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Abstract—We develop robust mean-square error (MSE)-op-
timal training signal designs for multiple-input multiple-output
orthogonal frequency-division multiplexing channel estimation
with frequency offset and phase noise (PN), and present analytical
and simulation results for the frequency-offset and PN effects
on channel estimation. The proposed designs are more advanta-
geous for moderate-to-high values of signal-to-noise ratio (SNR),
residual frequency offset, and PN level. At SNR = 10 dB, the
normalized MSE reductions of our proposed training signals at
normalized frequency offset jvj = 0:1; 0:5 are about 9 and 19 dB,
respectively, for one transmit antenna, and 6 and 11 dB for two
transmit antennas.

Index Terms—Channel estimation, frequency offset, mul-
tiple-input multiple-output (MIMO), orthogonal frequency-di-
vision multiplexing (OFDM), phase noise (PN), pilot design,
training-signal design.

I. INTRODUCTION

TRAINING-signal design for channel estimation is a
well-studied problem for single-input single-output

(SISO) single-carrier systems, but a relatively new one for
multiple-input multiple-output (MIMO) systems [1]–[9]. To the
best of our knowledge, all existing training-signal designs for
channel estimation assume no frequency offset and phase noise
(PN). In practice, frequency offset and PN are unavoidable
due to nonideal oscillators. They cause a loss of orthogonality
among the subcarriers which, in turn, seriously degrades the
performance of orthogonal frequency-division multiplexing
(OFDM) systems [10], [11]. Hence, frequency offset and PN
estimation and compensation techniques are typically applied
at the receiver. However, in practice, there will still be a
nonzero residual frequency offset. In addition, PN compen-
sation techniques (e.g., [12]) require channel estimates, and
hence, obtaining robust channel estimates in the presence of
PN is important. It is unclear how the existing optimal training
signals behave in the presence of (residual) frequency offset
and PN.

In this letter, we derive the optimal (in the mean-square
error (MSE) sense) training signals for MIMO OFDM channel
estimation which are the most robust to frequency offset and
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PN among the existing training signals. Our proposed training
signal is a particular code-division multiplexing (CDM)-type
pilot allocation given in (27). When the number of subcarriers

is times the number of transmit antennas, where is the
smallest integer greater than or equal to the number of channel
taps and is an integer, additional optimal training sig-
nals are given by the optimal (without frequency offset) pilot
signals in [9] which satisfy the following additional condition:
“...for each transmit antenna , the optimal pilot-tone symbols

for different are the same.” Our results show
that: 1) MIMO OFDM systems are more sensitive to frequency
offsets and PN than SISO OFDM systems; 2) robustness
requires a certain correlation of the pilot tones; 3) under the
same total training-signal energy constraint, using one training
symbol is more robust than multiple training symbols; and 4)
the performance improvement of the proposed optimal training
signals becomes more significant for moderate-to-high values
of signal-to-noise ratio (SNR), residual frequency offset, and
PN level.

Note that we consider a quasi-static channel within the
training symbol. For a time-varying channel within a symbol,
intercarrier-interference cancellation techniques (e.g., [13],
[14]) can be applied. We consider least-squares estimation of
sample-spaced CIRs. Other channel-estimation methods (e.g.,
[15], which estimates delays, gains, and the number of channel
paths) will also be affected by the frequency offset and PN, and
optimal training signals for them need further investigation.

The rest of this letter is organized as follows. Section II de-
scribes the signal model. Section III presents the training signal
designs in the presence of both frequency offset and PN. Sim-
ulation results and discussions are presented in Section IV, and
the letter is concluded in Section V.

II. SIGNAL MODEL

Consider a MIMO OFDM system where training signals
from antennas are transmitted over OFDM symbols.
Since the same channel-estimation procedure is performed at
each receive antenna, we only need to consider one receive
antenna in designing optimal training signals. The channel
impulse response (CIR) for each transmit–receive antenna pair
(including all transmit/receive filtering effects) is assumed to
have taps, and is quasi-static over OFDM symbols. Let

be the pilot tones vector of
the th transmit antenna at the th symbol interval, where is
the number of OFDM subcarriers and the superscript denotes
the transpose. Furthermore, let
be the corresponding time-domain complex baseband training
samples, including cyclic prefix (CP) samples.
Define as the training-signal matrix of size for the

th transmit antenna at the th symbol interval, whose elements
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are given by for
and .

