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Abstract 
This paper deals with the generation of optimal paths for 
the automated steering of autonomous vehicles. The path 
is parametrized by quintic G2-splines, or 7-spline, devised 
to guarantee the overall second order geometric continu- 
ity of a composite path interpolating an arbitrary sequence 
of points. Starting from the closed-form 7-parametrization 
of the spline an optimization criterion is proposed to de- 
sign smooth curves. The aim is to plan curves where the 
curvature variability is kept as small as possible. With 
good approximation, in a Jatness based control scheme, 
this corresponds to minimize the change-rate of the steer- 
ing control. Various examples are included to highlight the 
ductility and effectiveness of the planning. 

1 Introduction. 
The recent literature proposes various approaches to give 
an answer to the problem of the lateral control of au- 
tonomous vehicles. Considerable differences can be found 
between the solutions adopted. These differences are 
constituted, for example, by the several sensing devices 
adopted to detect the position of the vehicle with respect 
to the environment: guiding wires drowned under the 
road surface, microwave radars, visual servoing devices 
[S, 9, 41. Another distinction is given by the type of con- 
trol technique selected: a fuzzy logic approach was pro- 
posed by Hessburg and Tomizuka [7], robust controllers 
were proposed in [ 1,3], neural networks were adopted and 
subsequently developed in the RALPH project [ l l ] .  A 
comparative survey on various vision-based control strate- 
gies for autonomous vehicles can be found in the paper of 
Taylor et al. [ 121. 
In [2] we have proposed a novel control strategy based on 
the flatness properties of a simplified vehicle model. Suc- 
cinctly, the controller computes the instantaneous steering 
angle required to follow a predefined curve on the basis 
of a dynamic inversion procedure. The approach is some- 
how similar to that proposed by Tsugawa et al. in [ 131 
but in [2] we have shown that, to obtain continuous steer- 
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ing commands, the assigned curve must exhibit well de- 
fined geometric characteristics. To account this require- 
ment, we have proposed to parametrize the curve by means 
of a new type of polynomial splines, i.e. the quintic G2- 
splines. Their properties are shown and discussed in detail 
in [lo]. The novel spline curves satisfy a second order geo- 
metric continuity requirement and, at the same time, intro- 
duce some degrees of freedom that can be spent to improve 
the quality of the trajectory planning. In this paper we will 
show how these degrees of freedom can be optimally used 
to obtain smooth steering commands to track at best the 
road lane. 
In $2 a brief introduction to the mathematics of the pla- 
nar curves is given. In the subsequent section the relevant 
optimization problem is proposed. Finally, the results of 
some optimizations are given in $4. In particular the opti- 
mal splines for a lane change and for some road curves are 
evaluated. 

2 Preliminaries on planar curves. 
The following definitions, derived from the theory of pla- 
nar curves [8], will be used in the sequel of this paper. 
The Euclidean norm of a vector p is denoted with IlpII. 
A generic point on the {x,y}-plane is indicated by the 
real vector p := [x yIT E R2. A planar path, i.e. a set 
of points in the {x,y}-plane, is described by means of a 
vector function in the real parameter U E [UO,UI]:  p(u) := 
[.(U) y(u)lT. We consider p(u) as an oriented curve start- 
ingfromp(u0) := [ x A Y A ] ~  andendinginp(u1) := [xgy~]*. 
Indicate by p(u) the first derivative of p(u) with respect to 
U: p(u) := [dxldu dy/du]*. A curve p(u) is “regular” if 
p(u) is well defined over [uo, ul] and p(u) # 0 Vu E [uo, UI] .  

The curvilinear coordinate measured along the path p(u) is 
denoted by s; it can be computed as a function of u by 
means of 

s = f ( u )  : = ~ ~ l l P ( W 5 .  (1) 

