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1. INTRODUCTION

In wireless communications employing coherent detection,
imperfect knowledge of the fading channel state imposes lim-
its on the achievable performance as measured by, for exam-
ple, the mutual information, the bit-error rate (BER), or the
minimum mean-square error (MMSE). Typically, a fraction
of system resources—bandwidth and energy—is devoted to
channel estimation techniques (known as training) which
improve knowledge of the channel state. Such schemes give
rise to a tradeoff between the allocation of limited resources
to training on one hand and data on the other, and it is natu-
ral to seek the optimal allocation of resources between these
conflicting requirements. Such optimization is of particular
interest for rapidly varying channels, where the energy and
bandwidth savings of an optimized scheme can be signifi-
cant.

In this context, the pilot symbol assisted modulation
(PSAM) [1, 2] has emerged as a viable and robust train-
ing technique for rapidly varying fading channels. In PSAM,
known pilot symbols are multiplexed with data symbols for
transmission through the communications channel. At the
receiver, knowledge of these pilots is used to form channel es-
timates, which aid the detection of the data both directly (by
modifying the detection rule based on the channel estimate)
and indirectly (e.g., by allowing for estimator-directed mod-
ulation, power control, and media access). PSAM has been

incorporated into standards for IEEE 802.11, Global Sys-
tem for Mobile Communication (GSM), Wideband Code-
Division Multiple-Access (WCDMA), and military proto-
cols, and many theoretical issues are now being addressed.
For example, optimized approaches to PSAM have recently
been studied from the perspectives of frequency and timing
offset estimation [3, 4], BER [1, 5–7], and the channel capac-
ity or its bounds [8–11].

Most relevant to the current study are [12–14], each of
which considers PSAM design for the continuously time-
varying single-input single-output (SISO) time-selective
Rayleigh flat-fading channel, under capacity or its bounds.
In each work, the transmitter is assumed to have knowledge
of the Doppler spectrum, and the receiver makes (instanta-
neous) MMSE estimates of the channel based on some subset
of the pilot observations. In [13], three estimators (of vary-
ing complexity) are proposed and used to predict the channel
state for a Gauss-Markov channel correlation model. The op-
timal binary inputs based on the SNR and estimator statistics
are used, and it is determined that for sufficiently correlated
channels (i.e., slow enough fading), PSAM provides signifi-
cant gains in the achievable rates over the no pilot approach.
Analysis was carried out through numerical simulation, and
the optimization of energy between pilot and data symbols
was not attempted. In [12, 14], the authors assume a ban-
dlimited Doppler spectrum and derive closed-form bounds
on the channel capacity, using the estimator that exploits all
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past and future pilot observations. In both works the capacity
and/or its bounds are seen to be parameterized by the vari-
ance of this channel estimator. Closed-form results are de-
rived for the optimal allocation of training and bandwidth in
some cases.

Here, we study optimal PSAM design for the SISO time-
selective Rayleigh flat-fading channel under the cutoff rate.
The cutoff rate is a lower bound on the channel capacity
and provides an upper bound on the probability of block de-
coding error (by bounding the random coding exponent).
It has been used to establish practical limits on coded per-
formance under complexity constraints [15], and can often
be evaluated in closed-form when the capacity cannot (an
overview of the cutoff rate for fading channels can be found
in [16]). The cutoff rate with perfect receiver channel state
information (CSI) has been examined in [17] (independent
fading) and in [18, 19] (temporally correlated fading), and
for no CSI multiple-input multiple-output (MIMO) systems
in [20]. However, we are not aware of any work in which
PSAM design is considered from the cutoff rate perspective.
Assuming M-PSK inputs, and a general class of MMSE es-
timators in which some subsets of past and future pilots are
exploited at the receiver, we derive a simple expression for the
interleaved cutoff rate that will be seen to facilitate analysis.

This paper is organized as follows. In Section 2 we spec-
ify the system model and derive the corresponding cutoff
rate using M-PSK inputs. In Section 3 we study optimal
training for the special case of the Gauss-Markov correla-
tion model. Closed-form expressions for the optimal energy
and bandwidth allocation follow in some cases. In Section 4
we validate and refine the design paradigms gained in the
last section, by studying optimal training for the well-known
(though less tractable) Jakes correlation model. In Section 5
we summarize our guidelines for PSAM design in rapidly
fading channels, and propose future work.

Notation. We use the following (standard) notation: (a) x ∼

CN (µ,Σ) denotes a complex Gaussian random vector x with
mean µ and with independent real and imaginary parts, each
having covariance matrix Σ/2, (b) EX[·] is expectation with
respect to the random variable X (the subscript X is omit-
ted where obvious), (c) superscripts “∗,” “t,” and “H” denote
complex conjugation, transposition, and conjugate transpo-
sition, (d) IN is the N×N identity matrix, and (e) |a| denotes
the absolute value of the scalar a, |A| denotes the determi-
nant of the matrix A, and |A| denotes the cardinality of the
set A (the context will make use of | · | clear in each case).

2. SYSTEM MODEL

We review the channel model and PSAM-based training
scheme, discuss the transmission of a codeword, and eval-
uate the cutoff rate.

2.1. Channel model

We consider single-user communications over a time-selec-
tive (i.e., temporally correlated) Rayleigh flat-fading channel.
The sampled baseband received signal yk (assuming perfect

timing) is given by the scalar observation equation

yk =
√
Ekhksk + nk, (1)

where k denotes discrete time, sk ∈ SM � {e− j2πν/M}M−1
ν=0 rep-

resents the M-PSK input, Ek is the energy in the kth trans-
mission slot, hk ∼ CN (0, σ2

h ) models fading, and nk ∼

CN (0, σ2
n) models additive white Gaussian noise (AWGN).