Let denote the length- CIR vector corresponding to the
th transmit antenna. After CP removal, denote the received

vector of length at the th symbol interval by . In the pres-
ence of a frequency offset and PN, the received vector over the

symbol intervals is given by

(1)

where

(2)

(3)

(4)

(5)

(6)

and is a length- vector of zero-mean, circularly sym-
metric, uncorrelated complex Gaussian noise samples with
equal variance of , is the frequency offset normalized by
the subcarrier spacing, and are the PN samples. A contin-
uous-time PN is commonly modeled by a Wiener process
with and , where
denotes the one-sided 3-dB linewidth of the Lorentzian power
density spectrum of the oscillator [10]. In the discrete-time
domain, the PN samples can be modeled by ,
where is a sample of the white Gaussian process with
variance , and is uniformly distributed over . Note
that , where is the subcarrier spacing.
Since can be embedded in the CIR vector, it can simply
be set to zero. We assume that channels of different transmit
and receive antenna pairs are independent, and have the same
power delay profile , i.e., , where
is the Kronecker product. Each channel is assumed to have a
diagonal correlation matrix .

III. PROPOSED TRAINING-SIGNAL DESIGNS

In the absence of a frequency offset and PN, the optimality
of the training signal in terms of minimizing the MSE of the
least-squares channel estimate is achieved if and only if (iff)

(7)

where (8)

This condition gives several optimal training-signal designs, as
presented in [9]. However, in the presence of a frequency offset

and PN, the normalized MSE (NMSE) of those training signals
becomes

NMSE
MSE

NMSE (9)

where the first (second) term is the NMSE (extra NMSE) ob-
tained in the absence (presence) of frequency offset and PN,

, and

(10)

The expectation in (9) is with respect to the PN, and is unnec-
essary if only the frequency offset is considered. We will inves-
tigate which training signals are the best (most robust to fre-
quency offset and PN) among the optimal training signals pre-
sented in [9]. Equivalently, we will find the best training-signal
matrices as

(11)

where is constrained to be circulant due to the CP.
First, we consider the training signal structures that minimize

, regardless of the PN samples. The Hermitian positive
semidefinite matrix can be decomposed as .
Then, can be expressed in the form , and hence, is a
Hermitian positive semidefinite matrix (its eigenvalues are non-
negative). Define , where is a diagonal
matrix from the subset of which consists of diagonal ma-
trices only, is a diagonal matrix such that

, and . The determinant (product of eigenvalues) of
is . Now, we form

groups of (and hence, groups of ), where within each group
all ’s have the same determinant of for any pos-
sible . Using the arithmetic-geometric mean inequality,1

we conclude that the trace (sum of the eigenvalues) of will be
minimum when , which corresponds to
within each group. Hence, we just need to consider diagonal
matrices . Since is diagonal, will also be diagonal
when is diagonal, where

.
For a MIMO system, is composed of

[see (3)]. Since all ’s
are circulant, will be diagonal for any iff

(12)

(13)

where is the number of nonzero samples of the th OFDM
training symbol (excluding CP samples) for the th transmit

1For positive numbers � , � � ((1=N) � ) , and the equality
holds iff all � ’s are equal.
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antenna, and for each , are any permutation
of with , , and

. To satisfy the condition in (7), each transmit
antenna must have the same total transmitted training energy
[9], which, in turn, implies that

(14)

Using (12), we obtain

(15)

(16)

where is associated with
the th nonzero training sample of the th symbol for the th
antenna, and

(17)

The optimal training signal is then defined by

(18)

In practical systems, frequency-offset estimation and com-
pensation are typically performed before channel estimation.
Hence, during channel estimation, the residual frequency offset
is usually very small. For typical small values of and , we
obtain

(19)

(20)

(21)

which indicates that minimizes (16). Hence, we can
conclude that under the same total training-signal energy con-
straint, using one OFDM training symbol is more robust to fre-
quency offset and PN than using multiple training symbols. The

intuitive explanation is that the phase offset caused by the fre-
quency offset is smaller for a smaller time interval, hence giving
a smaller MSE for one OFDM training symbol.

