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Optimal Trajectory Planning for Autonomous Driving Integrating Logical

Constraints: An MIQP Perspective

Xiangjun Qian1 Florent Altché1,3 Philipp Bender2 Christoph Stiller2 Arnaud de La Fortelle1

Abstract— This paper considers the problem of optimal
trajectory generation for autonomous driving under both con-
tinuous and logical constraints. Classical approaches based on
continuous optimization formulate the trajectory generation
problem as a nonlinear program, in which vehicle dynamics
and obstacle avoidance requirements are enforced as nonlin-
ear equality and inequality constraints. In general, gradient-
based optimization methods are then used to find the optimal
trajectory. However, these methods are ill-suited for logical
constraints such as those raised by traffic rules, presence of
obstacles and, more generally, to the existence of multiple
maneuver variants. We propose a new formulation of the
trajectory planning problem as a Mixed-Integer Quadratic
Program. This formulation can be solved efficiently using widely
available solvers, and the resulting trajectory is guaranteed
to be globally optimal. We apply our framework to several
scenarios that are still widely considered as challenging for
autonomous driving, such as obstacle avoidance with multiple
maneuver choices, overtaking with oncoming traffic or optimal
lane-change decision making. Simulation results demonstrate
the effectiveness of our approach and its real-time applicability.

I. INTRODUCTION

Autonomous driving has been gaining impetus in the last

few years, thanks to its foreseen potential of increasing traffic

efficiency and reducing the number of road accidents. Recent

studies suggest that up to 50% of vehicles may be automated

by 2030 [1].

A challenging research task for autonomous driving is

to generate optimal trajectories for certain criteria such

as comfort or energy efficiency, while satisfying various

constraints arising both from traffic rules and operational

limits of the vehicles, some of them being highly specific

to the context of driving. A large number of approaches

for the motion planning or trajectory planning problem can

be found in the literature [2], among which one important

category is the sampling-based methods. These methods [3]–

[5] typically generate a large set of candidate trajectories

by deterministically or stochastically sampling a state space,

before executing the best solution among those candidates.

The optimality of the resulting trajectory relies on generating

a high number of samples, which may not allow real-time

applications.
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Recently, new approaches based on model predictive con-

trol (MPC) [6]–[8] have attracted increased attention due to

their ability to systematically handle system constraints and

quickly find the optimal trajectory. MPC-based approaches

rely on iteratively solving a constrained, finite horizon opti-

mal control problem generally using nonlinear optimization

techniques. These approaches are intrinsically more efficient

than sampling-based ones in finding optimal trajectories, as

they exploit useful information like gradient fields to orient

the search of optimal trajectories. Real-time implementations

of these methods on actual vehicles can be found, e.g., in [6],

[7], [9].

Even though MPC-based methods have yielded good re-

sults for problems with continuous constraints, we argue that

there are constraints that are intrinsically logical, in that they

are naturally formulated as logical propositions. First, on-

road driving is by nature highly constrained by traffic rules

and expected driving behaviors, which can be represented

naturally as logical propositions, for instance:

(R.1) A vehicle must slow down when approaching a

speed bump.

(R.2) A vehicle can only overtake from the left side.

(R.3) A vehicle needs to be on the exit lane before exiting

on the highway.

Moreover, driving generally involves discrete decisions

among multiple maneuver variants, which makes trajectory

planning combinatorial in nature [10], [11]. Indeed, it has

been shown that each maneuver variant can be mapped to

a unique homotopy class of trajectories [10], [11]. It is

generally straightforward to describe these homotopy classes

using logical propositions. For example, an obstacle in the

middle of the road brings two distinct maneuver choices, as

follows:

(R.4) A vehicle should avoid an obstacle, either in a

clockwise or in a counterclockwise manner.

By nature, sampling-based approaches can accommodate

logical constraints. However, as stated earlier, these methods

can yield sub-optimal trajectories even with a large number

of samples. Most current MPC-based approaches are ill-

suited to take these logical rules into account, as most of

them require all constraints to be continuous and differen-

tiable. Moreover, most continuous solvers use local, gradient-

based optimization methods which can be trapped in a local

optimum inside a certain homotopy class. Some heuristics

have been proposed to approximate logical constraints by

nonlinear functions [7], [9], [10] and to initialize the algo-

rithm in a homotopy class that is likely to be the best one [7],

but they provide no guarantee regarding the global optimality



of the generated trajectory.