We define the normalized channel correlation function

Rh(τ) � 1
σ2
h

E
[
hkh

∗
k+τ

]
. (2)

2.2. Pilot symbol assisted modulation

In PSAM, the transmitter embeds known pilot symbols into
the transmission stream. We consider periodic PSAM in
which pilots are embedded with period T , so that sk = +1
at times k = mT (m = 0,±1, . . .). Because the allocation of
energy to training versus data symbols entails a tradeoff, we
allow a different energy level for each. Define

Ek �
⎧⎨
⎩
EP , k = mT ,

ED, k �= mT ,
(3)

where EP is the pilot symbol energy and ED the data symbol
energy.1 We define the received SNR in the pilot and data slots
as

κP � EP
σ2
h

σ2
n

, κD � ED
σ2
h

σ2
n
. (4)

In each time slot k = mT + � (m = 0,±1, . . . ; 0 ≤ � ≤
T − 1), an MMSE (i.e., conditional-mean) estimate of the
channel is made at the receiver using a selection of past, cur-
rent, and future pilot symbol observations. Specifically, the
estimate at the �th lag from the most recent pilot is

ĥmT+� = E
[
hmT+� |

{
y(m+n)T

}
, n ∈ N

]
, (5)

where N ⊆ Z is the subset of pilot indices used by the
estimator.2 The cardinality |N | denotes the number of pi-
lots used for estimation. Since hmT+� and {y(m+n)T}n∈N are
jointly Gaussian, the MMSE estimate of (5) is linear in the
pilot observations, and therefore, also Gaussian. We get [22,
pages 508–509]

ĥmT+� = Ch�yC
−1
yy y, (6)

where Ch�y is the 1 × |N | correlation vector between the
estimate and observation, Cyy the |N | × |N | observation

1 The current two-dimensional energy allocation problem is easily extend-
able to a T-dimensional one, in which each of the T − 1 data slots may be
allocated a unique energy value. We report results from this approach in
[21].

2 Observations in the nonpilot slots could be used to further improve the
channel estimate, as is done in semiblind estimators.
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covariance matrix, and y the |N | × 1 observation vector,
whose elements in the ith row and jth column are given by
(1 ≤ i, j ≤ |N |),

(y)i,1 = y(m+Ni)T ,
(
Cyy
)
i, j=

(
E
[

yyH
])

i, j=EPσ
2
hRh

(∣∣Ni−N j

∣∣T)+σ2
nδ(i− j),

(
Ch�y

)
1, j =

(
E
[
hmT+�yH

])
1, j =

√
EPσ

2
hRh

(∣∣� −N jT
∣∣),

(7)

where Nv denotes the vth smallest element in N (v = 1, . . . ,
|N |), and where δ(·) is the Kronecker delta. We will find it
useful to write the last two equations in the form

Cyy = σ2
n

(
κPRhh + I|N |

)
,

Ch�y =
√
EPσ

2
hRh�y,

(8)

where definitions of the |N | × |N | matrix Rhh and 1× |N |
vector Rh�y are evident.

Writing the system model in terms of the channel esti-

mate ĥk and estimation error h̃k � hk − ĥk, we have

yk =
√
Ekĥksk +

√
Ekh̃ksk + nk. (9)

The estimate of (6) and estimation error h̃mT+� are inde-
pendent (by application of the orthogonality principle), and

it follows that ĥmT+� ∼ CN (0, σ̂2
mT+�) and h̃mT+� ∼ CN

(0, σ2
h − σ̂2

mT+�), where σ̂2
mT+� (0 ≤ σ̂2

mT+� ≤ σ2
h ) is the estima-

tor variance � positions from the most recent pilot. The per-
formance of a particular estimator will be characterized by
the normalized estimator variance, termed the CSI quality,

and defined as

ω� � σ̂2
mT+�

σ2
h

=
Ch�yC−1

yy C
H
h�y

σ2
h

= κPRh�y
(
κPRhh + I|N |

)−1
RH
h�y.

(10)

Note that ω� is not a function of m (we assume steady state
estimation), and that ω� = 0 denotes no CSI, while ω� = 1
denotes perfect CSI. It is assumed throughout that the trans-
mitter has knowledge of ω� , the statistical quality of chan-

nel estimates, but not the instantaneous values ĥmT+� .(For
the transmitter to acquire knowledge of ω� it must know the
channel correlation Rh(τ), the estimation scheme N , and the
pilot SNR κP .) In the remainder of this paper we will consider
two subclasses of estimators.

Causal estimation

Define the (L, 0) estimator (L = 1, 2, . . .) to be the estimator
which uses the last L causal pilots, N = {−(L − 1),−(L −
2), . . . , 0}. For example, for the last pilot (1, 0) estimator we
have N = {0}, and from (10)

ω(1,0)
� = ∣∣Rh(�)

∣∣2 κP
1 + κP

. (11)

Noncausal estimation

Define the (L,Z) estimator to be the noncausal estimator
which uses the last L causal pilots and next Z noncausal ones,
that is, N = {−(L − 1), . . . , 0, . . . ,Z}. For example, for the
(1, 1) estimator, we have N = {0, 1}, and

ω(1,1)
� =

(
κ2
P + κP

)(∣∣Rh(�)
∣∣2

+
∣∣Rh(T − �)

∣∣2
)
− 2κ2

P Re
{
Rh(�)Rh(T − �)R∗h (T)

}
(
κP + 1

)2 − κ2
P

∣∣Rh(T)
∣∣2 , (12)

where Re{·} denotes the real part.

2.3. Transmission of a codeword

The system transmits codewords of length N ′ � N(T − 1)
where N > 0 is a positive integer. Without loss of generality,
consider the codeword that starts at time k = 0 denoted by

S = diag
{[
s1, . . . , sT−1, sT+1, . . . , s2T−1, . . . ,

s(N−1)T+1, . . . , sNT−1
]}

,
(13)

and let

h �
[
h1, . . . ,hT−1,hT+1, . . . ,hNT−1

]t
,

ĥ �
[
ĥ1, . . . , ĥT−1, ĥT+1, . . . , ĥNT−1

]t
,

h̃ �
[
h̃1, . . . , h̃T−1, h̃T+1, . . . , h̃NT−1

]t
,

(14)

denote the channel, the channel estimate, and the estimation
error during the span of the codeword. We define normalized
correlation matrices for the channel estimate and estimation
error,

Σ̂ � 1
σ2
h

E
[

ĥĥH
]
, Σ̃ � 1

σ2
h

E
[

h̃h̃H
]
. (15)

The observation of the codeword after transmission through
the channel (9) is

y = √EDSĥ +
√
EDSh̃ + n, (16)

where n � [n1, . . . ,nT−1,nT+1, . . . ,nNT−1]t is the noise vec-
tor. Note that the diagonal elements of Σ̂ and Σ̃ are 1N ⊗
[ω1, . . . ,ωT−1] and 1N ⊗ [1− ω1, . . . , 1− ωT−1], respectively,
where 1N is a row-vector of N ones and where “⊗” denotes
the matrix Kronecker product.
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The receiver employs the maximum likelihood (ML) de-

tector which regards S as the channel input and the pair (y, ĥ)
as the channel output. Among all possible input symbol se-
quences for S, denoted by S, the detector chooses the se-
quence which maximizes the posterior probability of the out-
put, that is,

max
S∈S

P
(

y, ĥ | S), (17)

where P(·, · | ·) is the probability distribution function
(PDF) of the channel outputs, conditioned on the channel
input. Noting that P(y, ĥ | S) = P(y | S, ĥ)P(ĥ) and using
standard simplifications under Gaussian statistics, we have,
from (17),

max
S∈S

exp
{(

y − √EDSĥ
)H(

σ2
nIN ′ + σ2

hSΣ̃S
H
)−1(

y − √EDSĥ
)}

∣∣σ2
nIN ′ + σ2

hSΣ̃S
H
∣∣ .

