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ABSTRACT 

 

Previous approaches used to solve the transit route network design problem (TRNDP) 
can be classified into three categories: 1) Practical guidelines and ad hoc procedures; 2) 
Analytical optimization models for idealized situations; and 3) Meta-heuristic approaches 
for more practical problems. When the TRNDP is solved for a network of realistic size in 
which many parameters need to be determined, it is a combinatorial and NP-hard 
problem in nature and several sources of non-linearities and non-convexities involved 
preclude guaranteed globally optimal solution algorithms. As a result, the meta-heuristic 
approaches, which are able to pursue reasonably good local (possibly global) optimal 
solutions and deal with simultaneous design of the transit route network and 
determination of its associated service frequencies, become necessary.  
 
The objective of this research is to systematically study the optimal TRNDP using hybrid 
heuristic algorithms at the distribution node level without aggregating the travel demand 
zones into a single node. A multi-objective nonlinear mixed integer model is formulated 
for the TRNDP. The proposed solution framework consists of three main components: an 
Initial Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible 
routes incorporating practical bus transit industry guidelines; a Network Analysis 
Procedure (NAP) that determines transit trips for the TRNDP with variable demand, 
assigns these transit trips, determines service frequencies and computes performance 
measures; and a Heuristic Search Procedure (HSP) that guides the search techniques. 
Five heuristic algorithms, including the genetic algorithm, local search, simulated 
annealing, random search and tabu search, are employed as the solution methods for 
finding an optimal set of routes from the huge solution space. For the TRNDP with small 
network, the exhaustive search method is also used as a benchmark to examine the 
efficiency and measure the quality of the solutions obtained by using these heuristic 
algorithms.  
 
Several C++ program codes are developed to implement these algorithms for the TRNDP 
both with fixed and variable transit demand. Comprehensive experimental networks are 
used and successfully tested. Sensitivity analyses for each algorithm are conducted and 
model comparisons are performed. Numerical results are presented and the multi-
objective decision making nature of the TRNDP is explored. Related characteristics 
underlying the TRNDP are identified, inherent tradeoffs are described and the redesign of 
the existing transit network is also discussed. 
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EXECUTIVE SUMMARY 

 
The transportation system is one of the basic components of an urban area’s social, 
economic and physical structure. As a major part of the urban transportation system, 
public transit has been widely recognized as a potential way of reducing air pollution, 
lowering energy consumption, improving mobility, lessening traffic congestion, 
increasing productivity, providing more job opportunities, promoting retail sales, and 
rationalizing urban development patterns. In addition to providing mobility for transit-
captive users (e.g., people with low incomes, disabled or unable to drive, elderly, 
children, or those who don’t own a car), public transportation also offers meaningful 
travel alternatives for transit-choice users who might choose transit for the sake of cost, 
speed, safety, convenience, traffic avoidance, or environmental issues. 
 

However, during the past 30 to 40 years, the bus transit share of total travel has 
been declining. With suburban sprawl and dispersion of employment, automobile use is 
challenging public transportation systems. Therefore, maintaining bus transit ridership is 
a big problem that many bus transit agencies have to face today. Of many methods that 
have been proposed and/or implemented to expand the transit market, improving the 
transit level-of-service is a key concept. An operationally and economically efficient bus 
transit network can help meet these requirements, as well as potentially reduce 
congestion and conserve energy. 

 
It is generally accepted that the Bus Transit Route Network Design Problem 

(BTRNDP) should be addressed in the context of bus planning process. Ceder and 
Wilson (1986), for the first time, defined and presented a conceptual model for the whole 
bus planning process as a systematic decision sequence, which consists of five levels: 
network design, frequency setting, timetable development, bus scheduling and driver 
scheduling. Quite a few past research efforts were devoted to the last two stages: bus 
scheduling and driver scheduling. However, the critical determinants of system 
performance from both the operator and user standpoints, are the choices of a bus route 
network pattern and the corresponding service frequencies. These have received less 
attention due to their inherent complexity. 

 
Generally speaking, the network design related problem involves the 

minimization (or maximization) of some intended objective subject to a variety of 
constraints, which reflect the system performance requirements and/or resource 
limitations. In the past decade, several people began to realize this bus planning process 
need and several research efforts have examined the bus transit route network design 
problem (BTRNDP). However, most of the approaches are still largely dependent on the 
planners’ or researcher’s intuition, experience and knowledge about the existing transit 
network. Furthermore, to make the BTRNDP tractable, many assumptions were made 
and the problems were over-simplified, making their solutions questionable and therefore 
preclude them as generally accepted applications for practical transportation networks. 
To design an optimal bus transit route network that can provide the “best” service given a 
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variety of resource constraints, innovative modeling concepts coupled with scientific 
tools or systematic procedures are urgently needed. 

 
This research is intended to systematically examine the underlying characteristics 

of the optimal bus transit route network design problem (BTRNDP). A multi-objective 
nonlinear mixed integer model is built and the inherent complexity and implementation 
difficulty are described. Several efficient and flexible heuristic algorithms are employed 
and compared to come up with an optimal transit route network both with fixed and 
variable transit demands. Numerical results including sensitivity analyses are presented 
for comprehensive experimental networks and characteristics underlying the BTRNDP 
are discussed in details. Summary and conclusions are made and further research 
directions are also given. 

 
The goal of this research is to develop a flexible algorithmic solution framework 

to implement the computer-aided design of bus transit route networks and provide 
various good solutions to accommodate different service requirements. The proposed 
work in this research is intended to fulfill the following objectives: 

 
1) To identify knowledge that can reflect current related practice and existing 

rules of thumb for bus transit route network design issues; 
2) To develop several robust and systematic efficient heuristic algorithms that 

can incorporate the above knowledge, and to test a set of designed algorithmic 
procedures to search intelligently for an optimal solution; 

3) To explicitly account for the multi-objective nature of the transit route 
network design problem and to explore the capability to evaluate various 
performance measures from the points of view of both the operator and transit 
users for various service options and to develop the ability to ascertain the 
built-in characteristics of tradeoffs between various conflicting performance-
measure variables involving the bus transit route network problem; 

4) To systematically assess various service design concepts for the design and/or 
redesign for the transit route networks under different scenarios, such as both 
with fixed and variable transit demands, with and without demand 
aggregations. 

 
Due to the inherent complexity and combinatorial NP-hard nature of the 

BTRNDP, traditional exact analytical optimization methodology is impracticable. The 
proposed work in this research is oriented to developing hybrid heuristic approaches to 
finding an acceptable and operationally implementable route network and associated 
service plans that can provide alternative design concepts corresponding to different 
service requirements in a reasonable time domain. Three algorithmic procedures are 
developed to provide various service options, namely, the initial candidate route set 
generation procedure, the network analysis procedure and the heuristic search procedure. 
The solution methodology differs from existing approaches in many aspects and the 
expected contributions from this research are summarized as follows:  
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1) Ability to apply a set of designed algorithmic procedures to search 
intelligently for an optimal solution without the loss of applicable service 
planning guidelines and the transit planners’ knowledge and expertise; 

2) Ability to produce a decent route network reflecting the inherent tradeoffs 
between conflicting performance-measures. This includes explicit 
consideration of the multi-objective nature of the bus transit route network 
design problem and the capability to evaluate performance measures and 
service options from the points of view of both the operator and transit users;  

3) Ability to account for the practical characteristics of real-world transit demand 
and consider the demand assignment procedure under a microscopic 
“centroid-connector-link” level with particular concerns for transfer and long-
walk related paths; 

4) Ability to systematically apply heuristic algorithms to produce quality 
solutions for the BTRNDP and identify the most appropriate one(s) under 
certain circumstances; 

5) Ability to explore the design and/or redesign for transit route networks with 
variable transit demand in the context of fixed total travel demand as well as 
that with fixed demand, and with or without demand aggregation. 
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CHAPTER ONE 

INTRODUCTION 
 

1.1 Problem Statement and Motivation 

 
The transportation system is one of the basic components of an urban area’s 

social, economic and physical structure. As a major part of the urban transportation 
system, public transit has been widely recognized as a potential way of reducing air 
pollution, lowering energy consumption, improving mobility, lessening traffic 
congestion, increasing productivity, providing more job opportunities, promoting retail 
sales, and rationalizing urban development patterns. In addition to providing mobility for 
transit-captive users (e.g., people with low incomes, disabled or unable to drive, elderly, 
children, or those who don’t own a car), public transportation also offers meaningful 
travel alternatives for transit-choice users who might choose transit for the sake of cost, 
speed, safety, convenience, traffic avoidance, or environmental issues. 

 
As the most dominant form among all public transportation modes in American 

cities, bus transit is significant in several aspects. According to the unpublished Transit 
Fact Book (2002), buses accounted for almost 61% of the 9.4 billion annual U.S. transit 
trips and about 45% of the 47.7 billion annual transit passenger miles in 2000. They 
provide service for cities of all sizes, making it an essentially indispensable part of the 
urban transportation system. 

 
However, during the past 30 to 40 years, the bus transit share of total travel has 

been declining. With suburban sprawl and dispersion of employment, automobile use is 
challenging public transportation systems. Therefore, maintaining bus transit ridership is 
a big problem that many bus transit agencies have to face today. Of many methods that 
have been proposed and/or implemented to expand the transit market, improving the 
transit level-of-service is a key concept. An operationally and economically efficient bus 
transit network can help meet these requirements, as well as potentially reduce 
congestion and conserve energy. 

 
The bulk of the transportation network research mainly focuses on the automobile 

(e.g., traffic assignment procedures). However, most of this work is not applicable to the 
transit industry. The basic difference between private and public transportation can be 
illustrated by Figure 1.1. Assuming that an acceptable level of service is always 
maintained and that the supply of the public transit capacity is adequate (i.e., the route 
frequency is determined by the transit demand on any route), it is expected that as 
demand increases, the level of service provided by a transit system might improve 
because lower headways might be provided and therefore, the possibility of the more 
efficient usage of the transit might be higher. Conversely, the level of service offered to 
auto users declines as the demand increases due to traffic congestion. Such characteristic 
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of public transit distinguish it from the auto. Therefore it stands out as an urban travel 
solution that deserves more attention and more research effort.  

 

Auto

Bus Transit

Demand volume (trips/hour)
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Figure 1.1 Relationship between Level of Service and Demand Volume for Auto and Transit 
 

It is generally accepted that the Bus Transit Route Network Design Problem 
(BTRNDP) should be addressed in the context of bus planning process. Ceder and 
Wilson (1986), for the first time, defined and presented a conceptual model for the whole 
bus planning process as a systematic decision sequence, which consists of five levels: 
network design, frequency setting, timetable development, bus scheduling and driver 
scheduling, as shown in Figure 1.2, where the left to right order marks the transition from 
the highest to the lowest level in the bus planning process. Namely, as illustrated, the 
output of each level positioned in the left in the sequence becomes an input into lower 
level decisions on the right. Because the decisions made further down the sequence will 
have some effects on higher level ones, these levels are not independent and actually 
interactive, making the feedback in the sequence a repeated process. Furthermore, quite a 
few past research efforts were devoted to the last two stages: bus scheduling and driver 
scheduling. This concentration is understandable because in addition to the automation 
necessity of the scheduling process, these two activities largely affect the operator cost, 
which includes the drivers’ wages, vehicle running and maintenance costs. However, the 
critical determinants of system performance from both the operator and user standpoints, 
are the choices of a bus route network pattern and the corresponding service frequencies. 
These have received less attention due to their inherent complexity. 

 
Targeted to serve centralized core-oriented land user patterns, most traditional bus 

route networks are either radial or grid-like, providing fixed-route, fixed schedule, 
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uncoordinated service. However, during the past several years, significant spatial 
redistribution and demographic changes have been taking place in most U.S. cities, 
making the land-use patterns of cities increasingly decentralized. The changes of 
population growth and suburbanization have transformed the associated trip distribution 
patterns from a traditional multiple origin, single destination (CBD) pattern to a multiple 
origin, multiple destination one. As a result, traditional bus route networks are no longer 
appropriate for cities with multi-centered and spatially dispersed trip patterns, making the 
reevaluation and possible redesign of the entire transit route network justified. 

 
Transit authorities have recognized the emerging problems and have made 

incremental modifications to the traditional transit network. However, due to the absence 
of systematic procedures, most of these improvements are confined to extensions of old 
routes to new developing areas and/or discontinuation of service to other areas. Such 
changes are highly dependent on the transit planners’ experience, judgment and 
knowledge of the existing demand patterns, land use patterns and resource constraints. 
Furthermore, in most cases, the overall layout and basic structure of the transit route 
network in most U.S cities remain radial or grid-like, making the service provided neither 
effective nor efficient. Consequently, user frustration precludes the transit system as a 
competitive alternative to private automobiles. Furthermore, reliance on the automobile 
has contributed to a series of problems, including traffic congestion, more fuel 
consumption, and intensified air pollution. The need for scientific tools or systematic 
procedures to reevaluation and/or redesign bus transit route networks is thus apparent. 

 
Generally speaking, the network design related problem involves the 

minimization (or maximization) of some intended objective subject to a variety of 
constraints, which reflect the system performance requirements and/or resource 
limitations. In the past decade, several people began to realize this bus planning process 
need and several research efforts have examined the bus transit route network design 
problem (BTRNDP). However, most of the approaches are still largely dependent on the 
planners’ or researcher’s intuition, experience and knowledge about the existing transit 
network. Furthermore, to make the BTRNDP tractable, many assumptions were made 
and the problems were over-simplified, making their solutions questionable and therefore 
preclude them as generally accepted applications for practical transportation networks. 
To design an optimal bus transit route network that can provide the “best” service given a 
variety of resource constraints, innovative modeling concepts coupled with scientific 
tools or systematic procedures are urgently needed. 
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This research is intended to systematically examine the underlying characteristics 
of the optimal bus transit route network design problem (BTRNDP). A multi-objective 
nonlinear mixed integer model is built and the inherent complexity and implementation 
difficulty are described. Several efficient and flexible heuristic algorithms are employed 
and compared to come up with an optimal transit route network both with fixed and 
variable transit demands. Numerical results including sensitivity analyses are presented 
for comprehensive experimental networks and characteristics underlying the BTRNDP 
are discussed in details. Summary and conclusions are made and further research 
directions are also given. 

 

1.2 Study Objectives 

 
The goal of this research is to develop a flexible algorithmic solution framework 

to implement the computer-aided design of bus transit route networks and provide 
various good solutions to accommodate different service requirements. The proposed 
work in this research is intended to fulfill the following objectives: 

 
5) To identify knowledge that can reflect current related practice and existing 

rules of thumb for bus transit route network design issues; 
6) To develop several robust and systematic efficient heuristic algorithms that 

can incorporate the above knowledge, and to test a set of designed algorithmic 
procedures to search intelligently for an optimal solution; 

7) To explicitly account for the multi-objective nature of the transit route 
network design problem and to explore the capability to evaluate various 
performance measures from the points of view of both the operator and transit 
users for various service options and to develop the ability to ascertain the 
built-in characteristics of tradeoffs between various conflicting performance-
measure variables involving the bus transit route network problem; 

8) To systematically assess various service design concepts for the design and/or 
redesign for the transit route networks under different scenarios, such as both 
with fixed and variable transit demands, with and without demand 
aggregations. 

 

1.3 Expected Contributions 

 
Due to the inherent complexity and combinatorial NP-hard nature of the 

BTRNDP, traditional exact analytical optimization methodology is impracticable. The 
proposed work in this research is oriented to developing hybrid heuristic approaches to 
finding an acceptable and operationally implementable route network and associated 
service plans that can provide alternative design concepts corresponding to different 
service requirements in a reasonable time domain. Three algorithmic procedures are 
developed to provide various service options, namely, the initial candidate route set 
generation procedure, the network analysis procedure and the heuristic search procedure. 
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The solution methodology differs from existing approaches in many aspects and the 
expected contributions from this research are summarized as follows:  
 

9) Ability to apply a set of designed algorithmic procedures to search 
intelligently for an optimal solution without the loss of applicable service 
planning guidelines and the transit planners’ knowledge and expertise; 

10) Ability to produce a decent route network reflecting the inherent tradeoffs 
between conflicting performance-measures. This includes explicit 
consideration of the multi-objective nature of the bus transit route network 
design problem and the capability to evaluate performance measures and 
service options from the points of view of both the operator and transit users;  

11) Ability to account for the practical characteristics of real-world transit demand 
and consider the demand assignment procedure under a microscopic 
“centroid-connector-link” level with particular concerns for transfer and long-
walk related paths; 

12) Ability to systematically apply heuristic algorithms to produce quality 
solutions for the BTRNDP and identify the most appropriate one(s) under 
certain circumstances; 

13) Ability to explore the design and/or redesign for transit route networks with 
variable transit demand in the context of fixed total travel demand as well as 
that with fixed demand, and with or without demand aggregation. 

 

1.4 Research Overview 

 
The research is structured as shown in Figure 1.3. In this chapter, the significance 

and the motivation of the optimal transit route network design problem (BTRNDP) has 
been discussed in the context of bus transit planning activities, followed by descriptions 
of study objectives and expected contributions. 
 

Chapter 2 presents a comprehensive literature review of previous solution 
approaches to the BTRNDP primarily in chronological order. Previous approaches that 
were used to solve the BTRNDP can be classified into three categories: 1) Practical 
guidelines and ad hoc procedures; 2) Analytical optimization models for idealized 
situations; 3) Meta-heuristic approaches for more practical problems. In addition, from 
another perspective, the literature is also summarized according to six distinguishing 
features: objective function, demand, constraints, decision variables, passenger behavior 
and solution techniques. Finally, the difficulties in solving the BTRNDP are presented. 

 
Chapter 3 introduces background terminology in the BTRNDP and mathematical 

notations to be used in the model formulation. A mathematical nonlinear mixed integer 
programming model for the BTRNDP is formulated in this chapter. Associated 
constraints and characteristics of the user cost, operator cost and unsatisfied demand cost 
are also presented. This chapter concludes with discussions of the shortcomings of 
previous approaches to solve the BTRNDP.   
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Chapter 4 presents the proposed solution framework for the BTRNDP in this 
research, which consists of three main components: an Initial Candidate Route Set 
Generation Procedure (ICRSGP) that generates all feasible routes incorporating some 
practical guidelines that are commonly used in the bus transit industry; a Network 
Analysis Procedure (NAP) that computes many performance measures; and a Heuristic 
Search Procedure (HSP) that guides the search techniques. Different heuristic algorithms 
including genetic algorithm (GA), local search (LS), simulated annealing (SA), random 
search (RS) and tabu search (TS) algorithms are proposed to find an optimum set of 
routes from the huge solution space. For small network, an exhaustive search method 
(ESM) is also used as a benchmark to examine the efficiency and measure the solution 
quality obtained from these heuristic algorithms. Two scenarios, namely the BTRNDP 
with fixed transit demand and the BTRNDP with variable transit demand, are considered. 
The solution framework and its distinct features are presented, along with discussions of 
the rationale for choosing the employed heuristic algorithms as the solution techniques. A 
brief literature review on each of these algorithms is also presented. 

 
Chapter 5 presents the details of the Initial Candidate Route Set Generation 

Procedure (ICRSGP). A literature review of solution approaches to shortest path 
algorithm (including label-setting and label-correcting algorithms) and the K-shortest 
path algorithm is conducted. The chosen Dijkstra’s Algorithm and Yen’s K-shortest Path 
for the BTRNDP are then described and the two route feasibility constraints are also 
discussed. In the end, a small example is introduced to illustrate these two algorithms. 

 
Chapter 6 contains details of the network analysis procedure (NAP) primarily for 

the BTRNDP with fixed transit demand, which is used to analyze and evaluate the 
alternative network structures and determine their associated service frequency. Two 
major components of the NAP, namely, the transit trip assignment model and the 
frequency setting procedure are presented. The algorithm skeleton and details of its 
solution methodologies are discussed. Characteristics associated with each component are 
also described. This chapter concludes with an illustrative application to a transit network 
example. 

 
Chapter 7 presents details of the BTRNDP with fixed transit demand. Five 

heuristic algorithms, including genetic algorithm, local search, simulated annealing, 
random search and tabu search algorithm, as well as the exhaustive search algorithm as 
benchmark for the BTRNDP with small network, are used to solve the BTRNDP with 
fixed transit demand. Solution frameworks based on each of these algorithms for the 
BTRNDP are presented. A small example network using a genetic algorithm as the 
representative heuristic solution algorithm is introduced for illustrating the proposed 
methodology. Finally, a summary concludes this chapter. 

 
Chapter 8 presents details of the BTRNDP with variable transit demand. The 

concepts of variable total demand and variable transit demand are first presented in the 
urban planning processes. The characteristics underlying the determinants of discrete 
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choice such as the utility and disutility functions are discussed. Multinomial logit model 
(MNL) and nested logit model (NLM) are compared and their respective pros and cons 
are given. An innovative two-staged model, consisting of binary logit model-inversely 
proportional model (BLM-IPM), is proposed to assign the total demand to car and transit 
mode choice. The solution framework for the BTRNDP with variable transit demand is 
therefore introduced and the differences between this approach and that in Chapter 7 are 
discussed. Details of its two components, namely, the ICRSGP and the NAP are 
presented. Concepts with regard to transit demand equilibrium procedure and headway 
convergence process are included. Details of the implementation process are also 
discussed. This chapter concludes with a summary. 

 
Chapter 9 provides details of the algorithm implementation issues. The details of 

the input data formats, the network representation and the data structure for organizing all 
network related data using C++ are presented. Three comprehensive experiments (i.e., the 
BTRNDP for small size, medium size and large scale network) are conducted, where all 
five heuristic algorithms and the exhaustive search method as a benchmark are employed 
to solve the BTRNDP in two scenarios, namely the BTRNDP both with fixed and 
variable demand. Sensitivity analyses are conducted for each heuristic algorithm and 
related numerical results including the computation of a variety of performance measures 
and objective functions are presented and compared. A variety of characteristics 
underlying the multi-objective BTRNDP under different scenarios are therefore 
described. Effects of the route set size, network size and demand aggregations are 
presented in detail. Issues of the redesign of the existing transit network are also 
discussed. Summary and conclusions are given and general guidelines for the TRNDP are 
also presented.  

 
Chapter 10 concludes with summaries of the proposed algorithms, solution 

approaches and research results. Suggestions for future research are also provided. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

2.1   Introduction 

 
As described before, generally speaking, the bus transit route network design 

problem involves finding a bus transit route network configuration and associated service 
frequencies that achieve a desired objective with a variety of given constraints. Many 
research efforts have examined the BTRNDP. As can be seen, previous approaches that 
were used to solve the BTRNDP can be classified into three categories: 1) Practical 
guidelines and ad hoc procedures; 2) Analytical optimization models for idealized 
situations; 3) Meta-heuristic approaches for more practical problems.  

 
This chapter focuses on the BTRNDP literature review. Several studies deserve 

particular attention because they provide a solid basis for this research. A comprehensive 
review of transit network design literature is presented in chronological order. The 
following sections are organized as follows. Practical guidelines and ad hoc procedures 
are introduced first in section 2.2, followed by discussions of application of traditional 
operations research analytical optimization models and meta-heuristics approaches in 
section 2.3. Section 2.4 presents the summary of the literature review and section 2.5 
discusses the difficulties in solving the BTRNDP. Finally, summary and conclusions in 
section 2.6 complete this chapter.  

 

2.2   Practical Guidelines and Ad hoc Procedures 

 
When dealing with the BTRNDP, researchers have to refer to practical guidelines 

for the development of operational feasibility constraints. NCHRP Synthesis of Highway 
Practice 69 (1980) provides suggested rules-of-thumb service-planning guidelines. 
Adapted from NCHRP 69 for particular use for the transit route network design problem, 
Table 2.1 shows selected service-planning guidelines with regard to service patterns and 
service levels. Regarding service patterns, important practical guidelines include service 
area and route coverage, route structure and spacing, route directness–simplicity, route 
length, and route duplication. In terms of service levels, guidelines consist of service 
period, policy headways desirable and minimum service frequency, loading standards, 
and road speeds. Based on the professional judgment and extensive practical experience 
of operations practitioners in the transit agencies in many Canadian and U.S. cities, these 
guidelines emphasize practice and short-term transit planning rather than theory and 
long-range planning. 

 
Table 2.1 provides a summary of practical service planning guidelines that the 

operations planner can apply to the BTRNDP. Although obeying these guidelines is not 
sufficient to provide an optimal solution to the transit route network problem, violations 
of them may result in ineffective or even infeasible operations. On the other hand, 
however, it is also widely accepted that one cannot ensure that this approach can always 
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yield a satisfactorily operationally and economically efficient bus transit route network 
only with the help of scientific tools or systematic procedures. In recent years, many 
researchers and transit planners began to realize this problem.  

 
Recently, many research efforts have been focused on the applications of 

operations research and/or mathematics to the BTRNDP. Generally speaking, considering 
whether route network configurations and their associated frequencies (or other related 
design parameters) are determined in a sequential or in a joint manner, these approaches 
can be categorized as analytical optimization models and meta-heuristic approaches. The 
following chapters will focus on the discussion of these two methods.  

 

2.3   Analytical Optimization Models and Meta-heuristic Approaches 
 

Tradition Operations Research (OR) analytical optimization models were used in 
the early stages of the research on transit route network design problems. Rather than 
determine both the route structure and design parameters simultaneously, these analytical 
optimization models were primarily applied to determine one or several design 
parameters (e.g., stop spacing, route spacing, route length, bus size, frequency of service) 
on a predetermined transit route network structure. The Meta-heuristic approaches 
primarily dealt with simultaneous design of the transit route network and determination 
of its associated service frequencies. 

 
Examples of this traditional operations research analytical optimization model can 

be seen in the work of Newell (1979), Oldfield and Bly (1988) and Leblanc (1987). 
Generally speaking, these analytical optimization models are very effective in solving 
optimization-related problems for networks of small size or with one or two decision 
variables. However, when it comes to the transit route design problem for a network of 
realistic size in which many parameters need to be determined, this approach does not 
work very well. Due to the inherent complexity involved in the BTRNDP and to deal 
with it from a systematic point of view, the meta-heuristic approaches, which do not 
guarantee to find the global optimal solution, were therefore proposed. The following 
sections present the literature on these two methods in chronological order. 
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1. SERVICE PATTERN  
1.1.  Service Area and Route Coverage  

a. Service area is defined by operating authority or agency. 
b. Provide 1/4-mile coverage where population density exceeds 4,000 persons per sq mile or 3 dwelling units 

per acre. Serve at least 90 percent of residents.  
c. Provide 1/2-mile coverage where population density ranges from 2,000 to 4,000 persons per mile (less than 

3 dwelling units per acre). Serve 50 to 75 percent of the population. 
d. Serve major employment concentrations, schools, and hospitals. 
e. Serve area within two-mile radius of park-and-ride lot. 

