of channel state information (CSI) at the receiver.

CSI is crucial for data detection and channel equalization. CSI
can be obtained in different ways; one is based on training sym-
bols that area priori known at the receiver, whereas the other
is blind, i.e., relies only on the received symbols, and acquires
CSI by, e.g., exploiting statistical information and/or transmitted
symbol properties (like finite alphabet, constant modulus, etc.)
[3], [4]. However, compared with training, blind channel estima-
tion generally requires a long data record. Hence, it is limited to
slowly time-varying channels and entails high complexity. For
these reasons, we restrict our attention to training-based channel
estimation in this paper.

Typical procedures for identifying the channel based on
training utilize multiple OFDM symbols that consistcompletely
of pilot symbols. For single-input single-output (SISO) sys-
tems, this approach can be found in [1], [9], and [10], whereas
for multiple-input multiple-output (MIMO) systems, it can be
found in [5]. In such systems, the CSI is estimated prior to
any transmission of data. When the CSI changes significantly,
a retraining sequence is transmitted. In a fast time-varying
environment, such systems must continuously retrain to re-esti-
mate the CSI. Between retraining, these systems experience an
increased BER due to their outdated channel estimates. Wiener
filtering (in time and/or frequency) based on a known channel
correlation function (in time and/or frequency) can be used to
improve the channel estimate [2], [12].

Usingpilot tonesto obtain the CSI was first proposed in [7],
where an optimal placement of the pilot tones with regard to
(w.r.t.) the mean square error (MSE) of the least squares (LS)
channel estimate is proposed for SISO OFDM systems. Ex-
tending this idea to MIMO OFDM systems is not straightfor-
ward, since not only the placement of the pilot tones but also the
pilot sequences themselves must be optimized to obtain the min-
imal MSE of the LS channel estimate. Note that optimal training
for SISO OFDM systems w.r.t. the MSE of the LS channel esti-
mate, and the MSE at the output of a zero-forcing receiver based
on the LS channel estimate is discussed in [14]. Optimal training
for SISO OFDM systems w.r.t. the capacity based on the linear
minimum mean square error (LMMSE) channel estimate is pre-
sented in [11].

In this paper, a LS channel estimation scheme for MIMO
OFDM systems based on pilot tones is described. First, the MSE
of the LS channel estimate is computed. Then, optimal pilot se-
quences and optimal placement of the pilot tones w.r.t. this MSE
are derived. To reduce the training overhead, an LS channel esti-
mation scheme over multiple OFDM symbols is also discussed.
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Fig. 1. System model.

Moreover, to enhance channel estimation, a recursive LS (RLS)
algorithm is proposed.

This paper is organized as follows. In Section II, we briefly
overview the basic system model; in Section III, we introduce
LS channel estimation; the analysis of the LS channel estimator
is derived in Section IV, through which we derive an optimal
training strategy; Section V presents computer simulation re-
sults, and finally, conclusions are drawn in Section VI.

Notation: Upper (lower) letters will generally be used for
frequency-domain (time-domain) symbols; boldface letters will
be used for matrices and column vectors; will denote Her-
mitian (conjugate transpose), matrix pseudo inverse, and
integer ceiling; is used to represent expectation and tr
to represent trace. We will use to denote the th
entry of the matrix ; will denote the identity ma-
trix and the all-zero matrix. Further, diag
stands for the diagonal matrix with the column vectoron its
diagonal; finally, .

II. SYSTEM MODEL

The system under consideration is depicted in Fig. 1, which
shows a MIMO OFDM system with transmit antennas,
receive antennas, and subcarriers. At each transmit (receive)
antenna, the conventional OFDM modulator (demodulator) is
used. Suppose the OFDM symbol that is transmitted from the
th antenna at time index is denoted by the vector

. Before transmission, this vector is processed by an IFFT,
and a cyclic prefix of length is added. We assume that

, where is the maximum length of all channels, which is
common practice in wireless communications. After removing
the cyclic prefix at the th receive antenna, we obtain the
vector , which can be written as [2]

(1)

where is a circulant matrix with first column given
by , and is the vector rep-
resenting the length channel impulse response from the
th transmit antenna to theth receive antenna. Note that

denotes the unitary DFT matrix. It is easy to show
that the eigenvalue decomposition of leads to

diag . Taking the FFT of
, we finally obtain

diag

(2)

where .