For regular curves the inverse function U = f-’ (s) is well 
defined. By virtue of f (u )  and its inverse, all subsequent 
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Figure 1 : Frenet frames 
I 

equations can be expressed indifferently as functions of s 
or U. 
According to the theory of planar curves, for each point 
p(u) we have a Frenet frame given by a couple of orthog- 
onal unit vectors ?(U) and R ( u )  (see Fig. 1). The unit vec- 
tor f' is tangent to the curve and its versus coincides with 
the curve orientation whereas the versus of A is arbitrary. 
In this paper fl has been chosen in such a way {p,h'} is 
congruent to the {x,y} frame (see Fig. 1). A Frenet frame 
is completely defined by the description its origin (p(u)) 
and its orientation (say €)(U)) with respect to a fixed frame. 
Each Frenet frame satisfies the following equations 

where the scaIar K(U) is the curvature of the path at p(u). 
The sign of K(U) is defined by the choice of A. We indicate 
by KA and Kg the curvature at the beginning and at the end 
of the path respectively. In the same way, we indicate by 
0,4 and the orientation of the Frenet frame at the curve 
endpoints. 
A curve p(u) has first order geometric continuity, i.e. 
p(u) E GI, if p(u) is regular and its unit tangent vector 
dpfds is a continuous function over [UO,UI]. Moreover, 
a curve p(u) has second order geometric continuity, i.e. 
p(u) E G2, if p(u) E G' and its curvature vector d2p/ds2 
is continuous over [ U O , U I ]  [81. By natural extension we 
say that a {x,y}-path belongs to G', i E { 1,2} if there ex- 
ists a parametric curve p(u) E G' such that its image is the 
{x,Y)-Path. 

3 The optimal quintic G2-splines. 
This paper is motivated by demands arisen form the flat- 
ness control strategy proposed in [2]. In that paper a dy- 
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Figure 2: Vehicle's variables of the model (3) .  

, 
I 

namic inversion based control was proposed for the lateral 
motion of autonomous vehicles described by means of the 
simplified nonholonomic model 

x = vcose 

0 = Etan6 

where v is the vehicle's (constant) velocity, I is the inter- 
axle distance, 6 is the front wheel steering angle. The state 
variables x, y, and 0 denote respectively the Cartesian coor- 
dinates and the angular displacement of a frame affixed to 
the midpoint of the vehicle's rear axle (see fig. 2). In [2] it 
has been also demonstrated that it is possible to guide the 
vehicle along a prespecified path with a continuous control 
law 6( t )  if and only if the geometric continuity of the path 
is, at least, of class two (c2>. 
In a previous paper of the authors [ 101 quintic G2-splines, 
or 77-splines, are proposed to plan a composite G2-path in- 
terpolating an arbitrary sequence of points. Closed-form 
expressions of the v-spline can be presented as follows 

{ = :sin0 , (3) 

(U E [O, 11): 

p(u) = [ ;;;; ] := 

:= [ xo+xlu+x2u2+x3u3 +x4u4+x5u5 ] (4) YO + Y 1 U + y2u2 + y3 U3 + y4u4 + y5u5 

where 
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Figure 3: Lane change. (q3  = q4 = 0) 

3 
2 +(7q2-q4)coseB- -q:~AsineA +q;lcBsinOB 

1 
X5 = ~ ( X B  -XA) - (3ql + zq3)COSe~ 

-(3q2- -q4)c0seB+ 1 -7:~AsineA 1 - -q2~BsineB 1 2  
2 2 2 

YO = yA 
y~ = qlsin0A 

1 
y2 = 2 ( q 3  Sin e A  f $KA COSeA) 

3 
y3 = ~ ~ ( Y B - Y A )  - (6qi+ ? q 3 ) s i n e ~  

1 3 1 
2 2 2 -(4q2- -q4)SineB - -q:KACOSeA + -$KBCOSeB 

3 
y4 = -15(YB-YA) + (8qi+  p ) s i n e ~  

3 
2 +(7q2--4) Sinee + -q:KACOSeA -q;KBCOSeB 

1 
2 y5 = ~ ( Y B  -YA) - (3q1+ - q 3 ) s i n e ~  

1 I 1 
-(3q2- 5q4)sineB - - - ~ ? K A C O S ~ A  + -$ 'KBCOSeB.  2 2 

Subscripts A and B indicate the assigned interpolating 
conditions relative to the spline endpoints, while q := 
[q I q 2  q 3  WIT E 31 := (0, +-) x (0, +-) x ( -00 ,  +-) X 
(-00, +-) is a vector of free parameters. It is worth stress- 
ing that the interpolating conditions are always fulfilled for 
any q E 5". For more details concerning the characteristics 
of the G2-splines see [ 101. 
To show how q affects the shape of a curve let consider 
the lane changes ( e A  = = 0 and KA = Kg = 0) plotted in 
Figs. 3 and 4. 
In the first figure q 1  and q 2  are varied whereas 173 and q 4  
are constant (q3 = q 4  = 0). Note ql = p(0) and q 2  = p( 1) 
so that ql mainly influences the shape of the curve at the 
beginning while q 2  affects its closing. In general, high val- 