(18)

2.4. Cutoff rate

The cutoff rate, measured in bits per channel use, is [23, 24]
(see [18] for time-selective fading channels with perfect re-
ceiver CSI)

Ro = − lim
N→∞

min
Q(·)

1
NT

× log2

∫

y

∫

ĥ

[ ∑

S∈S

Q(S)
√
P
(

y, ĥ | S)
]2

dĥdy,

(19)

where Q(·) is the probability of transmitting a particular
codeword. (The normalization factor is 1/NT (rather than
1/N ′) to account for the information-loss in pilots slots.)
The cutoff rate is evaluated in the appendix and found to
be

Ro = − lim
N→∞

min
Q(·)

1
NT

log2

∑∑

V ,W∈S

Q(V)Q(W)
∣∣IN ′ + κDV Σ̃VH

∣∣1/2∣∣IN ′ + κDW Σ̃WH
∣∣1/2

∣∣IN ′ + (1/2)κD
(
V Σ̃VH + W Σ̃WH

)
+ (1/4)κD(V −W)Σ̂(V −W)H

∣∣ . (20)

Equation (20) is seen to match [18, equation (14)] for the
special case of perfect channel estimation (i.e., Σ̂ = I and Σ̃ =
0). Equation (20) can be used to determine optimal PSAM
parameters and the resulting cutoff rate, however, the ensu-
ing analysis would be largely based on numerical techniques.
In the remainder of this paper, we focus on more tractable
approaches to an analysis of optimal PSAM.

2.5. Interleaving

An interleaving-deinterleaving pair [25, pages 468–469] is an
integral component of many wireless communications sys-
tems. A common assumption is that of infinite depth (i.e.,
perfect) interleaving, in which the correlation between chan-
nel fades at any two symbols within a codeword is com-
pletely removed. For example, this assumption has been used
to study the cutoff rate of the time-selective fading channel
with perfect CSI in [18]. Although interleaving discards in-
formation on the channel correlation, such a step is neces-
sary in practice since most channel codes in use have been
designed for independently fading channels.(The effect of in-
terleaving on the cutoff rate was studied in [19] for a class of
block-interference channels with memory. It was shown that
the cutoff rate is generally a decreasing function of the chan-

nel memory length, without or without channel state infor-
mation (this represents a different behavior than known for
channel capacity). An analysis of the effect of interleaving is
complicated in our setting by the fact that both the estimated
channel and effective noise term (consisting of the estima-
tion error plus AWGN) are rendered memoryless sequences
by the interleaver. Thus, there exist scenarios where interleav-
ing may either increase or decrease Ro.)

Since channel realizations occurring exactly � (1 ≤ � ≤
T−1) slots from the last pilot have the same estimator statis-
tic ω� , we assume that these slots are interleaved only among
each other (preserving the marginal statistics of the channel
estimate and error). Further, it is assumed that the interleaver
uses a different interleaving scheme in each sub-channel, so
that the correlation between any two codeword symbols is
zero. Perfect interleaving renders Σ̂ and Σ̃ diagonal, so that

Σ̂ = IN ⊗ diag
{[
ω1, . . . ,ωT−1

]}
,

Σ̃ = IN ⊗ diag
{[

1− ω1, . . . , 1− ωT−1
]}
.

(21)

Each of the matrices in (20) is now diagonal. The cutoff rate
simplifies to

Ro = − 1
T

T−1∑

�=1

min
Q�(·)

log2

∑∑

s� ,v�∈SM

Q�
(
s�
)
Q�
(
v�
)

√
1 + κD

(
1− ω�

)∣∣s�
∣∣2
√

1 + κD
(
1− ω�

)∣∣v�
∣∣2

1 + (κD/2)
(
1− ω�

)(∣∣s�
∣∣2

+
∣∣v�
∣∣2)

+ (κD/4)ω�

∣∣s� − v�
∣∣2 , (22)
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where Q�(·) is the probability distribution � slots from the
last pilot (1 ≤ � ≤ T − 1). The communications channel
is symmetric in its input (M-PSK), and so the cutoff rate is
maximized by the equiprobable distribution Q�(·) = 1/M.
Evaluating the double sum and invoking the constant mod-
ulus property of M-PSK yields

Ro = − 1
T

T−1∑

�=1

log2

[
1
M

M−1∑

m=0

1 + κD
(
1− ω�

)

1 + κD
(
1− ω� cos2(πm/M)

)
]
.

(23)

Equation (23) can be interpreted as follows: the �th term
in the above sum represents the cutoff rate of the �th data
subchannel (conceptually consisting of all transmissions oc-
curring � slots after a pilot). Thus, (23) represents the cut-
off rate of T − 1 parallel subchannels, normalized by the
factor 1/T to account for pilot transmissions. Because the
temporal-correlation of the channel is exploited for chan-
nel estimation before deinterleaving, the cutoff rate depends
on the CSI quality {ω�}T−1

�=0 . If estimation is perfect (ω� =
1, for all �), (23) matches [18, equation (16)], as it must.
Equation (23) represents the M-PSK cutoff rate under per-
fect interleaving for an arbitrary channel correlation Rh(τ),
estimation scheme N and power and bandwidth allocation
(κP ,κD,T). It is the basis for the subsequent analysis.