A possible way of handling logical constraints is to

formulate the problem as a Mixed-Integer Programming

(MIP) problem. General MIP problems are hard to solve,

but efficient algorithms exist for special instances of MIP,

notably Mixed-Integer Linear Programming (MILP) and

Mixed-Integer Quadratic Programming (MIQP). Both have

successfully been used for Unmanned Aerial Vehicle (UAV)

trajectory planning [12], [13] and multi-vehicle collision

avoidance problem [14]. MILP methods have also been used

to design automatic lane change controllers that are proposed

in [15], [16], but they require a simplified vehicle model. To

the best of our knowledge, an efficient MIP formulation using

realistic vehicle dynamics and capable of handling multiple

on-road driving scenarios is not yet available.

The major contribution of this paper is to propose a novel

approach for the trajectory generation problem using Mixed

Integer Quadratic Programming. This approach allows to

seamlessly treat continuous and logical constraints. Further-

more, we apply our framework to several situations which are

still widely recognized as challenging for autonomous driv-

ing, for instance obstacle avoidance, overtaking in presence

of oncoming traffic or optimal lane-change decision making.

We demonstrate that our method can intuitively handle these

problems and generate globally optimal trajectories.

II. OPTIMAL TRAJECTORY GENERATION AS MIQP

This section proposes an MIQP formulation for the prob-

lem of generating optimal trajectories for autonomous driv-

ing. We consider that the ego vehicle is driving on a road

with lane markings. The ego vehicle uses a Model Predictive

Control (MPC) scheme to perform trajectory planning, in

which the planned trajectory is updated in successive stages.

However, in this paper, we only discuss in detail a single

MPC stage. We assume that the road curvature is sufficiently

small to consider the road as straight within the horizon of

one MPC stage, so that we can model the road in a Cartesian

frame (x, y) with x the longitudinal direction of the road and

y the lateral direction.

A. Vehicle dynamics and constraints

The ego vehicle is modeled as a third-order point-mass

system, with state x and control vector u defined as

x(t) = [x(t), vx(t), ax(t), y(t), vy(t), ay(t)]
T ,

u(t) = [jx(t), jy(t)]
T

where x and y denote longitudinal and lateral position in

the inertial frame, v the speed and a the acceleration, with

subscript x or y respectively indicating their longitudinal and

lateral components. The vehicle dynamics are ruled by the

following differential equation:

ẋ(t) =

[

A 0

0 A

]

x(t) +

[

B 0

0 B

]

u(t),

A =





0 1 0
0 0 1
0 0 0



 , B =





0
0
1



 ,

(1)

where 0 denotes zero matrices of proper dimensions.

For practical purposes, we assume that the control u is

a piecewise constant function with a time step of τ . The

discretized vehicle dynamics can then be approximated as

x(k + 1) =

[

Ad
0

0 Ad

]

x(k) +

[

Bd
0

0 Bd

]

u(k),

Ad =





1 τ 1

2
τ2

0 1 τ
0 0 1



 , Bd =





1

6
τ3

1

2
τ2

τ



 .

(2)

where x(k) and u(k) are respectively the state and the control

of the vehicle at the beginning of the time interval [kτ, (k+
1)τ).

Remark that some previous work [8], [17] has used a

first or second order point-mass description. Here, we use

a third-order model to ensure that the second derivative of

the generated trajectory is continuous even with a piecewise

constant input. As a result, the yaw rate of the planned

trajectory is continuous, and the vehicle can thus smoothly

track the trajectory.

Due to the dynamic limitations of the vehicle, bound

constraints are enforced on the state and control signals as

x ∈ [x, x], u ∈ [u, u], (3)

with the bounds defined as

x = [0, 0, ax, y, vy, ay]
T , x = [free, vx, ax, y, vy, ay]

T , (4a)

u = [j
x
, j

y
]T , u = [jx, jy]

T . (4b)

The above formulation does not consider the nonholo-

nomic constraints of the vehicle, and the longitudinal and

lateral dynamics are fully decoupled. The exact coupling

between these dynamics involves nonlinear relations [7];

therefore, we approximate it by two additional constraints

which ensure that the generated trajectory is dynamically

feasible.