III. L EAST SQUARESCHANNEL ESTIMATION

In this section, a least squares (LS) channel estimation
scheme is derived. Let [14], where

is some arbitrary data vector, and is some
arbitrary pilot sequence vector. Then, (2) can be written
as

diag

diag diag

(3)

where is times the first columns of . Defining
diag and diag , (3)

can be rewritten as

Assuming training over consecutive OFDM symbols, e.g.,
over the time indices , we consider the data
model

(4)
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where ,

...
... (5)

...
... (6)

and . The LS estimate of can
then be obtained as

(7)

We assume that the pilot sequences are designed such that the
matrix is of full column rank , which requires
. The pseudo-inverse of can thus be written as

[15, p. 521]. Using (4), we then obtain

(8)

To eliminate the interference term due to the data, we impose
the following condition:

(9)

We then obtain

(10)

Note that (10) indicates that is a combination of the true
channel vector plus a term affected only by the noise in the
system. For zero-mean noise, ,
i.e., forms an unbiased estimate of. Condition (9) holds
when , , and

. The only way of satisfying this is by
choosing disjoint sets of tones for training and data in each
OFDM symbol, i.e., zeros in , where contains
nonzeros, and vice versa. Note that these sets of tones are not
necessarily the same for each OFDM symbol. Assuming we
use pilot tones per OFDM symbol (not necessarily the
same set of pilot tones for each OFDM symbol), we can
write (7) and (10) in a simplified form:

(11)

where ,
, and

...
...

In these expressions, is the diagonal ma-
trix containing the nonzero entries (pilot tones) of , and

, , and are the corresponding rows of ,
, and , respectively (the dependence of on

comes from the fact that the set of pilot tones are not nec-
essarily the same for each OFDM symbol).

As mentioned earlier, we will design the matrix
to have full column rank . Following the above design, this
is equivalent to the matrix having full column rank

, which requires . It can easily be checked that the
design we will propose later satisfies this full rank condition.

IV. CHANNEL ESTIMATION ANALYSIS

In this section, the MSE of the LS channel estimate is com-
puted. Optimal pilot sequences and optimal placement of the
pilot tones w.r.t. this MSE are then derived.

From (11), the MSE of the LS channel estimate is given by

MSE

tr (12)

For zero-mean white noise, we have . Then,
the MSE can be written as

MSE tr (13)

Using a similar argument as in [6], we can show that in order
to obtain the minimum MSE of the LS channel estimate subject
to a fixed power dedicated for training, we require

. The minimum MSE is given by

MSE (14)

A. Optimal Training Over One OFDM Symbol

In this subsection, we will derive the optimal pilot sequences
and optimal placement of the pilot tones w.r.t. the MSE of the
LS channel estimate. For simplicity, we will start with training
over one OFDM symbol ( ) and then extend it to training
over multiple OFDM symbols ( ).

According to Section III, when , training is performed
over the time index . To simplify notation, we will omit
this time index in the following. First, let us rewrite
as

...
... (15)

where is the th sub-matrix of , which is
given by

(16)

As mentioned before, to obtain the minimum MSE of the LS
channel estimate subject to a fixed power dedicated for
training, we require , i.e.,

if

if .
(17)
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Note that with being the set of pilot
tones used for training, can be written as ,
where .

First, we will consider the case in (17). Let the power
on the th pilot tone of the th transmit antenna be , such that

. We then obtain

diag (18)

The th entry of the sub-matrix can then be written as

diag (19)

which is equivalent to

if

if .
(20)

To satisfy the first part of (17), we thus require

The above condition is satisfied if and only if the following con-
ditions are satisfied.

C1) , and
.

C2) , \ ,
where such that and ,

, and
is some offset.

Note that condition C2) is obtained by using C1) and the
power series expansion. C1) means that the pilot tones must
be equipowered, whereas C2) means that the pilot tones
must beequispaced, to achieve the first part of (17). For a
minimum number of pilot tones or a maximum spacing, we
have or . For cheap, fast, and simple
implementation of the DFT, the total number of subcarriers

is chosen to be a power of 2 in practical systems. Since
should divide , when we consider a minimum number of
pilot tones or a maximum spacing,should also be a power of
2. Hence, keeping in mind that , we generally select

as .
We now investigate the conditions imposed by the second part

of (17), i.e., . Let us assume equispaced pilot tones with
maximum spacing, that is . The th entry
of can then be written as

(21)

where represents the phase shift matrix with phase
shift

diag

TABLE I
CONSTRAINTS ONOPTIMAL PILOT SEQUENCES FORVARIOUS SCENARIOS

It is clear from (21) that the second part of (17) is satisfied when

(22)

with

When (flat fading), the pilot sequences on different
transmit antennas must be orthogonal. However, when
(frequency-selective fading), the pilot sequences on different
transmit antennas must be not only orthogonal butphase shift
orthogonalfor phase shifts in the range

.
Note that phase shift orthogonality in the frequency domain

corresponds to circular shift orthogonality in the time domain.
In other words, the pilot sequence of one antenna must not only
be orthogonal to the pilot sequences of other antennas but to
circularly shifted copies of these sequences as well.