3. OPTIMAL TRAINING FOR
THE GAUSS-MARKOV MODEL

In this section we determine optimal PSAM parameters un-
der energy and bandwidth constraints for the Gauss-Markov
(GM) channel model, whose correlation is described by
a first-order autoregressive (AR) process. It is known that
second- and third-order AR models provide excellent fits
to the Jakes model [26], but they are not as tractable. The
GM model has previously been used to characterize the ef-
fect of imperfect channel knowledge on the performance
of decision-feedback equalization [27], mutual information
[28], and minimum mean-square estimation error [6] of
time-selective fading channels. The correlation is given by

Rh(τ) = α|τ| (0 < α < 1), (24)

where the α parameter is related to the normalized Doppler
spread of the channel and is typically within the range 0.9 ≤
α < 0.99 [13, 28]. It will be seen that the GM model pro-
vides simple, closed-form, and intuitive expressions for the
CSI quality of many estimators of interest (including those
of infinite length) and leads to simple design rules for the
optimal allocation of resources between training and data,
motivating its study in this section.

3.1. Energy allocation

In one period of transmission, the total energy consumed is
κP+(T−1)κD (without ambiguity, we use received energies),
and an energy constraint requires that

κP + κD(T − 1) ≤ κavT , (25)

where κav > 0 is the allowable average energy per transmis-
sion (averaged over pilots and data). The inequality in the
constraint will be met with equality since Ro is increasing in
both κP and κD. We consider causal and noncausal estima-
tors separately in the following.

(1) Causal estimation

For causal (L, 0) estimators, it can be shown that the cutoff
rate optimizing pilot energy κ�P is given by the following one
dimensional optimization problem involving only the CSI
quality in the pilot slot ω0

κ�P = arg max
0≤κP≤κavT

[ κavT − κP
κavT − κP + (T − 1)

ω0
(
κP
)]

, (26)

where ω0(κP) emphasizes dependency on κP . The proof fol-
lows by substituting for κD in terms of the energy constraint
into (23), and uses the fact that ω� = α2�ω0 for any causal
estimator.3

The optimal pilot energy κ�P is implicit in (26), as a par-
ticular estimator has not been specified (explicit expressions
will be given in the examples below). However, when |N |
is finite, it is clear from the last equality in (10) that ω0 is a
ratio of polynomials in κP . Consequently, maximization of
(26) involves polynomial rooting. We can write

κ�P =
{
κP :a0 +a1κP+a2κ2

P+· · ·+aUκUP =0, 0 < κP ≤ κavT
}

,
(27)

where a0, . . . , aU are coefficients to be determined. A suffi-
cient condition for a closed-form solution is U ≤ 4. Next, we
derive the optimal training energy at low and high SNR.

Low SNR

To study the low SNR setting, we start from (10):

ω0 = κPRh0y
(
κPRhh + I|N |

)−1
RH
h0y

≈ κPRh0y
(
I|N | − κPRhh

)
RH
h0y

≈ κPRh0yR
H
h0y = κP

1− α2TL

1− α2T
,

(28)

where the approximations hold as κP → 0. Substitution of
(28) into (26) yields

lim
κav→0

κ�P
κavT

= 1
2

, (29)

which states that half of the total energy per period should
be allocated to the pilot symbol.

3 To prove this fact, note that under the GM model, we have (Ch�y)1, j =√
EPσ

2
hα
|�−N j T|. For causal estimators N j ≤ 0, and therefore, (Ch�y)1, j =√

EPσ
2
hα

�−N j T = α�(Ch0y)1, j . Therefore, Ch�y = α�Ch0y , and from (10),
ω� = α2�ω0.
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Table 1: The optimal fractional training energy κ�P /κavT for arbitrary causal and noncausal estimators under the Gauss-Markov channel.

Causal (L, 0) estimators Noncausal (L, Z) estimators

κ�P
κavT

see (26) see (35)

κav −→ 0 = 1 / 2 = 1 / 2

κav −→ ∞ = 1
1 +

√
T − 1

1
1 +

√
2(T − 1)

≤ (·) ≤ 1
1 +

√
T − 1

High SNR

At high SNR, the performance of any causal estimator con-
verges to that of the (1, 0) estimator. To see this, start from
(10)

ω� = κPα2�Rh�y
(
κPRhh + I|N |

)−1
RH
h�y

≈ α2�Rh�yR
−1
hhR

H
h�y = α2� ,

(30)

where the approximation holds as κP → ∞, and where we
have exploited the specific tridiagonal structure of R−1

hh to ar-
rive at the last equality. Clearly, (30) matches (11) with (24)
at high SNR. Intuitively, the channel state in the most recent
pilot transmission k = mT is learnt perfectly at high SNR,
and this renders older pilots k = (m − 1)T , (m − 2)T , . . . ir-
relevant for prediction in the Markov model of (24).

The fractional training energy for any causal estimator at
high SNR can now be found by substituting (11) with (24)
into (26). We find that

lim
κav→∞

κ�P
κavT

= 1
1 +

√
T − 1

. (31)

The general properties of κ�P for causal estimators are sum-
marized in the left half of Table 1.

Example 1. If U ≤ 4 then closed-form expressions for the
optimal training energy (over all SNR) exist. Of particular
interest are the (1, 0) and (∞, 0) estimators which represent
the limiting cases of causal estimation in our study. For the
(1, 0) estimator, the CSI quality ω0 is given by (11) with (24).
Substitution into (26) yields

κ�P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(T − 1)

(
κavT + 1

)[(
κav + 1

)
T − 1

]− (κav + 1
)
T + 1

T − 2
, T > 2,

1
2
κavT , T = 2,

(32)

which agrees with Table 1 in the limiting cases, κav → 0 and
κav → ∞, as it must. When T = 2, energy is equally divided
between pilot and data, as it is in typical transmit-reference
schemes.

For the (∞, 0) estimator, the CSI quality is found from
(10) to be

ω(∞,0)
� =α2� κP − 1+

√(
1 + κP

)2
+ 4κP(α2T/1− α2T)

κP + 1 +
√(

1+ κP)2 + 4κP(α2T/1− α2T)
, (33)

where inversion of the infinite-dimension Cyy matrix has
been carried out using the spectral factorization technique
[29]. Substituting (33) into (26), it can be verified that as
α → 1, the optimal training energy κ�P → 0. This is because
the (∞, 0) estimator provides an infinite number of noisy ob-
servations of the time-invariant (in the α→ 1 limit) channel.
Each observation requires only a minuscule amount of en-
ergy in order to exploit the infinite (in the limit) diversity
gain. As α→ 0, κ�P converges to the κ�P of the (1, 0) estimator

in (32) (this follows since ω(∞,0)
� converges to ω(1,0)

� ): for a
rapidly fading channel, only the most recent pilot proves use-
ful. For arbitrary α, the optimal training energy is found by
solving (26) with (33). For brevity, we use the coefficient no-
tation of (27), for which we get

a(∞,0)
0 = −κ2

avT
2[(κav + 1

)
T − 1]2,

a(∞,0)
1 = 2κavT

[(
κav + 1

)
T − 1

][(
2κav + 1

)
T − 1

]
,

a(∞,0)
2 = −6κavT

[(
κav + 1

)
T − 1

]
,

a(∞,0)
3 = 4α2T

1− α2T
(T − 1)2 + 2T(T − 1) + 4κavT ,

a(∞,0)
4 = (T − 2)T.