The vehicle heading θ can be reconstructed from the

state x as θ = arctan(vy/vx). We model the coupling of

longitudinal and lateral dynamics by enforcing condition

θ ∈ [θ, θ], with

vy ∈ [vx tan(θ), vx tan(θ)]. (5)

B. Logical constraints for driving

Winston et al [18] have shown that propositional logic can

be further reformulated as a set of linear inequalities with

integer variables. Here, we briefly present this approach in

the context of autonomous driving.

We define a literal as an atomic statement corresponding to

a linear mathematical condition on one of the state variables,

for instance: the longitudinal position of the vehicle is

larger than 30m. Literals can be combined using connectors,

namely ∧ (and), ∨ (or), ¬ (negation); implications (⇒)

and equivalences (⇔) can be formed using the first three

connectors.

To illustrate, we consider a speed bump covering the range

of longitudinal positions x ∈ [30m, 50m], with a speed limit

of 10m/s in this range. Let us define three literals P1 =



[x(k) ≥ 30], P2 = [x(k) ≤ 50] and P3 = [vx(k) ≤ 10]; rule

(R.1) can then be expressed in the form: ∀k ≥ 0, (P1∧P2) ⇒
P3, i.e. if 30 ≤ x(k) ≤ 50, then the vehicle’s longitudinal

speed should be lower than or equal to 10 m/s.

The so-called Big-M method (see [18]) allows to force a

binary variable δ(k) to be equal to 1 when a given literal is

true, and equal to 0 when the literal is false, using only

linear inequalities by introducing a large constant M . In

the previous example, we can let δi(k) = 1 ⇔ Pi for

i ∈ {1, 2, 3} so that (R.1) can be expressed equivalently

as, ∀k ≥ 0,

δ1(k) = 1 ⇔ x(k) ≥ 30,

δ2(k) = 1 ⇔ x(k) ≤ 50,

δ3(k) = 1 ⇔ vx(k) ≤ 10,

− δ1(k) + δ3(k) ≤ 0,

− δ2(k) + δ3(k) ≤ 0,

δ1(k) + δ2(k)− δ3(k) ≤ 1.

(6)

Note that these conditions could also be approximated

using nonlinear constraints in a continuous solver. However,

current state-of-the-art solvers for general nonlinear opti-

mization problems can only find local optima, whereas our

mixed-integer formulation ensures global optimality.

C. MIQP formulation

We introduce a new variable δ such that δ(k) = {0, 1}m

is a collection of all binary variables resulting from the

reformulation of relevant literals as mixed integer linear

inequalities. Let xr be the reference trajectory for the vehicle,

which can be time-dependent, state-dependent, or dependent

on propositions. We also introduce δr as the reference

trajectory for the binary variables, so that we can also express

preferences on some binary states, for instance to specify

a preferred lane in a multi-lane road. Let K = T/τ be

the number of time steps in the prediction horizon. The

optimization problem can now be formulated, in its generic

form, as

min
u,δ

K
∑

k=0

||x(k)− xr(k)||
2

Q

+ ||δ(k)− δr(k)||
2

S + ||u(k)||2R,

(7)

subject to

known x(0), (8a)

vehicle dynamics (2), (8b)

dynamic constraints (3) and (5), (8c)

C





x

xr
δ



 ≤ D. (8d)

where Q, S, R are positive weighting matrices of proper

dimensions. Constraint (8d) is the set of all linear inequalities

written in matrix form with two matrices C and D of proper

dimensions, incorporating all mixed-integer constraints used

to enforce driving rules.

x = [0, 0,−4m/s2, 0,−2m/s,−1m/s2]T ,

x = [free, 20m/s, 3m/s2, 5m, 2m/s, 1m/s2]T ,

u = [−3m/s3,−2m/s3]T , u = [3m/s3, 2m/s3]T ,

θ = −0.4 rad, θ = 0.4 rad, ω = −0.26 rad/s, ω = 0.26 rad/s,
q1 = 1, q2 = 2, q3 = 1, q4 = 2, q5 = 4, r1 = 4, r2 = 4.

