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Nomenclature
C0,C/,C2,Cj = constants of integration
CD = drag coefficient
CDO =zero lift drag coefficient
CL = lift coefficient
CL* = lift coefficient for maximum lift-to-drag

ratio
D = drag force
E* = maximum lift-to-drag ratio
h = altitude
H =Hamiltonian function
kj,k2,k3 =constants, =C//C0, C2/C0, C3/C0,

respectively
K = induced drag factor
L =lift force
m =mass of the vehicle
Px>Py>Pu>Pt>Pe = adjoint variables associated with state

variables
r — radius of penetration
5 = reference area
/ =time
u = dimensionless speed
V — speed of vehicle
W — weight of vehicle
x,y = dimensionless coordinates
X,Y = position coordinates of vehicle
A =tan/>t
0 = dimensionless time
X = normalized lift coefficient
jn =bank angle
p = density of atmosphere
T = normalized time
0 = velocity yaw angle
co = dimensionless wing loading
Subscripts

0
/

= initial conditions
= final conditions

Introduction

THE problem of determining minimum and maximum
endurance trajectories for subsonic gliding flight in a

horizontal plane has been considered previously.1'2 The
control variable was parametrized as a polynomial of the
normalized time; hence, the problem becomes a parameter
optimization problem. In both references, a specified small
lifting vehicle, which can be used as a low-level weapons
delivery system, is used for the numerical integration. This
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Note presents the optimal solutions to the maximum en-
durance trajectories by the application of Pontryagin's
maximum principle.3'4 Furthermore, by the use of a set of
dimensionless variables, the solutions obtained are applicable
to a whole class of glide vehicles.

Variational Formulation
The geometry of gliding flight in a horizontal plane is

depicted in Ref. 1 and the motion is governed by the state
equations5

X=Vcos$

V=-D/m

We shall consider a parabolic drag polar of the form

CD = CDO+KC2
L

(la)

(Ib)

(Ic)

(Id)

(le)

(2)

where, at subsonic speeds, CDO and # are considered constant.
By the use of the dimensionless system

= gY/V2
0, u=V/V0, e = gt/V0

(3)

we obtain the set of dimensionless equations of motion4

x' =ucos\l/ (4a)

y' =wsini/' (4b)

cosV) ] (4c)

(4d)

'=l (4e)

where the prime denotes the derivative taken with respect to
the dimensionless time 0. In this system, the only performance
parameter involved is the maximum lift-to-drag ratio E*. The
dimensionless wing loading, co, which is a constant in level
flight is a physical characteristic for a whole class of glide
vehicles. It can be used to analyze the influence of the altitude
on gliding performance.6 The constraining equation, Eq. (le),
becomes, in this formulation,

(5)

(6)

where X is the normalized lift coefficient

= CL/CL*

Because of this constraint, the bank angle IJL is the sole control
in the dynamical system. In turning flight, there are two
physical constraints on the maneuverability. The first one is
the load factor

(7)

This value is bounded by an upper limit n = nmax, which is a
physiological/structural limit. The other constraint is the
maximum lift coefficient CLmax, or in normalized form, Xmax.
Hence, the bank control belongs to the set

0< l/J<inf[cos- ;(7/flm a x),cos-7(Ww2Xm a x)] (8)
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Using the maximum principle, we introduce the adjoint
vector p to form the Hamiltonian

+Pe (9)

It is known that the variational problem has the integrals4

Pe=C0 (lOa)

px = Cj (lOb)

Py-C2 (10C)

Pt=C,y-C2x+C3 (lOd)

Furthermore, since the time is an ignorable coordinate, and in
the maximum endurance problem the final time is not
specified, we have identically for the whole duration of the
flight //=0. For interior bank control, we have d///d/z = 0, or

(11)
(p+\(E*u\

=(-^ ) ( — — )
\pu / V w /

Using the integrals, Eqs. (10), and //=0 in the optimal
relation, Eq. (11), we have the equation

(kiy-k2x+k3)A2

(k}y-k2x+k3)
~ J

where A = tan/x.

(12)

Maximum
Enduranc*

Fig. 1 Optimal trajectories and maximum endurances.
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Maximum Endurance Problems
As an application, it is supposed that a small lifting vehicle

is carried by an airplane heading directly toward a target
location at the origin 0. By symmetry, we can consider the
initial velocity as along the .Yaxis. At a certain distance, the
gliding vehicle is released and, while the carrier is performing
an escaping maneuver, the small vehicle tries to reach the
target at the final residual speed uf in maximum time. Thus,
we have the end conditions

x0 = specified,

w/ = specified (13)

For the numerical integration, we take the values

\n« = l.* = 0.23 (14)

The first two values concern the aerodynamic characteristics
of the gliding vehicle. They represent typical values for a
whole class of vehicles, which includes the example vehicle in
Refs. 1 and 2. The value of co corresponds to the same vehicle
at sea level, but it can represent a vehicle with lower wing
loading flying at higher altitude. To enforce the constraint on
the load factor, we can specify a value, say, «max =5. But, in
general, for maximum endurance problems this value is never
reached since the bank angle remains in the interior of the
domain of maneuverability.