(34)

Note that U = 4, ensuring a closed form solution. Properties
of the (1, 0) and (∞, 0) estimators, representing the limiting
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Table 2: The optimal fractional training energy κ�P /κavT for the (1, 0) and (∞, 0) causal estimators, and the (1, 1) and (∞,∞) noncausal
estimators, under the Gauss-Markov channel.

(1, 0) (∞, 0) (1, 1) (∞,∞)

κ�P
κavT

See (32) See (34) = N/A = N/A

α −→ 0 No dependency −→ κ�P
κavT

of (1, 0) −→ 1
1 +

√
(T − 1)(κavT + 1)/(T(κav + 1)− 1)

−→ κ�P
κavT

of (1, 1)

α −→ 1 No dependency −→ 0 −→ 1
1 +

√
(T − 1)(2κavT + 1)/(T(κav + 1)− 1)

−→ 0
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Figure 1: The optimal fractional training energyκ∗P /(κavT) for sev-
eral causal estimators when α = 0.99, M = 8, and T = 4. The
dashed line = 1/T is the fractional training energy under a static
(constant) energy allocation. At high SNR, the fractional energy sat-
urates to 1/(1 +

√
T − 1).

cases of causal estimation, are summarized on the left side of
Table 2.

In Figure 1, we plot the fractional training energy for the
(1, 0), (2, 0), (3, 0), and (∞, 0) estimators as a function of the
energy constraint κav for M = 8, T = 4, and α = 0.99.4 It is
seen that as more pilots are exploited, less training energy is
required. The fractional training energy is nonmonotonic in
κav for the multipilot estimators, though κ�P is monotonic.5

4 A closed-form solution for κ�P under the (2, 0) estimator also exists (i.e.,
U ≤ 4), but it has been omitted for brevity. For the (3, 0) estimator, a
sixth-order polynomial in κ�P ensues.

5 Using the Kuhn-Tucker conditions, it can be shown that the fractional
energy allocation is nonmonotonic when the channel estimation is better
(when more pilots are used, for larger α, and/or for smaller T). For ex-
ample, for the (∞, 0) estimator, it can be shown that the fractional energy
allocation is nonmonotonic according to

1 + α2T

1− α2T −
√
T − 1

non-monotonic≥
<

monotonic
0.

(2) Noncausal estimation

The optimal energy allocation is generally not available in
closed-form for noncausal (L, Z) estimators. In general, it
can be expressed as

κ�P = arg max
κP+κD(T−1)=κavT

Ro. (35)

We start by considering κ�P in the limiting SNR cases. We
obtain a closed-form solution at low SNR, and simple, but
useful, bounds at high SNR.

Low SNR

At low SNR, the CSI quality (10) is simplified using a tech-
nique similar to that used in (28) for causal estimators. We
find that

ω� ≈ 1
1− α2T

[
α2�(1− α2TL) +

α2T
(
1− α2TZ

)

α2�

]
κP , (36)

where the approximation holds as κP → 0. Although this
expression depends on �, substitution into (35) nevertheless
yields a closed-form expression for κ�P . After taking the limit,
we get

lim
κav→0

κ�P
κavT

= 1
2

, (37)

implying once again that half of the available energy per pe-
riod should be allocated to the pilot symbol at low SNR.

High SNR

At high SNR, the performance of any noncausal estimator
converges to that of the (1, 1) estimator (the proof is similar
to the one used to derive (30) for causal estimators). Using
this fact, we substitute (12) with (24) into (35), and consider
the limiting cases of rapid (α → 0) and slow (α → 1) fading,
which provide upper and lower bounds on κ�P . We get

1
1 +

√
2(T − 1)

≤ κ�P
κavT

≤ 1
1 +

√
T − 1

, (38)

where the lower bound is met with equality as α→ 1, and the
upper bound as α → 0 (the technique used to evaluate these
limits will be made clear shortly, in the arguments leading to
(42)). Comparison of (38) to (31) reveals that a noncausal
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Figure 2: (a) The fractional training energy for the (1, 1) estimator as a function of the energy constraint κav for several values of α when
M = 8 and T = 7. Also shown (dashed lines) are the lower and upper bounds on κ�P /κavT as determined from (42). (b) The fractional
training energy κ�P /κavT versus the Doppler parameter α for the (1, 1), (2, 2), (3, 3), and (∞,∞) estimators at an SNR of κav = 0 dB when
M = 4 and T = 4.

estimator never uses more training energy than a causal one
at high SNR (for fixed T). General properties of κ�P for non-
causal estimators are summarized in the right half of Table 1.

Example 2. We start with an analysis of the (1, 1) estimator
which is valid for all SNR. Simplifying (12) for the Gauss-
Markov model, we get

ω(1,1)
� = κ2

P

(
α2� + α2(T−�) − 2α2T

)
+ κP

(
α2� + α2(T−�)

)
(
κP + 1

)2 − κ2
Pα2T

.

(39)

Next, we evaluate the CSI quality under rapid and slow fad-
ing. For rapid fading, we get

lim
α→0

ω(1,1)
� = κP

1 + κP
max

(
α2� ,α2(T−�)), (40)

and for slow fading we get

lim
α→1

ω(1,1)
� = κP

1/2 + κP
, ∀�. (41)

Substitution of (40) and (41) into (35) yields closed-form
solutions. We get

1

1 +
√

(T − 1)
(
2κavT + 1

)
/
(
T
(
κav + 1

)− 1
)

≤ κ�P
κavT

≤ 1

1 +
√

(T − 1)
(
κavT + 1

)
/
(
T
(
κav + 1

)− 1
) .