1.2.  Route Structure and Spacing  
a. Fit routes to major streets and land use patterns; provide basic grid system where streets form grid; provide 

radial or radial-circumferential system where irregular or radial street patterns exists. 
b. Space routes at about 1/2-mile in urban areas, 1 mile in low-density suburban areas, and closer when terrain 

inhibits walking. 
1.3.  Route Directness --- Simplicity 

a. Routes should be direct and avoid circuitous routings. Routes should be not more than 20 percent longer in 
distance than comparative trips by car.  

b. Route deviation shall not exceed 8 minutes per round trip, based on at least 10 customers per round trip. 
c. Generally, there should be not more than two branches per trunk-line route. 

1.4.  Route Length 
a. Routes should be as short as possible to serve their markets; excessively long routes should be avoided. 

Long routes require more liberal travel times because of the difficulty in maintaining reliable schedules. 
b. Route length generally shall not exceed 25 miles round trip or 2 hours.  
c. Two routes with a common terminal may become a through route if they have more than 20 percent 

transfers and similar service requirement, subject to (b). This usually results in substantial cost savings and 
reduces bus movements in the central business district.  

1.5.  Route Duplication 
a. There should be one route per arterial except on approaches to the CBD or a major transit terminal. A 

maximum two routes per street (or two branches per route) is desirable.  
b. Express service should utilize freeways or expressways to the maximum extent possible. 
c. Express and local services should be provided on separate roadways, except where frequent local service is 

provided. 
 
2. SERVICE LEVELS 

2.1.  Service Period 
a. Regular service: 6 a.m. to 11 p.m./midnight, Mon.-Fri. 

       Priorities: weekday commuter, 6-10 a.m. and 3-7 p.m.; weekday, 6 a.m. -7 p.m.;  
       Saturday, 7 a.m. -7 p.m.; Evenings, 7 p.m.-midnight; Sundays, 9:00 a.m. –7:00 p.m.  

b. Owl service: selected routes, large cities-24hr. 
c. Suburban feeder service: weekdays, 6-9a.m., 4-7 p.m. 

(Some services 6 a.m. to 7 p.m.) 
d. Provide Saturday and Sunday service over principle routes except in smaller communities, where Sunday 

service is optional. 
2.2. Policy Headways Desirable --- Minimum Service Frequency 

a. Peak: 20 minutes - urban; 20-30 minutes - suburban. 
b. Midday: 20 minutes - urban; 30 minutes – suburban. 
c. Evening: 30 minutes - urban; 60 minutes – suburban. 
d. Owl: 60 minutes. 

2.3.  Loading Standards 
a. Peak 30 minutes: 150 percent. 
b. Peak hour: 125-150 percent. 
c. Transition period: 100-125 percent. 
d. Midday/evening: 75-100 percent. 
e. Express: 100-125 percent. 
f. Suburban: 100 percent. 
Note: Policy headway may result in considerably lower load factors. 

2.4.  Road Speeds 
a. Central area: 6-8 mph. 
b. Urban: 10-12 mph. 
c. Suburban: 14-20 mph. 

 

Table 2.1 Suggested Service Planning Guidelines (Selected from NCHRP 69, 1980) 
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2.3.1 Lampkin and Saalmans’s research work 

 
Lampkin and Saalmans (1967) uncoupled the design of transit routes and the 

setting of frequencies and tackled them separately. In this paper, they proposed an 
optimization model to determine the routes of the networks first and then to assign 
frequencies to the generated set of routes in a second stage. In the first phase, a heuristic 
algorithm was developed to design the transit network in attempt to transport a maximum 
number of passengers given a fixed OD-matrix while considering trips without transfers 
(i.e., to optimize the passenger-kilometer criteria). The objective of the second stage is to 
allocate service frequencies to the already-generated routes so that the total travel time 
was minimized given the available number of vehicles. Employing a sequential rather 
than a simultaneous approach, some issues regarding construction of timetables and the 
assignment of individual buses to journeys were also discussed using a conventional 
method and a linear programming model respectively. 
 

2.3.2 Rea’s research work 

 
Different than any of previous or later approaches, Rea (1971) didn’t specify an 

objective function, but sought a “satisfactory” solution that meets certain operator 
specified performance levels. A service specific model was developed to determine 
which links should be used to construct routes for a public transport network. In this 
model, Rea employed single path assignment, assuming that all passengers traveling 
between a specific origin-destination pair use the single least weighted cost path under a 
fixed transit demand context. 
 

2.3.3 Silman, Barzily, and Passy’s research work 

 
Silman, Barzily, and Passy (1974) presented a planning method for urban bus 

route systems, trying to minimize the sum of journey time (included allowance for 
transfer times) and discomfort penalties proportional to the number of passengers who 
cannot find seats. A two-staged approach was employed. First, the candidate routes set 
was constructed through several repetitions of a route addition and deletion process. 
Second, the optimal frequencies for a set of already-generated routes were determined by 
a gradient method under the constraints of a given number of available buses. It was also 
pointed out that the optimal value of the objective function in the second phase served as 
a more accurate evaluator of a generated set of routes.  

 

2.3.4 Mandl’s research work 

 
Mandl (1979) employed a single path assignment method, assuming that all 

passengers traveling between a specific origin-destination pair use the single least 
weighted cost path. In this work, Mandl presented a heuristic algorithm to find the 
optimal routes. Also, Mandl assumed a constant frequency on all bus routes (policy 
headway), which made the BTRNDP a much simpler problem. The optimization process 
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was described as follows. A set of feasible routes was examined and possible reductions 
in the average cost using this set were attempted. The new set was compared with the 
older one on the basis of performance and if found better, it was accepted and the search 
procedure repeated until no new improvements could be found.  
 

2.3.5 Dubois, Bell, and Llibre’s research work 

 
Dubois, Bell, and Llibre (1979) categorized the network generation problem into 

three sub-problems, i.e., to choose a set of streets, to choose a set of bus lines, and to 
determine optimal frequencies. Firstly, they proposed a heuristic model to find an optimal 
subset of streets, intending to minimize the total travel time under an investment 
constraint. Then, a model was presented to find the optimal bus lines given the chosen 
street subset. In the last stage, optimal frequencies for the lines of the chosen network 
were determined in a variable demand formulation context in which the total trip matrix 
was estimated first, and then a diversion curve based on expected travel times was used to 
estimate the public transit share from the already predicted total trip matrix. Namely, the 
transit demand between any origin-destination pair was treated as a variable that 
responded to the network design solution. The work included transit trips that required 
transfers. 
 

2.3.6 Newell’s research work 

 
Newell (1979) discussed some issues relating to the optimal design of bus routes. 

He pointed out the nonconvexity of an objective function designed to minimize the total 
cost. He noted that the higher the demand for trips on a route, the larger is the quantity 
and quality of service that one can provide and this distinguishes the bus transit demand 
assignment process from that of the automobile demand assignment process. Theoretical 
analyses of the bus route design were presented but no real-world applications were 
provided. 

 

2.3.7 Hasselstrom’s research work 

 
Hasselstrom (1981) sought to determine a set of optimal bus routes and 

frequencies simultaneously with maximization of the consumer’s surplus in the context 
of variable demand formulations. To obtain this goal, Hasselstrom employed a complex 
two-level optimization model to generate routes by initially assigning desired trips onto a 
network of all possible transit links, then forming routes using normal practice criteria. A 
direct model based on the multiple path assignment method was used to estimate a 
demand matrix that could provide service of high quality throughout the area although it 
offered less than ideal service between some origin-destination pairs. Note that the 
disadvantage of the models presented in this work was that although the bus routes and 
frequencies were determined simultaneously, two different optimization problems had to 
be formulated.  
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2.3.8 Ceder and Wilson’s research work 

 
As mentioned in Chapter 1, Ceder and Wilson (1986) placed the bus network 

design activity in the context of other bus service functions including setting frequencies, 
timetable development, bus scheduling and driver scheduling. A two level 
methodological approach was presented for the design of the bus route network, in which 
the first level considered only the passenger viewpoint and the second level accounted for 
both the passenger and operator viewpoint. Two constraints that were considered 
included minimum frequency and fleet size. The first level was handled by an 
optimization program while the second level relied on heuristic techniques.  

 
Very similar later papers include those from Israeli and Wilson (1991) and Ceder 

and Israeli (1998). In the second paper, they proposed a nonlinear mixed integer 
programming model and formulated the minimization of generalized cost and fleet size as 
their two-level objective functions. An algorithmic method consisting of seven 
components was presented to solve this two-staged model. Assessment of the 
performance of the existing transit network was achieved using a multi-objective 
programming approach from the aspects of operator efficiency and passenger level of 
service. Finally, a small example was suggested for the proposed algorithm, but was not 
actually applied. 
 

2.3.9 Leblanc’s research work 

 
Leblanc (1987) formulated a transit network design model for determining the 

frequencies of existing transit routes. A refinement to the conventional mode-split 
assignment model was introduced, in which transit frequencies for each distinct transit 
line were used to calculate transit access time and transfer times. The author pointed out 
that preliminary computational testing of this model showed that it can predict mode 
choices and link flows more accurately.  
 

2.3.10 Van Nes, Hamerslag and Immers’s research work 

 
Van Nes, Hamerslag and Immers (1988) reviewed existing design methods and 

existing optimization methods and proposed a model to design the public transport 
network while trying to maximize the number of direct trips given a certain fleet size. 
Furthermore, the relation between supply and demand for public transport services was 
examined and a direct demand model was used based on the simultaneous distribution-
modal split model for a variable transit demand formulation. A heuristic solution method 
was presented so that the simultaneous selection of routes, assignment of frequencies and 
the determination of the number of passengers were achieved in this research work.  
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2.3.11 Baaj, Shin and Mahmassani’s research work 

 
Baaj and Mahmassani (1990, 1991 and 1995) proposed an AI-based solution 

approach that consists of three major components. The first part was a route generation 
algorithm (RGA) that generated different sets of routes corresponding to different 
tradeoffs between user cost and operator cost. The second part was a transit route 
network analysis procedure (TRUST) to evaluate a given transit route network as well as 
to set its associated route frequencies. The third part was a route improvement algorithm 
(RIA) to improve the initially generated sets of routes so as to obtain feasible and 
implementable route networks. The code language used for development was LISP.  
 

2.3.12 Shin and Mahmassani’s research work 

 
Shin and Mahmassani (1994 and 1998) proposed essentially the same approach as 

that of Baaj, in which an artificial intelligence (AI)-based search approach guided by 
expert knowledge was used to solve the bus transit route network design problem. 
Realizing the importance of addressing the multi-objective nature of the problem, Baaj 
and Shin selected different weights to examine the total travel time (including walk time, 
wait time, in-vehicle travel time and transfer-related time), total demand satisfied and the 
required fleet size to operate the transit system. The approaches employed in these two 
works consisted of three major procedural components: a route generation procedure, a 
network evaluation procedure, a transit center selection procedure and a network 
improvement procedure. The difference between Shin’s work and Baaj’s work was 
primarily that the later tackled the bus transit network design problem mainly on 
conventional service concepts (namely, providing fixed route, fixed schedule and 
uncoordinated systems, with the same vehicle size on all routes) while the former 
incorporated three additional service design concepts including route coordination, 
variable vehicle size, and demand responsive service. Shin’s two works provided some 
insights to the bus transit route network design problem. However, these works are 
heavily dependent on the experience and judgment of the transit planners and knowledge 
of the existing demand patterns, land use patterns and resource constraints, preclude these 
works becoming viable in real-world applications. 
 

2.3.13 Constantin and Florian’s research work 

 
Constantin and Florian (1995) considered the problem of optimizing frequencies 

of transit lines in a transit network with a goal to minimize the total expected travel and 
waiting time on the network while satisfying fleet size constraints. A nonlinear 
nonconvex mixed integer model was formulated first and was then converted into a bi-
level Min-Min nonconvex optimization problem and a projected (sub)gradient algorithm 
was used to solve this problem. Some computational results were obtained from an 
example city transit network.  
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2.3.14 Pattnaik, Mohan and Tom’s research work  

 
Pattnaik, Mohan and Tom (1998) formulated the urban bus route network design 

problem with fixed transit demand as an optimization problem of minimizing the overall 
cost (i.e., the sum of user total travel time cost and operator cost). Constraints included 
frequency and load factor feasibility. In this paper, a genetic algorithm based model was 
presented to solve the route network design problem so that a route configuration with a 
set of transit routes and associated frequencies could be determined simultaneously. The 
solution methodology consisted of two phases. First, a set of candidate routes competing 
for the optimum solution was generated. Second, the optimum set was evaluated and the 
best solution was chosen using a GA. 
 

2.3.15 Yang, Chien and Hou’s research work 

 
Yang, Chien and Hou (1999) considered the problem of determining an optimal 

feeder bus route in attempt to minimize the sum of user and supplier costs subject to 
geographic, capacity, and budget constraints. It was pointed out that as the number of the 
links increases, the number of feasible bus routes increases dramatically, making the 
transit route network design problem computationally intractable for realistic urban 
networks. Therefore, a genetic algorithm was chosen as the solution methodology to 
determine optimal bus route locations and headways. The presented examples 
demonstrated that the genetic algorithm could provide a solution of good quality. 
 

2.3.16 Lee and Vuchic’s research work 

 
Lee and Vuchic (2000) stated that transit demand should depend on the network 

configuration and associated route frequencies. Therefore, they presented an iterative 
approach to tackle the dynamic characteristics of the transit route network design 
problem. The objective of this approach was to minimize user total travel time subject to 
constraints of frequency on each route. To simultaneously estimate the transit demand 
and generate the optimal transit network, a modal split modeling procedure was 
proposed. Furthermore, adapted from the solution approach used by Rea (1971), an AI-
based heuristic method was presented to solve the transit network design problem along 
with considerations of variable transit demand under a fixed total travel demand. 
Sensitivity analyses examining the relationship between the optimal transit network and 
the design inputs were also presented. 
 

2.3.17 Ngamchai and Lovell’s research work 

 
Ngamchai and Lovell (2001) studied an optimal timed-transfer bus transit route 

network design problem. A model was formulated as the minimization of total cost 
(including total user cost and operator cost) to optimize the bus transit route configuration 
and associated service frequencies. The procedure consisted of three components 
including a route generation algorithm, route evaluation algorithm and route 
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improvement algorithm. Several genetic operators were developed for the genetic 
algorithm, which was the proposed solution approach. Results were presented by 
implementing the GA for a small example network.  
 

2.4   Summary of the literature review 
 
One can see from the above literature review that essentially speaking, there are 

six distinguishing features that characterize the transit route network design problems: 
objective function, demand, constraints, decision variables, passenger behavior, and 
solution techniques. The following provides another perspective of the previous 
literature: 1) Objective Functions: The most widely used objective function is 
minimization of generalized cost (or time) or maximization of consumer surplus; 2) 
Demand: For simplicity, most researchers pursue the optimal transit network with fixed 
demand. However, since transit demand is largely dependent on the transit route network 
structure and its associated frequencies, the BTRNDP with variable demand is preferred 
and considered in this research although computational complexity is added; 3) 
Constraints: Feasibility constraints often include: minimum operating frequencies; a 
maximum load factor; a maximum allowable bus fleet size; maximum and minimum 
limits on route lengths; maximum number of routes; minimum route ridership volumes; 
restriction to headways (policy headway); and/or constraints of the directness of routes as 
measured by circuity factors; 4) Decision Variables: Network route configuration and 
service frequency are the decision variables; 5) Passenger Behavior: Previous transit trip 
assignment models can be divided into two groups, namely, single path assignment and 
multiple path assignment models. Another aspect of passenger behavior that is also of 
interest is the passenger willingness to make transfer trips. In addition to the extra 
passenger waiting time incurred as a result of transfers, a transfer penalty is also often 
incorporated; 6) Solution Methodology: Most approaches rely on practical guidelines and 
are guided by genetic algorithm or artificial intelligence (AI)-based search procedures. 

 
In conclusion, Table 2.2 presents a summary of the existing transit route network 

design models. Note that the following notations are introduced for convenience of the 
descriptions. 
 
*: No explicit objective function, but solutions that meet certain operator-specified performance measure 
requirements are generated   
**: Final bus routes are determined manually 
***: Problem formulation only   
****: Multi-objective approach is considered and generated solutions can reflect different tradeoffs among 
conflicting objectives 
AI: artificial intelligence approach 
GA: genetic algorithm approach 
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2.5 Difficulties in solving the BTRNDP  

 

The literature describing previous solution approaches to the BTRNDP has been 
reviewed. As partly mentioned by several researchers (e.g., Baaj, 1990) and noticed by 
the authors, six main sources of complexity often preclude finding a unique optimal 
solution for the Bus Transit Route Network Design Problem (BTRNDP): 

 
(1) Great difficulty in defining the decision variables and expressing the objective 

function accordingly; 
(2) Non-convexities and Non-linearities are involved in the cost associated with the 

transit network configuration; 
(3) Combinatorial complexity arises from the discrete nature of the route design 

problem, making the BTRNDP an NP-hard problem; 
(4) Many important tradeoffs among conflicting objectives need to be addressed, 

making the BTRNDP an inherently multi-objective problem; 
(5) Spatial layout of routes makes it very hard to design an acceptable and 

operationally feasible set of routes with the need to address many important 
design criteria; 

(6) The nature of variable transit demand even with a given total travel demand 
makes the already-difficult BTRNDP more complex. 
 
These sources of complexity render the solution search space computationally 

intractable and the computational burden of the problem grows exponentially with the 
size of the bus transit network. Figure 2.1 presents a graphical representation of global 
and local optimum for the bus transit route network design problem. It can be seen that as 
the solution space for bus transit route network increases, the number of local optima 
grows. The inherent nonlinear mixed integer and discrete properties make the BTRNDP a 
really complex combinatorial optimization and an NP-Hard problem. Therefore, 
traditional optimization approaches are unable to solve such problems, necessitating more 
intelligent strategies and scientific tools. Heuristic algorithms that are designed by many 
researchers are a necessary approach for solving the BTRNDP. In this context, a hybrid 
heuristic algorithm-based solution methodology for the BTRNDP is proposed in the next 
chapter.  
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Figure 2.1 Global and Local Optimum for the Transit Route Network Design Problem 

 
 

2.6 Summary and Conclusions 
 

Previous approaches to the transit route network design problem can be classified 
into three categories, practical guidelines and ad hoc procedures, analytical optimization 
models for idealized situations, and meta-heuristic approaches for more practical 
problems. Analytical optimization models are primarily applied to determine certain 
design parameters on a predetermined transit route network structure. To determine both 
the route structure and design parameters simultaneously, meta-heuristic approaches for 
practical problems are utilized. A comprehensive literature review of previous analytical 
optimization models and meta-heuristic approaches is conducted in chronological order 
and categorized into six distinguishing features that characterize the optimal transit route 
network design problem: objective function, demand, constraints, decision variables, 
passenger behavior, and solution techniques. 

 
The difficulties in solving the BTRNDP are presented. Six significant sources of 

complexity often preclude finding a unique global optimal solution for the BTRNDP and 
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make this problem an NP-Hard one. Due to its inherent complexity, the heuristic 
algorithms are identified as the necessary approaches for solving the BTRNDP. 
 

The research is intended to model the transit route network design problem and 
propose an appropriate heuristic algorithm-based solution framework to overcome the 
above difficulties. The next chapter presents the model formulations for the BTRNDP, 
followed by introduction of the solution methodology to be used in this research. 
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CHAPTER THREE 

MODEL FORMULATIONS 
 

3.1.Introduction 

 

Generally speaking, the optimal transit route network design involves determining 
a network configuration with a set of transit routes and associated service frequencies that 
achieve a desired objective with a variety of given constraints.  
 

Basically, the problem to be addressed can be defined in general terms as follows. 
For this initial discussion, the transit demand matrix is assumed to be fixed, that is, not 
dependent on the route structure. Therefore, given the transit demand matrix, the highway 
network and spatially represented zone system in a certain city, one must find a set of 
routes that correspond to chosen tradeoffs between user cost, operator cost and 
unsatisfied demand cost. Operator cost refers to the cost of operating the number of buses 
used in the transit network systems and user cost consists of four components, including 
walking cost (the cost of transit users’ access from and to the bus stops), waiting time 
(cost of transit users’ waiting for a bus), transfer cost, and in-vehicle time (time needed 
for transit users’ riding a bus from the origin bus stop to the bus stop near their intended 
destination). The unsatisfied demand cost is the penalty set for those passengers who 
cannot be served by the proposed transit route network. As a result, solution to the 
problem requires design of a system of bus routes and selection of a set of bus 
frequencies on each route. 

 
This chapter is focused on the model formulation of the BTRNDP and is 

organized as follows. First, definitions of terms and notations are introduced in section 
3.2. Second, assumptions of the BTRNDP in this research are presented in section 3.3. 
Third, mathematical notations, objective function and constraints are proposed and 
characteristics underlying the model formulation are described respectively in section 3.4, 
3.5 and 3.6. Fourth, shortcomings of previous approaches are then pointed out in section 
3.7 and a summary in section 3.8 concludes this chapter.  
 

3.2.Definitions of Terms and Notations 

 
Essentially speaking, the public transportation system is described in terms of 

“nodes”, “links” and “routes”. In this section, terms and notations are defined and 
explained in order to provide a basis for the model formulation of the BTRNDP and the 
subsequent chapters. 

 
 A node is used to represent a specific point for loading, unloading and/or transfer 
in a transportation network. Generally speaking, there are three kinds of nodes in a bus 
transit network system: (a) Nodes representing centroids of specific zones; (b) Nodes 
representing road intersections; and (c) Nodes with which zone centroid nodes are 
connected to the network through centroid connectors (called “distribution nodes”). Note 
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that nodes could be real identifiable on the ground or fictitious. For example, nodes of the 
second kind are real while the first and the third are fictitious (these two are also user-
defined). Furthermore, the term “distribution nodes” is introduced especially for the third 
kind of node in this research. A link joins a pair of nodes and represents a particular mode 
of transportation between these nodes, which means that if different modes of 
transportation are involved with the same link, these are represented as two links, say 
walk mode and transit mode. This is natural since the travel time associated with every 
mode specific link is different. A route is a sequence of nodes. Every consecutive pair of 
the sequence must be connected by a link of the relevant mode. The bus line headway on 
any particular route is the inter-arrival time of buses running on that route. A graph 
(network) refers to an entity G = {N, A} consisting of a finite set of N nodes and a finite 
set of A links (arcs) which connect pairs of nodes. A transfer path is a progressive path 
that uses more than one route. 
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Figure 3.1 Graphical Representations for Nodes, Links and Zones 

 
Figure 3.1 gives a graphical representation for nodes, links and zones. In this 

graph, links refer to any pair of nodes except the centroid nodes, (e.g., section from 1 to 

1i  is a link). The intersection nodes always refer to the road intersections. The region that 

is encompassed by nodes 1, 2, 3 and 4 is called a traffic “zone”. Note that a typical 
geographical zone system may be based upon census boundaries to furnish zone 
boundaries on the arterial street system and all land areas are encompassed by streets or 
major physical barriers. The zone centroids are located somewhere near the centers of the 
zones and zone connectors are used to connect these centroids to the modeled network. 
Generally, the Centroid node represents the “demand” center (origin and/or destination) 
of a specific traffic zone. Distribution nodes are the junctions of centroid connectors and 

road links (e.g., 4321  and ,, iiii ). It should be pointed out that centroid connectors are 

usually fictitious and are used only for the sake of convenience for network modeling. In 
addition, it is the distribution nodes that are used as the origins and/or destinations for 
implementation of the shortest path algorithm and k shortest path algorithm. Distribution 
nodes might physically represent bus stops. Furthermore, an important characteristic of 
these centroid connectors is the distances that transit users have to walk to get to the 
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routes that provide service to their intended destinations. Note that the terms, “arc” and 
“link” are used interchangeable.  
 

3.3.Assumptions of the BTRNDP 

 
For simplicity, the following assumptions are made for the BTRNDP in this 

research: 
 

1. For the BTRNDP with fixed demand, the bus transit demand pattern (i.e., transit 
O-D table) is static and constant for all periods of study, while for the BTRNDP 
with variable demand, the total travel demand is fixed but transit demand is 
variable. In any case, bus transit demand and/or total travel demand is symmetric 
(namely, O-D matrices are square and symmetric) in the studied system. 

2. Every bus in the transportation system travels with constant speed on all routes. 
This means that passenger in-vehicle travel time is not subject to the traffic 
conditions on the roads composing the bus transit network. 

3. Passenger access times to bus stops are independent of the transit network 
configurations. 

4. All buses have the same capacity and the same load factor. 
5. Transfers can take place at any distribution node and any intersection node. 

 

3.4.Model Formulation 

 

Consider a connected network composed of a directed graph G = {N, A} with a 
finite number of nodes, N connected by A arcs. The following notations are used. 

 

Sets/Indices: 

 , Nji ∈  Centroid nodes 

 Rrk ∈  Routes 

Nit ∈   t-th distribution node of centroid node i 

 Rtr ⊂  transfer paths that use more than one route from R 

 

Data: 

maxR =   maximum allowed number of routes for the route network; 

N  =   number of centroid nodes in the route network; 

maxD = maximum length of any route in the transit network; 

minD = minimum length of any route in the transit network; 

ijd =bus transit travel demand between centroid nodes i and j; 

maxh =maximum headway required for any route; 

minh =minimum headway required for any route; 

maxL =maximum load factor for any route; 
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P =seating capacity of buses operating on the network; 

W =maximum bus fleet size available for operations on the route network; 

bV = travel speed of buses on the route network; 

wV = passenger walking speed; 

vC = per-hour operating cost of a bus; ($/vehicle/hour) 

vO = operating hours for the bus running on any route; (hours) 

321 C,C,C  = weights reflecting the relative importance of three components including the 

user costs, operator costs and unsatisfied demand costs respectively; 

 

Decision Variables: 

M = the number of routes of the current proposed bus transit network solution; 

mr = the m-th route of the proposed solution, ;,,2,1 Mm L=  

mr
D = the overall length of route mr ; 

mr

ijd =the bus transit travel demand between centroid nodes i and j on route mr ; 

tr

ijd =the bus transit travel demand between centroid nodes i and j along transfer path tr; 

ijDR = the set of direct routes used to serve the demand between centroid nodes i and j; 

ijTR = the set of transfer paths used to serve the demand between centroid nodes i and j; 

mr

ijt = the total travel time between centroid node i and j on route mr ; 

tr

ijt = the total travel time between centroid node i and j along transfer path tr; 

mrh = the bus headway operating on route mr ; (hours/vehicle) 

mr
L = load factor on route mr ; 

mr
T = the round trip time of route mr ;

bV

2
 m

m

r

r

D
T = ; 

mr
N = the number of operating buses required on route mr ;

m

m

m

r

r

r
h

T
N = ; 

mr
Ω = set of links (a, b) assigned to route mr ; 

max

mr
Q = the maximum flow occurring on the route mr ; 





=
b)(a,link over      travel will, routeon  flow D-O ,  if 1,

otherwise 0,
m

r

ijr

ijab

rd m

mβ  

 
 Objective Function: 

 
The objective is to minimize the sum of user cost, operator cost and unsatisfied 

demand costs for the studied bus transit network. The objective function is as follows: 
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 (fleet size constraint) 

R             DD          maxmin ∈≤≤ mr rD
m

 (trip length constraint) 

maxR          ≤M     (maximum numbers of routes constraint) 

 
3.5.Constraints of the BTRNDP 

 
There are five constraints that were considered and included for the BTRNDP in 

this research, namely headway feasibility, load factor, fleet size, trip length, and 
maximum number of routes. Essentially, all these constraints are operator constraints and 
the subsequent sections discuss them. 
 