In the following, we will use and the corresponding
index will be omitted for clarity. Then, our objective function
to minimize becomes

(22)
Since and are typically very small, by using the Taylor
series approximation, we obtain

(23)

Substituting (23) into (22) gives

(24)
By using the fact that if ,

, for any , together
with for , from (24), we obtain the following
optimal values of the parameters:

(25)
where we have dropped the index . The corresponding optimal
pilot tones are

(26)
which are of CDM(F) (CDM in the frequency domain [9]) pilot
allocation over all subcarriers.

Under different system parameters and conditions, such as
spectral constraints (some subcarriers are nulled) in emerging
cognitive radio systems and peak-to-average energy-ratio con-
straint of the power amplifier, some training signals may give
better performance/flexibility than others among those training
signals with the same minimum NMSE. Hence, we investigate
other training signal matrices which give the same minimum
trace of by using the relation , where

is a unitary matrix (see [9] for the detailed steps).2 For
, the obtained pilot tones are the same as those in (26).

For , we obtain the following additional pilot de-
signs:

(27)

2Although [9] did not include PN, these steps and results are applicable to the
system with PN.
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where . For constant-modulus pilot tones,
is either zero or a constant. We conclude from (27) that for

, an additional condition for the optimal training
signals in the presence of frequency offset and PN is that for
each transmit antenna , the optimal pilot-tone symbols

for different are the same. This can be explained
intuitively as follows. This condition allocates training-signal
energy only to the first sample of the th segment

for any
. Within each segment, the phase offset due to the frequency

offset is the smallest at the first sample, which, in turn, yields
the smallest MSE.

The NMSE for the proposed training signal in the presence
of frequency offset and PN is given by

NMSE

(28)

If , (28) gives the NMSE in the presence of fre-
quency offset (PN) only. For typical small (residual) frequency
offsets, we can approximate the NMSE as

NMSE

(29)

From (28) and (29), we observe that the PN level (the fre-
quency offset ) affects the extra NMSE exponentially (quadrat-
ically).

IV. SIMULATION RESULTS AND DISCUSSIONS

Due to the space limitation, we refer readers to [16] for some
examples of optimal training signals in the absence or presence
of frequency offsets, for the range of the extra NMSEs of the
optimal training signals from [9], and the corroborating simu-
lation results for the NMSE comparison between the proposed
training signal and the other training signals from [9]. The min-
imum NMSEs achieved with the proposed optimal training sig-
nals are plotted in Fig. 1 for different values of and SNR

. At moderate-to-high SNR, in-
troduces a significant degradation in channel estimation, while

causes insignificant degradation.
Simulation results for the performance comparison of several

training signals in the presence of frequency offset and
Wiener PN (with ) are presented in Fig. 2.
Due to the space limitation, readers are referred to [17] for more
simulation results for the effects of PN. PN with
introduces an NMSE floor (a larger gives a larger floor). For
SNR values of practical interest, the performance degradation
due to PN with is negligible.

Based on Figs. 1 and 2, together with (28) and (29), the fol-
lowing remarks are in order.

1) In the absence of frequency offset and PN, NMSE depends
only on regardless of . In the presence of

Fig. 1. Minimum NMSE for different values of N ; v, and SNR in MIMO
OFDM systems with K = 64, N = 16 in an eight-tap multipath Rayleigh
fading channel with an exponential power delay profile.

Fig. 2. Effect of PN on the NMSE of proposed training signal (training #1)
for MIMO OFDM system with K = 64, N = 16, and v = 0:01 in an
eight-tap multipath Rayleigh fading channel with an exponential power delay
profile. (� = 4��=(K� ) reflects the PN level, where � is the one-sided
3-dB linewidth of the Lorentzian PN power density spectrum).

frequency offset or/and PN, NMSE depends on ,
, , , or/and .