(42)

In Figure 2(a) we plot the fractional training energy for the
(1, 1) estimator as a function of the energy constraint κav for
several values of α when M = 8 and T = 7. Also shown
(dashed lines) are the lower and upper bounds on κ�P /κavT
from (42). Although the upper bound was derived for the
condition α→ 0, it is seen to be useful for the practical range
of α.

Next, we consider the (∞,∞) estimator. The CSI quality
is found to be

ω(∞,∞)
� = 1− 1 + κP + α2T

(
κP − 1

)− κP
(
α2� + α2(T−�)

)
√(

1− α2T
)[(

κP + 1
)2 − (κP − 1

)2
α2T
] ,

(43)

which follows from (10) after applying spectral factoriza-
tion. To determine bounds on the optimal training energy,
we again consider the cases of slow and rapid fading. For slow
fading, we apply L’Hôpital’s rule to (43), and obtain

lim
α→1

ω(∞,∞)
� = 1, κP > 0, (44)

and it follows from (35) that κ�P → 0. For rapid fading

(α → 0), it is seen that ω(∞,∞)
� converges to ω(1,1)

� (i.e., to
the expression on the right hand side of (40)). Therefore, κ�P
converges to the κ�P of the (1, 1) estimator. In Figure 2(b) we
plot the fractional training energy κ�P /κavT versus Doppler α
for the (1, 1), (2, 2), (3, 3) and (∞,∞) estimators at an SNR of
κav = 0 dB when M = 4 and T = 4. For smaller values of α,
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the (2, 2) estimator provides most of the reduction in the re-
quired training energy, and gains saturate with more sophis-
ticated estimators. For large α, the (∞,∞) estimator takes ad-
vantage of the high-order diversity gain available over the
slowly varying channel, and requires considerably less en-
ergy than the competing estimators. Properties of the (1, 1)
and (∞,∞) estimators, which represent the limiting cases of
noncausal estimation, are summarized on the right side of
Table 2.

3.2. Training period

In this section we consider the optimal period (equivalently,
frequency) with which pilot symbols should be inserted into
the symbol stream. The optimal value of T depends on the
normalized Doppler α, the cardinality of the input M, the
energy constraint κav, the energy allocation (e.g., the optimal
allocation as in Section 3.1 or a static allocation κD = κP =
κav), and the particular estimator employed at the receiver.
However, we will see that the analysis simplifies greatly in the
high SNR setting. We will again find it convenient to distin-
guish between the cases of causal and noncausal estimation.

(1) Causal estimation

At high SNR, the optimal training period for any causal esti-
mator is found from (23). Taking the argmax in T and letting
κav →∞ we get

TC � arg max
2≤x<∞, x∈N

[ x−1∏

�=1

1
M

M−1∑

m=0

1− α2�

1− α2� cos2(πm/M)

]−1/x

,

(45)

where we have again used the convergence of all causal es-
timators to the (1, 0) estimator at high SNR. Equation (45)
depends only on M and α; it is independent of the particular

estimator used and the energy allocation strategy. Although
motivated by the high SNR setting, it will be seen that (45)
provides good approximation to the optimal training period
over a wide range of SNR.

Example 3. We study the applicability of the training period
rule of (45) to (1, 0) and (∞, 0) estimators at finite values
of SNR. A comparison is given in Table 3 for QPSK (i.e.,
M = 4). The second and third columns are the optimal train-
ing period for the (1, 0) estimator under the static and op-
timal energy allocations, respectively (determined numeri-
cally). The fourth and fifth columns are the training period
for the (∞, 0) estimator under static and optimal energy al-
locations (determined numerically), and the sixth column is
the optimal training period at high SNR determined from
(45). The optimal training period for either estimators, un-
der either energies allocation strategy, is seen to converge to
TC as the SNR increases, which is expected. It is seen that
convergence occurs sooner when the fading becomes more
rapid. For example, for α = 0.80, the training period pre-
dicted by (45) is correct for SNRs as small as 0 dB (for ei-
ther the (1, 0) or (∞, 0) estimators and under either energy
allocation strategy). For α = 0.95, TC is exact for SNRs as
low as 10 dB, and for α = 0.99, TC is correct to an SNR of
20 dB. For a fixed estimator, it is seen that the optimal train-
ing period can vary greatly depending on the energy alloca-
tion strategy—at least for smaller κav and larger α. For ex-
ample, when α = 0.99 and κav = 0 dB, the optimal training
period varies from 10 (under constant allocation) to 20 (un-
der optimal allocation).

(2) Noncausal estimation

Similarly, we find the optimal training period for any non-
causal estimator by considering the high SNR setting. Letting
κav →∞ in (23), we get

TNC � arg max
2≤x<∞, x∈N

[ x−1∏

�=1

1
M

M−1∑

m=0

(
1− α2�

)(
1− α2(x−�)

)

1− α2x − (α2� + α2(x−�) − 2α2x
)

cos2(πm/M)

]−1/x

. (46)

Example 4. The right side of Table 3 illustrates the train-
ing period for noncausal estimators. The seventh and eighth
columns of the table are the optimal training period for
the (1, 1) estimator under static and optimal energy allo-
cations, respectively (determined numerically). The ninth
and tenth columns are the training period for the (∞,∞)
estimator under static and optimal energy allocations (de-
termined numerically), and the eleventh column is the op-
timal training period at high SNR determined from (46).
Again, we note that TNC provides good approximation to
the optimal training period for larger SNR and for more
rapid fading. The table reflects intuition: the more predict-

able the channel (larger α), the less frequently training is
required (larger T). However, the table generally indicates
that more sophisticated estimators (e.g., the (∞,∞)) re-
quire more frequent training symbols than simpler ones
(e.g., the (1, 1)). To explain this result we refer to (23),
which shows that the optimal T is determined not directly
by the quality of the estimator, but rather by how quickly
the cutoff rate in the �th subchannel diminishes in � (1 ≤
� ≤ �T − 1/2� for noncausal estimators). If the better es-
timator causes the biased sum of (23) to degrade more
quickly in �, then T will be smaller for the better estima-
tor.
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Table 3: The optimal training period under the Gauss-Markov fading channel for QPSK (M = 4). The left half of the table is a study for
causal estimators: the (1, 0) estimator under the static (1st column) and optimal (2nd) energy allocations, the (∞, 0) estimator under static
(3rd) and optimal (4th) energy allocations, and the optimal training period at high SNR (5th column) determined from (45). The right
half of the table is a study for noncausal estimators: the (1, 1) estimator under the static (6th column) and optimal (7th) energy allocations,
the (∞,∞) estimator under static (8th) and optimal (9th) energy allocations, and the optimal training period at high SNR (10th column)
determined from (46).