TABLE I: Parameters used for case study

The cost function (7) is quadratic if xr and δr are

independent from other variables or are linearly dependent on

other variables. The constraints (8) are linear. Therefore, the

above optimization problem is an instance of a mixed-integer

quadratic program (MIQP). Exact resolution algorithms are

known to solve such problems, leading to a globally optimal

trajectory which can then be fed to low-level controller

charged of tracking this trajectory.

Remark 1: The proposed MIQP formulation is able to

cover a vast majority of on-road driving scenarios. For exam-

ple, Rules (R.1)-(R.4) can be naturally incorporated in our

framework. If we must consider non-quadratic cost function,

nonlinear vehicle dynamics or constraints, we can formulate

a Mixed Integer Nonlinear Program, which, however, is much

harder to solve.

III. CASE STUDY

The previous section proposes an MIQP framework that

integrates the continuous dynamic of the vehicle and proposi-

tional logic. In this section, we explain how this framework

can be used to effectively handle various on-road driving

scenarios. Note that, although the major purpose of this

section is to demonstrate the universality of the framework,

the detailed strategies for different driving scenarios are by

themselves contributions to some challenging problems for

on-road autonomous driving.

Throughout this section, we use the following cost func-

tion

J =

K
∑

k=0

q1(vx(k)− vr)
2 + q2a

2

x(k) + q3(y(k)− yr(k))
2

+ q4v
2

y(k) + q5a
2

y(k) + r1j
2

x(k) + r2j
2

y(k),
(9)

such that the vehicle tracks a constant desired speed profile

and a potentially time-varying desired lateral deviation, while

trying to minimize the control effort. We do not assume any

desired binary state, and therefore the term ||δ(k)−δr(k)||
2

S

in the generic formulation is ignored.

In all cases, the ego vehicle is assumed to start at position

(0, 2.5) in the rightmost lane. The initial and desired speeds

are equal, with vx(0) = vr = 15m/s. The width of each

lane is 5 m. Other parameters that are common in all cases

are recapitulated in Table I. Scenario-specific parameters will

be presented respectively in each case study.

We use the commercial solver Gurobi [19] to compute

solutions to our MIQP formulation. Simulation codes are

written in Python, and experiments are performed on a laptop

with Intel Core i5-5300U CPU clocked at 2.30GHz with 8GB

RAM.
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Fig. 1: Speed bump scenario: (a) illustration of the scenario, (b)
longitudinal speed profile w.r.t. the longitudinal offset.

A. Speed bump

The first case study considers the speed bump scenario

(Fig. 1a) that is used as an example in II-B.

The speed bump conditions are given in (6). In the

simulation, we use a prediction horizon T = 5 s and τ =
0.25 s. Fig. 1b illustrates the longitudinal speed profile of

the planned trajectory with respect to the traveled distance.

We observe that vehicles effectively reduces its speed to less

than 10m/s within the interval of [30, 50].

B. Obstacle avoidance

We now consider an obstacle avoidance scenario during

on-road driving. The irregular shapes of obstacles are approx-

imated using minimal bounding rectangles. A more complex

polygonal modeling is also possible, at the cost of increased

computational complexity. For an obstacle ν with bounding

rectangle [xν(k)−Lν , xν(k)+Lν ]× [yν(k)−W ν , yν(k)+
W ν ], the set of constraints for collision avoidance is then

given as ∀k ≥ 0,

δν
1
(k) = 1 ⇔ x(k) ≤ xν(k)− Lν , (10a)

δν
2
(k) = 1 ⇔ x(k) ≥ xν(k) + Lν , (10b)

δν
3
(k) = 1 ⇔ x(k) ≤ yν(k)−W ν , (10c)

δν
4
(k) = 1 ⇔ x(k) ≥ yν(k) +W ν , (10d)

δν
1
(k) + δν

2
(k) + δν

3
(k) + δν

4
(k) = 1. (10e)

Note that the formulation allows both moving and still

obstacles. The conditions (10) state that the vehicle must be

separated from the obstacle, either by a longitudinal distance

Lν or laterally by W ν .