Figure 4: Lane change. (q1 = q2 = 20) 

Figure 5: Detail of a lane change. (ql = q 2  = 20) 

ues for q I forces 8 and K to stay close to the initial values 
e A  and KA for a long while. The parameter q 2  has anal- 
ogous effects on the curve closing. To attain symmetric 
curves we have imposed q1 = q 2 .  In Fig. 4, ql and q 2  
are kept constant and curves are traced for different val- 
ues of q 3  and q 4 .  This time, to obtain symmetric shapes, 
it is necessary to impose q3 = -q4 [lo]. Parameters q 3  
and 774 modulate the curvature variation at the beginning 
and at the closing of the spline respectively. In Fig. 5 a 
detail of the curve closing is shown. Very positive values 
of q 4  cause strong curvature variations while approaching 
the end point. The parameter 773 has a similar influence on 
the curve beginning but, this time, very negative values are 
required to cause a considerable curvature variability. 
It is clear that, with a proper selection of q, it is possi- 
ble to obtain a wide number of shapes for the path, all 
of them satisfying the interpolating conditions at the curve 
extremes. This suggests to choose the four parameters ac- 
cording with some sort of optimality criterion. In this pa- 
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per we select them by minimizing (dK/ds( because, under 
reasonable approximations, it is equivalent to minimize the 
absolute value of the derivative of the steering angle 6 with 
respect to time. Indeed, in determining the steering angle 
control with the flatness based approach [2, 101 we use the 
relation 

where K is the current curvature of the followed path. 
Hence we can express the first derivative of 6 with respect 
to the time as follows 

6 = arctan(la) ( 5 )  

(6) 

In many planning contexts, such as in road driving, small 
values of K are typical so that it is a good approximation 
to consider d6/dt  proportional to dlc/dt and minimize this 
latter to reduce the change-rate of 6. On the other hand, 
the path curvature K depends on curvilinear coordinate s so 
that we can write 

dK dK ds  dK 
dt ds dt ds  

where v is the vehicle's velocity. Since v is considered con- 
stant (at least while travelling along a single spline) it fol- 
lows that the variability of the steering angle can be in- 
directly reduced by minimizing the maximum of IdK/ds( 
along the whole path. Thus, the optimization problem can 
be formulated as follows 

d6 dK 1 - = 1- 
dt dt arctan*(k) + 1 ' 

(7) - = - - = - "  

min max l-(s)l d u  
qeH S E [ O , ~ ( ~ ) ]  ds 

or, equivalently, by considering (1) 

min max -(U) 
 CM UE[O,II Idr ds I 

subject to 

(9) 

IlP(.)II > 0 v u  E [07 11 . (10) 

The constraint (10) has been added to guarantee the regu- 
larity of the curve (see [lo] on the regularity issue). The 
minimax problem (9) can be converted into a semi-infinite 
problem by adding to vector q an auxiliary variable q 5 :  

6 := [qT q5]* E 31 := 31 x [O,+-). The optimization 
problem then becomes 

- 

subject to 

Figure 6: Optimal lane change. 

An useful expression for dK f d s  can be deduced as follows 
(see (1)): 

dK dK du dK ds dwfdu 
ds  du ds - z lz -  . (14) 

The actual solution of the above semi-infinite optimization 
problem can be pursued with local techniques such as, for 
example, Sequential Quadratic Programming, or with the 
hybrid genetic/interval algorithm of Guarino and Piazzi [6] 
aimed to obtaining an estimate of the global solution. 
In real time applications suboptimal values for q could be 
obtained by look-up tables previously constructed with ex- 
tensive off-line programming. 