3.5.1 Headway Feasibility Constraint  

R              hh maxmin ∈≤≤ mr rh
m

 

 
Generally speaking, the most commonly used service frequencies in the transit 

industry can be grouped into three categories: supply frequency, policy frequency, and 
demand frequency: 

 
1) Supply frequency is dependent on the operator’s resources including limited fleet 

size. It is the maximum frequency that the operator can provide under current 
resource and economic constraints.  

2) Demand frequency is determined by transit demand. This frequency is the 
minimum frequency that provides just enough capacity to meet the demand on the 
maximum link flow so that on the other links of this route, the demand is always 
less than the capacity. 

3) Policy frequency can serve as a lower bound and an upper bound for service 
frequency and is usually used by transit operators when the supply frequency is 
much greater than the demand frequency or vice versa. Policy headways are most 
effective in systems that provide service for low-demand areas. However, when 
demand is high, especially during peak hours in large cities, policy headway is 
much less efficient. In this case, the demand frequency should be used. 



 

  30

 
In the real world, as well as in the bus transit route network design process, the 

demand frequency approach is preferred because it reflects the purpose of transit 
operations, which is to provide customer-oriented service. Furthermore, it is also 
expected that if the transit service that is proposed using the demand frequency approach 
falls below a minimum threshold, the policy frequency might be used instead. However, 
the supply frequency seems to be very rarely used. Based on these descriptions, demand 
frequency and the policy frequency are jointly employed.  

 
The headway feasibility constraints shown in this section reflect the necessary 

usage of policy headways on extreme situations. Furthermore, generally speaking, the 
maximum bus line headway and the minimum bus line headway have been chosen as 
user-specified with 60-minutes and 5-minutes being the most commonly used maximum 
and minimum. Demand frequency is described in the following load factor constraint. 
 

3.5.2 Load Factor Constraint  
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P
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This constraint reflects demand frequency. Generally speaking, headway is 

influenced by the demand and the vehicle capacity, which is determined by the seating 
and standing capacity (i.e., standee rule). Note that the maximum flow on the critical link 

of route mr  can be determined as: ∑∑
= =

Ω∈
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max max β . The load factor is often 

used to represent vehicle capacity. A load factor of 1.0 means every seat is occupied and 
higher load factor reflects the user-specified choice to include standing passenger spaces 
as part of the vehicle capacity. 

 
Actually, this constraint usually can be transformed to the headway determination, 

where this minimum frequency can be computed as:  
PL

Qmax
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headway is therefore computed as: 
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3.5.3 Fleet Size Constraint 
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This constraint represents the resource limits of the operating organization. As 

mentioned before, the supply frequency is usually highly dependent on the operator’s 
resources. Namely, the limited fleet size is expected to have a significant impact on the 
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level of service that can be provided by the BTRNDP solution network. This constraint 
guarantees that the optimal network pattern never uses more vehicles than the currently 
available ones.  
 
3.5.4 Trip Length Constraint 

R          DD maxmin ∈≤≤ mr rD
m

 

 
This constraint avoids routes that are too long because bus schedules on very long 

routes are too difficult to maintain. Meanwhile, to guarantee the efficiency of the 
network, the length of routes should not be too small. Furthermore, the thresholds of the 
maximum or minimum lengths of the bus routes are usually user-defined values. 
 

3.5.5 Maximum Number of Routes Constraint 

maxRM ≤  

 
 In solving the BTRNDP, transit planners often set a maximum number of routes, 
which is based on the fleet size and this has a great impact on the later driver scheduling 
work. This constraint is introduced to add realism to the optimal solution network. 
 

The above sections present brief descriptions for the five constraints that are 
considered. There are other possible constraints, which may include: directness of route 
feasibility constraint and minimum route ridership volume constraint. Since these 
constraints are partially correlated with the above constraints, they are not considered in 
this research.  
 
3.6.Objective Function of the BTRNDP 

 
Our objective is to minimize the sum of user cost, operator cost and unsatisfied 

demand cost for the whole network under study as follows: 

)(*C             

)(*O*C*C)(*Cmin 

3

M

1

vv21

∑∑ ∑∑∑ ∑∑∑

∑∑∑ ∑∑∑ ∑

∈ ∈ ∈∈ ∈ ∈∈ ∈

=∈ ∈ ∈∈ ∈ ∈

−−+

++=

Ni Nj TRtr

tr

ij

Ni Nj DRr

r

ij

Ni Nj

ij

m r

r

Ni Nj TRtr

tr

ij

tr

ij

Ni Nj DRr

r

ij

r

ij

ijijm

m

m

m

ijijm

mm

ddd

h

T
tdtdz

 

 
where the first term is the total user cost (including the user cost on direct routes and that 
on transfer paths), the second part is the total operator cost, and the third component is 
the cost resulting from total transit demand excluding those satisfied by a specific 

network configuration. Note that 1C , 2C  and 3C  are introduced to reflect the tradeoffs 

between the user cost, the operator cost and unsatisfied transit ridership, making the 
BTRNDP a multi-objective optimization problem. Generally, operator cost refers to the 
cost of operating the required buses. User cost usually consists of four components, 
including walking cost, waiting cost, transfer cost, and in-vehicle travel cost. Note that 
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there are also tradeoffs among the user cost that transit users always consider when it 
comes to the mode choice and route choice if transit is chosen (see Chapter 6). It should 
also be noted that the model here is formulated for the BTRNDP with fixed transit 
demand. If one tackles the BTRNDP with variable transit demand, only very minor 
modifications are needed. Put another way, given the total travel demand rather than the 
transit trip demand, one needs to determine the transit trip matrix besides the transit route 
configuration and route frequencies. In this context, the first two parts of this model 
remain unchanged. However, the third component should be modified to the total travel 
demand excluding the total transit demand that can be served by the current proposed 
transit route network. Details for the BTRNDP with variable transit demand are presented 
in Chapter 8. The following sections describe these components. 
 
3.6.1 Transit User Costs 

3.6.1.1  Passenger Access Time 

 
Transit users usually have to walk from their origin (e.g., home address) to get to 

the routes that are close to their origin and provide service for them to reach their 
intended destination or vice versa. These distances usually vary among different persons. 
A good proxy for these distances is the lengths of the centroid connectors (namely, the 
distance from the centroid zones to the distribution node where the transit users wait for 
the buses to get to their destination. Obviously, the actual “shortest” distance to their 
intended distribution node depends upon the specific transit network configuration and 
road structure. However, once the network structure is given and the transit network 
configuration is proposed, the passengers’ walking cost can be computed.  
 

3.6.1.2 Transit Users’ Waiting time  
 
Waiting time is route-based and is defined as the amount of time that passengers 

spend at the transit stops. Generally, there are two scenarios describing transit users’ 
waiting time: 1) Non-transfers: Assume that passengers arrive randomly at the bus transit 

stops, the expected waiting time for transit users on route mr  is half of ,
mr

h the transit 

vehicle headway operating on route mr . This assumption is reasonable especially when 

the vehicle headway is short (say, less than 10 minutes). However, according to results 
from previous research (e.g., Fan and Machemehl, 2002), as the headway increases, 
passengers tend to coordinate their arrivals with bus arrivals according to the published 
bus schedule, making the expected waiting time less than the half headway. For 
simplicity, the half headway model for predicting passenger waiting times is employed. 
2) Transfers: It is expected that when transfers occur, the passenger waiting time will 
greatly depend on the schedules of the two connecting routes. It is expected that headway 
coordination can have impacts on waiting times for transfer passengers, namely, the 
absence of headway coordination imposes additional passenger waiting time at that 
transfer node. Perfect coordination, on the other hand, mediates this penalty. Clearly, if 
all routes are coordinated, then transfer penalties are not incurred, so waiting cost consists 
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only of delays at origin stops. For simplicity, uncoordinated transfers are considered in 
this research. 
 

3.6.1.3  In-Vehicle Travel Time 

 
The user in-vehicle travel time is defined as the total passenger riding time in 

transit vehicles. Essentially, this travel time is still route-based and this component can be 
computed as the sum of the travel time on each link along the route. Assume that the 
travel speed of buses on the route network is a user-defined constant. Then, the total 
travel time can be computed as the total distance of this route divided by the bus traveling 
speed. 

 
3.6.1.4 Transit Transfer-Related Time: 

 
Usually, there are two time components when transfers are involved: 1) The user 

transfer walking time, which is defined as the amount of time that passengers spend 
walking from the initial stop to the transfer transit stop; and 2) The user waiting time at 
the bus stop where the second bus is boarded. Note that the first part has been mentioned 
and discussed in 3.6.1.1 and the second part has described in 3.6.1.2. Obviously, the 
transfer-related time is not route-based but it is actually network-based. 

 
It is noted that transit users always want to walk less and avert as many transfers 

as possible. This passenger behavior enforces the need for the transfer penalty in the 
objective function. For simplicity, it is assumed that no more than one transfer can occur 
in this research. A simple equation is introduced here as an example to show how the 
transfer-related total travel time when transit users take a route that needs one transfer is 
computed: Transfer-related-total-travel-time = walking time to 1st bus + waiting time for 
1st bus + travel time on 1st bus + walking time from 1st to 2nd bus + waiting time for 2nd 
bus + transfer penalty + travel time on 2nd bus + walking time to the destination. The 
details of how to compute the user travel time are presented in Chapter 6.  
 
3.6.2 Transit Operator Costs: 

 
As described before, operator cost is directly related to the fleet size, which is 

needed to provide all vehicle trips along the chosen set of routes. The operator cost is 
route-based and is therefore: 

Operator costs = ∑
=

M

1

vv *O*C
m r

r

m

m

h
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where the notations are as introduced before. 
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3.6.3 Unsatisfied Demand Costs 

 
One of the important objectives of the BTRNDP is to provide bus transit service 

to as many transit users as possible. However, in most cases, it is almost impossible to 
provide service for all the travelers who want to use transit. Namely, some traveler 
demands may not be satisfied due to resource constraints. Therefore, minimizing the 
number of unsatisfied demands is included as part of the objective for the BTRNDP.  
 

In the above BTRNDP model formulation, it should be noted that the third 

component, )( ∑∑ ∑∑∑ ∑∑∑
∈ ∈ ∈∈ ∈ ∈∈ ∈

−−
Ni Nj TRtr

tr

ij

Ni Nj DRr

r

ij
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ij

ijijm

m ddd  refers to unsatisfied demand for a 

specific network configuration. Note that the first part represents the total transit demand 
for the current transit network. The second is the total transit demand that can be satisfied 
through the direct route service and the third part is demand that can be met through one 
or more transfers. Therefore, the unsatisfied transit demand can be formulated as shown.  

 
However, to the author’s knowledge, almost all the previous research on the 

BTRNDP did not include the cost of unsatisfied demand. This point is quite obvious 
because the optimal solution to the BTRNDP without considering unsatisfied demand 
costs should be “no service provided at all” and “zero” cost could always be the best 
solution that one can achieve for the minimization problem in this case. Therefore, 
inclusion of unsatisfied demand cost in the objective function is justified.  
 

3.6.4 Multi-Objective Decision Making Problems 

 
Note that the coefficients included in each component of the objective function 

are introduced to reflect different tradeoffs between the inherently conflicting natures of 
the user cost, the operator cost and the unsatisfied demand cost. The tradeoff can be 
described as follows: if one wants to design an optimal transit route network with an 
objective to solely minimize the unsatisfied demand cost, then the operator cost could be 
very high. Conversely, if one wants to minimize the operator cost for a decent network, 
the sum of the user cost and unsatisfied demand cost would be very high because little or 
no transit service is provided. Figure 3.2 gives a graphical representation for these 
tradeoffs. 

 
Based on these considerations, the coefficients are explicitly introduced to 

account for the above-mentioned tradeoffs. Also note that these coefficients are user-
defined since different transit planners many have different design requirements and may 
wish to set different values for these coefficients. Certainly, different user-defined 
coefficients could result in different optimal BTRNDP solutions. Sensitivity analyses are 
conducted and the multi-objective decision making nature is explored in Chapter 9 to 
show tradeoffs inherent in the BTRNDP.  
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Figure 3.2 Graphical Representations for the Tradeoffs Inherent in the User Cost, 

Operator Cost and Unsatisfied Demand Cost 
 

3.7.Shortcomings of Previous Approaches 

 
The literature review in Chapter 2 indicates that, there are several shortcomings in 

the previous research work. The principal shortcomings include: 
 

1. All previous approaches, for simplicity, tackle the trip assignment model by 
implicitly aggregating the transit demand associated with a zone into a single 
point without considering it as being distributed among bus stops (represented 
here as distribution nodes). It is expected that results obtained under the single 
point assumption reduce the solution network to an approximation (if not 
incorrect) for real-world applications.  

 
2. Most approaches ignore the inherent multiple objective nature of the transit route 

network design problem and only consider generalized cost (time) as their single 
objective. In addition to constructing bus routes to ensure the connectivity of all 
(or most) O-D demand pairs, the penalties should be set for the total unsatisfied 
demand and this cost should be incorporated into the multi-objective function for 
the transit network design problem. 
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3. Most approaches consider the BTRNDP in the context of assuming total transit 
demand being fixed. The solution obtained under this assumption is problematic 
since transit demand is largely dependent on the combinations of transit route 
network structure and its associated frequencies. There is a dynamic relation 
between variable demand and the optimal transit route network. To ensure the 
quality of the solution to the BTRNDP, variable demand should be considered. 

 
4. Most approaches fail to incorporate well the practical service panning guidelines 

in the process of solving the BTRNDP. As a result, the route network design and 
its service frequency solutions are sometimes either poor, uneconomical, or even 
operationally infeasible. To ensure a solution of better quality, ad hoc professional 
judgment and practical experience from the practitioners in the transit industry 
need to be incorporated. 

 
5. Most approaches ignore some essential aspects of the problem and therefore rely 

on some shaky procedures. For example, when computing the total travel time, 
focus is primarily on the total in-vehicle travel time without proper consideration 
of the walking time, waiting time, and transfer-related times involved. Transfer 
penalties are usually not carefully considered. As a result, the transit route choice 
assignment model based on the relative travel time of auto and transit is not 
mathematically precise. Careful attention should be given to this problem. 

 

3.8.Summary 

 
This chapter focuses on the model formulations for the BTRNDP. The objective 

of the BTRNDP is formulated as an optimization problem of minimizing the overall cost 
including the user cost, operator cost and unsatisfied demand cost. Since the user cost are 
associated with time and the operator cost are related to money, one must use some 
empirical knowledge to combine user cost and operator cost into a single metric. Some of 
the feasibility constraints include minimum operating frequencies on selected routes, a 
maximum load factor on every bus route, a maximum allowable bus fleet size, and a 
maximum and minimum limit on the route length. Different components of the user cost, 
operator cost as well as the unsatisfied demand cost are discussed.  

 
Principal shortcomings of previous approaches include: 1) failure to consider the 

BTRNDP where the demand should be distributed among the bus stops serving an origin 
(destination) rather than to the centroid (single point); 2) failure to address the inherent 
multiple objective nature of the transit route network design problem; 3) failure to 
consider the transit route network design problem in the context of variable demand; 4) 
failure to incorporate practical service guidelines; and 5) failure to consider essential 
aspects of the problem in the solution process. The proposed solution methodology for 
the BTRNDP is presented in the next chapter. 
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CHAPTER FOUR 

PROPOSED SOLUTION METHODOLOGY 
 
4.1 Introduction 

 

Previous approaches to solve the BTRNDP were discussed and their shortcomings 
were pointed out in the preceding chapter. Due to the inherent complexity in the 
BTRNDP and its NP-hard nature that were presented in Chapter 2, using traditional 
analytical optimization models to solve this problem is difficult. In this chapter, several 
solution methodologies that account for these characteristics of the BTRNDP are 
presented. It explicitly incorporates several practical guidelines and industry rules of 
thumb and uses a heuristic-based mathematical tool to search the solution space. Building 
on, adapting and modifying several previous approaches, this approach offers a more 
comprehensive transit route network design procedure. 

 
The proposed solution framework consists of three main components: an Initial 

Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible routes 
incorporating practical guidelines that are commonly used in the bus transit industry; a 
Network Analysis Procedure (NAP) that assigns the transit trips, determines the service 
frequencies on each route and computes many performance measures; and a Heuristic 
Search Procedure (HSP) that guides the search techniques. Not that five heuristic 
algorithms, including the Genetic Algorithm (GA), Local Search (LS), Simulated 
Annealing (SA), Random Search (RS) and Tabu Search (TS) algorithms, as well as the 
Exhaustive Search Method (ESA) as a benchmark for the BTRNDP with small network, 
are proposed to select an optimum set of routes from the huge solution space. This 
chapter is organized as follows. First, section 4.2 presents the solution framework and its 
distinct features. Section 4.3 offers an overview of the ICRSGP, followed by discussions 
of the NAP in section 4.4. Section 4.5 presents the rationale for choosing these six 
algorithms as solution techniques and a brief literature summary of each algorithm is 
provided. Finally, this chapter concludes with a summary in section 4.6. 
 
4.2 Proposed Solution Framework and its Distinct Features 

 
Three main features of the solution methodologies proposed in this research 

distinguished this work from the previous ones: 1) this solution approach explicitly 
incorporates several practical guidelines and industry rules of thumb. However, unlike 
previous approaches, this approach is not heavily dependent on user experience but is 
scientifically guided by the heuristic-based mathematical tool to search the optimal 
solution space intelligently in a reasonable time domain; 2) this approach, for the first 
time, employs a multiple path trip assignment model in the NAP and explicitly considers 
transfer and long-walk related characteristics among routes under a much more real 
situation (i.e., at a microscopic “centroid-connector-link” level); 3) this approach 
explicitly considers the network analysis procedure for the BTRNDP under two different 
scenarios, namely fixed and variable transit demand and uses an iterative procedure to 
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obtain route frequencies and total transit trip demand. Note that this chapter discusses the 
solution methodology solely for the BTRNDP with fixed demand and that for the 
BTRNDP with variable transit demand is presented in details in Chapter 8. 

 
The solution framework employed in this research is presented in Figure 4.1. 
 

4.3 The Initial Candidate Route Set Generation Procedure 

 
The initial candidate route set generation procedure (ICRSGP) is a design 

algorithm that configures all candidate routes for the current transit network. It requires 
the user to define the minimum and maximum route lengths. The knowledge of the transit 
planners has a significant impact on the initial route set skeletons, that is, different user 
requirements result in different route set solution space. The ICRSGP relies mainly on 
algorithmic procedures including the shortest path and k-shortest path algorithms and is 
guided by user-defined values that incorporate the knowledge and expertise of the transit 
planners. Furthermore, it should be noted that the ICRSGP remains the same for both 
fixed and variable demand, namely, given the user-defined minimum and maximum route 
length constraints, the same set of candidate feasible routes is generated for the BTRNDP 
with either fixed or variable demand. The details of the ICRSGP are discussed in Chapter 
5 and an illustrative application to a small network is also presented. 

  Initial Candidate Route Set Generation Procedure (ICRSGP)

generate all candidate routes filtered by some user-defined

feasibility constraints in the current bus transit network

          STOP

Output the optimal transit route set, associated route frequencies

and related performance measures

User Input

  Heuristic Search Procedure (HSP)

generate starting transit networks

update proposing solution transit route

networks based on the NAP results using a

heuristic algorithm

  Network Analysis Procedure (NAP)

assign transit trip demands

determine route frequecies

compute node-level, route-level and

network-level descriptors

compute system performance measures

 
Figure 4.1 Flow Chart of the Proposed Solution Methodology 
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4.4 The Network Analysis Procedure 

 
Basically speaking, the network analysis procedure (NAP) is a bus transit network 

evaluation tool with the ability to determine route frequencies. To accomplish these tasks 
for the BTRNDP with fixed demand, NAP employs an iterative procedure that seeks to 
achieve internal consistency of service frequencies on each route in the whole proposed 
solution transit network. Furthermore, the iterative procedure in the NAP contains two 
major components, namely, a transit trip assignment model and a frequency setting 
procedure. For the BTRNDP with variable demand, an additional procedure, namely a 
transit demand equilibration procedure is added and described in Chapter 8.  

 
Once each possible candidate route is generated by the ICRSGP, the solution 

space is formed. Then, as a specific set of routes are proposed as the solution transit route 
network using any of the employed HSP, the NAP is called to evaluate the alternative 
network structure and to determine associated route service frequencies. The whole 
process in the NAP can be described as follows. First, an initial set of route frequencies 
are specified because it is necessary before the beginning of the trip assignment process. 
Then, the transit trip assignment model is utilized to assign the passenger transit demand 
matrix to a given set of routes associated with a particular network configuration. The 
service frequency on each route in this transit route network system is then computed, 
which is used further as the input frequency for the next iteration in the frequency setting 
procedure if these frequencies are considered to be quite different from the previous input 
frequencies by a user-defined parameter. The whole process won’t be terminated until the 
internal consistency of route frequencies is achieved. As a result, the frequency on a 
given set of routes associated with a particular network configuration is determined. For 
any given route network configuration and its associated service frequency, many system 
performance measures that can reflect the quality of service are computed. Also, the user 
cost (i.e., the cost experienced by the transit users), the operator cost (i.e., the fleet size) 
and the transit demand unsatisfied by this proposed transit network are determined. As a 
result, the optimal route configuration for a particular network and its route frequencies 
are then obtained by choosing the one that achieves the minimum objective function 
value.  

 
Furthermore, as mentioned, two different network analysis procedures (NAP) are 

designed for the BTRNDP, with fixed demand and that with variable demand, 
respectively. The main difference between these two procedures is that the transit 
demand equilibration procedure is added to the second one. The NAP in this research 
differs from the previous approaches in three main features. First, for the first time, the 
NAP considers the transit demand at the distribution node level rather than at an 
aggregate single node level. Second, the NAP employs a multiple path transit assignment 
model that explicitly considers transfer and long-walk related characteristics among 
routes and uses an iterative procedure to obtain route frequencies at a microscopic 
“centroid-connector-link” level. Third, the NAP can explicitly consider the variable 
transit demand characteristics for the BTRNDP.  
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Details of the NAP are presented in Chapter 6 and these include the algorithmic 
skeleton of the NAP, the transit trip assignment model and the frequency setting 
procedure. Also included is the computation of many system performance measures that 
reflect the quality of service, determination of the transit user cost, the operator cost (i.e., 
the fleet size) and the unsatisfied demand cost. 

 
4.5 Solution Techniques 

 
Due to the inherent complexity and NP-hard nature of the BTRNDP, traditional 

optimization methods for capturing the global optimum solution are not applicable for 
realistic, large-scale networks. As a result, several heuristic methods including Genetic 
Algorithms (GA), Local Search (LS), Simulated Annealing (SA), Random Search (RS) 
and Tabu Search Algorithms (TS) are employed to solve the BTRNDP. Among many 
available methods, these algorithms are particularly well suited to this type of the 
problem because they allow efficient reformulation of the problem, making the solution 
process computationally more efficient than other approaches. In addition, to examine the 
quality of the solution produced by GA, LS, SA, RS and TS, an Exhaustive Search 
Method (ESM) is also used for the BTRNDP with small network. These algorithms are 
implemented and compared using comprehensive experimental networks, and related 
issues and characteristics also are identified, in Chapter 9. 

 
As mentioned, the first five heuristic algorithms develop good local (possibly 

global) solutions. Figure 4.2 presents an illustration of the solution approaches. For a 
specific route set size (i.e., the number of routes), these algorithms find a local optimum 
for the current transit network and this local optimal solution is appended to a local 
optimum set. As the route set size changes, another local optimum is found using these 
algorithms and the local optimum set is updated. The same process repeats until a user-
defined limit (e.g., the number of local optima found reaches the maximum value). The 
best solution in the local optimum set is selected as the optimal solution to the BTRNDP. 
Although different from the exhaustive search method, which guarantees the global 
optimal solution (this process might take a huge amount of time), these heuristic 
algorithms can find a very good solution (a decent transit route network) in a reasonable 
time domain.  

 
The subsequent sections present a brief literature review of the GA, LS, SA, RS, 

TS and ESA algorithms step by step. Details of the applications of these six algorithms to 
the BTRNDP, both with fixed and variable transit demand, are discussed in Chapter 7 
and Chapter 8, respectively. Comprehensive experiments and numerical results are 
presented in Chapter 9. 
 