Causal estimation Noncausal estimation

T(1,0) T�(1,0) T(∞,0) T�(∞,0) TC T(1,1) T�(1,1) T(∞,∞) T�(∞,∞) TNC

α = 0.80

κav = 0 dB 3 3 3 3 3 3 4 3 3 3

κav = 10 dB 3 3 3 3 3 3 3 3 3 3

κav = 20 dB 3 3 3 3 3 3 3 3 3 3

α = 0.95

κav = 0 dB 5 8 4 5 4 6 10 5 7 5

κav = 10 dB 4 4 4 4 4 5 6 5 6 5

κav = 20 dB 4 4 4 4 4 5 5 5 5 5

α = 0.99

κav = 0 dB 10 20 6 10 7 12 28 8 16 10

κav = 10 dB 8 9 7 8 7 11 14 10 13 10

κav = 20 dB 7 7 7 7 7 10 11 10 11 10

3.3. Performance analysis

We now examine the effect of optimal training on the cutoff
rate. In Figure 3(a) we plot the QPSK cutoff rate under the
(1, 0) estimator for Doppler values α = {0.90, 0.95, 0.99}. For
fixed α, we plot the cutoff rate under (a) optimization over
the energy allocation and training period, κP = κ�P ,κD =
κ�D , and T = T�, (b) optimization over the training period
but not the energy allocation, T = T�, κD = κP = κav,6

and (c) the unoptimized case, κD = κP = κav, T = TC

(the training period is fixed at the high SNR optimal value
determined from (45)). The merits of optimal allocation in-
crease with the channel predictability: when α = 0.99 there
is a ∼ 2 dB gain at κav = 0 dB, but when α = 0.9 the gain
is only a fraction of a dB. In each case, we find that it is
the energy allocation, not assignment of the training period,
that provides most of the gain in optimized training. This is
due in part to our choice of T = TC , which is optimal at
high SNR. In Figure 3(b) we plot the impact of an arbitrary
choice of T on the cutoff rate under constant energy allo-
cation, κD = κP = κav = 20 dB. The degradation may be
significant when T is chosen suboptimally.

To determine the merits of more sophisticated estima-
tors, we compare the cutoff rate under the simplest and
the most complex causal ((1, 0) and (∞, 0)) and noncausal

6 Note that T� will generally be different in (a) and (b) since the energy
allocation strategy is different in each case. Nevertheless, we use the nota-
tion T = T� to denote the optimal training period for both.

((1, 1) and (∞,∞)) estimators in Figure 4(a) for α = 0.98
and a constant energy allocation with unoptimized choice of
T (we choose T = TC for the causal estimators or T = TNC

for the noncausal estimators). Therefore, the curves in the
figure represent the largest increase in cutoff rate due to the
use of a sophisticated estimator in place of a simpler one.
At small SNR there is a ∼ 2 dB gain in using more sophis-
ticated estimators. However, this gain is seen to diminish at
high SNR (as expected for the GM model). We repeat the
figure, but with optimized energy and training assignments,
in Figure 4(b). Remarkably, the energy saving for using the
(∞, 0) estimator in place of the (1, 0) (or the (∞,∞) in place
of the (1, 1)) is seen to be a fraction of a dB over the entire
SNR range. Energy optimization reduces the need for sophis-
ticated estimators in the GM model.

4. OPTIMAL TRAINING FOR JAKES MODEL

In this section we study optimized training for the Jakes
channel correlation [30]. While the GM model studied in
the last section provides straightforward analytic results, the
Jakes model is known to be an accurate and experimentally
validated model in dense scattering environments. The anal-
ysis in this section will be used to validate and refine the
design paradigms derived in the last section. For the Jakes
model we have

Rh(τ) = J0
(
2π fDTDτ

)
, (47)
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Figure 3: The QPSK (M = 4) cutoff rate under the (1, 0) estimator for Doppler values α = {0.90, 0.95, 0.99}. (a) For fixed α, the solid
line represents optimization over the energy allocation and training period κP = κ�P ,κD = κ�D , and T = T�, the dashed line represents
optimization over the training period, but not the energy allocation, κD = κP = κav and T = T�, and the dashed-dotted line represents the
unoptimized case, κD = κP = κav, and T = TC (the training period is fixed at the high SNR value determined from (45)). (b) The effect of a
suboptimal assignment of the training period T on cutoff rate under the constant energy allocation, κD = κP = κav = 20 dB.

where J0(·) is the zero-order Bessel function of the first kind,
and fDTD > 0 is the normalized Doppler parameter. The cut-
off rate is given by (23) with CSI quality (10) as before, but
now under the channel correlation of (47).

In the following simulation we consider mobile speeds
of {12, 120}Km/h which correspond to the Doppler pa-
rameters fDTD = {1/1000, 1/100} at a carrier frequency of
900 MHz and symbol period of TD = 10 μ-sec [31, pages
141–143]. In Figure 5, we plot the cutoff rate for both val-
ues of fDTD under (a) optimized energy and training period
assignments, κP = κ�P ,κD = κ�D ,T = T�, and under the
optimized training period only, κP = κD = κav,T = T�. Be-
havior is seen to be qualitatively similar to that in Figure 3(a)
for the GM model: energy-optimized training is seen to pro-
vide a noticeable increase in the cutoff rate for slower fad-
ing channels, but not for rapidly fading channels. Further,
optimized training provides the largest savings at low SNR
(∼ 3 dB at κav = 0 dB), but is of diminishing benefit as SNR
increases. The vehicle speeds tested represent extreme cases.
For intermediate speeds (i.e., values of fDTD) performance
increases smoothly both in the cutoff rate and in the gains
realized by optimal resource allocation.