For illustration, we consider two identical obstacles cen-

tered at (80, 1.5) and (160, 3.5). Parameters are T = 15 s,
τ = 1 s, Lν = 10m and W ν = 2m. The trajectory labeled

“opt” in Fig. 2a is the global optimum found by the MIQP

planner; for comparison purposes, we also plot all locally

optimal trajectories “nopt-1,2,3” with their respective costs.

We observe that our method can effectively find the globally

optimal trajectory. Fig. 2b and 2c respectively illustrate the

longitudinal and lateral speed and acceleration profiles of the

ego vehicle.
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Fig. 2: Obstacle avoidance scenario: (a) the globally optimal tra-
jectory and locally optimal trajectories (respective costs: opt 3.16,
nopt-1 36.5, nopt-2 37.2, nopt-3 84.67), (b) speed profiles, (c)
acceleration profiles. Obstacles are marked in red.

C. Overtaking in a two-lane road

This case study considers an overtaking scenario on a two-

lane road with oncoming traffic. Fig. 3a shows the initial

configurations of nearby vehicles, all driving with a constant

speed of 10m/s. This scenario is considered as difficult

for both human drivers and autonomous vehicles [8], [17].

Reference [10] shows the existence of multiple homotopy

classes in this scenario and proposes to exhaustively search

for the globally optimal solution. Here, we show that we

can find the globally optimal solution without explicitly

enumerating all homotopy classes.

It is possible to model surrounding vehicles as rectangles

as in the previous case study, thus requiring four integer

variables for each vehicle and each time step k. However, by

introducing the so called ramp barrier [8], [17], the problem

can be further simplified by approximating the rectangular

obstacle region by a triangle only using two linear constraints

as shown in Fig. 3a.

Let ν be a surrounding vehicle; if ν is in the same lane

as the ego vehicle, the constraints are given as

δν(k) = 0 ⇔ −
x(k)− xν(k)

Lν
+

y(k)− yν(k)

W ν
≥ 1, (11a)

δν(k) = 1 ⇔
x(k)− xν(k)

Lν
+

y(k)− yν(k)

W ν
≥ 1, (11b)

where Lν and W ν are minimal longitudinal and lateral

separations during lane change. Similarly, the constraints for

an oncoming vehicle ν can be modeled as

δν(k) = 0 ⇔
x(k)− xν(k)

Lν
+

y(k)− yν(k)

W ν
≤ −1, (12a)

δν(k) = 1 ⇔ −
x(k)− xν(k)

Lν
+

y(k)− yν(k)

W ν
≤ −1.

(12b)
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Fig. 3: Overtaking scenario: (a) illustration of the scenario and
the ramp barrier methods, (b) the overtaking trajectory, (c) speed
profiles, (d) acceleration profiles. The position of the ego vehicle is
shown as blue dots, and rectangles with different colors mark the
positions of surrounding vehicles. Time dimension is color-coded,
with lighter colors corresponding to instants further away in time.

Using this formulation, only one integer variable δν is

required per vehicle and per time step.

In the simulation, we adopt a prediction horizon of T =
15 s and we let τ = 1 s. To allow the ego vehicle to

temporarily cross the lane border, the upper limit y is relaxed.

Fig. 3b illustrates the trajectory of overtaking. We observe

that the ego vehicle decides to accelerate slightly so that it

can use the space between the first oncoming vehicle and the

second oncoming vehicle to perform the overtaking.

For comparison purposes, we reduce the penalty on speed

deviation q1 to 0.5 in the cost function (7). The resulting

trajectory is shown in Fig. 4: in this case, the ego vehicle

chooses not to overtake, as the cost of this maneuver is

higher than that of following the slower car, due to the

small penalty on the speed deviation. This demonstrates the

flexibility of the MIQP formulation: different driving styles

can be configured simply by modulating the weighting terms.
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Fig. 4: Effect of reducing the speed deviation weight to q1 = 0.5 in
the overtaking scenario. The position of the ego vehicle is shown as
blue dots, and rectangles with different colors mark the positions of
surrounding vehicles. Time dimension is color-coded, with lighter
colors corresponding to instants further away in time.