4.5.1 Genetic Algorithm 

 
The first papers in the first literature dealing with GAs are those of Holland 

(1975) and Schwefel (1981). More recently, Goldberg (1989), Chambers (1995) and 



 

  41

Michalewicz (1999) have discussed several applications of GAs in optimization 
problems. Generally speaking, a GA is a local search algorithm, which starts from an 
initial collection of strings (a population) representing possible problem solutions. Each 
string of the population is called a chromosome, and has an associated fitness function 
that contributes to the generation of new populations by means of genetic operators 
(called reproduction, crossover and mutation, respectively). Every position in a 
chromosome is called a gene and its value is an allelic value. This value may vary 
according to an assigned allelic alphabet; the most common allelic alphabet is {0,1}. At 
each generation, the algorithm uses the fitness function values to evaluate the survival 
capacity of each string i of the population using simple operators in order to create a new 
set of artificial creatures (a new population) which tries to improve on the current fitness 
function values by using pieces of the oldest ones. Figure 4.3 shows a simple layout of a 
GA implementation.  
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Figure 4.2 Approaches for Finding the Local Optimum for the BTRNDP 

 
Before describing the generic operators in detail, a number of differences between 

this method and other local search techniques can be listed as follows:  
 

• GA operates with codes of the parameter set and not with the parameters 
themselves;  

• GA searches for a population of points and not a single point;  

• GA uses objective function information and not derived or auxiliary 
knowledge; 

• GA uses probabilistic not deterministic transition rules.  
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Figure 4.3 Algorithm Skeleton of a GA Implementation 

 
These particular aspects make this method applicable in a very general way, 

without the limitations imposed by other local search methods (i.e., continuity, derivative 
existence, and unimodality). Moreover, it makes possible the exploitation of consequent 
information from more points in the domain of the solutions, reducing the probability of 
finding false peaks, i.e., traps or local optima.  

 
The working method of genetic algorithms is very simple and involves nothing 

more than copying strings or swapping partial strings. The simplicity of the operations 
and the ability to find good solutions are two characteristics that make this method very 
attractive. In the next subsections, the GA representation is first presented and the 
selection, crossover and mutation operators are then discussed. 
 

4.5.1.1 Representation 

 

Without loss of generality, it is assumed that we wish to minimize a function of k 

variables, RRxxxf k

k →   :),...,,( 21 . And suppose further that each decision variable ix  
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can take values within a domain RbaD iii ⊆=   ],[  and 0),...,,( 21 >kxxxf  for all 

ii Dx ∈ .   

 
In the process of implementing a GA, the first important thing to do is to set up an 

encoding method to represent these variables. To optimize the function f , one should 

encode decision variables into binary strings meeting some desirable required precision. 
For example, if the required precision is five places after the decimal point, one should 

cut the domain iD  into 510*)( ii ab − equal size ranges. The minimum required bits mi 

for the variable ix  could be calculated by the following equations: 
 

1210)(12 51 −≤−<−− ii m

ii

m
ab  

 

Then, a representation of any variable ix  coded as a binary string of length im  

can satisfy the precision requirements. Mapping from a binary string to a real decimal 

number for any variable ix  can be interpreted as follows: 

12

)(
)   (

−

−
+=

im

ii
iii

ab
mofvaluedecimalax                                               (1) 

where im  is the binary string representation of ix .  

For each chromosome (as a potential solution), we would have a k-dimensional 

vector ),...,,( 21 ki xxxS = . Therefore, it is expected that the representation of a single 

solution would have a binary string of length ∑
=

=
k

i

imm
1

. The first 1m  bits map into a 

value within the range ],[ 11 ba , the next 2m  bits map into a value within the range 

],[ 22 ba  and so on; the last km  bits map into a value from the range ],[ kk ba .  

 
To initialize a population, one can set a pre-specified number (pop_size) of 

chromosomes randomly or use his/her available knowledge to arrange these sets of initial 
solutions. Then, the rest of the algorithm is straightforward: we can evaluate each 
chromosome using the objective function f  based on the decoded sequences of variables 

in each generation, select a new population with respect to the probability distribution 
based on the fitness values, and alter the chromosomes in the new population by mutation 
and crossover operators. After a certain number of generations, if no further improvement 
is observed, the current kept best chromosome represents an optimal (possibly the global) 
solution. Or, one can also stop running the algorithm after a fixed number of iterations 
depending on speed and resource criteria.  
 

4.5.1.2 Selection 

 
In most practices, a roulette wheel, a fitness-proportional approach in essence, is 

adopted for the selection process, which, generally speaking, begins by spinning the 
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roulette wheel pop_size times and each time a single chromosome is selected for a new 
population. The specific procedure can be described as follows: 

• Calculate the fitness value )),...,,((   )( 21 kii xxxSSobj =  for each chromosome 

)_ ,,2 ,1(   sizepopiS i L= ; 

• Get the total summation of fitness value of the population ∑
=

=
sizepop

i

iSobjT
_

1

)( ; 

• Calculate the probability of a selection ip  for each chromosome 

)_ , ,2 ,1(   sizepopiS i L=     TSobjp ii )(= ; 

• Calculate the cumulative probability of iq  for each chromosome 

)_ , ,2 ,1(   sizepopiS i L=     ∑
=

=
sizepop

i

ii pq
_

1

; 

• Generate a random number r within the range [0,1); 

• If 1qr ≤ , then select the first chromosome 1S ; else select the th-i  

chromosome )_(2   sizepopiS i ≤< such that ii qrq ≤<−1 . 

 

4.5.1.3 Crossover 

 

Since the principles involved in the one-cut-point method are essentially the same 
as that in the two-cut-point method, the one-cut-point method is chosen to illustrate the 
crossover process here. Basically, crossover with the one-cut-point method selects 
randomly the cut-point and then the offspring is generated by exchanging the right parts 

of two parents. Given the probability of crossover cp  as one of the parameters of a 

genetic system, the number sizepoppc _⋅ of chromosomes is expected to undergo the 

crossover. And the crossover procedure can be described as follows: 

• Set 1=i ; 

• Generate a random number r within the range [0,1); 

• If cPr ≤ , then select chromosome iS  for crossover; 

• 1+= ii ;  

• Repeat the above steps until sizepopi _> .  

 

If the number of selected chromosomes obtained above is even, then they can be 
easily and randomly mated. If the number of selected chromosomes is odd, one can either 
randomly add one extra chromosome or randomly remove one selected chromosome. For 
each pair of these selected chromosomes, we generate a random integer number pos 

within the range ]1 , ,2 ,1[ −mL , where m  is the total length of the bits in a chromosome 

as mentioned before. Obviously, the pos indicates the position of the crossing point and 
the crossover procedure can be illustrated as follows: 



 

  45

( ) ( )
( ) ( )

( ) ( )
( ) ( )





==

==
⇒







==

==

+

+

+

+

vxbbcccB

yuccbbbB

yxcccccB

vubbbbbB

mpospos

mpospos

mpospos

mpospos

, 

, 

, 

, 

121

'

2

121

'

1

1212

1211

LL

LL

LL

LL
 

 

4.5.1.4 Mutation 

 
Mutation is performed on a bit-by-bit basis. That is to say, every bit in the whole 

population has a chance to undergo mutation, i.e., change from 0 to 1 or vice versa, with 

the probability being equal to the mutation rate mp . And it is expected that 

sizepopmpm _⋅⋅  bits will be mutated. The whole mutation procedure can be described 

as follows: 

• Set 1=i ; 

• Generate a random number )1 ,0[∈r  for each bit; 

• If mpr ≤ , mutate the bit;  

• 1+= ii ; 

• Repeat the above steps until sizepopmi _⋅> . 

 

If mp  is chosen to be small, many bits (genes) that might be usefully chosen for 

further improvements will be rarely examined. On the other hand, if mp  is chosen to be 

too big, the offspring will lose their resemblance to their parents due to random 
perturbations, and as a result, the GA will lose the ability to learn from the search history 
(see Lee and Machemehl, 1998). Therefore, this probability parameter needs to be 
carefully chosen. 
 

4.5.2 Local Search 

 
Local search has a long tradition in combinatorial optimization. An instance of a 

combinatorial optimization problem typically consists of a set of feasible solutions and a 
cost function over the solutions. The problem consists in finding a solution with the 
optimal cost among all feasible solutions. As mentioned, generally the problems 
addressed are computationally intractable, thus approximation algorithms have to be 
used. One class of approximation algorithms that has been successful in spite of their 
simplicity are local search methods. Local improvement ideas have found application in 
many domains, including constraint satisfaction, as well as routing and scheduling.  

 
Local search is based on the concept of a neighborhood. A neighborhood of a 

solution p is a set of solutions that are in some sense close to p, for example because they 
can be easily computed from p or because they share a significant amount of structure 
with p. It is also known that the neighborhood generating function may, or may not, be 
able to generate the optimal solution.  
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A typical local search method, which is widely used to solve combinatorial 
optimization algorithms, can be instantiated in four steps: 1) Selection of an initial 
feasible solution; 2) Generation of a local neighborhood; 3) Cost function to minimize; 
and 4) Selection of the next point. During the general implementation process, the local 
search method generally starts with a complete, but presumedly sub-optimal solution, and 
then checks the “neighborhood” of that solution to see if any of them is better. If the 
answer is positive, then this improved solution is adopted as the current best choice and 
the same process repeats. If not, then the local search can either give up, assuming the 
current solution is good enough (local optimum). Or, it can pick a totally random solution 
to start again with this newly-chosen starting point. Figure 4.4 shows the skeleton for the 
local search method.   

 

Any improved

solution?
Update the current solution

Construct an initial solution

Yes

No

Construct neighborhood

Local optimal solution

 
Figure 4.4 Skeleton for the Local Search Method 

 
As can be seen, the basic idea of local search is the iterative improvement process, 

which starts with an initial solution and searches a neighborhood of the solution for a 
lower cost solution. If such a solution is found, it replaces the current solution and the 
search continues. Otherwise, the algorithm returns a locally optimal solution. Figure 4.5 
gives a graphical depiction for the search process in the local search method. 

 
Note that there are several variations of this basic algorithm. Undoutedly, the 

most dominant factor that might affect the quality of the solution is how to define the 
“neighborhood”, i.e., the nearby solutions. Obviously, a different definition rule could 
result in a different solution of different quality. This research comes up with an efficient 
approach to define the neighborhood and all the details are presented in Chapter 7 and 
Chapter 8.  
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Figure 4.5 Graphical Representations for the Search Process in the Local Search Method 

 
Note that the local search method obtains local optima, not necessarily the global 

optimum. Also, it can be seen that the local search method might get stuck after a certain 
number of steps and no local improving move can be achieved. One way to fix this 
problem and to improve the quality of the solution is to restart the search from several 
initial points and choose the best of the local optima reached from them. Certainly, the 
best solution should be remembered for each random restart.  

 
In all, it is stressed that the appeal of the local search method to solve 

combinatorial optimization relies on its simplicity and good average-case behavior. 
Therefore, it is employed as one of the solution approaches for the BTRNDP and its 
implementation details are presented later. 
 

4.5.3 Simulated Annealing 

 
As one of the widely used heuristic approaches (including genetic algorithm and 

local search) to solve combinatorial problems, simulated annealing (SA) can produce a 
good though not necessarily global optimal solution within a reasonable computing time. 
Essentially speaking, simulated annealing can be regarded as a “Randomized Variation” 
of the local search method although more advanced than the local search method because 
it attempts to minimize the probability of being stuck in a low-quality local optimum.  
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As mentioned in the previous section, a simple form of local search (a descent 
algorithm) starts with an initial solution perhaps chosen at random. A neighbor of this 
solution is then generated by some suitable mechanism and the change in cost is 
calculated. If a reduction in cost is found, the current solution is replaced by the 
generated neighbor; otherwise the current solution is retained. The process is repeated 
until no further improvement can be found in the neighborhood of the current solution, so 
the descent algorithm terminates at a local minimum.  

 
Although the local search method is simple and quick to execute, the 

disadvantage of the method is that the local minimum found may be far from any global 
minimum. In this sense, simulated annealing is introduced to alleviate the shortcomings 
of the local search. Essentially speaking, simulated annealing is a Monte Carlo simulation 
based search algorithm. The term “simulated annealing” is derived from the process of 
heating and then cooling a substance slowly to finally arrive at the solid state. In 
simulation, a minimum of the cost function corresponds to this ground state of the 
substance. The whole search algorithm simply mimics the physical process as follows. In 
the early stages of the execution, the temperature is high, which results in a higher 
probability for jumping to occur more frequently. In this case, the frequent jumping, 
which occurs as a way of avoiding local minima, may produce a higher probability of a 
poor solution. Put another way, simulated annealing selects the next point randomly. If a 
lower cost solution is found, it is selected. If a higher cost solution is found, it has a non-
zero selection probability. The function that governs the behavior of the acceptance 
probability is called the cooling schedule. As the execution time elapses, the temperature 
decreases and the cooling schedule reduces the frequency of jumping. The simulation 
process terminates after a number of successive executions with no improvements, and 
returns the best solution found. The following figure provides an illustration of the SA 
algorithm in pseudo-code: 

 
Basically, as can be seen, the annealing schedule consists of 1) the initial value of 

T ; 2) a cooling function; 3) the number of iterations )(tN  to be performed at each 

temperature and 4) a stopping criteria to terminate the algorithm. In SA, the algorithm 
attempts to avoid entrapment in a local optimum by sometimes accepting a neighborhood 
move that increases the value of the objective function. The acceptance or rejection of an 
uphill move is determined by a sequence of random numbers, but with a controlled 

probability. The probability of accepting a move which causes an increase δ  in f  is 

called the acceptance function and is normally set to exp( T/δ− ) where T  is a control 
parameter which is analogous to temperature in physical annealing.  
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Simulated Annealing algorithm; 

Select an initial state Si ∈ ;  

Select an initial temperature 0>T ; 

Set temperature change counter 0=t ; 

Repeat 

Set repetition counter 0=n  (number of iterations to be performed at each temperature) 

Repeat 

Generate state j, a neighbour of i; 

Calculate )()( ifjf −=δ ; 

If 0<δ  then ji =  

else if random (0,1) < exp( T/δ− ) then ji = ; 

n=n+1; 

until )(tNn = ; 

t=t+1; 

)(tTT = ; 

until stopping criteria is true. 
 

Figure 4.6 Simulated Annealing Algorithm in Pseudo-code (Adapted from Eglese, 1990) 
 

Note that it is the probabilistic nature of the simulated annealing algorithm that 
guarantees the exploration of other solution spaces instead of terminating at the first local 
optimum. It can be proven that simulated annealing converges asymptotically to the 
optimal solution. However, such convergence requires exponential time, which means 
that the only drawback of simulated annealing is the long execution time to obtain high-
quality solutions. That is to say, to achieve the global optimum solution using simulated 
annealing, the price is a slower cooling procedure and more iterations at each temperature 
level. However, it is widely accepted that simulated annealing can provide a near-optimal 
or at least local optimal solution within a reasonable time domain. Therefore, simulated 
annealing is employed as one of the solution approaches for the BTRNDP. The 
associated details using SA to solve the BTRNDP both with fixed and variable transit 
demand are presented later in this research. The performance comparisons between all 
these algorithms are presented in Chapter 9.  
 

4.5.4 Random Search 

 
Essentially speaking, random search is a Monte Carlo based simulation 

optimization method. When it is used for the BTRNDP, at each step for a specified route 
set size, the method randomly chooses a solution set from the whole solution space and 
evaluates the generated solution set by comparing the objective function value to 
previous steps. The optimal solution is achieved when the solution with the least 
objective function value (the least sum of total user cost, operator cost and unsatisfied 
demand cost) is found. Since this method is simply and easy to implement, random 
search is employed as one of the solution approaches in this research. Figure 4.7 presents 
the skeleton of this method in pseudo-code. 
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Random Search Algorithm; 

Randomly generate an initial solution Si ∈ ;  

Set the number of iterations 0=t ;  

Evaluate the solution i and set the optimal objective solution )(iO ;  

Repeat 

Generate a diffrent Sj ∈ ; 

If the )()( iOjO < , then ji = ; 

t=t+1; 
until stopping criteria is true. 

 

Figure 4.7 Random Search Algorithm in Pseudo-code 
 

4.5.5 Tabu Search 

 
The Tabu Search has traditionally been used on combinatorial optimization 

problems and frequently has been applied to many integer programming problems, 
routing and scheduling, traveling salesman and related problems. The basic concept of 
Tabu Search is presented by Glover (1977) who described it as a meta-heuristic 
superimposed on another heuristic. The overall approach is to avoid entrainment in cycles 
by forbidding or penalizing moves which take the solution, in the next iteration, to points 
in the solution space previously visited (hence “tabu”). The Tabu Search begins by 
marching to a local minima. To avoid retracing the steps used, the method records recent 
moves in one or more Tabu lists. The original intent of the list was not to prevent a 
previous move from being repeated, but rather to insure it was not reversed. The Tabu 
lists are historical in nature and form the Tabu search memory. The role of the memory 
can change as the algorithm proceeds. For initializations at each iteration, the objective is 
to make a coarse examination of the solution space, known as “diversification”, but as 
locations of the candidate solutions are identified, the search is more focused to produce 
local optimal solutions in a process of “intensification”. In many cases, various 
implementation models of the Tabu Search method can be achieved by changing the size, 
variability, and adaptability of the Tabu memory to a particular problem domain.  

 
The chief limitation of a local search method (i.e., the hill climbing procedure) is 

that it might get stuck at a local optimal point that might be far from the global optimum. 
As one of the heuristic approaches to overcome this shortcoming, Tabu Search (TS) 
algorithm emulates an intelligent attitude by using an adaptive memory and can therefore 
avoid being entrapped at the local optimum with the aid of a memory function. It is an 
intelligent search technique that hierarchically explores one or more local search 
procedures in order to search quickly for the global optimum. 

 
Tabu search explores the solution space by moving from a solution to the solution 

with the best objective function value in its neighborhood at each iteration even in the 
case that this might cause the deterioration of the objective. (In this sense, moves are 
defined as the sequences that lead from one trial solution to another.) As mentioned, to 
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avoid cycling, solutions that were recently examined are declared forbidden or “tabu” for 
a certain number of iterations and associated attributes with the tabu solutions are also 
stored. The tabu status of a solution might be overridden if it corresponds to a new best 
solution, which is called “Aspiration”. There are groups of Tabu Search methods that use 
either short term memory or intermediate and long term memory strategies. The recency-
based memory functions require specifying the tabu tenure m and the frequency-based 
memory generally adds long term memory. 

 
Several features inherent in the TS also might include the diversification and 

intensification procedure. The diversification strategy use counts to diversify search and 
drive to new regions by penalizing moves with greater frequency counts, preserving the 
aggressiveness of the search. That is to say, it undertakes to generate solutions that 
embody compositions of attributes significantly different from those encountered 
previously during the search process. Conversely, keeping track of high quality local 
optima gives rise to complementary strategy of intensification. Put another way, the 
intensification strategy intends to create solutions by aggressively encouraging the 
incorporation of “good attributes”. Intensification and diversification are fundamental 
cornerstones of longer term memory in tabu search. 

 

Let the set )(xS  define a “neighborhood function” that consists of those moves 

from the current solution x  to a next trial solution. Let T  denote a subset of S that 
contain elements that are called “tabu moves” and “OPTIMUM” as the objective 
evaluation function. A basic version of the Tabu Search Algorithm without “aspiration” 
can be presented as follows: 

 

Tabu Search Algorithm; 

Step1. Select an initial Xx ∈  and let xx =*
. 

                         Set the iteration counter k = 0. 

                         Set the Tabu set φ=T . 

Step2. If φ=− TxS )( , go to Step 4.  

           Otherwise, set k = k +1. 

           Select TxSsk −= )(  such that ))(|)((OPTIMUM)( TxSsxsxsk −∈= . 

              Step3. Let )(xsx k= . 

           If )()( *xcxc < , where 
*x  denotes the best solution currently found, let xx =*

. 

Step4. If the number of iterations has reached the maximum user-defined iterations either  

           in total or since 
*x  was last improved, or if φ=− TxS )(  upon reaching this step  

           directly from Step 2, stop.  

           Otherwise, update Tabu set T  and associated attributes and return to Step 2. 

 
Figure 4.8 Basic Tabu Search Algorithm in Pseudo-code (Adapted from Glover, 1989) 
 

As mentioned by Glover (1989), by the preceding form of OPTIMUM, each 

execution in Step 2 moves from the current solution x  to an )(xs that yields the greatest 
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improvements, or if not improved, the least disimprovement in the objective function, 
subject to the restriction that only non-tabu moves are allowed. Put another way, tabu 
search algorithm makes a “best available move” at each step (like the greedy algorithms). 
Especially, when the “aspiration” is considered in a more advanced tabu search 
algorithm, if no improvements can be found in the current non-tabu lists but 
improvements can be made in the tabu moves lists, then one can allow tabu moves and let 
it override the rules. Since the tabu search algorithm is problem-specific, for simplicity, 
probably one shouldn’t take too much time describing the general concepts. However, 
details of the application of this algorithm for the BTRNDP are presented in Chapter 7 
and Chapter 8.  

 
The difference between SA and TS algorithms is that TS exploits memory, which 

is absent from the simulated annealing algorithm. That is to say, TS emphasizes guiding 
the search by reference to multiple thresholds including tenures for tabu-active attributes 
and conditional stipulations of aspiration criteria. Conversely, SA relies on several 
parameters as mentioned before such as temperature, stopping criteria and randomly 
rather than deterministically tackles the neighbor solutions. 

 
In addition, the difference between GA and TS algorithms is that GA tracks 

history over subpopulations and selects the parents in each generation based on the 
objective functions and alters the new solutions randomly through crossover and 
mutation procedures. On the contrary, TS introduces memory and aspiration strategy and 
employs the intensification and diversification procedure to intelligently search the 
neighbor solutions. As one of the advanced heuristic methods, Tabu Search is generally 
regarded as a method that can provide a near-optimal or at least local optimal solution 
within a reasonable time domain for the BTRNDP.  

 

4.5.6 Exhaustive Search 

 
The Exhaustive Search Method (ESM) is an approach to search for the global 

optimal solution over the whole solution space. By simply enumerating and comparing 
the objective function for all possible solutions, the global optimal solution, which has 
the least objective function (the least sum of total user cost, operator cost and unsatisfied 
demand cost) is found. Figure 4.9 presents the skeleton of this method in pseudo-code. 

 

Exhaustive Search Algorithm; 

Generate an initial solution Si ∈ ;  

Evaluate the solution i and set the optimal objective solution )(iO ;  

Repeat 

Generate a different solution Sj ∈ ; 

If the )()( iOjO < , then ji = ; 

until all the solutions in the solution space are traversed. 
 

Figure 4.9 Exhaustive Search Algorithm in Pseudo-code  
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Note that the ESM can always be used, but evaluating all possible solutions can 
become prohibitively time consuming if the solution space is large. As a result, it is 
expected that ESM can only be applied for the BTRNDP when the network size is small, 
which can be illustrated as follows. Suppose that all feasible routes (the number of which 

is represented by maxFR ) are found by the ICRSGP. As noted before, R is used to 

represent the number of routes proposed in the current solution network and maxR is used 

to represent the user-defined maximum allowed number of routes for the solution transit 
network. The solution space can therefore be represented by the sum of a specific 

combination:∑
=

max

max

R

1R

R

FRC . For example, suppose 100FRmax =  and 10Rmax = . The solution 

space is then 13
10

1R

R

100 101.94159C ×=∑
=

. As a result, it can be seen that the exhaustive 

search method might work well for a very small network. However, when the network 
becomes larger, the ESM becomes an unrealistic tool to solve the BTRNDP. Note that in 
real-world applications, the number of feasible routes can be at least 1000 and the 
solution space therefore can increase to infinity, precluding the ESM as a viable approach 
for solving the BTRNDP. In other words, the ESM can be successfully applied to find the 
global optimal bus route set for a very small size transit network. When the transit 
network is large, the solution space grows exponentially so the computation time using 
ESM to solve the BTRNDP grows exponentially. Note that in this research, the sole 
purpose of employing ESM to solve the BTRNDP is to use its solution as the benchmark 
to examine the efficiency and measure the quality of the solutions obtained by using 
heuristic algorithms including the GA, LS, SA, RS and TS. It is noted that GA, LS, SA, 
RS and TS are probably more reasonable approaches to solving the large-scale transit 
route network design problem in a reasonable time domain. 

 

4.6 Summary 

 
This chapter focuses on the proposed BTRNDP solution methodology. The 

solution methodology must account for the NP-hard nature and other related 
characteristics of the BTRNDP and explicitly incorporates practical guidelines and 
industry guidelines and rules of thumb. 

 
The proposed solution framework consists of three main components: an Initial 

Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible routes 
incorporating practical guidelines that are commonly used in the bus transit industry; a 
Network Analysis Procedure (NAP) that assigns transit trips, determines the service 
frequencies on each route and computes performance measures and a Heuristic Search 
Procedure (HSP) that guides the search techniques. Five heuristic algorithms, including 
the Genetic Algorithm, Local Search, Simulated Annealing, Random Search and Tabu 
Search Algorithms, as well as the Exhaustive Search Method (ESM) as a benchmark for 
the small network BTRNDP, are proposed to select an optimum route set from the huge 
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solution space. The proposed solution framework and its distinct features as well as the 
overview of the ICRSGP, and the components of the NAP are discussed. The rationale 
for choosing these five heuristic algorithms as solution techniques is presented and a brief 
literature review of these six algorithms is also sequentially discussed. The details of the 
ICRSGP and NAP are described in Chapter 5 and 6 respectively. Implementation details 
of all proposed algorithms for the BTRNDP both with fixed and variable transit demand 
are presented in Chapters 7 and 8 respectively. 
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CHAPTER FIVE 

THE INITIAL CANDIDATE ROUTE SET GENERATION 

PROCEDURE 
 

5.1. Introduction  

 
Chapter 4 presented the solution framework for the BTRNDP. The first 

component of this framework is the initial candidate route set generation procedure 
(ICRSGP), which is a design algorithm that configures all candidate routes for the current 
transit network. Given a user-defined minimum and maximum route length, ICRSGP 
finds all feasible routes for the current transit network.  

 
As pointed out, the ICRSGP relies mainly on algorithmic procedures including 

the shortest path and k-shortest path algorithms. This chapter focuses on the details of the 
ICRSGP and is organized as follows. Section 5.2 presents an overview of the ICRSGP. 
Section 5.3 reviews the shortest path algorithm and k shortest path algorithm from a 
systematic approach. Label-setting and label-correcting algorithms are presented and 
compared. To illustrate these two algorithms, a case study for Dijkstra’s algorithm and 
Yen’s k-shortest path algorithm is also presented. Section 5.4 discusses the route 
feasibility constraints that are applied to the initial candidate route generation process. 
Section 5.5 contains applications of the Dijkstra’s shortest path algorithm and Yen’s k-
shortest path algorithm to a small network. Section 5.6 concludes this chapter with a 
summary. 
 

5.2. Overview of the Initial Candidate Route Set Generation Procedure 

 
As mentioned, the initial candidate route set generation procedure (ICRSGP) is a 

design algorithm that: 1) is guided by user-defined parameters that incorporate the 
knowledge and expertise of the transit planners; 2) generates all candidate routes inside 
the current transit network using the algorithmic procedures including the shortest path 
and k-shortest path algorithms; 3) provides a solution space that can be used for the 
BTRNDP both with fixed and variable demand. 
  