_ _ _ _ - -  - - 

4 Illustrative examples. 
In this section, we test the capability of the G*-splines to 
approximate realistic road paths. Three different cases will 
be considered. In the first case, an optimal path for a lane 
change is generated. The second and the third examples 
check the capability of the G2-splines to approximate some 
actual road profiles: a circular arch and a clothoid arch. 
In all the three cases the vehicle path has been generated 
by solving the optimization problem described in '$3, i.e. 
by minimizing the curvature variability. The adopted opti- 
mization solver is the hybrid algorithm presented in [6]. 
In the first example a lane change along a straight road is 
considered. The path starts from the origin of the reference 
frame and ends at XB = [35 3IT. The initial and the final 
angles and curvatures are equal to zero ( e A  = = 0, KA = 
KB = 0). The obtained optimal solution is given by q = 
[44.22 44.22 - 88.21 88.22IT. The corresponding path is 
shown in Fig. 6 while its curvature and first derivative are 
shown in Fig. 7. 
In the second experiment the input data for the G2-splines 
are derived from circular arches (see Tab. 1). Three differ- 
ent radius are considered. The curves start again from the 
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origin of the reference frame with an initial angle equal to 
zero radians. The endpoint data are derived by considering 
circular arches with a length equal to 35 m. The initial and 
the final curvatures are supposed to be equal to the recip- 
rocal of the curve radius. It is clear that, owing to these 
choices, if the G2-splines are able to generate approximate 
circular arches, the obvious solution of the optimization 
problem is given by curves where K ( U )  E KA = KB for all 
U E [0, I]. Indeed, this guarantees that d ~ / d s  S 0. The 
obtained optimal G2-spline curves are plotted upon actual 
circular curves in Fig. 8. In all the cases the optimal solu- 
tion is given by 71 = 1l2 = 35 (i.e. the curve length) and 
q3 = 7 4  = 0. As desired, dlc/ds is very close to zero. Its 
maximum absolute value is equal to 1 .OS41 . when the 
radius is equal to 50 m and decreases to 8.1957. lov7 and 
1.1341 . when the radius is equal to 200 and 2000 m 
respectively. The corresponding curvatures and their first 
derivatives are shown in Fig. 9. 
In the last experiment we attempted to approximate some 
clothoid curves by means of the G2-splines. The starting 
point and angle are the same considered for previous ex- 
amples but the initial curvature is supposed to be zero, The 
endpoint XB and the final angle €)E are evaluated by consid- 
ering a 35 m long clothoid arch and three different values 
for the final curvature (see Tab. 2). In this case the obvious 
solution requires K(S) to be linearly increasing with respect 

0 5 10 15 20 25 30 35 
Figure 8: Optimal spline arches for three different curvatures 
( k  = (20. IO-’, 5 . Actual circular arches, 
drawn over the spline arches, cannot be distinguished. 
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Figure 9: Curvature and its first derivative with respect to s for 
the three spline arches. In all the cases curvature is almost con- 
stant along the whole path. 

U 

to s so that IdK/dsl is constant and equal to the minimum 
value. Note that if K(S) is linearly increasing we are im- 
plicitly planning clothoid curves. Also in this case the op- 
timal solution obtained, q = [35 35 0 O l T ,  is characterized 
with a neat symmetry. In Fig. 10 the optimal solutions are 
compared with actual clothoids while their curvatures and 
first derivatives are shown in Fig. 1 1 .  As desired, the cur- 
vature derivatives are almost constant. The largest value 
relates to a final curve radius equal to 50 m: in that case 
75 = 5.9149. Smaller derivatives are obtained in the 
other two cases: 1.43 17. and 1.4286. for a final 
radius equal to 200 and 2000 m respectively. 

5 Conclusions. 
An optimal trajectory planning using quintic G2-splines 
is proposed to minimize the change-rate of the curvature. 
The examples proposed also show how the G*-splines can 
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Table 2: Parameters for the clothoid curves. 
Final radius1 5 0 m  I 200m I 2000m 1 

7-Splines 

Figure 10: Optimal spline clothoids for three different final cur- 
vatures k = (20. 10-',5. 10-',0.5. lo-'}). Actual clothoids, 
drawn over the spline clothoids, cannot be distinguished. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
U 

Figure 11: Curvature and its first derivative with respect to s for 
the three spline clothoids. In all the cases, the curvature increases 
almost linearly along the whole path. 

be used to approximate a significant variety of road pro- 
files. The four v-parameters characterizing the spline are 
selected via a minimax optimization problem whose so- 
lution can be obtained using a genetichnterval algorithm. 

The proposed optimal spline appears as a motion planning 
primitive whose applicability, as far as curvature continuity 
is useful, may be also found for the planning of a broader 
class of nonholonomic vehicles. 
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