For the purpose of comparison, we list various scenarios and
the constraints they impose on the optimal pilot sequences in
Table I.

Optimal pilot sequences can now be designed as

where the set has to be selected in a special way. Since

it is clear that in order to satisfy (22), we need
, , and

with . One possible choice is ,
. For an arbitrary unit modulus sequence of

length ( , ), it is also worth
noticing that when is optimal,
then is also optimal.

B. Optimal Training Over Multiple OFDM Symbols

We will now consider training over multiple OFDM symbols
( ). According to Section III, when , training is
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Fig. 2. (a) Training over one OFDM symbol. (b) Training over two OFDM symbols.

performed over the time indices . First, let
us rewrite as

...
... (23)

where

(24)

To obtain the minimum MSE of the LS channel estimate subject
to a fixed power dedicated for training, we again require (17)
to be satisfied. Note that with
being the set of pilot tones used for training at time index

, can be written as , where
.

First, we will consider the case in (17). Let the power
on the th pilot tone of the th transmit antenna at time index

be such that . In a similar
fashion as before, to satisfy the first part of (17), we require

Up to an order ambiguity of the pilot tones, i.e., which set of
pilot tones is used during which OFDM symbol, the above

condition is satisfied, if and only if the following conditions are
satisfied.

C1) , ,
, and .

C2) , ,
and , where , such that

and ,
\ , and is some offset.

Notice the similarity with the conditions stated in Section IV-A.
For a minimum number of pilot tones or a maximum spacing,
we again have or .

We now investigate the conditions imposed by the second part
of (17), i.e., . Let us assume equispaced pilot tones with

maximum spacing, that is, . The
th entry of can then be written as

(25)

where represents the phase shift matrix
with phase shift and offset determined by:

.
It is clear from (25) that the second part of (17) is satisfied when

(26)

with

As before, optimal pilot sequences can now be designed as

where the set has to be selected in a special way. Since

it is clear that in order to satisfy (22), we need
, , and

with . As before, one possible choice is ,
.

Hence, we can design optimal pilot sequences as in Sec-
tion IV-A, arbitrarily split each sequence of length into

subsequences of length , and arbitrarily assign each
subsequence to a different OFDM symbol (see, for example,
Fig. 2 for training over two consecutive OFDM symbols).
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C. Channel Estimation Enhancement

In this subsection, we consider a slowly time-varying channel
and describe an RLS algorithm for channel estimation enhance-
ment, where previously received frames ofOFDM symbols
can be used to estimate the channel in the current frame. For
simplicity, we only consider in this section. However, the
obtained results can easily be generalized to . For con-
venience, the receive antenna indexis omitted. The channel
vector and the matrix will now depend on the time index

. The channel vector is estimated as

...

...

...

...
(27)

where is called the forgetting or tracking factor. Using
the fact that is an orthogonal matrix (optimal pilot sequences
derived in the previous sections are used), it can be easily shown
that

(28)

At time index , we can then write

(29)

Substituting (28) in (29) yields

(30a)

(30b)

From (30a), it is clear that a low-complexity algorithm for
channel estimation can be used, where rather than storing and
tracking a large matrix, we can simply update our new channel
estimate by only multiplications. We define the error
of the new channel estimate as

(31)

For , we may assume
and . Defining , (31) then becomes

Substituting , the error of the new channel
estimate can be written as

(32)

Assuming is uncorrelated with , the MSE
of the new channel estimate can be written as

tr

tr

(33)

where .
For , we may assume ,

which allows us to rewrite (33) as

tr

(34)

For i.i.d. channel taps that are correlated in time, we obtain

Substituting and in (34), the MSE of the
channel estimate can be written as

MSE

(35)

From (35), an optimal can be derived as

(36)

Defining the degree of nonstationarity as in [7]

we can write (36) as

(37)
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Fig. 3. MSE versus�; simulation and analytical results for SNR= 0 dB and
SNR= 20 dB.