2) A larger results in a larger NMSE in the presence of
frequency offset or/and PN. This implies that channel esti-
mation in a MIMO system is more sensitive to frequency
offset and PN than in a SISO system.

3) At very low SNR, the NMSE is mainly dominated by the
NMSE , and the effect of is insignificant. At mod-
erate-to-high SNR, as and (or) increase(s),
becomes the dominating factor and the advantage of the
optimal training signals has a greater impact.
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Fig. 3. Effects of different frequency offsets on the channel-estimation NMSE
of different training signals without PN. (� = 4��=(K� ) reflects the PN
level, where � is the one-sided 3-dB linewidth of the Lorentzian PN power den-
sity spectrum).

4) For , NMSE improvement of the proposed
training signals is marginal, but for , which
is a more practical scenario, NMSE improvements of the
proposed training signals are significant. A smaller
gives a larger NMSE improvement of the proposed training
signals.

In Figs. 3 and 4, simulation results for the effects of different
frequency offsets on the channel-estimation NMSE of several
training signals are presented for scenarios without PN and with
PN, respectively, for SNR = 10 dB. (Results for SNR = 0 and
20 dB are not plotted due to space limitation.) These simulation
results match the theoretical NMSE results in (9) and (28) (not
shown in the figures for clarity). In the figures, training#1 repre-
sents an optimal training signal (proposed), training#2 employs
a frequency-division multiplexing (FDM) pilot allocation with

tones for each antenna, training#3 is of a CDM(F) allocation
over subcarriers, and training#4 uses a CDM(F) allocation
over all subcarriers (not the optimal one) (see [9] for the de-
tails of the FDM and CDM(F) pilot allocations). Although the
proposed optimal training signals are derived based on the con-
dition of very small , our numerical evaluation in [16] and sim-
ulation results in Figs. 3 and 4 show that the proposed training
signals become more effective for a larger residual frequency
offset , and still remain the most robust among all
training signals from [9] even at . The NMSE reduc-
tions of our proposed training signal at with

are about 9, 10, 2, and 0 dB, respectively, for ,
and 3, 7, 1.3, and 0 dB for at SNR = 0 dB. The cor-
responding values at SNR = 10 dB are about 15, 19, 9, 0 dB for

, and 4, 11, 6, 0 dB for . At SNR = 20 dB,
they are about 16, 22, 18, and 0 dB for , and 4, 11, 11,
and 0 dB for . With , the corresponding
reductions for are about (9, 10, 3, 1.4) dB and (3,
6.5, 1.7, 0.6) dB at SNR = 0 dB, (14, 18, 10, 6) dB and (4, 10,
6, 3) dB at SNR = 10 dB, and (16, 21, 15, 11) dB and (4, 11, 9,

Fig. 4. Effects of different frequency offsets on the channel-estimation NMSE
of different training signals with PN. (� = 4��=(K� ) reflects the PN level,
where � is the one-sided 3-dB linewidth of the Lorentzian PN power density
spectrum).

6) dB at SNR = 20 dB. Our proposed training signals are even
more advantageous in the presence of both residual frequency
offset and PN than either one alone. As the PN variance and (or)
residual frequency offset increase(s), the NMSE dif-
ference between the proposed training signals and the reference
training signals increases.

V. CONCLUSIONS

We presented MSE-optimal training signals for MIMO
OFDM channel estimation in the presence of frequency offset
and PN. Frequency offset and PN introduce a channel-estima-
tion NMSE floor which is higher for a larger residual frequency
offset, a larger PN level, and a larger number of transmit
antennas. Individually, the PN effect on NMSE is similar to the
frequency-offset effect on NMSE. The perfomance advantage
of the proposed training signals over other training signals is
greater for a smaller number of transmit antennas, a larger
residual frequency offset, and a larger PN level, and more
significant in the presence of both residual frequency offset and
PN than either one alone.
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