In Section 3 we made use of the Markov property of the
channel in several instances, exploiting the convergence of
the (L, 0) estimator to the (1, 0) estimator (alt., the (L, Z) es-
timator to the (1, 1) estimator) at high SNR. To test the de-
gree to which this property holds under the Jakes model, we
plot the cutoff rate for QPSK input and optimized training

(both the energy and training period have been optimized) in
Figure 6 when fDTD = 1/100. In comparison to Figure 4(b),
the counterpart figure for the GM model, we notice a similar
qualitative behavior at low SNR. However, we notice differ-
ences at high SNR: more sophisticated estimators are seen
to be useful at high SNR under optimized training (for both
causal and noncausal estimation). For example, there is now
a ∼ 3 dB gain in going from the (1, 0) estimator to the (2, 0)
estimator at an SNR of κav = 15 dB. Further, performance of
the (L, 0) (alt., (L, Z)) estimator does not converge to that of
the (1, 0) (alt., (1, 1)) estimator at high SNR. In general it is
seen that the largest gain is achieved in going from the (1, 0)
estimator to the (2, 0) estimator (alt., from the (1, 1) to the
(2, 2)), after which adding more pilots provides diminishing
returns to the cutoff rate.

5. DISCUSSION AND FUTURE WORK

We have considered cutoff rate optimal training within
a PSAM framework for time-selective Rayleigh flat-fading
channels. For M-PSK inputs, we have derived in (23) a sim-
ple expression for the interleaved cutoff rate that is parame-
terized by an arbitrary channel correlation, channel estima-
tion scheme, and the allocation of power and bandwidth to
training symbols. Using this expression, we have derived an-
alytic rules for the optimal allocation of resources for the
Gauss-Markov fading channel, the basic properties of which
are summarized in Tables 1 and 2. For example, it was seen
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Figure 4: The QPSK (M = 4) cutoff rate for α = 0.98 for the (1, 0), (∞, 0), (1, 1), and (∞,∞) estimators under (a) the constant energy
allocation (κD = κP = κav) and unoptimized training period (we choose T = TC for the causal estimators, and T = TNC for noncausal
estimators), and (b) with optimization over both the energy allocation and training period, κD = κ�D ,κP = κ�P , and T = T�.
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Figure 5: The QPSK (M = 4) cutoff rate under the (1, 0) estima-
tor for Doppler values, fDTD = {1/1000, 1/100}. For fixed fDTD ,
the solid line represents optimization over the energy allocation and
training period, κP = κ�P ,κD = κ�D , and T = T�, and the dashed
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energy allocation, κD = κP = κav and T = T�.

that at low SNR, half the total available energy should go to
training, while at high SNR, a noncausal estimator never uses
more energy than a causal one (with equality when the fad-
ing is rapid). We have provided expressions for the training
period that, while optimal at high SNR, were seen to pro-
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Figure 6: The QPSK (M = 4) cutoff rate for fDTD = 0.01 for
the (1, 0), (2, 0), and (3, 0) causal estimators, and the (1, 1), (2, 2),
and (3, 3) noncausal estimators, under optimization over both the
energy allocation and training period, κD = κ�D ,κP = κ�P , and
T = T�.

vide solid guidance across a wide range of SNR and Doppler
values (see (45), (46), and Table 3). Next, we studied opti-
mal training for the Jakes model. It was seen that insights de-
rived from the Gauss-Markov model were predictive at low
SNR and for simpler estimators, but were not useful at higher
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SNR with more sophisticated multi-pilot estimators. Using
the Jakes model, it was seen that multi-pilot estimators were
indeed useful at high SNR, with the largest gains coming with
the addition of the first few pilots. Both the Gauss-Markov
and Jakes models indicated that while optimized energy allo-
cation is useful at low SNR, it is not useful at high SNR.

Among related work on optimal training for point-to-
point time-selective Rayleigh flat-fading channels, only [14]
offers analytic results for the optimal training period and en-
ergy allocation in a similar framework. The authors consider
Gaussian inputs and derive a lower bound on channel ca-
pacity that relates estimation error directly to system perfor-
mance in similar fashion to (23) (however, the capacity for-
mulation requires an expectation over the random channel
that cannot be evaluated directly). The (∞,∞) estimator is
used. As a representative example, we compare the optimal
energy allocation result of [14] at high SNR for any (ban-
dlimited) Doppler spectrum to our result at high SNR for the
GM model. Our result is given by (38) where the lower and
upper bounds are achieved in limit of static and i.i.d. fading
(resp.). Reference [14] derives

( κ�P
κavT

)

[14]
= 1

1 +
√
β(T/T − 1)

, (48)

where β > 0 is a constant. This represents a different behavior
for large T , as κ�P /κavT saturates to some value > 0 for [14],
but not for our model. A comparison of optimal training pe-
riod results is not as straightforward, as [14] considers pilots
to be samples of an underlying continuous time channel: an
interpretation that is excluded here.

It is of further interest to study cutoff rate optimal train-
ing under nonsymmetric inputs such asM-QAM (an analysis

for perfect CSI appears in [32]), and generalizations to the
MIMO setting and the case where the transmitter has only
statistical knowledge of the Doppler spectrum.

APPENDIX

DERIVATION OF THE CUTOFF RATE, (20)

We start from (19). Note that

∫

y

∫

ĥ

[ ∑

S∈S

Q(S)
√
P
(

y, ĥ | S)
]2

dĥdy

=
∑ ∑

V ,W∈S

Q(V)Q(W)Eĥ

×
[∫

y

√
P
(

y | V , ĥ
)
P
(

y |W , ĥ
)
dy
]
.

(A.1)

Note that y | V , ĥ ∼ CN (uV ,ΣV ) and that y | W , ĥ ∼

CN (uW ,ΣW ), where uW �
√
EDW ĥ, uV �

√
EDV ĥ, ΣV �

σ2
hEDV Σ̃VH +σ2

nIN ′ , and ΣW � σ2
hEDW Σ̃WH +σ2

nIN ′ . We get

∫

y

√
P
(

y | V , ĥ
)
P
(

y |W , ĥ
)
dy

= e−(1/2)(uV−uW )H (ΣV+ΣW )−1(uV−uW )

∣∣ΣV

∣∣1/2∣∣ΣW

∣∣1/2

∣∣(ΣV + ΣW )/2
∣∣ .

(A.2)

Next, we take the expectation of (A.2) with respect to ĥ ∼
CN (0, σ2

h Σ̂). We get

∣∣σ2
nIN ′ + σ2

hEDV Σ̃VH
∣∣1/2∣∣σ2

nIN ′ + σ2
hEDW Σ̃WH

∣∣1/2

∣∣σ2
nIN ′ + (1/2)σ2

hED
(
V Σ̃VH + W Σ̃WH

)
+ (1/4)σ2

hED(V −W)Σ̂(V −W)H
∣∣ . (A.3)

Dividing the numerator and denominator by σ2
n and substi-

tuting the result into (19) yields (20).
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