D. Lane change

This last case study considers the problem of decision

making and trajectory generation for a lane change maneu-

ver: the ego vehicle must decide the objective lane as well

as the optimal trajectory to reach this lane, without colliding

with surrounding vehicles. The complexity of this problem

lies in the multiple discrete choices raised from multiple

lanes and multiple vehicles on each lane. References [15],

[16] have considered this problem using MILP formulations;

however, their modeling cannot ensure that trajectories are

dynamically feasible due to important simplifications of the

vehicle dynamics.

We consider a road with N lanes, labeled by γ ∈
{1, ..., N}. We introduce a binary variable δγ(k) that equals

1 if the ego vehicle is on lane γ at time step k. Let V be

the set of surrounding vehicles and V γ be the set of vehicles

inside lane γ. We introduce the following logical constraint:

∀k > 0,

δγ(k) = 1 ⇔
(

yr(k) = yγ ∧ y(k) ∈ [yγ , yγ ]
)

, (13)

such that, if the ego vehicle is in lane γ, then the vehicle

should be within the boundary of lane γ and the reference

centerline should be set to the centerline of the lane.

Moreover, we add the following collision avoidance con-

straints: ∀k ≥ 0,

δγ(k) = 1 ⇔ ∀ν ∈ V γ , δν(k) = 1 ⇔ x(k) ≤ xν(k)− Lν ,

δν(k) = 0 ⇔ x(k) ≥ xν(k) + Lν ,
(14)

such that the ego vehicle must avoid collisions with all the

vehicles in lane γ.

The ego vehicle is only allowed to be in one lane at any

given time, thus we add the following constraint: ∀k ≥ 0,

N
∑

γ=1

δγ(k) = 1. (15)

Fig. 5a shows a highway with three lanes. The ego

vehicle starts in the rightmost lane with a speed of 15m/s.
Surrounding vehicles are distributed over three lanes. The

vehicle on the leftmost lane drives at a speed of 15m/s
while other surrounding vehicles drive at a speed of 10m/s.
Constraints (13), (14) and (15) are enforced along with other

constraints on the formulated MIQP problem. The horizon

is set to T = 15 s and the time step τ = 1 s. The constraint

on lane boundary is temporarily deactivated. We observe in

Fig. 5b that the ego vehicle chooses the left-most lane as the

objective lane and plans a dynamically feasible and collision-

free trajectory to reach the lane within the prediction horizon.

Table II presents the computation times for the four

case studies, demonstrating the real-time capability of the

proposed formulation; future work will focus on further

reducing this computation time.

IV. DISCUSSION AND CONCLUSION

We have addressed the problem of optimal trajectory gen-

eration integrating both continuous and logical constraints
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Fig. 5: Lane change scenario: (a) illustration of the scenario, (b)
trajectory of the ego vehicle and the surrounding vehicles, (c) speed
profiles, (d) acceleration profiles. The position of the ego vehicle is
shown as blue dots, and rectangles with different colors mark the
positions of surrounding vehicles. Time dimension is color-coded,
with lighter colors corresponding to instants further away in time.

Speed bump Obstacle avoidance Overtaking Lane change

17ms 73ms 81ms 228ms

TABLE II: Time statistics

using an MIQP based approach. This approach is well-

suited to the on-road autonomous driving environment as

logical constraints can arise from different aspects of driving:

traffic rules, on-road obstacles and the existence of multiple

maneuver variants. We have showcased the universality and

the efficiency of the method by applying it to various

challenging driving scenarios.

This paper uses a third-order linear vehicle model for

trajectory generation. This model is suitable if the longi-

tudinal motion dominates the lateral one, for example when

driving on highways or on urban arterial roads. However, for

application to low-speed driving, a nonlinear vehicle model

might be more desirable. Future work will investigate the

applicability of combining the feedback linearization with

the MIQP formulation. Another important assumption in this

paper is that the vehicle is driving on road segments with

small curvature. For large road curvatures, the current model

can be imprecise. Future work will investigate this issue.

In the future, we will also integrate the proposed method

into a receding horizon framework so that the ego vehicle

re-plans regularly to incorporate new information. The algo-

rithm will be implemented in the AnnieWay [20] autonomous

vehicle to study the performance of our approach in a real-

world setting.
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