The ICRSGP requires a limited amount of input data, which can be simply 
grouped into two categories: 
 

1) Network: The number of zones, the location of the centroid nodes, the user-
defined specification of the locations of the distribution nodes on the road links 
for each centroid node, the specification of each intersection node, the link 
connectivity list specifying for each node its accessible neighboring nodes as well 
as the distance (on the road network) to each of neighboring nodes. 

2) Parameters: The average traveling speed of each bus, the minimum route length 
and the maximum route length. 
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The overall skeleton of the ICRSGP is presented in Figure 5.1, where the 
structure of the ICRSGP consists of the following steps: 
 

Step 1. Generate routes by finding the shortest path between each centroid node 
pair in the studied bus transit network;  

Step 2. Check all the routes that were generated in Step 1 for the minimum and 
maximum route length constraints. If any route satisfies the constraints, 
then the route is accepted as a candidate route; 

Step 3. Generate alternative routes by finding the k shortest path between the 
same centroid node pair as that in step 1; 

Step 4. Check for feasibility constraints for each alternate route. If the route 
satisfies these constraints, then the alternate route is accepted as a 
candidate route. Otherwise, it is removed from the solution space; 

Step 5. Stop the ICRSGP, store all the kept routes with their respective labels as 
the candidate route set. 

The details of each step in the ICRSGP can be described as follows. 
 

      DIJKSTRA'S LABEL-SETTING SHORTEST PATH

ALGORITHM

Find the shortest path between each possible

distribution node pair of any centroid node pair in the

bus transit demand network

                                          STOP

Output the set of kept candidate routes

User Input

Minimum route length

Maximim route length

      FILTER ROUTES #1

Check the route fundamental feasibility constraints for

the present paths (routes), keep all feasible routes,

and set a label to each kept route

      YEN'S K-SHORTEST PATH ALGORITHM

Find the k-shortest path between each possible

distribution node pair of any centroid node pair in the

current transit demand network

      FILTER ROUTES #2

Check the route fundamental feasibility constraints for

all the present generated routes, keep all feasible

routes and remove all the leftovers. Set a label to each

kept route.

 
Figure 5.1 Skeleton of the Initial Candidate Route Set Generation Procedure 

 
In Step 1, the ICRSGP starts by using Dijkstra’s Label-Setting Shortest Path 

Algorithm to find the shortest path P(i, j) between each centroid node pair (i, j) in the bus 



 

  57

transit demand network, each of these paths may form a feasible route element in the 
optimal bus transit route network solution space.  
 

In Step 2, the initial set of all routes generated in Step 1 is checked by two 
feasibility filter tests: 1) the minimum route length constraint; and 2) the maximum route 
length constraint. Those routes that pass these two tests will be kept. The distance of 
these respective routes will be recorded and a label will be set to keep track of each one. 

 
In Step 3, all the alternate routes are generated using modified Yen’s k-th Shortest 

Path Algorithm between the same origin and destination as that generated in Step 1. At 
each step, the generated path is checked for Step 4 until all feasible routes have been 
generated. 

 
In Step 4, the ICRSGA checks the route fundamental feasibility for each present 

route generated in Step 3. The feasibility constraints that are used here still include two 
components: 1) the minimum route length constraint; and 2) the maximum route length 
constraint. All feasible routes that satisfy these two constraints are kept and labeled, and 
all the leftovers are removed.  

 
In step 5, the ICRSGP stores all the routes with their respective labels as elements 

of the overall candidate solution route set, and this set becomes input data to be evaluated 
in the network analysis procedure.  
 

Note that the data structure of the ICRSGP, the network representation and the 
C++ algorithm implementation of the ICRSGP (and the NAP in Chapter 6) are discussed 
in Chapter 9. As can be easily seen, the ICRSGP relies mainly on algorithmic procedures 
including a shortest path algorithm and a k-shortest path algorithm. The following section 
presents a systematic literature review for these algorithms. 
 

5.3. Overview of Shortest Path and K-Shortest Path Algorithms 

5.3.1 Shortest Path Algorithm 

 
The Shortest Path problem lies in the core of many transportation and logistics 

problems. Approaches for solving shortest path algorithms have been extensively 
researched in the past decades. The following section provides a brief literature review of 
the shortest path algorithm. 

 

5.3.1.1 Notations 

 
Consider a given a network G = (N, A), where N is the set of all the nodes and A is 

the set of all the arcs in this network. Let Cij be the distances (costs) associated with arc or 

link Aji ∈),( . Let node s be the source (origin) node and node i be any node other than s, 
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i.e., siNi ≠∈ ,  in the network. Define the length of a directed path as the sum of the 

distances of the arcs in the path. The Shortest Path Problem is essentially this kind of 

problem: for every node i≠s, find a directed path of shortest length from s to i. To put it 
another way, the shortest path problem can be formulated as follows: Given 1) Network 

G=(N, A); 2) Cij, Aji ∈),( ; and 3) Source node s and any node si ≠ , the shortest path 

problem is how to find the shortest path from the origin node s to node i. Note that the 
costs in this research are the travel times on specific links, which are always positive and 
therefore means that the network does not contain a negative cycle. Note that when 
handling any shortest path problem, this requirement must be satisfied. Otherwise, it will 
be substantially harder to solve the shortest path problem because with a negative cycle, 
it is an NP-complete problem, for which there exists no algorithm that can be solve this 
kind of problem in a polynomial time.  
 

The shortest path problems that researchers have studied include three different 
types: 1) Single-source shortest path problems, which find the shortest path from one 
node to all others; 2) All-pairs shortest path problems, which find the shortest path from 
every node to every other node; and 3) Other generalizations of the shortest path 
problem. These different types of shortest path problems have very similar characteristics 
in solution methodology. It is expected that with some minor modifications, the solution 
algorithm for one type of shortest path problem can be applied to solve other types. 
Essentially speaking, the shortest path problem in this research belongs to the second 
type, namely, all-pairs shortest path problem. The following will discuss two distinct 
solution algorithms that are used to solve shortest path problems. 
 

5.3.1.2 Label-Setting and Label-Correcting Algorithms 

According to the network flow literature, the algorithmic approaches that can be 
applied to solve shortest path problems can be classified into two groups: label setting 
and label correcting. Both groups of algorithms are iterative and both employ the labeling 
method in computing one-to-all (all to all) shortest paths. The two groups of algorithms 
differ, however, in the ways in which they update the estimate (i.e., upper bound) of the 
shortest path associated with each node from step to step and how they “converge” to the 
optimal shortest path distances. In label-setting algorithms, one label will be designated 
as permanent (optimal) at each iteration. However, in label-correcting algorithms, all 
labels will be considered as temporary until they all become permanent in the final step. 
According to Ahuja, Magnanti and Orlin (1993), the relationship between Label-Setting 
and Label-Correcting Algorithms can be summarized in Table 5.1. A literature review of 
these two algorithms is conducted in the following chapters. 

 

5.3.1.3 Label-Setting Algorithm: Dijkstra’s Algorithm 

The most basic label-setting algorithm is Dijkstra’s Algorithm, which finds the 
shortest path from the source node s to all other nodes in a directed network G = (N, A) 
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with nonnegative arc lengths. Dijkstra's algorithm creates labels associated with nodes. 
These labels represent the distance (cost) from the source node to each particular 
node. Within the network, there exist two kinds of labels: temporary and permanent. 
Temporary labels are given to nodes that have not been reached. The value given to these 
temporary labels can vary. The main idea of Dijkstra's algorithm is to change the 
temporary labels into permanent ones as the shortest path tree adds them. The permanent 
label of a node denotes the shortest path distance from the source node to the node. For 
any given node, there must be a permanent label or a temporary label, but not both. 

 

For a mathematical description of Dijkstra’s Algorithm, some notations are 

introduced. For node i, let )(iA  represent the arc adjacency list of node i. Let P denote 

the set containing all the nodes with permanent labels, and P  be the set containing all the 
nodes with temporary labels. Initially, every node has a temporary label and the distance 

from the source node to all other nodes are initialized to ∞. At each step, Dijkstra's 

algorithm chooses the node Pi ∈  with the least temporary label distance, and makes it 
permanent, records its predecessor index, and updates the temporary values of all 

nodes )(iAj ∈ . Repeat this procedure until all nodes become permanent ones. Then, 

output the distance and the shortest path consisting of a series of the predecessor nodes. A 
formal description of Dijkstra’s algorithm is given in Figure 5.2. 

 
Dijkstra’s Shortest Path Algorithm 
begin 

 d(i) = ∞ and p(i) = -1 for each node Ni ∈ ;  

 d(s) = 0 and p(s) = 0; 

 N;P and P =Φ=  

 while  |P|<N do 

 begin 

  Select a node i of smallest d(i) = min{d(j): P j∈ } 

  Make node i permanent and delete i from P , {i}PP ∪= {i}-PP =  

   for  each (i, j) ∈A(i) do  
   if  d(j) > d(i) + Cij  then 

   begin 

    Do distance update  
    d(j) : = d(i) + Cij and pred(j) : = i; 
   end; 
 end; 
end;  

   Figure 5.2 Dijkstra’s Algorithm 
 

Due to the easy-to-implement characteristics of Dijkstra’s Algorithm, this 
algorithm is employed in this research to find all feasible shortest paths between each 
centroid node pair. 
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5.3.2 K Shortest Path Algorithm 

 

Compared to the shortest path problem, the k shortest path problem receives much 
less attention. However, several researchers, such as Yen (1971) and Lawler (1977), have 
made k shortest path a full-fledged field. In the literature, the algorithmic approaches that 
can be applied to solve the k shortest path problems can also be classified into two 
groups: label setting and label correcting. Due to the easy-to-implement characteristics of 
Yen’s k shortest path algorithm (1971), this algorithm is employed in this research to find 
all feasible k shortest paths between node pairs. However, some modifications are 
performed to accommodate the requirements of the BTRNDP. A small example is also 
given to show how these algorithms work step by step. The following presents the 
modified k shortest path algorithm that was presented by Yen (1971) for finding the K 
loopless paths that have the shortest lengths from one node s to another node i in a 
network.  
 

5.3.2.1 Notations: 

 
In this subsection, notations are introduced for describing this algorithm. (Note 

that these notations are only confined to this section.) Suppose that a network has N-
nodes, and let 

 

 i    ------   node in the network, N, , 2, 1,i L=  where  1 is the origin node (source) and N 

is the destination node (sink);  

1  , 1 ≠≠≠−−− LL jiji    ------  one loopless path from 1 to j, passing through ; ,Li  

kN  ------   the number of the nodes included in the kth shortest path; 
k

iQ ------   the i-th node of the k-th shortest path. 

 
Since the concept of computing k-shortest paths between all node pairs is 

essentially the same as that of the single source-sink node pair, it is reasonable to only 
consider the algorithm for computing single source-sink k-shortest path. Therefore, for 

the convenience of the description, one can set NQQ
k

N

k

k
==    ,11 . Further notation 

regarding this algorithm is given as follows: 
 

KkNQQQA
k

N

kkk

k
, 2, ,1     , 1 )1(32 LL =−−−−−= −     ------  the kth shortest 

path from 1 to N where 
k

N

kk

k
QQQ )1(32 ,  ,, −L  are respectively the 1)st-( ,  3rd, nd,2 kNL  

nodes of the k-th shortest path; 
 

)1(  ,  ,3  ,2  1,  , −== k

k

Q

k

i NtAA
t

L  ------ a set of paths that deviat from 1−kA  at i, 

(i.e., ),tQ the t-th node of the k-th shortest path. Put it in another way, 
k

iA is the shortest 

of the paths that coincide with 1−kA  from the source node 1 to the t-th node )  ..(   tQeii  



 

 62

on the path and then deviate to a node that is different from any of the (t+1)st nodes of 

those ,1 , 2, ,1 , −= kjA j L  which have the same subpaths from 1 to the t-th nodes as 

does ;1−kA  and finally it gets to the sink node N by a shortest subpath without passing 

any node that has already been included in the first part of this path. At this point, it 

should be noted that
k

Qt
A is a loopless path, which means that all nodes can only appear 

once in each path; 
 

The candidate k-th shortest path
k

iA  can be partitioned into two parts, with the 

first part being 
k

iR and the second part (also the last part) being .
k

iS  
k

iR ------ the first 

part of 
k

iA  coincides with 1−kA  from the first node 1 to the t-th node i, i.e., 
k

i

k

t

kk
AQQQ in    1 32 −−−− L ; and 

k

iS ------ the second part of 
k

iA consisting of the last 

part of 
k

iA  has only one node coinciding with 1−kA , which is i, the t-th node of the 

shortest path. i.e., the second part of 
k

iA is 
k

i

k

N

k

t

k

t ANQQQ
k

in     )( )1(1 −− −+ L . 

 

5.3.2.2 Modified Yen’s K Shortest Path Algorithm 

 
 Figure 5.3 presents the modified Yen’s K shortest path algorithm for computing 
single source-sink k-shortest paths. 
 

5.3.2.3 Remarks for Yen’s K-Shortest Path Algorithm 
 

Yen is one of the first researchers to propose an algorithm to solve the k-shortest 
path problem. The most significant part of Yen’s k-shortest path algorithm lies in its 
straightforward description and easy-to-implement characteristics. The whole procedure 
of this algorithm can be organized as follows: First, use a standard shortest path 
algorithm, (e.g. Dijkstra’s algorithm) to find the shortest path from the source node to the 
sink node and store it in the results SET A. Then every node in the shortest path except 
the destination node will be selected once and for each such node, the path from the 
source node to the current node is defined as the first part of the path. The second part 
(also the last part) of the path is obtained from the calculation result of another shortest 
path from each selected node to the destination node. It should be emphasized that for the 
second part of the path, two restrictions are placed: 
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algorithm K-shortest path; 

begin:  

Find 
1A  ------  the shortest path using Dijkstra’s algorithm. Store  

NQQQA N −−−−−= −

1

)1(

1

3

1

2

1

1
 1 L  in the SET A. 

k = 1; 

Num = kN ; 

 while  K≤k do 

 begin 

  k = k+1; 

  for each )1(  ,  ,3  ,2  1, 1 −= −kNt L  do  

• Check if the subpath consisting of the first t nodes of 
1−KA  in sequence 

coincide with the subpath consisting of the first t nodes of 
jA  in sequence 

for .1 , 2, ,1 −= kj L  If so, set ∞=tqd --- where (q) is the (t+1)st node 

of ;jA otherwise, make no changes.  

• Apply Dijkstra’s algorithm to find the shortest path from , tQ  the t-th node 

to N, allowing it to pass through those nodes that are not yet included in the 

path. Note that the subpath from node 1 to tQ  is 
K

iR , the first part of 

K

iA ; and the subpath from tQ  to N is 
K

iS , the last part of 
K

iA . Note 

also if there is more than one subpath from (i) to (N), that have the 

minimum length, take any arbitrary one of them and denote it by 
K

iS . 

• Find 
K

iA by joining 
K

iR and 
K

iS . Then add 
K

iA to SET B. 

  Find from SET B the path(s) that have the minimum length. Denote this 

  path (or an arbitrary one, if there are more than one such paths by 
KA and 

               move it from SET B to SET A and leave the rest of the paths in SET B. 
 end; 
end; 

   Figure 5.3 Modified Yen’s K Shortest Path Algorithm 
 
 

1) It is a loopless subpath, i.e., it cannot pass through any node that has already been 
included in the path; 

2) It cannot branch from the current node on any edge used by a previously found 
(k-1) shortest path. The node and edge marking procedure that is used in this 
algorithm can prevent the second part of the path from looping or simply 
following the route of a previous (k-1) shortest path. If a new second part of the 
path is found, it will be appended to the first part of the path to form a complete 
path from source to sink node, with the current node being the connecting node.  
This path forms a candidate for the next KSP. All such paths that were found this 
way will be stored in SET B, in which the path that has the shortest distance will 
be selected as the next k-th shortest path, and will be transferred to the results set 
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in SET A. The same process will be repeated, until the required number of k 
shortest paths or some other requirements has been met.  

 
Based on the above literature review, a case study is performed to illustrate these 

two algorithms and the details are presented step by step.  
 

5.3.3 Case Study: Dijkstra’s Algorithm and Yen’s K-Shortest Path Algorithm 

 
A worked example for Label-Setting---Dijkstra’s algorithm is as follows: 
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∞ 

0 ∞ 

∞ 

∞ ∞ 

3 

1 

∞ 

0 ∞ 

∞ 

∞ ∞ 

Step 1: 
 

1 |P|

}6,5,4,3,2{P ,}1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 ∞ ∞ ∞ ∞ ∞ 

p(i) 0 -1 -1 -1 -1 -1 

Step 2: 
 

1 |P|

}6,5,4,3,2{P ,}1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 3 1 ∞ ∞ ∞ 

p(i) 0 1 1 -1 -1 -1 
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3 

0 ∞ 

∞ 

∞ 1 7 

2 

0 ∞ 

∞ 

7 1 

2 
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Step 3: 
 

2 |P|

}6,5,4,2{P ,}3,1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 2 1 ∞ 7 ∞ 

p(i) 0 3 1 -1 3 -1 
 
 

Step 4: 
 

3 |P|

}6,5,4{P ,}3,2,1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 2 1 6 6 9 

p(i) 0 3 1 2 2 2 
 
 

Step 5: 
 

4 |P|

}6,5{P ,}4,3,2,1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 2 1 6 6 9 

p(i) 0 3 1 2 2 2 
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Step 6: 
 

5 |P|

}6{P ,}5,4,3,2,1{P

=

==
 

 
i 1 2 3 4 5 6 

d(i) 0 2 1 6 6 9 

p(i) 0 3 1 2 2 2 

 

Step 8: 
 

6 |P|

P ,}6,5,4,3,2,1{P

=

Φ==
 

 

Output the shortest path 

Step 7: 
 

6 |P|

P ,}6,5,4,3,2,1{P

=

Φ==
 

 
i 1 2 3 4 5 6 

d(i) 0 2 1 6 6 9 

p(i) 0 3 1 2 2 2 
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Given the shortest path results, Yen proposed an algorithm to solve the k-shortest 
path problem. The skeleton of this algorithm has been described before. For convenience 
and consistency, the same example network that was used in Dijkstra’s algorithm is used 
to show how this algorithm works.  
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1. Set ∞=13C  Using Dijkstra’s algorithm to find the shortest path from source 

node 1 to sink node 6. 
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∞ 

0 ∞ 

∞ 

∞ ∞ 

Step 1: 
 

SET A:  A1 = 1-3-2-6 

               N1 = 4  

A2 = Φ  
 

SET B:  Φ=B  
   
 
 
 

Step 2: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:  Φ=B  
Select node 1. 

2

1R =1;
2

1S = Φ ; 

Set arc ∞=13C   
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2. The first arc 1 3 is recorded as the root path. Since 3 2 is used in the 
previous shortest path, it cannot be used again in the 2-nd shortest path. Therefore, set 

∞=32C Using Dijkstra’s algorithm to find the shortest path from node 3 to sink node 6. 
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Step 3: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:  
2

1R =1;
2

1S =1-2-6; 

 
2

1A =1-2-6; 

 
2

1d =10; 

 

Step 4: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:   
2

1A =1-2-6; 

 
2

1d =10; 

2

2R =1-3;
2

2S = Φ ; 

Set arc ∞=23C  

 

Step 5: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:   
2

1A =1-2-6; 

 
2

1d =10; 

2

2R =1-3;
2

2S =3-5-6;

2

2A =1-3-5-6; 

2

1d =11; 
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3. The first two arcs 1 3 2 are recorded as the root path. Since 2 6 is used in 
the previous shortest path, it cannot be used again in the 2-nd shortest path. Therefore, set 

∞=26d Using Dijkstra’s algorithm to find the shortest path from node 2 to sink node 6. 
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Step 6: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:   
2

1A =1-2-6; 

 
2

1d =10; 

2

2A =1-3-5-6; 

2

1d =11; 

2

3R =1-3-2;
2

3S = Φ ;

Set arc ∞=26C  

Step 7: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 = Φ   

SET B:   
2

1A =1-2-6; 

 
2

1d =10; 

2

2A =1-3-5-6; 

2

1d =11; 

           
2

3R =1-3-2;
2

3S = 2-5-6;

           
2

3A =1-3-2-5-6; 

           
2

3d =11;
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Therefore, three paths will be stored in LIST B. (10, 11, 10). Since there are two 
paths whose shortest path value are the smallest in these paths, one can pick any path out 
of LIST B and transfer it to A. Meanwhile, delete it and leave all other paths in LIST B. 
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The same procedure is repeated until the required number of k shortest paths or 

some requirement is met (For the BTRNDP as shown later, this requirement is that the 
maximum route length cannot be exceeded). As a result, the k-shortest paths that can 
meet the user’s requirement can be found and applied for future use. 
 

5.4. Route Feasibility Constraints 

 
Different from many previous approaches, the route feasibility constraints in this 

research only include two components: a minimum route length constraint and a 
maximum route length constraint. Furthermore, these two components are user-defined 
and the details of these two constraints have been described in Chapter 2.  
 

5.5. Applications for a Small Network 

 
To illustrate the ICRSGP, a small example network with 7 zones and 15 road 

intersections is designed, and is shown in Figure 5.4.  
 

Step 8: 

SET A:  A1 = 1-3-2-6 

               N1 = 4 

 A2 =1-2-6 

N2 = 3 

SET B:   
2

2A =1-3-5-6; 

              
2

3A =1-3-2-5-6
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Figure 5.4 A Small Network with Road Structures and the Centroid Node of Several Zones 

 
As noted before, the ICRSGP discussed in this chapter first considers the 

BTRNDP under the “centroid” level. The centroid location of the each traffic zone and 
the locations of the distribution nodes on the road links for each zone are specified by the 
users (commonly transit planners). The location specification of each intersection node, 
the connectivity list specifying for each node and its accessible neighboring nodes, as 
well as the distance (on the road network) to each of neighboring nodes, the average bus 
speed, the minimum and maximum route length are specified by the users. Figure 5.5 
shows an intermediate process for distribution nodes for this example network and Figure 
5.6 presents the final chosen distribution node specifications of this small network.  
 

After the network “transformation” processing, 20 centroid distribution nodes, 35 
nodes, and 82 arcs are obtained in this example network. Excluding the possible routes 
whose origins and/or destinations are the same zone, the number of overall routes 
(undirected) between “meaningful” pairs is 147. Furthermore, if the minimum and 
maximum route length is defined as 800 and 1600 meters respectively, then there are 100 
feasible routes (out of 147 total routes) whose distances satisfy these two route length 
constraints and there are 47 nonfeasible routes that are generated from this example 
network. As shown, after obtaining all feasible shortest paths, the k-th shortest path 
algorithm comes into play. Namely, for the same origin/destination node pair in a certain 
shortest path, the second, third and k-th shortest paths are found until the distance of 
these routes violated the user-defined route length constraints. In this case, the k-shortest 
path algorithm stops temporarily and the current generated k-th shortest paths are 
appended to the feasible route set and kept as possible members of the solution route set. 
The whole process is repeated until all the current 147 meaningful origin/destination pairs 
in the network are completed. Note that for this example network, 186 additional paths of 
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the k-th shortest path category are generated. As a result, the candidate route set for this 
example network consists of 286 paths, any of which is used as part of the solution route 
set. Table 5.2 presents a detailed representation of all the solution route space for the 
example network. Note that the detail of the network representations using C++ are 
presented in Chapter 9 and details of finding an optimal transit route network are 
presented in the next chapters. 
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Figure 5.5 Intermediate Processes for Distribution Nodes 
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Figure 5.6 A Small Network with Distribution Nodes for the ICRSGP Illustration 



 

 73

 
Table 5.2 Representation of the Solution Route Space for the Example Network 

Route 

Number 
Orig. Dest.

Shortest Path or k-th Shortest 

Path Representations of  Nodes

and Links 

Dist. 
Number 

of Nodes 

Traversed 

Zones 

Number of 

Zones 

Traversed 

1 16 21 21-10-20-5-17-1-16 900 7 1,2,5 3 

2 16 24 24-7-22-6-19-2-16 850 7 1,2,3,6 4 

3 16 25 25-3-23-2-16 875 5 1,3,4 3 

M  M  M  M  M  M  M  M  

M  M  M  M  M  M  M  M  

98 30 35 35-15-34-14-32-13-30 1300 7 5,6,7 3 

99 31 35 35-15-34-14-32-13-31 1125 7 5,6,7 3 

100 32 35 35-15-34-14-32 900 5 6,7 2 

101 16 21 21-11-7-22-6-19-2-16 1100 8 1,2,3,5 4 

102 16 21 21-11-7-22-6-18-5-17-1-16 1300 10 1,2,3,5 4 

103 16 21 21-10-20-5-18-6-19-2-16 1500 9 1,2,3,5 4 

104 16 24 24-7-22-6-18-5-17-1-16 1050 9 1,2,3,6 4 

105 16 24 24-8-25-3-23-2-16 1350 7 1,3,4,6 4 

M  M  M  M  M  M  M  M  

M  M  M  M  M  M  M  M  

284 31 35 35-9-27-8-33-14-32-13-31 1525 9 4,5,6,7 4 

285 32 35 35-9-27-8-33-14-32 1300 7 4,6,7 3 

286 32 35 35-9-27-8-24-7-11-31-13-32 1500 10 3,4,5,6,7 5 

 

 

5.6. Summary 

 
This chapter focuses on the details of the initial candidate route set generation 

procedure (ICRSGP). The overall solution framework for the ICRSGP and its distinct 
features are presented. The shortest path and k-shortest path algorithms, the two 
algorithmic procedures that the ICRSGP heavily relies on, are reviewed systematically. 
Label correcting and label setting algorithms are discussed and compared. The two 
chosen algorithms, Dijkstra’s shortest path algorithm and Yen’s k-shortest path algorithm 
are presented in detail. The route feasibility constraints are also discussed. A case study 
on applications of these two algorithms is illustrated. The next chapter is mainly oriented 
to the details of the network analysis procedures (NAP) for the BTRNDP with fixed 
transit demand.   
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CHAPTER SIX 

THE NETWORK ANALYSIS PROCEDURE 
 

6.1  Introduction 

 
As mentioned before, there could be many feasible (and local optimal) solutions 

to the BTRNDP. To measure the quality of each proposed solution, the objective function 
components that are expressed in mathematical formulation must be evaluated. Similarly, 
a variety of other performance measures or service quality that are of concern to both the 
transit users and operator should be considered.  