A similar analysis can be performed in the frequency domain.
From (32), the error of the channel estimate can be written as
(assume again )

(38)

Substituting , the MSE of the channel estimate becomes

MSE

(39)

where ,
, and . From

Jakes’ model, the correlation function can be written as
[13]

(40)

where is the channel power, is the zeroth-order Bessel
function, is the OFDM symbol duration, and is the
Doppler spread. In Fig. 3, we compare the analytical results
obtained from (39) with simulation results (details about the
setup follow in the next section). Notice that there is a differ-
ence between the analytical and simulation results. This can be
explained as follows. In our analysis so far, we assume that the
channel is fixed over an entire OFDM symbol. In reality (and in
our simulations), however, the channel varies continuously. To
check whether our analytical results are accurate, we therefore
compare, in Fig. 4, the analytical results obtained from (39)
with simulation results, assuming the channel is fixed over an
entire OFDM symbol.

Now, the analytical results are clearly more accurate. The
small difference is due to the fact that the analytical results as-

Fig. 4. MSE versus�; simulation and analytical results for SNR= 0 dB and
SNR= 20 dB (channel is fixed over an entire OFDM symbol).

sume , whereas the simulation results are obtained by
averaging the square error of the channel estimate over the first
100 OFDM symbols. Therefore, the analytical MSE is consis-
tently below the simulated MSE. However, in Fig. 3 as well as
in Fig. 4, the optimal (or ) is more or less the same for both
the analytical and simulation results.

V. SIMULATIONS

We assume channels with taps. These taps are simu-
lated as i.i.d. and correlated in time with a correlation function
according to Jakes’ model . We con-
sider subcarriers and a cyclic prefix of length .
The number of pilot tones dedicated for training is ,
which satisfies the minimum number of training and maximum
spacing. Hence, when training is performed overconsecu-
tive OFDM symbols, pilot tones are used for
training in each OFDM symbol. The OFDM symbol duration
is ms. QPSK signaling is applied. Finally,transmit
and receive antennas are assumed. The performance of the
system is measured in terms of the MSE of the channel esti-
mate, and the bit error rate (BER) versus SNR for a zero-forcing
equalizer based on the channel estimate. The SNR is defined as
SNR , where is the QPSK symbol power
(the power dedicated for training is ,
where is the total power used to transmit a single OFDM
symbol). We run the simulations for different Doppler spreads

, and 100 Hz.
In our simulations, we evaluate a variety of choices for the

pilot sequences:

i) equipowered, equispaced random pilot tones;
ii) equipowered, equispaced, orthogonal pilot tones;
iii) equipowered, equispaced, phase shift orthogonal pilot

tones.
As shown in Figs. 5 and 6, using phase shift orthogonal pilot

sequences outperforms the use of random or orthogonal pilot se-
quences in terms of MSE of the channel estimate and BER. We
can see a 2-dB gain in SNR for phase shift orthogonal over or-
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Fig. 5. BER versus SNR for training over one OFDM symbol.

Fig. 6. MSE versus SNR for training over one OFDM symbol.

thogonal pilot sequences at a BER of and Doppler spread
Hz and a 3.5-dB gain in SNR at a BER of and

Doppler spread Hz. Random pilot sequences are
clearly useless. Similar results hold when training over two and
four consecutive OFDM symbols is considered (see Figs. 7–10).
It is found that training over multiple OFDM symbols pays off
especially for slowly time-varying channels. For example, for
channels with a Doppler spread Hz, training can be per-
formed over two or four consecutive OFDM symbols without
any performance loss, whereas for fast time-varying channels,
this scheme will experience an increased BER and becomes
even prohibitive for very fast time-varying channels, as shown
in Figs. 7–10.

Using the RLS method will enhance the channel estimation
especially for channels with a small Doppler spread. As can be
seen from Figs. 11 and 12, we can achieve a 2-dB gain in SNR
for the scheme with RLS over the scheme without RLS at a BER
of and Doppler spread Hz, whereas no gain is
obtained at Doppler spread Hz.

Fig. 7. BER versus SNR for training over two consecutive OFDM symbols.

Fig. 8. MSE versus SNR for training over two consecutive OFDM symbol.

Fig. 9. BER versus SNR for training over four consecutive OFDM symbols.
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Fig. 10. MSE versus SNR for training over four consecutive OFDM symbol.

Fig. 11. BER versus SNR with optimal tracking factor�.

Fig. 12. MSE versus SNR with optimal tracking factor�.

VI. CONCLUSIONS

In this paper, an LS channel estimation scheme for MIMO
OFDM systems based on pilot tones has been proposed. To
obtain the minimum MSE of the LS channel estimate, the
pilot sequences must be equipowered, equispaced, and phase
shift orthogonal. Increasing the number of transmit antennas
requires more pilot tones for training and, hence, decreases
the efficiency. This effect can be mitigated by estimating the
channel parameters over multiple OFDM symbols when the
channel is slowly time-varying.
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