For the small glider to reach the target, it must be released
within a zone of penetration. This zone has a limiting radius r
which can be obtained by integrating the state equations with
^ = i/, = o. The solution is

05)

with an absolute maximum endurance

In deriving these explicit limiting solutions, the final speed is
the stall speed which corresponds to maximum lift coefficient
at zero bank angle. Hence from Eq. (5),

(17)

With free \I/f, p^ (6f) = 0, and from Eq. (lOd), k3 =0. Hence,
the optimal problem is a two-parameter problem, with £/ and
k2 to be selected such that at u = uf the final conditions
xf=yf = Q are identically satisfied. The five optimal trajec-
tories with points of release before and directly above the
target are shown in Fig. 1. The maximum endurances for
different points of release are also given in Fig. 1 . The plot of
the variations of the bank angle and the normalized lift
coefficient X vs the normalized time r=t/tf is shown in Fig. 2.

Figure 1 also presents two optimal trajectories at different
points of release while the carrier is leaving the target. The last
trajectory is the limiting trajectory for the released vehicle to
have sufficient speed to reach the target. This trajectory can
be obtained directly by translating the origin of coordinates to
the point of release and solving the problem with the end
conditions

00 = 0, x0=y0 = 0, t0 = 0, u0 = l

Fig. 2 Variations of n and A for the optimal trajectories. uf = specified (18)
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In this case, the optimal bank angle is still given by Eq. (12),
but now with / r /=0 , k 3 = k 2 x f . Hence, the optimal bank
angle is given by

(19)

The parameters selected for the iteration are k2 and xf.
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Algorithm Applied to Terminally
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Introduction

FOR the past few decades, programs directed .toward
enhancing the air-to-ground weapon delivery accuracy of

aircraft have been undertaken by the U.S. Air Force and
Navy. These programs have been basically aimed at optimi-
zing the handling qualities of the aircraft's weapon delivery
and fire control systems. The underlying strategy has been to
minimize the errors at release. Efforts to compensate for
release mechanism errors have been pursued through
analytical means.1'2

The main contributing factors in air-to-ground bombing
dispersion are the following: positioning errors, weapon
release mechanism errors, separation disturbances, bomb
anomalies, wind gusts, and pilot-induced errors. It is possible,
by various means, to reduce some of these errors. However,
most of the dispersion will still exist under most realistic
weapon release conditions. Even though laser-, infrared-, and
television-guided bombs have solved a large portion of the
dispersion problem, the various target acquisition and
designation constraints involved in hitting a target renders
their use very costly and sometimes impractical.

Missile guidance is enhanced by the movement of control
surfaces that produce a response in the form of an ac-
celeration. An adaptive scheme can be used to compare the
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actual vs the desired outputs.3'4 Model reference adaptive
control is very suitable for ballistic air-to-ground missiles
since a predetermined trajectory is normally to be followed.5

It should be underlined that adaptive controllers will try to
keep the bomb dynamics relatively invariant with respect to
the dynamic pressure.

Problem Statement
Consider a bomb released from an aircraft under "ideal"

conditions, with no perturbations whatsoever and no pre- or
postrelease errors. Then, the bomb will follow a fixed trajec-
tory for a given initial velocity and attitude. The aerodynamic
equations of a bomb in a ballistic trajectory are given (in two-
dimensional space for convenience) by

v=(l/m) (-D-mgsiny)

y=(l/mv) (L — mgcosy)

(1)

(2)

where v is the velocity, m the mass, D the total drag, g the
acceleration due to gravity, 7 the flight path angle, (•) the
time derivative, and L the lift.

(3)

(4)

and

OL = u — y

where 0 is the pitch angle, J the moment of inertia,
Ma the moment coefficients, and a? the angle of attack.

The main cause of deviation of a bomb from a nominal
ballistic trajectory, as defined above, is an oscillatory angle of
attack primarily induced during release and separation from
the aircraft by aerodynamic moments, by mechanical torques
imparted by the ejection and release mechanism, and by mass
variations. Such effects can be modeled as changes in the
velocity components, in the mass, and in the attitude.

To formulate the problem of hitting a target with a guided
bomb, the following assumptions were made:

1) There are onboard accelerometers and rate gyros that
will furnish the quantities required to determine accurately the
state of the bomb at given instants .

2) Control fins placed at the tail end of the bomb are
moved, as required, by actuators in the tail cone.

The equations of motion with perturbations and the contri-
butions due to the control surfaces can now be represented in
the following manner:

m

7 = —— [L + AL-mv

S = ( 1 / J ) (M+AM+MC)

-Dc] (5)

+LC] (6)

(7)

(8)

where the A indicate the random incremental changes that
vary a few times (Am varies only once) during a trajectory and
have Gaussian distributions. Subscript c stands for the con-
tribution due to the controls.

Now, with the initial conditions and the respective random
perturbations appropriately quantified, it is not difficult to
solve the ballistic trajectory of a bomb (either with or without
perturbations) by means of an Adams-Moulton integration
algorithm with a Runge-Kutta startup. The problem is to
guide the bomb to the nominal trajectory by utilizing the
measurements (assumed exact) from the available sensors and
to perform the necessary corrections by deflecting the fins an
appropriate amount from the release point down to impact.