 
The Network Analysis Procedure (NAP) is a procedure that can analyze and 

evaluate the alternative network structures and determine their associated route service 
frequencies. For any given route network configuration in the solution space that was 
generated by the ICRSGP and proposed by a heuristic search procedure (HSP), the NAP 
determines route frequencies and evaluates the resulting transit network system by 
computing many performance measures that can reflect the quality of service, which 
include the user cost (i.e., the cost experienced by transit users), the operator cost (i.e., the 
fleet size) and the unsatisfied demand cost. 

 
The NAP in this research differs from the previous approaches in three main 

features. First, for the first time, the NAP employs a multiple path transit trip assignment 
model that explicitly considers the transfer and long-walk related characteristics among 
routes under a much more real situation (namely, in the context of “centroid” node level 
instead of aggregating the traffic zone to a single node). Second, the NAP can explicitly 
consider the transit trip assignment model for the BTRNDP under two distinct scenarios, 
i.e., fixed transit demand and variable transit demands. Third, the NAP uses discrete 
choice modeling techniques and an iterative procedure to obtain the transit demand 
between each traffic zone pair, assign transit demand and determine the route frequencies 
when their internal convergences are achieved.  

 
This chapter centers on the details of the NAP for the BTRNDP with fixed 

demand. Details of the NAP designed for the BTRNDP with variable transit demand are 
discussed in Chapter 8. This chapter is organized as follows. Section 6.2 presents an 
overview of the NAP, where the input data, output data, the general description, the 
algorithm skeleton and flow chart for the NAP are discussed. Section 6.3 describes the 
assumptions made for the NAP. Section 6.4 reviews the literature on the transit trip 
assignment model and then presents the detail of the transit trip assignment model for the 
NAP. In section 6.5, the frequency setting procedure (FSP), including the demand and 
policy frequency, the solution approach and its preset parameters are discussed. Section 
6.6 focuses on the example network illustrations for the NAP, especially with the transit 
trip assignment procedure. Finally, section 6.7 concludes this chapter with a summary. 
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6.2  Overview of the NAP with Fixed Transit Demand 

 
Basically speaking, the NAP is primarily used as a bus transit network evaluation 

tool with the incorporation of the ability to determine the route frequencies. After each 
possible set of candidate routes that define the network configuration is generated by the 
ICRSGP, a variety of data inherent in the bus transit route network system are obtained as 
its output data. Most of these data act further as input data and can be evaluated and 
analyzed via the NAP. As a result, the optimal route configuration for a particular 
network and its route frequencies are then obtained in the output data from the NAP. 
Figure 6.1 illustrates the relations between the ICRSGP and the NAP.  

 
The following two subsections present the input data that are required for the 

NAP and the output data that are generated via the NAP. 
 

The Initial Candidate

Route Set Generation

Procedure

Output Data generated

by ICRSGP

The Network

Aanlysis Procedure

Raw Data Network Descriptor Data

Demand Data

Operator and User Cost

Level of Service Data

User-defined

parameters

User-defined

parameters

Input Data for the NAP Output Data for the NAP

The Heuristic

Search Procedure

 
 

Figure 6.1 Relations between the ICRSGP and the NAP 
 

6.2.1 Input Data for the NAP 

 
As shown in Figure 6.1, the input data needed for the NAP includes the output 

data generated from ICRSGP, some user-defined parameters and the solution route set 
proposed by the HSP, which can be summarized as follows: 
 
1) Network Information, which contains the number and the location (coordinates) of 

the centroid nodes where the demand originates and/or head, the number and the 
location of demand distribution nodes on the road links that are connected with each 
centroid node through associated centroid connectors and all the feasible routes 
generated from the ICRSGP and their associated node connectivity lists;  

2) Demand Data, which includes a symmetric (although not necessarily) demand matrix 
representing the number of passenger trips using bus transit between each pair of 
traffic zones; 

3) Design parameters, which refers to some parameters that are set by the network 
designers: the initial service frequencies on each route; the transfer penalty per 
transfer (expressed in equivalent minutes of bus transit in-vehicle travel time); the bus 
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seating capacity; the maximum load factor on each route; and the different weights 
for operator cost, users cost and the unsatisfied demand cost. If the policy headway 
approach is employed, one also needs to specify the corresponding service headway 
for each bus route. In addition, as mentioned later in this chapter, a possible 
maximum number of bus routes and a possible maximum number of iterations in the 
algorithm implementation (namely, GA, SA, LS, RS, TS and ESM) for each specific 
set of bus routes may be included. 

4) Proposed solution route set, which is generated and guided by the heuristic search 
procedure (HSP). 

 

6.2.2 Output Data for the NAP 

 
Once the above input data for the NAP has been generated by the ICRSGP and/or 

inputted by the network designers, these data are analyzed via the NAP. The proposed 
optimal transit route network configuration, the route frequencies and associated transit 
demand, along with a wide variety of performance measures, are then obtained in the 
output data from the NAP, which can be categorized as follows: 
 
1. Network Description Data: 

1) Node information, which includes flows from and terminated at each centroid 
node, as well as the transfer flow at each link node.  

2) Link information, which contains link flows along each route. The maximum link 
flow on each route, along with maximum load factor, is used to determine the 
route frequency on each route. (The details are discussed in Section 6.5.) 

3) Route information, which includes round trip time, total number of passengers, 
and fleet size required on each route.) 

2. Demand Data, which includes total number of demand trips of the following seven 
categories: unsatisfied, 0-transfer-0-longwalk, 1-transfer-0-longwalk, and 0-transfer-
1-long-walk, 1-transfer-1-longwalk, 2-transfer-0-longwalk, 0-transfer-2-longwalk. 

3. User Cost, Operator Cost and Unsatisfied Demand Cost, which contains the total cost 
experienced by the transit users (including four parts: access time, waiting time, in-
vehicle travel time and transfer time if any), the operator cost (i.e., the required 
number of buses run on each route in the solution transit network configuration) and 
the penalty for the transit demand not satisfied by the current transit network. 

4. Level of Service, which contains the service frequency and the load factor run on 
each route in the solution network. 

 

6.2.3 Description of the NAP 

 
As mentioned before and illustrated in Figure 6.1, the NAP is an analytical tool 

that can evaluate and analyze the input bus transit network and possesses the ability to 
determine the route frequencies. To accomplish these tasks, the NAP employs an iterative 
procedure that seeks to achieve internal consistency of route frequencies (and transit 
demand equilibration for the BTRNDP with variable demand). Furthermore, the iterative 
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procedure in the NAP contains two major components, namely, the transit trip 
assignment model and the frequency setting procedure.  
 

Once a specific set of routes is proposed in the overall candidate solution route set 
generated by the ICRSGP, the NAP is called to evaluate the alternative network structure 
and determine route frequencies. The whole NAP process can be described as follows. 
First, an initial set of route frequencies are specified because they are necessary before 
the beginning of the trip assignment process. Then, hybrid transit trip assignment models 
are utilized to assign the passenger trip demand matrix to a given set of routes associated 
with the proposed network configuration. Assuming that the transit tripmaker always 
attempts to complete his/her trip with an intention to avoid transfers and have the least 
walking distance possible, the trip assignment model provides transit user route service in 
the following order: 0-transfer-0-longwalk (direct service), 1-transfer-0-longwalk and/or 
0-transfer-1-long-walk, 1-transfer-1-longwalk and/or 2-transfer-0-longwalk and/or 0-
transfer-2-longwalk. If none of the above three categories of paths is available, then the 
transit demand involved are unsatisfied. The service frequency for each route is then 
computed and used as the input frequency for the next iteration in the transit trip 
assignment and frequency setting procedure. If these route frequencies are considered to 
be different from previous input frequencies by a user-defined parameter (for example, 
they differ by more than 10%), the process iterates until the internal consistency of route 
frequencies is achieved. Once this convergence is achieved, route frequencies and several 
system performance measures (such as the user cost, the fleet size and the (un-)satisfied 
transit demands) are thus obtained. 

 
Figure 6.2 presents the flow chart for the NAP. The details of the transit trip 

assignment model and frequency setting procedure are discussed in Section 6.4 and 6.5 
respectively. The algorithm skeleton of the NAP is presented in the following subsection.  
 

6.2.4 Algorithm Skeleton 

 
In summary, the solution algorithm skeleton of the NAP can be described by the 

following steps: 
 

Step 1. Set an initial frequency for each bus route that defines the whole bus transit 
network configuration.  

Step 2. Assign the transit demand to the proposed solution route network. 
a.  Set i = 1, j = 1. 

b.  Assign the transit demand ijd  into paths of four possible categories: direct 

route service at the first level (i.e., 0-transfer-0-longwalk), 1-transfer-0-
longwalk and/or 0-transfer-1-long-walk paths at the second level, 1-
transfer-1-longwalk and/or 2-transfer-0-longwalk and/or 0-transfer-2-
longwalk paths at the third level and unsatisfied demand at the fourth level 
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according to the rules associated with each category, and update related 
performance measures and the network descriptors.  

c.  If N≤j  (namely, the total number of traffic zones), then set  j = j + 1 

and repeat 2.2. 

d.  If N≤i , then set i = i + 1 and j =  1, repeat 2.2. 
Step 3. Compute the service frequencies associated with each route.  
Step 4. Check whether the service frequencies for each route converge respectively 

during two consecutive steps. If not, then replace the input route frequencies 
for the next iteration with the current computed service frequencies, goto Step 
2. 

Step 5. Output the service frequencies on each route, compute the user cost, operator 
cost and the unsatisfied demand cost, the objective function value and all the 
other system performance measure descriptors.  
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Figure 6.2 Flow Chart for the Network Analysis Procedure 
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6.3 Assumptions of the NAP 

 
The Network Analysis Procedure is implemented under the following 

assumptions: 
 

1. All components relevant to the passenger travel time from the origins to the 
destinations are not subject to congestion effects; 

2. There is an industry-wide standard for a service area of one-quarter mile to either 
side of each route and a half mile is assumed to be the maximum walking distance 
that a transit user can tolerate.  

 

6.4 Transit Trip Assignment Model for the NAP 

 

As mentioned before, the NAP for the BTRNDP with fixed demand consists of 
two major components: the transit trip assignment model and the frequency setting 
procedure. This section focuses on the transit trip assignment model, which is the core of 
the whole Network Analysis Procedure.  
 

6.4.1 Overview of the Transit Trip Assignment Model 

 
Generally speaking, as an essential part of the BTRNDP, the transit trip 

assignment process refers to the assignment of the passenger trip demand matrix to a 
given set of routes associated with a particular network configuration. As indicated by 
Shih and Mahmassani (1996), the significance of the transit trip assignment for the 
BTRNDP can be demonstrated by two aspects: (a) the number of vehicles and the 
frequencies run on each route is largely dependent on the number of trips assigned to the 
transit network routes; and (b) the evaluation of various cost and performance measure 
for the transit system needs accurate passenger flow information on each node and each 
link along the routes. A better transit trip assignment model could undoubtedly help 
analyze and evaluate the existing transit network more accurately, redesign a transit route 
network more efficiently and possibly yield a better solution to the transit route network 
design problem. 

 
Similarly as categorized by Speiss and Florian (1989), the transit assignment 

problem has been investigated by several researchers during past decades, either as a 
separate problem (see Dial, 1967 and Rapp etc, 1976) or as a subproblem of more 
complex models, such as transit network design (see Lampkin and Saalmans, 1967; 
Hasselstrom, 1981; Baaj and Mahmassani, 1990 and Shih and Mahmassani 1996), or 
multimodal network equilibrium problem (see Florian and Spiess, 1983).  

 
Due to the phenomenon of passengers’ waiting for the arrival of a transit vehicle 

at the transit stops, the transit trip assignment problem differs from the auto trip 
assignment problem. For transit users to get to the intended destination, the different 
availability of the buses on different routes at different time periods, along with possibly 
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different total travel time, may greatly affect the decision of the transit users. Therefore, 
passenger route choices in a transit network, especially in large urban areas with highly 
overlapping routes, are much more complex.  

 
Having recognized these characteristics, many researchers have proposed several 

transit trip assignment models, such as single path assignment and multiple path 
assignment models as a result of the modifications to the auto traffic assignment process. 
Typical efforts include the following. Lampkin and Saalmans (1967) assigned passenger 
transit trips to several competing paths according to a “frequency-share” rule, where the 
faction of total transit passengers on a specific path is proportional to the probability that 
vehicles serving that path arrive earlier than other competing paths. As indicated by many 
researchers, the “frequency-share” rule is the most commonly used rule for route 
assignment at uncoordinated operations terminals in the node aggregation level. In this 
rule, it is assumed that transit passengers will always board the first arriving vehicle of 
any competing route. As a result, this rule stipulates that a route carries a proportion of 
the flow equal to the ratio of its frequency to the sum of the frequencies of all competing 

paths. For example, suppose that ijd  is the demand from origin i  to destination j . If there 

are three acceptable competing routes 3,2,1  and rrr  whose frequencies are 3,2,1  and fff  

respectively, then, the demand assigned on all the links of the route 1r  between node i and 

j is determined as follows by the rule: ij

i

irij dffffffd *)]([)()( 3211
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=
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demand that route 2r  carries is }*)]([{ 3212 ijdffff ++ , and the demand that route 3r  

carries is }*)]([{ 3213 ijdffff ++ . Furthermore, if the stochastic characteristic of the 

waiting time is ignored, the average passenger waiting time (in minutes) incurred in this 

case is as follows: (minutes).  )(0.30)*2(0.60 321

3

1

ffffw
i

iij ++== ∑
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Dial (1967) discussed the necessity and methods for inclusions of transfer penalty 

in the computation costs and a minimum weighted time path assignment was proposed in 
his paper. Spiess and Florian (1989) presented an optimal strategy and solved it using a 
label-correcting algorithm to allow the transit patrons to reach their destinations at 
minimum generalized cost. For the first time to consider trip assignment to the 
overlapping routes, Han and Wilson (1982) proposed a lexicographic strategy where 
transfer avoidance and/or minimization were considered as the primary criterion for 
transit user route choice. The main feature in the context of this model is that the number 
of transfers is considered as the most important criterion and preemptive priority is given 
to this consideration. It starts by searching all the transit paths between node i and j with 
no transfers. Only if none of these types of paths is found will paths with only one 
transfer be considered. Different from the procedure introduced before, this research is 
intended to account for more details involved in the trip assignment model. For example, 
for any given demand node pair, if more than one path has the same number of (or no) 
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transfers, an additional rule is introduced for checking the travel cost on each competing 
route. Only the paths whose travel cost is within a particular range are recorded. Trips are 
then assigned into the network using an analytical allocation model that reflects the 
relative level of service on these competing paths. Note that the lexicographic decision 
structure of Han and Wilson (1982) is adapted in this research due to its behavior realism 
and plausibility. The details of this procedure in this research are described in the next 
section. 

 
Horowitz (1987) pointed out two obvious facts that always affect multipath trip 

assignment for the transit network. The first one is that passengers dislike transferring 
and will always try to avoid as many transfers as possible and the second is that transit 
users also dislike long walks at either the origin or the destination of their trips. 
Therefore, alternative paths with particularly long walks and/or excessive (two or more) 
transfers through the networks will never be considered in normal conditions. If any of 
these cases happens, transit users might resort to a better path, look for a different 
destination, choose a different mode, or possibly completely forego their trips. 
Furthermore, it is noted that transit users usually only have a reasonable choice of 
alternative paths. A multipath transit trip assignment algorithm must first determine the 
acceptable choice of alternative paths and must next split passengers among a small 
choice set of these reasonable paths based on their relative merits. Note that the multipath 
trip assignment model is implemented given a specific route set network and their 
associated service frequencies on each route. 

 
Baaj and Mahmassani (1990) adopted Han and Wilson’s lexicographic strategy 

and the “frequency-share” rule from Lampkin and Saalmans in their TRUST (Transit 
Route Analyst). Meanwhile with some modifications, they proposed a filtering process to 
apply a threshold check to eliminate the undesirable paths with a trip time exceeding the 
shortest trip time among all candidate paths by a specified percentage. Mainly based on 
the work of Baaj and Mahmassani (1990), Shih and Mahmassani (1996) extended the 
TRUST for timed-transfer transit system with some considerations on the coordinated 
operations terminals, while the lexicographic strategy and the “frequency-share” rule 
were still employed. 

 
These previously developed models provide a solid basis for further research on 

the transit trip assignment problem. However, there are three major shortcomings that 
exist in previous models: 1) These models are proposed for the transit network under the 
assumption that each zonal transit demand is aggregated as a single node, ignoring the 
fact that multiple routes can pass by the same zone connected to different distribution 
nodes on different links. As a result, some commonly used rules that were proposed in 
the context of this assumption, such as “frequency-share” rule, may not work properly if 
these assumptions are violated; 2) These models did not consider the phenomenon of the 
long-walk-involved paths where transit users might walk a tolerable distance to their 
neighboring zones to take the bus. This situation might commonly exist when there is no 
direct service provided for transit users at a specific zone but provide such service at their 
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neighbors; and 3) These models are uniformly limited to transit networks with fixed 
transit demands. However, it is generally accepted that a variable relationship exists 
between the transit demand and the transit network route configuration where they are 
actually dependent upon each other. 

 
These shortcomings of the existing transit trip assignment models greatly preclude 

their practical applications (such as to the bus transit route network design problem). It is 
expected that if considered in the context of a transit network with variable transit 
demands and at the distribution node level, trip assignment becomes much more 
complicated. For example, the “frequency-share” rule might work well in the context of 
the zone aggregation level. However, the widely used “frequency-share” rule could be 
problematic in the real world situation, where the transfer characteristics between related 
routes need to be considered in the context of the “centroid” node level since the routes 
that pass by a centroid node are not necessarily on the same link on the same road. In this 
case, a multiple path assignment model that can explicitly consider the transfer 
characteristics between related routes at the “centroid” node level should be considered. 
To improve its behavior realism and model practicability, one needs to consider the 
transit trip assignment in the context of the transit network with variable transit demands 
and at the “centroid level”. The related details of the BTRNDP with variable demand at 
“centroid” node level are presented in chapter 7. In this section, a more general and 
practical trip assignment model for the BTRNDP with fixed demand at “centroid” node 
level is presented.  

 
The following section proposes the details of an innovative transit trip assignment 

procedure in the NAP that can accommodate this necessity.  
 

6.4.2 Transit Trip Assignment Model 

 
The trip assignment models presented here build on the lexicographic strategy 

(see Han and Wilson, 1982), Horowitz (1987) and several further research works (such as 
Baaj, 1990, and Shih and Mahmassani, 1996). However, remarkable modifications have 
been made to accommodate more complex considerations for real world applications.  

 
It is assumed that transit users usually consider the following criteria in their 

transit route choice: the number of transfers required to reach the destination, the number 
of long walks needed and how long the long walks take, and the trip times for different 
choices. Furthermore, it is assumed that trip-makers always attempt to choose the path 
that has the lowest number of transfers and/or least number of long walks to get to the 
destination. If more than one path has the same number of transfers, and/or long walks, 
then a decision is made based on the total travel time for those competing paths whose 
trip times do not exceed the minimum travel time by a specified threshold. Based on 
these criteria, the proposed hybrid transit trip assignment models in this paper can be seen 
from an “hierarchical” point of view, which consists of four levels that can be described 
as follows. The first level is 0-transfer-0-longwalk paths (i.e., routes than can provide 
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direct service); the second level is 0-transfer-1-longwalk path and/or 1-transfer-0-
longwalk paths; the third level is 2-transfer-0-long-walk paths, 1-transfer-1-long-walk 
and/or 0-transfer-2-longwalk paths and the fourth level is the “no service available”.  

 
Figure 6.3 shows the flow chart of the proposed transit trip assignment model that 

is designated for the NAP with fixed transit demand. Details of the transit trip assignment 
models for the BTRNDP with variable transit demands are discussed in Chapter 8.  

 
It should be noted that the trip assignment process considers each zone (centroid 

node) pair separately. For a specific centroid node pair, as shown in Figure 6.3, the trip 
assignment model first checks the existence of the 0-transfer-0-longwalk paths. If any 
path of this category is found, then the transit demand between this centroid node pair can 
be provided with direct route service and the demand is therefore distributed to these 
routes. If not, the existence of paths of the second category, i.e., 0-transfer-1-longwalk 
path and 1-transfer-0-longwalk paths are checked. If none of these paths is found, the 
proposed procedure will continue to search for paths of the third category, i.e., paths with 
2-transfer-0-long-walk, 1-transfer-1-long-walk and/or 0-transfer-2-longwalk. Only if no 
paths that belong to these three categories exist, there would be no paths in the current 
transit route system that can provide service for this specific centroid node pair (i.e., these 
demands are unsatisfied). Note that at any level of the above three steps, if more than one 
path exists, a “travel time filter” is introduced for checking the travel time on the set of 
competing paths obtained at that level. If one or more alternative paths whose travel time 
is within a particular range pass the screen process, an analytical nonlinear model that 
reflects the relative utility on these competing paths proposed at that level is used to 
assign the transit trips between that centoid node pair to the network. The whole process 
is repeated until all the travel demand pairs in the studied network are traversed. Details 
of this trip assignment procedure are presented in the following subsections. 

 
To facilitate the description, four notations are introduced for a given centroid 

node pair (i, j).  

• iRS  denotes the set of routes that pass by centroid node i  

• iNS  denotes the set of distribution nodes on the link for centroid node i 

• iNB  denotes the set of distribution nodes of the zones that are neighbors to 

centroid node i and to which a long walk distance is within a pre-specified range 
that a transit user can tolerate 

• ik k NB,SNR ∈  denotes the set of routes that pass by k, one of the neighbor 

distribution nodes of centroid node i 
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Figure 6.3 The Network Analysis Procedure (NAP) for the BTRNDP 
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6.4.2.1 First Level (0-transfer-0-long-walk paths) 

 
For a given centroid node pair (i, j), the trip assignment model checks the 

intersection of two sets of routes iRS  and jRS , which pass by the origin i and the 

destination j respectively. If Φ≠∩ ji RSRS , then there exist some routes that have both 

node i and j on their node lists, which means that these routes can provide direct service 
for those passengers who want to travel from centroid node i to j. The routes in this set 

are classified as 0-transfer-0-long-walk paths for node pair (i, j). Let kijR  denote one such 

path where passengers board route kr  at zone i (the origin) and travel on this route to 

zone j (the destination). The demand is distributed among these route sets and the 
parameter, “0-transfer-0-long-walk paths”, is then updated. 

 
If more than one such path exists, then an additional rule is introduced for 

checking the travel cost (total travel time) on each competing route. First of all, the 
minimum travel cost is found by comparing the total travel time on all routes. Any route 
whose travel cost exceeds the minimum value by a specified threshold (say 30 percent) is 
rejected. Demand is then assigned to the acceptable routes using an analytical nonlinear 
allocation rule that reflects the relative utility on these competing paths rather than the 
widely used “frequency share” rule (where the travel demand zone is aggregated as a 
single node and the flow distributed to a route is proportional to its frequency).  
 

Let kijTT  denote the total travel time required for the transit users who want to 

travel from origin zone i to destination zone j by taking bus transit on route kr  and ik  

represent the distribution node (i.e., the access point) on the road link of centroid node i. 

Then kijTT  can be computed as follows: 

 
access

jkj

invt

kjkik

wait

kik

access

ikikij ttttTT ,,,,, +++=  

where:  
access

ikit , ----- the access (walking) time from centroid node i to the distribution node  

     ik on the link where route kr  locates; 
wait

kikt ,   ----- the waiting time experienced by passengers at node ik on the link for  

     transit run on route kr ; 
invt

kjkikt ,, ----- the in-vehicle travel time required from distribution node ik on the link  

     to the distribution node kj of destination j on the route kr ; 
access

jkjt , ----- the access (walking) time from the distribution node kj on the link to  

     the centroid node of destination j; 
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Suppose that there are several paths such as kijR  that satisfy jikr RSRS ∩∈ . 

Then the analytical allocation model divides travelers proportional to travel time as 
follows:  

ij
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When the headway on a specific route is less than 10 minutes, the average 

passenger waiting time can be estimated using half headway model. However, as 
headway increases, passengers might tend to plan their arrivals to the transit stops. In this 
case, a more accurate estimation of average passenger waiting times can be obtained 
using the models developed by Fan and Machemehl (2002 and 2003).  

 

However, if the intersection of iSR and jSR  is an empty set (i.e. Φ=∩ ji SRSR ) 

or if at least one of them is empty, then there is no direct route connecting these two 
nodes i and j. Since no direct service can be provided, those passengers who want to 
travel from zone i to zone j or vice versa may have to make transfers or take long walks 
to get served by some alternative routes. In this case, the next level of transfer paths (1- 
transfer-0-long-walk paths) and/or long-walk paths (0- transfer-1-long-walk paths) are 
then checked. Note that the availability of these two paths is checked in the same priority 
since it is assumed that the transit tripmaker always attempts to complete his/her trip 
making as few transfers as possible and as little walking distance as possible. Namely, if 
no direct routes that connect zone i to zone j exist, the trip assignment model checks for 
both 1- transfer paths and 1-long-walk paths at the same time for possible services. 

 

6.4.2.2 Second Level 

 
As mentioned before, if the demand between a specific centroid node pair cannot 

be satisfied directly at the first level, then paths (i.e., 0-transfer-1-longwalk paths and/or 
1-transfer-0-longwalk paths) at the second level are checked. This level is designed to 
check whether the trip can be completed with one transfer or one long walk and the 
details are presented as follows. For convenience, the following notations are introduced: 

• itNLR  denotes the node lists in itr RS∈  (i.e. tr  is one of the routes that pass by 

centroid node i). 

• 'NLR
jt

denotes the node lists in jt
r RS' ∈  (i.e. 't

r  is one of the routes that pass by  

             centroid node j). 
 

6.4.2.2.1 1-transfer-0-long-walk paths 

 

By examining the node lists of every possible combination of tr  and 't
r , the trip 

assignment model seeks to find the intersection set of nodes contained in both itNLR  and 
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'NLR
jt

. If the intersection set is not empty, then its contents are possible transfer nodes 

between route tr  and 't
r . For example, if the intersection set is { }k21 n,,n,n L , then there 

are k 1-transfer-0-longwalk paths. Let 
jtnit '

1 )(
TR denote a path from zone i to zone j, 

where passengers board route tr  at origin node i, and stay on route tr  until node 1n , 

where passengers transfer to route 't
r  and travel on it until the destination node j is 

reached.  Assume that the average waiting time at the transfer station is half of the 
receiving route headway and assume that the transfer penalty is specified by the users. 
For each possible path involving one transfer, the total travel time can be estimated as 
follows: 
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After the total travel time associated with this type of path is computed, note that 

different from the approach taken in 0-transfer-0-longwalk route service, the filtering 
process and corresponding analytical allocation model do not come into play until all the 
possible 1-transfer-0-long-walk paths and 0-transfer-1-long-walk paths have been 
obtained. However, these 1-transfer-0-long-walk paths are kept until the 0-transfer-1-
long-walk paths are searched.  

 

6.4.2.2.2 0-transfer-1-long-walk paths 

 
This section is focused on the procedure to check whether the trip can be 

completed with one long walk and no transfers. Suppose the procedure has found that 
origin centroid node i cannot be directly reached by any route in the existing transit 
system. The trip assignment model first identifies the set of zones that are neighbors to 
centroid node i and to which a long walk distance would be within a pre-specified range 

tolerable by a transit user and records such neighboring nodes in iNB . Also recorded is 

ik k NB,SNR ∈ , the set of routes that pass through k, any of the neighbor distribution 

nodes of centroid node i. The model then checks the intersection of these two sets of 

routes. If Φ≠∩∈ jk i
RSSNR NB , then there exist some routes that have both node k 

(neighbors to centroid i) and j on their node lists, which means that these routes can 
provide route service (with 0-transfer-1-long-walk involved) for those passengers who 
want to travel from centroid node i to j. The routes in this set are classified as 0-transfer-

1-long-walk paths for centroid node pair (i, j). Let 
jki NR  denote such a path that 

represents passengers boarding route kr  at origin node Ni  (one of the neighbor 

distribution nodes of centroid node i) and traveling on this route to destination j. Suppose 
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that oi  is the chosen node on the link that transit users want to walk through because it 

provides the shortest path to Ni  compared to other nodes 'i  ( ii NS' ∈ ) on the link. 

 

Let kTT  denote the travel time required for transit users who want to travel from 

centroid node i to centroid node j by taking a bus on route kr , a 1-longwalk-0-transfer 

path. Then it can be computed as follows: 
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where:  

access

ii ot
,

----- the access (walking) time from centroid node i to its associated  

                 distribution node (i.e., access point) oi on the link; 
access

ii Not
,

----- the access (walking) time from node oi  that belongs to centroid node i  

     to ,Ni the distribution node neighbored to centroid node  i on the link; 
wait

kiNt
,

  ----- the waiting time experienced by passengers at distribution node Ni on  

     the link for buses on route kr ; 
invt

kjki Nt
,,

----- the in-vehicle travel time required from node Ni on the link to the  

     distribution node kj of centroid node j on the link on the route kr ; 
access

jkjt , ----- the access (walking) time from the distribution node kj on the link to  

     the destination centroid node j; 
 
As mentioned, after the total travel time associated with all the possible 1-

transfer-0-long-walk paths and/or 0-transfer-1-long-walk paths are obtained, a filtering 
process that is similar to the rule at first level is used if more than one such path exists. 
Only the paths whose total travel time is within a particular range are recorded as 

acceptable paths. The trip assignment procedure assigns the demand ijd  according to an 

analytical allocation model as follows.  
 

For 1-transfer-0-long-walk paths, suppose several paths such as kn  satisfy 

'NLRNLR
jtitkn ∩∈ . For 0-transfer-1-long-walk paths, suppose that several paths such 

as kr  satisfy jtk i
r RSSNR NB ∩∈ ∈ . Then for 1-transfer-0-long-walk paths, the analytical 

allocation model divides travelers proportional to travel time as follows:  
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While for 0-transfer-1-long-walk paths, the analytical allocation model divides 
travelers proportional to travel time as follows:  
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After the demand is distributed among these route sets, the parameter, “1-transfer-

0-long-walk paths” and/or “0-transfer-1-long-walk paths” is therefore updated. However, 
if none of the paths at this level can be found, the next level of transfer paths and/or long-
walk paths are checked and details are presented in the next subsections. 
 

6.4.2.3 Third Level 

 
If none of the 0-transfer-1-longwalk paths and/or 1-transfer-0-longwalk paths can 

be found, then passengers who want to travel from node i to j might have to resort to 
paths with two transfers, two long walks, and/or one transfer and one long walk. 
 

6.4.2.3.1 2- transfer-0-long-walk paths 

 
This procedure here is intended to search for all paths with exactly two transfers 

between node i and j and try to find a route that passes through neither node i or node j, 

but shares a node with a route t that passes through node i ( itr RS∈ ) and shares another 

through node j with route 't
r , ( jt

r RS' ∈ ). As far as computation is concerned, it can be 

noted that RS , the set of these routes, is simply the complement of the union of the 

previous generated iSR  and jSR (i.e., ji SRSRSR ∪= , see Baaj and Mahmassani, 

1990). 
 

Let TRANSFERSETnn
kk 2),( ' ∈  denote one pair of the transfer nodes that are 

suitable for 2-transfer paths and jjkknknkiki
k

k ,,,,,,,, 33'211
TR denotes a path from node i and j, 

which passengers board route 1k  at origin node 1ik  on the link that belongs to centroid 

node i, and stay on the route 1k  until node kn , where passengers makes his/her first 

transfer to route 2k  and travel on it until node 'k
n , where he/she makes second transfers 

to route 3k  and travel on it until node 3jk , and then walks to the destination centroid 

node j. Again, assume that the average waiting time for the transfer bus at the transfer 
station is half of the headway run on the transfer route. For this type of path that involves 
two transfers, the total travel time can be estimated as follows: 
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6.4.2.3.2 0-transfer-2-long-walk paths 

 
The procedure considers the situations that both centroid nodes in the demand pair 

ijd  cannot be reachable by any route in the existing transit system. Using the same 

principles as before, this section is focused on the procedure to check whether the trip can 
be completed with two long walks and no transfers.  

 
The trip assignment model first checks whether the set of centroid nodes that are 

neighbors to centroid node i and are within a long walk distance and records such 

neighboring nodes in iNB . Also recorded is ik k NB,SNR ∈ , the set of routes that pass 

through k, any neighbor centroid of node i. The same process is also applied for centroid 
node j. The model then checks the intersection of these two sets of routes. If 

Φ≠∩ ∈∈ ji kkk NBNB SNRSNR , then there exist some routes that have both node k (that are 

neighbored to centroid i) and node kk (that are neighbored to centroid j) on their node 
lists, which means that these routes can provide route service for those passengers who 
want to travel from centroid node i to j or from centroid node j to i (with 0-transfer-2-
long-walk). The routes in this set are classified as 0-transfer-2-long-walk paths for node 

pair (i, j). Let 
jkiNR  denote a path that represents passengers boarding route kr  at origin 

node Ni  (the neighbor centroid node of i) and traveling on this route to destination node 
Nj  (the neighbor centroid node of j.) Suppose that oi is the chosen node on the link that 

the transit users want to walk through because it has the shortest path to Ni  compared to 

other nodes 'i  ( ii NS' ∈ ) on the link. (So is oj ). 

 

Let kTC  denote the travel time required for the transit users who want to travel 

from centroid node i to centroid node j by taking bus transit on route kr . Then it can be 

computed as follows: 
access

jj

access

jkj

invt

kjki

wait

ki

access

ii

access

iik NNNNNoo ttttttTC
,,,,,,,

+++++=  

where:  
access

ii ot
,

----- the access (walking) time from centroid node i to its associated node  

                             oi on the link; 
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access

ii Not
,

----- the access (walking) time from node oi  that belongs to centroid i to the  

                 node Ni on the link that belongs to neighboring centroid of  i; 
wait

kiNt
,

  ----- the waiting time experienced by passengers at node Ni on the link for  

     transit run on route kr ; 
invt

kjki Nt
,,

----- the in-vehicle travel time required from node Ni on the link to the node  

     kj on the link on the route kr ; 
access

jkj Nt
,

----- the access (walking) time from the node kj on the link to the node  

                Nj that belongs to the destination centroid node j; 
access

jj Nt
,

----- the access (walking) time from the node Nj on the link to its associated  

                 destination centroid node j. 
 

6.4.2.3.3 1- transfer-1-long-walk paths 

 
This procedure here is designed to check whether the trip can be completed with 

1-transfer-1-long-walk paths. Note that the long walk can happen at either the origin or 
destination or while transferring. For convenience, it is assumed that centroid node i is 
the node that cannot be reachable by any route in the existing transit system (i.e., the long 
walk is at the origin centroid node). The trip assignment model first checks whether the 
set of centroid nodes that are neighbors to centroid node i and to which a long walk 

distance are within a pre-specified range and records such neighboring nodes in iNB . 

Also recorded is ik k NB,SNR ∈ , the set of routes that pass through k, a neighbor 

centroid of node i. For facilitation of the description, the following notations are 
introduced: 

 

• 
ti NNLR  denotes the node lists in ikt kr NB,SNR ∈∈  (i.e. tr  is one route that 

passes through node Ni on the link that belongs to the neighboring centroid node 
of i). 

• 'NLR
jt

 denotes the node lists in jt
r SR' ∈  (i.e. 't

r  is one route that passes through 

node j) 
 

By examining the node lists of every possible combination of tr  and 't
r , the trip 

assignment model seeks to find the intersection set of nodes contained in both 
ti NNLR  

and 'NLR
jt

. If the intersection set is not empty, then its contents are possible transfer 

nodes between route tr  and 't
r . For example, if the intersection set is )n,,n,(n k21 L , 

then there are k 1-transfer paths. Let 
jtnti N '

1 )(
TR denote a path from node Ni  to j, and 

passengers board route t at origin node Ni , and stay on route t until node 1n , where they 
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transfer to route 't  and travel on it until destination node j is reached.  Suppose that oi  is 
the chosen node on the link that the transit users want to walk through because it has the 

shortest path to Ni  compared to other nodes 'i  ( ii NS' ∈ ) on the link. Assume that the 

average waiting time for the transfer bus at the transfer station is half of the transfer route 
headway. For each possible path involving one transfer and one long walk, the total travel 
time can be estimated as follows: 
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After obtaining all the possible 2-transfer-0-long-walk paths, 1-transfer-1-long-

walk paths, and/or 0-transfer-2-long-walk paths, the transit trip assignment procedure 

assigns the demand ijd  to these competing paths. As described before, if more than one 

such path exists, then a “travel time filter” is introduced for checking the travel cost on 
competing routes. Any route whose travel cost exceeds the minimum value by a specified 
threshold (say 30 percent) is rejected. Demand is then assigned to the acceptable routes 
(possibly to paths of these three categories) using an analytical nonlinear proportional 
allocation rule, which is the same as that in Level 1 and 2. 
 

6.4.2.4 Fourth Level (no service available) 

 
As shown in Figure 6.3, for a given centroid node pair (i, j), if none of the paths of 

the first three levels can be found, then there is no route service available for this specific 
centroid node pair. In this case, demands from zone i to zone j (or vice versa) cannot be 
satisfied by transit in the current transit network system. In this case, the parameters 
regarding unsatisfied demand are updated and the model will increment j and repeat all 

these processes until Nj ≥ . Note that all the above processes are repeated until all the 

transit demand pairs shown in the trip table matrix are checked.  
 

6.5 Frequency Setting Procedure 

 
As the core of the Network Analysis Procedure, the previous section has 

presented the transit trip assignment model. To determine the service frequency for each 
route and further to evaluate the objective function including the user cost and operator 
cost, it is necessary to include a Frequency Setting Procedure as part of the NAP. This 
section centers on the iterative frequency setting procedure that yields internally 
consistent service frequencies when it is coupled with the transit trip assignment model. 
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6.5.1 Demand Frequency and Policy Frequency 

 
As mentioned in the headway feasibility constraints in Chapter 3, the frequencies 

commonly used in the transit industry can be grouped into three categories: supply 
frequency, policy frequency, and demand frequency. Demand frequency and policy 
frequency are chosen in the NAP to set the route service frequencies.  
 

As described, the demand frequency can be computed as follows. The route-based 
transit demands are obtained by assigning the trips in a transit demand matrix using the 
trip assignment model. Based on these transit demands, the total transit trips using route 

kr  and its corresponding max

kQ , the maximum link flow of route kr  are computed. As a 

result, assuming that transit demand is symmetric, kf , the route frequency for route kr  can 

always be computed as follows: 

 

k

max

k
PL

Q
f k=

 

where: 

kf  = minimum route frequency for route kr  (hrs);

 max

kQ  = maximum hourly link flow occurring on the route kr  (people/hour); 

P  = the bus seating capacity for passengers operating on the network’s route;

 kL = the user-defined maximum load factor allowed on route kr ; 

 
Obviously, different values for maximum load factors can meet different transit 

operator operational considerations. Furthermore, different load factors may be chosen 
for different subset of bus routes. However, for simplicity, one load factor is assumed for 
all routes in the transit network although its value can be changed to perform sensitivity 
analyses. Furthermore, as described, the policy frequency is used for setting the bus line 
headway in extreme situations. The following section presents an iterative process that is 
employed in the FSP to compute the demand frequency for all routes. 
 

6.5.2 Solution Approach for the FSP 

 
A commonly used rule in the transit industry, especially for congested networks, 

is the computation of route frequencies in order to achieve a preset peak load factor. To 
make this rule meaningful, the demand assignment must be performed over the peak hour 
period. However, one would expect that the NAP can be used for different time-of-day 
periods. For less congested periods, the method using peak load factor may yield 
frequencies that are much higher than what the riders expect as reasonable. In this case, 
the minimum policy headway would come into play.  
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As described before, service frequencies are computed with a preset load factor 
and an iterative procedure. First, an initial set of frequencies is predefined as inputs for 
the transit trip assignment model. (For example, the NAP simply assumes identical initial 
frequencies of 6 buses/hour for all routes associated with a particular network 
configuration.) Then, based on these frequencies, the NAP calculates new service 
frequencies on all routes by implementing the trip assignment model. Demands must be 
reassigned in order to be consistent with the current service frequencies and new route 
frequencies are recomputed again based on updated transit demand characteristics on all 
routes. For any specific iteration in the frequency setting procedure, if the output 
frequencies are considered to be quite different from the input frequencies (say, they 
differ by more than 10%), then the NAP continues until convergences are achieved 
between the revised frequencies and the input frequencies. In other words, the NAP 
develops the internal consistency of route frequencies through an iterative process, which 
has been shown in Figure 6.2.  
 

6.5.3 Preset Parameters for the FSP 

 
As described before in this chapter, some parameters must be chosen by the users 

when using the FSP in the NAP. In the NAP, the penalty for each transfer is chosen to be 
5 minutes equivalent in-vehicle travel time, the bus seating capacity is selected as 40 
passengers, and the maximum load factor on each route is taken as 1.3. Other design-
related parameters include different weights that the transit operators might put on 
different components of the transit user time. However, the traffic delay at each 
intersection and the mean passenger boarding and deboarding times are not considered. 
Table 6.1 presents all the NAP input Parameters.  

 

Parameter Notation Value 

enaltytransfer_pC  the penalty for each transfer 5 minutes 

P  bus seating capacity 40 passengers/bus 

kL  maximum load factor on each route 1.3 

                                     Table 6.1 Input Parameters for the NAP 

It is expected that different chosen preset network-related parameters can result in 
different solution quality. To see how the quality of the optimal bus transit network 
solution changes corresponding to different chosen values for these parameters, 
sensitivity analysis that can reflect changes in the performance of objective functions can 
be conducted and related characteristics can be identified.  

 

6.6 Network Example Illustrations for the Trip Assignment Procedure 

 

To show how the nonlinear transit trip assignment model works, a small network 
example is presented in Figure 6.4. A single demand node pair (1,7) that is served by six 
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routes is illustrated. The shortcomings of previous models can be seen in Figure 6.4: 1) 
Four nodes connecting to Centroid 7 through the centroid connector cannot be treated as 
a single node; and 2) the considerations for passenger route choice should be involved 
with both the numbers of transfers and the numbers of long walks. Therefore, previous 
trip demand assignment models should be modified to accommodate these changes. 
 

The transit trip assignment procedure gives several input specifications. In this 
example, the penalty for each transfer is chosen to be 5 minutes of equivalent in-vehicle 
travel time. Equal weights are put on different components of the transit user time. Table 
6.2 shows the Link Travel Time (expressed in minutes) and Route Headways (hours per 
bus) for this network example. Since there is no direct route service available for 
passengers traveling between zone 1 and zone 7, the existence of 1-transfer-0-longwalk 
paths and the 0-transfer-1-longwalk paths is checked. Table 6.3 presents the four 
candidate paths and their characteristics including all the components of passenger travel 
costs.  

 
According to the transit trip assignment model presented before, the results of 

Transit Trip Assignment from demand node pair (1, 7) are given in Table 6.4. From these 
results, it can be seen that if there are 100 transit users who want to travel from zone 1 to 
zone 7, then this transit trip assignment model will distribute 56 passengers to P3, the 
third candidate path and 44 passengers to P4, the fourth candidate path as shown in Table 
6.3. These results clearly suggest that the model is more reasonable than that obtained 
from previous methods because a significant number of transit users will choose the best 
path on P3 as expected. However, no demands are distributed on this path if previous 
models are used and obviously this result is not plausible. Therefore, this method is more 
applicable to the real-world transit route network design problem.  
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Figure 6.4 Network Examples for the Trip Assignment Model 
 

 
 
 
Table 6.2 Link Travel Time (minutes) and Route Headways (hour per bus) 

Links L1 L2 L3 L4 L5 L6 

Link Node Pairs 11 tnl →  mtn 71 →

 
ntn 71 →

 
ltn 73 →

 
21 tnn →

 
ntn 72 →

 

Travel Times 8 10 9 15 4 10 

Routes R1 R2 R3 R4 R5 R6 

Route Headways 8 12 12 15 20 10 
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6.7 Summary 

 

The Network Analysis Procedure (NAP) is a procedure that can analyze and 
evaluate the alternative network structures and determine their associated service 
frequencies.  For any given route network configuration, many system performance 
measures including associated route service frequencies that can reflect the quality of 
service are computed. In addition, the transit user cost, operator cost (i.e., the fleet size) 
and the unsatisfied demand cost are determined. 

 
The NAP discussed in this chapter differs from the previous approaches in four 

main aspects: 1) the ability to explicitly consider the transfer and long-walk related 
characteristics among routes under a much more real situation (in the context of centroid 
nodes); 2) the ability to assign the trip demands under a much more complex situation 
that considers the numbers of transfers and the numbers of long walks as the most 
important criteria and to solve the innovative trip demand assignment procedure using a 
nonlinear analytical allocation model for the first time; and 3) the ability to explicitly 
consider the transit trip assignment model in the context of variable transit demands.  

 
Two major components of the NAP, namely, the transit trip assignment model 

and the frequency setting procedure are presented. The algorithm skeleton and the details 
of its solution methodologies are discussed. Characteristics associated with each 
component are described, and this provides a solid basis for the solution algorithm 
implementations for the BTRNDP in the next chapters. 
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CHAPTER SEVEN 

The TRNDP WITH FIXED TRANSIT DEMAND 

 

7.1 Introduction 

 
The previous chapters have covered model formulations and corresponding 

solution methodology for the BTRNDP. Chapter 3 discussed the model formulations and 
Chapter 4 proposed solution methodology, which consists of three main procedures, 
namely the initial candidate route set generation procedure, the network analysis 
procedure and the heuristic search procedure. The characteristics of six solution 
approaches, i.e., the genetic algorithm, local search, simulated annealing, random search, 
tabu search algorithm and the exhaustive search method were also presented. Chapter 5 
discussed the details of the ICRSGP and chapter 6 presented a detailed description of the 
NAP including the transit trip assignment model and frequency setting procedure.   
 

This chapter focuses on the solution framework for the BTRNDP with fixed 
demand. Previously proposed concepts including the genetic algorithm, local search, 
simulated annealing, random search, tabu search algorithm and exhaustive search 
method, which are intended to systemize and organize the ICRSGP and NAP, are 
discussed in detail. A similar solution framework for the BTRNDP with variable transit 
demand is presented in Chapter 8. Comprehensive experiments and corresponding 
numerical results using these six algorithms are discussed in chapter 9.  
 

This chapter is organized as follows. Section 7.2 presents the solution framework 
of the genetic algorithm implementation model for the BTRNDP with fixed demand. 
Implementation models of the BTRNDP with fixed demand using local search, simulated 
annealing, random search, tabu search algorithm and exhaustive search solution methods 
are discussed in sections 7.3, 7.4, 7.5, 7.6 and 7.7 respectively. Section 7.8 uses the GA 
model as a representative example for these algorithms to illustrate the network 
applications for the BTRNDP with fixed demand. Finally, a summary concludes this 
chapter in section 7.9.  
 

7.2 Genetic Algorithm Implementation Model 

 

As mentioned before, since the GA provides a robust search as well as a near 
optimal solution in a reasonable time, this approach is employed as one of the candidate 
heuristic search solution techniques for the BTRNDP. Before implementing the genetic 
algorithm model, a set of potential routes, consisting of the whole solution space, has 
been generated by the ICRSGP. The objective of the genetic algorithm model presented 
here is to scientifically guide the transit route solution set generation process and select 
an optimum set of routes from the candidate route set solution space with the sum of the 
total user cost, operator cost and unsatisfied demand cost being minimized.  
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Input data for the studied network, including the node, link, zone and network 
data, are required and must be defined by the user. The user-defined data must also 
include the value of a minimum and maximum number of bus routes in the solution 
network and a series of GA-related parameters such as the population size (which 
partially depends on the network size and the users’ knowledge), the number of 
generations, the crossover probability and the mutation probability. Generally speaking, 
the Genetic Algorithm Implementation Model can be presented as follows. 
 
Step 1. Set n=1 and initialize all the performance measure parameters; 
Step 2. Define the n-related dynamic allocated arrays required for GA implementation; 
Step 3. Generate the GA population formulation for the current route set size and 

initialize each chromosome (population) randomly;  
Step 4. Set generation=0; 
Step 5. Call the network analysis procedure; 
Step 6. Evaluate the objective function; 
Step 7. Keep the current solution; 
Step 8. Generate next population 

• Selection 

• Crossover 

• Mutation 
Step 9. If generation<_MAX_GEN, increment generation by 1 and go to step 5; else 

update the current best solution if improved;  
Step 10. Set n=n+1; 
Step 11. If n<=_MAX_ROUTES, go to step 2 and repeat the same process; 
Step 12. Output the best route set from the best solution found, and several 

performance measures. 
 

Figure 7.1 presents the flow chart of a genetic algorithm implementation model 
for the BTRNDP with fixed demand. Details of the whole process can be described as 
follows: 

In Step 1, the route set size (i.e., the number of routes in the solution network) is 
set to 1. All performance measures such as the parameters used for representing the seven 
transit demand categories, _direct_route (i.e., 0-transfer-0-longwalk), 1-transfer-0-
longwalk, 0-transfer-1-longwalk, 1-transfer-1-longwalk, 2-transfer-0-longwalk, 0-
transfer-2-longwalk and unsatisfied demand are initialized; 

In Step 2, computer memory to be occupied by dynamically allocated arrays is 
established for the GA components including the gene, the population, and the updated 
population. Note that the space is related to the route set size. The larger the route set 
size, the more the space needed to meet the requirements; 

In Step 3, the GA population formulation for the current route set size is 
generated and the initial population (i.e., starting feasible solution) is generated 
randomly;  
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In Step 4, the generation number, which is used to record the number of 
generations for the current number of route set of the genetic algorithm, is initialized to 0; 

In Step 5, the network analysis procedure is called to perform the transit trip 
assignment and frequency setting procedures. The output of this step is the transit 
demand between each centroid node pair allocated to a specific route and the frequencies 
on each route in the current population. Several different transit demand related 
parameters, including _direct_route, 1-transfer-0-longwalk, 0-transfer-1-longwalk, 1-
transfer-1-longwalk, 2-transfer-0-longwalk, 0-transfer-2-longwalk and unsatisfied 
demand, and information regarding each node, link, route and network are obtained 
accordingly. Also the objective function that is represented as the sum of the user cost, 
operator cost and the unsatisfied demand cost (exactly as included in the model 
formulation is chapter 3) is obtained; 

In Step 6, the objective function obtained in Step 5 is evaluated; 
In Step 7, the current best solution (namely, the population with least objective 

function) up to current generation is kept; 
In Step 8, the next population is generated through the GA selection, crossover 

and mutation processes; 
In Step 9, the generation number is compared to the user-defined maximum 

number of generations or other stopping criteria. If the maximum number of generations 
has not been reached, then increment the generation by 1 and goto step 5 and repeat the 
same process. Otherwise, update the current best solution if improved; 

In Step 10, the route set size (i.e., the number of routes in the proposed transit 
solution network) is incremented by 1; 

In Step 11, the number of routes is checked. If it doesn’t exceed the user-defined 
maximum number of routes, then goto step 2 and repeat the same process until the 
maximum route set size is reached; 

In Step 12, the GA route population with the least objective function value is 
outputted as the best solution found. Meanwhile, several performance measures are 
obtained.  
   
 The GA implementation model for the BTRNDP has been successfully tested and 
details of the numerical results are presented in Chapter 9. 
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Figure 7.1 Genetic Algorithm Model for the BTRNDP with Fixed Demand 
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7.3 Local Search Implementation Model 

 

As described in Chapter 4, the local search method is used as one of the solution 
approaches for the BTRNDP. Generally speaking, there are several variations of this 
basic algorithm. Different definition rules could result in solutions of different quality. 
Furthermore, the definition of the “neighborhood”, i.e., the nearby solutions of the 
current solution, might affect the quality of the solution most. Note that like the GA, the 
local search method is employed to choose an optimal route set from the whole route set 
solution space that has been generated by the ICRSGP.  

 
In this research, the “neighborhood” for any route i is defined as the routes that 

are next to route i in the solution space because the neighbors will share a significant 
amount of structure (say, the origin and destination node might be the same but are on 
different k-th shortest paths or even have the same centroid origin and centroid 
destination node). Furthermore, this definition rule is very simple and easy to implement. 
As a result, this definition is employed for all heuristic algorithms that are based on the 
definition of “neighborhood” including LS, SA and TS algorithms (except GA and RA) 
in this research. Figure 7.2 presents the local search implementation model for the 
BTRNDP with fixed demand. 

 

7.4 Simulated Annealing Implementation Model 

 
Simulated annealing can be regarded as a “randomized variation” of the local 

search method. Compared to the local search method, simulated annealing is a more 
advanced algorithm because it attempts to minimize the probability of being stuck in a 
low-quality local optimum. As described in chapter 4, randomness can help the search 
process as follows: 1) Randomly choose a local move. If it is improving, then take it as 
the current best solution; 2) If it is a tie, randomly decide whether to take it; and 3) If it is 
only a little worse, randomly decide whether to take it as the updated solution.  

 
Note that the neighborhood definition is the same as that in LS and Figure 7.3 

presents the simulated annealing implementation model for the BTRNDP with fixed 
demand. 
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Figure 7.2 Local Search Model for the BTRNDP with Fixed Demand 
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Figure 7.3 Simulated Annealing Model for the BTRNDP with Fixed Demand 
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7.5 Random Search Implementation Model 

 
As described in chapter 4, random search is essentially a Monte Carlo based 

simulation optimization method. When it is used for the BTRNDP, this method randomly 
chooses a solution for each step of a specified route set size from the solution space and 
evaluates the generated solution sets by comparing their objective function values. The 
whole process is repeated until the route set size reaches the user-defined maximum route 
set size. The optimal transit route network solution is the one with least objective 
function magnitude (i.e., the least sum of total user cost, operator cost and unsatisfied 
demand cost). Since this method is simple and easy to implement, random search is 
employed as one of the solution approaches in this research. Figure 7.4 presents the 
random search implementation model for the BTRNDP with fixed demand. 

 

7.6 Tabu Search Implementation Model 

 
As other heuristic algorithms, applying tabu search (TS) methods require a 

significant amount of knowledge specific to that problem. To make tabu search a 
potentially efficient algorithm for the BTRNDP, careful attention is required. Note that 
one of the significant contributions in this research is using the tabu search algorithm to 
solve the BTRNDP both with fixed and variable transit demand. Since it is the first time 
for the tabu search methods to be applied for the BTRNDP, a detailed description of the 
BTRNDP-specific tabu search is presented. 

 

7.6.1 Solution Representation 

 
At any iteration t of the algorithm, let n represent the proposed solution route set 

size. A candidate bus transit route solution network can be represented by 

),,,,( 21

t

n

t

i

ttt RRRRX LL= , where ),,2,1(  niRt

i L=  denotes the i-th bus route in the 

proposed solution set. Let )( tXf  represent the objective function as shown in Chapter 3 

for the proposed solution network defined by this n transit route network configuration 

),,,( 21

t

n

ttt RRRX L= . 

 

7.6.2 Initial Solution 

 
In this research, all initial solutions for three different versions of the tabu search 

algorithms are generated randomly the same way as that shown in the genetic algorithm, 
local search, simulated annealing and random search methods. 
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No
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The Initial Candidate Route Set Generation Procedure (ICRSGP)
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Figure 7.4 Random Search Model for the BTRNDP with Fixed Demand 
 
 

7.6.3 Neighborhood Structure 

 

The neighborhood of a feasible solution route network set tX  is another feasible 
solution obtained by moving one of the routes in the current proposed solution set, say 

the i-th route t

iR  to one of the routes that is next to t

iR  (namely t

iR 1−  or t

iR 1+ ) in the stored 
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solution space. For route 1, the neighborhood can be defined as route 2 and route N, 
where N is the total number of routes in the stored solution space. For route N, the 
neighborhood can be defined as route 1 and route (N-1). The neighborhood of any route i 

( 1N1 −<< i ) that lies somewhere in the middle of the solution route space can be 

defined as the routes that are next to t

iR . )( t

ijXZ , the objective function value of a new 

solution 1+tX  that is obtained from tX  by moving t

iR  to one of its neighbors t

jR  at 

generation t can be computed as follows: )()( 1+= tt

ij XfXZ . 

 

7.6.4 Moves and Tabu Status 

 
At the beginning of this process, no move is tabu (i.e., forbidden). At any iteration, 

the algorithm executes the best non-tabu move to a feasible neighbor of the current 
solution. However, if a tabu move yields a better incumbent, it is also implemented. 
Whenever a move is performed, the reverse move is declared tabu for m iterations, where 
m is either a user-defined parameter or a randomly generated one that follows a discrete 

uniform distribution in an interval ],[ maxmin mm , where minm  and maxm  are the user-

defined minimum and maximum parameters of the algorithm. Comparisons of the model 
performance between these two strategies including the fixed and variable tabu tenure 
can be performed and sensitivity analyses can be done to get the optimal parameters in 
either case as will be shown in Chapter 9. 
 

7.6.5 Diversification and Intensification 

 
This part is developed to combine the diversification and intensification procedures 

to further explore the solution space for a possibly better solution route network. It starts 
from the best found solution route set and introduces a major perturbation by allowing q 

routes ( nq ≤≤1 ) to move up to w more than their current solution location (say q = 2 

and w = 10). This is called “diversification”. To respect the original characteristics of the 
tabu search, this procedure is never applied more than once during a given operation 
(called “intensification”). Note that tabu moves are also applied to this situation. If this 
move is toward one direction (say increasing direction) of the current route, then moves 
toward to the opposite direction (i.e., decreasing direction) are prevented for a certain 
number of iterations (say using the same m). Model performance comparisons of the tabu 
search algorithms between using and not using this procedure can be achieved and the 
better approach will be identified. 
 

7.6.6 Implementation Model Summary 

 
The proposed tabu search algorithms for the BTRNDP in this research include two 

main procedures and they are described as follows. 
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1. Neighborhood Search Procedure 

At iteration t, let ),,,( 21

t

n

ttt RRRX L=  be a feasible solution of value )( tXf . Let 

)( tXN  be the set of feasible neighbors of tX , as defined before. The best neighbor of 
tX  is a solution )(**

tt

ji
XNX ∈  obtained by moving t

i
R *  to its best neighbor t

j
R * . 

Similarly define the best feasible non-tabu neighbor of tX  as )( tt

ij
XNX ∈ . ( t

ji
X **  and 

t

ij
X  may coincide). Let *X  be the incumbent (the best known feasible solution) and let 

)( *XZ  be its value. 

 

If )()( *
** XZXZ t

ji
< , set t

ji

t XXX **

1* == +  and )()()( **

1* t

ji

t XZXZXZ == + . 

Declare the move of a route from t

j
R *  to t

i
R *  tabu for m iterations, where m can be a fixed 

user-defined parameter or is uniformly distributed with ],[ maxmin mmm ∈ . If 

)()( *
** XZXZ t

ji
>  and all moves defining the solutions of )( tXN  are tabu, set 1=δ  and 

return. Otherwise, set t

ij

t XX =+1  and )()( 1 t

ij

t XZXZ =+ . Declare the move of a route 

from jR  to iR  tabu for m iterations, where m has the same definition as used before. 

 
2. Diversification and Intensification Procedure 

 

This procedure is the same as that in Neighbor Search but defines )( tXN  

differently. It allows q routes ( nq ≤≤1 ) to move up to w more than the current solution 

location in the solution space (Note that in this research, this procedure is called the 
“shakeup” procedure. Furthermore, for simplicity, q is set to n and w is set as a user-
defined parameter). When a route is moved in one direction (say the increasing 
direction), moving back in the opposite direction is declared tabu for m iterations, where 
m uses the same notation as before. 

 

Tabu Search Algorithm for the BTRNDP 

Step 1. Randomly generate an initial feasible solution route network 

),,,( 21

t

n

ttt RRRX L=  with route size n in the proposed solution set. 

Step 2. Set 0=δ , 1=t  and tXX =* ; 

While ( 0=δ  and ionsMAX_Iterat≤t ) 

Apply Neighborhood Search to the solution tX ; 

1+= tt . 

Step 3. Apply the “Diversification and Intensification” procedure to *X . 

Apply Neighborhood Search to the solution *X  until 1=δ  or 

ionsMAX_Iterat>t ). 

Step 4. Output the current best solution found. 
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As mentioned before, since TS provides a robust search as well as a near optimal 
solution within a reasonable time domain, this algorithm is employed as the solution 
technique for the BTRNDP. Before implementing the Tabu Search algorithms, a set of 
potential routes, consisting of the whole solution space, has been generated by the 
ICRSGP. The objective of the Tabu Search algorithm presented here is to select an 
optimal set of routes from the candidate route set solution space with the sum of the total 
user, operator and unsatisfied demand cost being minimized.  

 
A flow chart that provides the Tabu Search algorithm-based solution framework 

for the BTRNDP can be seen in Figure 7.5. Note that the “neighborhood” for any route i 
is defined as the route left or right of route i stored in the solution space. At the beginning 
of the TS implementation, the initial solution is randomly generated. In the second (and 
later) generation, the HSP is used to guide the generation of the new transit route solution 
set and after it is proposed at each generation, the search process is started. The network 
analysis procedure is then called to assign the transit trips between each centroid node 
pair and determine the service frequencies on each route and evaluate the objective 
function for each proposed solution route set. For each iteration, if a solution route set is 
detected to improve over the current best one, the current best solution is updated. The 
new proposed solution sets are generated and are evaluated in the same way. If 
convergence is achieved or the number of generations is satisfied, the iteration for a 
specific route set size ends. Then, the proposed solution route set size is incremented and 
same processes are repeated until the maximum route set size is reached. The best 
solution among all transit route solution sets is adopted as the optimal solution to the 
BTRNDP for the current studied network.  

 
Moreover, in this research, three versions of TS algorithms are used: 1) Tabu 

search without shakeup procedure (i.e., without the diversification and intensification 
procedure as defined before); 2) Tabu search with shakeup procedure and fixed tabu 
tenure (i.e., the number of restrictions set for the tabu moves are fixed); and 3) Tabu 
search with shakeup procedure and variable tabu tenure (i.e., the number of restrictions 
set for the tabu moves are randomly generated). All three different variations of tabu 
search methods are implemented and algorithm comparisons are presented in Chapter 9. 
 

7.7 Exhaustive Search Implementation Model 

 
As mentioned in Chapter 4, exhaustive search is an approach to search for the 

global optimal solution by enumerating and comparing the objective functions for all 
possible solutions. Note that in this research, the sole purpose of employing ESM to solve 
BTRNDP is to use its global optimal solution as the benchmark to examine the efficiency 
and measure the quality of solutions obtained from the heuristic algorithms, especially 
when the network size is small. Figure 7.6 gives the exhaustive search implementation 
model for the BTRNDP with fixed demand. 
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Figure 7.5 Tabu Search Model for the BTRNDP with Fixed Demand 
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Figure 7.6 Exhaustive Search Model for the BTRNDP with Fixed Demand 
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7.8 Example Network Illustrations 

 
This section uses the GA model as an example to present the application of these 

heuristic algorithms to a small network. In order to better explain this method, the same 
example network used in previous chapters is used.  After the transit route solution space 
is generated by the ICRSGP, the GA model is used to find the optimum set of routes from 
this space. Fixed string length coding is employed to represent the GA coding-decoding 
scheme. The previous flow chart can be reformulated as follows. The number of routes 
will be fixed in each step. Only the solution route set would be considered as variables 
and an optimal route set will be found for each chosen number of routes. One can find the 
best number of routes and route set by comparing optimal solutions for the various cases.  
 

It can be seen from Chapter 5 that the solution space contains 286 feasible routes. 
Let any feasible route be labeled as an integer between [1, 286] and the precision 
requirement of the route number is p=0.1. Therefore, to represent these 286 routes, one 

needs the string length to be 12 using equation ( 1210)1286(12 12111 −<−<− ) as shown 

in Chapter 4. Suppose that one needs to decode a typical sub-string 101100100101. Using 

the transformation method described in the GA section of Chapter 4, ix  can be computed 

as follows: 6.199)12()1286(*28531 12 =−−+=ix . As a result, the 200th route is 

adopted as the route corresponding to the substring 101100100101 by simply rounding 
off this number.  
 

As mentioned, during the GA model implementation process for BTRNDP with 
fixed demand, the GA algorithm tries to find the optimum set of routes from the solution 
space consisting of these 286 candidate routes. In implementing GA, the route set varies 
from each outer loop (say 1 to 4 at most) but is fixed inside the inner loop during each 
successive generation. To start the iteration, the minimum route set size, which is 2 routes 
for this example network, is adopted. Suppose one sets the population size to be 3 and the 
current route set size in the proposed solution is 2. These 286 candidate routes will 
compete for the optimum set with a feasible solution containing only two routes. 
Therefore, each population contains two routes that are represented by a string containing 
two substrings, as shown in Figure 7.7, in which each substring has length 12 and 
represents a specific route number in binary code. Then, in this case, each population, 
which consists of two routes with a string length of 24 and concatenated by two 
substrings, represents a candidate solution route set in the solution space defined by the 
286 candidate routes. Once the code and decode scheme are finalized, the GA model can 
be used to find the optimal route set for the studied network. Note that the initial solution 
is formed by randomly generating a population of such solution vectors. The coding for 
two individual candidate routes in a population is shown in Figure 7.7. 
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Candidate set (1)     

0 1 0 0 1 0 1 1 0 0 0 1  1 1 0 0 0 0 1 0 1 0 0 0  

            (Route no.: 85)                                 (Route no.: 218)  
Candidate set (2)     

1 0 1 0 1 0 1 1 1 0 0 1  1 1 0 1 0 0 1 0 0 0 0 1  

          (Route no.: 192)                                          (Route no.: 235)  
Candidate set (3)     

0 0 0 0 1 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0 0 0 1  

               (Route no.: 10)                                 (Route no.: 3)  
Figure 7.7 Graphical Representations for Each Chromosome in GA Model  
 
Table 7.1 presents a simple representative snapshot of the solution space for the 

example network (Related demand matrix and parameter settings for this network are 
described in Chapter 9). After the finalization of the coding and decoding scheme and the 
generation of the initial population, the genetic search can be started. The network 
analysis procedure is called to get the transit demand distributed and determine the 
service frequencies associated with each route set. Then, the population is evaluated, i.e., 
to find the objective function value (as shown in the previous model) of each individual 
in the population. It should be noted that each individual provides a solution of a set of 
routes that tries to satisfy the demands, subject to the constraints (The user-defined 
parameters included in the constraints are presented in Chapter 9). Also, the current best 
solution is kept. In the next steps, the genetic operators, namely, selection, crossover, and 
mutation, which have been examined before, are applied to this initial population. New 
populations are generated using these operators and are evaluated in the same way. For 
each iteration, the best solution will be updated if the solution improves over the current 
one. The iteration for a specific route set size completes if convergence is achieved or the 
number of generations is satisfied. Then, the size of the route set is incremented and 
successive iterations are made. All the work will be repeated until the maximum route set 
size is reached. The best solution among all the route sets is adopted as the solution. 
Details of the numerical results are presented in Chapter 9. 
 

7.9 Summary 
 

This chapter focuses on six different solution frameworks, namely, the genetic 
algorithm, local search, simulated annealing, random search, tabu search algorithms and 
exhaustive search model, for the BTRNDP with fixed demand. Related algorithm 
skeletons for each solution approach are sequentially presented. As a typical illustration 
example for these six algorithms, a GA model is applied to solve the BTRNDP with fixed 
demand using a small network. Computer programming indicates the validity, 
effectiveness and efficiency of the pilot study of the example network. The next chapter 
presents related characteristics for the BTRNDP with variable demand and its 
corresponding solution framework. Applications of these solution frameworks to 
comprehensive experiments are conducted and associated numerical results are presented 
in Chapter 9. 
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CHAPTER EIGHT 

The TRNDP WITH VARIABLE TRANSIT DEMAND 

 

8.1 Introduction 
 

The preceding chapters presented solution frameworks for the BTRNDP under the 
assumption that the transit demands are fixed. Although this assumption of fixed transit 
demand makes the BTRNDP much simpler to solve, this approach is also problematic 
because the transit demand actually depends on a specific combination of the transit 
network structure and the city highway transportation network. Furthermore, the 
BTRNDP is always investigated for a city highway network that already exists. 
Therefore, one can expect that different transit network patterns can and will result in 
different transit demands, even given the same city highway transportation network. The 
actual interactions between the transit network patterns and the variable demand makes 
the optimal solution to the BTRNDP with fixed transit demand questionable in real world 
situations. Therefore, when considering the BTRNDP, one needs to take the variable 
demand nature into account.  

 
Generally speaking, variable demand can be classified into two cases: 1) Variable 

total demand, which may result from the feedback process of the Urban Transportation 
Planning Process (UTPP); and 2) Variable transit demand, which is due to the variable 
relationship in modal split between auto and transit mode under given total travel 
demand. Motivated by this, this chapter focuses on the solution framework for the 
BTRNDP with variable demand. A systematic literature review on variable demand is 
performed and a corresponding solution framework for the BTRNDP with variable 
demand is developed. 

 
This chapter is organized as follows. Section 8.2 describes characteristics of 

variable total demand. Section 8.3 examines characteristics of variable transit demand. 
The mode split procedure including the attributes of alternatives and the setting decision 
rule for mode choice between the auto and transit modes is discussed. Utility and 
disutility functions are introduced and the commonly used multinomial logit model and 
nested logit model are also reviewed. Underlying characteristics of the MNL and NL 
models are discussed and advantages and disadvantages of each model are pointed out. A 
two-stage BLM-IPM model (binary logit model-inversely proportional model) for 
determining the mode choice between auto and transit routes is presented for the 
BTRNDP with variable transit demand. Section 8.4 discusses the NAP for the BTRNDP 
with variable transit demand. Section 8.5 presents the solution framework for the 
BTRNDP with variable transit demand. Section 8.6 concludes this chapter with a 
summary. 
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8.2 Variable Total Demand 
 

Generally speaking, transportation demand-supply characteristics can be seen 
from a microeconomics point of view. On one hand, the spatial separation of people and 
goods creates demand for transportation; on the other hand, supply of transportation is 
represented by the service of the whole transportation (including the highway and transit) 
network system. At this point, the objective of travel demand forecasting is to quantify 
the amount of travel on the whole transportation system.  
 

As can be seen in the literature, the commonly used methodology in travel 
demand forecasting process is the traditional four-step process. As explained by its name, 
this process consists of four basic phases (see Khisty and Lall, 1998): 

1. Trip Generation forecasts the number of trip ends generated in each zone; 
2. Trip Distribution connects origin-destination trip ends forecasting trips;  
3. Mode Choice predicts how the trips will be divided among the available modes of 

travel; 
4. Network Assignment predicts the routes or paths that the trips will take. 

 
 

Trip Generation

Highway

Assignment

Mode Choice

Trip Distribution

Transit

Assignment

Highway

And

Transit

Networks

Urban Activity

 
Figure 8.1 Traditional Four-Step Process Used in Transportation Planning 

(FHWA/UMTA, 1977) 
 
Figure 8.1 shows how these four phases fit together into the travel demand 

forecasting process that has been used in the Urban Transportation Planning Process. 
From this figure, one can see that total travel O-D demand can be estimated from the first 
two steps of the UTPP, which are trip generation and trip distribution. Therefore, the 
problem comes from the fact that the generation of the total travel O-D demands 



 

 121

(including the auto and transit demand) generally results from the services provided by 
the existing highway and transit networks. On the other hand, the optimal transit route 
network and the optimal highway network design problems should be solved given the 
total travel demand between any planning zone pair. The variable relationship between 
the total travel demand and the solution network suggests that the optimal transit route 
network design should be part of UTPP as shown in Figure 8.1. Put another way, the 
design of the optimal transit route network should be solved simultaneously rather than 
sequentially with the determination of total travel demand. The urban planning process is 
not finished until equilibrium (convergence) occurs in total travel O-D demands via 
appropriate iteration processes. In this case, the highway and transit route network are 
obtained at the same time without any additional cost. However, total work involved this 
planning process would make it practically intractable. Furthermore, many assumptions 
must be made and several parameters must be chosen and these would make the results 
questionable (at least less precise) even if the whole process could be tackled. Therefore, 
although the variable total travel O-D demand theoretically should be considered in the 
BTRNDP, for simplicity, total demand is not investigated in this research. Instead, the 
highway network and the total travel O-D demands between travel zone pairs in the 
studied transportation network are assumed to be fixed and given throughout this 
research. 
 

8.3 Variable Transit Demand 
 

Given the city highway and transit network, generally speaking, three factors can 
influence transit demand at the aggregate level: 1) the total travel demand; 2) the 
attributes (e.g., travel time and cost) of each alternatives (such as auto, bus transit and 
share ride, etc.) and the characteristics of the trip makers (e.g., household size, household 
income, the number of autos available and residential density, etc.) and 3) a setting 
decision rule for the modal split to determine transit demand from the total travel O-D 
demand. A simple version of the procedures that can be used to estimate the transit O-D 
demand is shown in Figure 8.2: 

 

total travel O-D demand

Modal split transit O-D demand

Travel time, cost, etc. by auto and

transit and characterisitcs of individuals
 

 
Figure 8.2 Procedures to Estimate Transit O-D Demand 

 

As described in the previous section, total travel demand is assumed as fixed and 
given. Namely, this research focuses on the BTRNDP under the assumption that the total 
travel origin-destination demand (i.e., total person trips) is given. Furthermore, 
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characteristics of the travelers are usually not considered in computing the transit 
demand. The reasons can be seen from two aspects: First, the characteristics of each 
individual who wants to travel from and/or to a specific zone usually are not known by 
the forecasters. Second, the current empirical results for mode split usually do not 
incorporate characteristics of the travelers for the preliminary transportation planning 
process. However, as can be seen later on, these unobserved traveler characteristics can 
be captured in the error terms in the discrete choice model structure. Based on these 
considerations, the following sections only discuss two major components including the 
attributes of the alternatives and the setting decision rule for modal split.  

 

8.3.1 The Attributes of Alternatives 
 

The attributes of alternatives that are expected to influence traveler 
preferences/choices among alternatives can include total travel time, in-vehicle travel 
time, out-of-vehicle travel time, travel cost, the number of transfers (only for transit 
modes), walk distance, and reliability of on-time arrival etc. Note that the BTRNDP is 
usually studied as an early stage of the preliminary transportation planning process. 
Furthermore, even the current discrete mode choice related empirical results usually don’t 
include all the characteristics except two main level-of-service descriptors, namely travel 
time and cost, of auto and transit mode. For simplicity, only the travel time and travel 
costs involving auto mode and each candidate transit route are considered in the utility 
function, which is discussed in section 8.3.2. 

 
Whenever the BTRNDP is discussed, probably one also has to mention the city 

highway network. This should not seem a surprise since the level of service provided by 
the transit network is not separated from the highway network. Furthermore, the former 
depends largely on the latter, as can be seen from the following descriptions. 

 
As mentioned, travel times and travel demand are all related to the feedback 

processes involved in the urban transportation planning process. It can be expected that 
bus transit in-vehicle travel time on a specific bus route is dependent on the traffic 
volumes including passengers, cars and transit on that route at that time. In the meantime, 
the traffic volumes are determined by the modal split model that is partly dependent on 
the auto and transit travel time. However, as a major part of the transit travel time, the bus 
transit in-vehicle travel time largely determines the latter. The following Figure 8.3 
clearly shows the cyclic relationships. 

 
Due to the stochastic dynamic nature of traffic flow in the city network, 

quantifying the bus in-vehicle travel time and auto travel time precisely is a complex 
process. For simplicity, it is assumed that both auto in-vehicle travel times and transit in-
vehicle travel times on the links for a specific combination of bus transit route network 
and city transportation network are fixed and can be computed. The way to compute the 
travel time for each mode is discussed in chapter 9. However, transit travel time for the 
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users and the transit demand are still variable, the magnitudes of which depend on the 
transit route network solution (and route frequencies) to the BTRNDP. 
 

Auto Demand (traffic

volume due to cars)

Bus Transit NetworkAuto Travel Time

Travel time by auto and

transit

Bus Transit In-vehicle Travel Time

 
Figure 8.3 Cyclic Relationships regarding Travel Time of Auto and Transit 

 

8.3.2 Setting Decision Rule for the Modal Split 
 

Given the total travel demand, and travel time and cost of each travel mode (auto 
and transit), a decision rule for determining the modal split is necessary for estimating the 
distribution of the transit and the auto demand.  
 

In a typical travel situation, trip-makers can select among several travel modes, 
which may include walking, driving, taking the bus, riding the bicycle, and sharing rides. 
A mode choice (or mode split) model is concerned with the prediction of how travel will 
be split among the modes available to the travelers. Mode choice decisions are made 
according to the individual preference, trip type and relative levels of service associated 
with the available modes. As described by Papacostas and Prevedouros (2001), it is likely 
that trip-makers would establish a pattern of mode choice that remains relatively constant 
as long as the conditions remain the same. When significant changes in these conditions 
occur, trip-makers respond to varying degrees by shifting from one mode to another. 
 

In this research, it is assumed that trip-makers only have two travel modes, 
driving the car or taking the bus. This might be a suitable assumption for most cities of 
medium or small size in the U.S., where there is no other transit mode, such as light rail 
and subway. For simplicity, as mentioned, only travel times and costs are considered in 
the mode split model.  

 
As far as discrete choice modeling is concerned, both ordered and unordered 

response logit models can be used. However, unordered response logit models are 
regarded as the most popular due to their flexibility and characteristics. Therefore, this 
research uses this model form. The following section introduces the utility and disutility 
functions and discusses the model structure and underlying characteristics of the 
multinomial logit (MNL) and nested logit model (NL).  
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8.3.2.1 Utility and Disutility Functions 

 
Generally speaking, a utility function measures the degree of satisfaction that 

people derive from their mode choice. A disutility function represents the generalized 
cost (i.e., impedance) that is associated with each mode choice. Usually, the 
characteristics of each choice, the trip purpose, and the socioeconomic status of the 
individual making that choice determine the magnitude of these two functions. However, 
to specify a utility function, one needs to select both the relevant variables and the 
particular functional form relating the selected variables.  
 

As a result, iU , the utility (and disutility) function derived from choice i can be 

typically expressed as the linear weighted sum of the independent variables (i.e., the 
attributes specific to choice i): 

iiii xU εβ +=
'

 

where iU = the utility derived from mode choice i; 

         ix = a vector of the exogenous variables that are specific to mode choice i; 

        iβ = a vector of parameters for mode choice i;  

        iε = a vector of random terms, which are usually assumed to be identically  

                independently Gumbel distributed  with variance normalized to be 1; 
 
Since the independent variables included in this equation typically represent 

losses, such as travel times and costs, iU , the utility for mode choice i is always negative 

and is in essence a disutility. Furthermore, different mode choices might have different 
utility functions, including different variables with different weights. But usually, the 
independent variables represent the level of service, cost and convenience, etc. associated 
with that mode. In this sense, this model is always called mode-specific. In practical 
applications, because it is unlikely to include all the relevant variables except travel time 
and costs for each mode in the utility function, it is always reasonable to attempt to 
capture these unobserved characteristics in the random terms.  
 

In this research, it is assumed that the trip-makers only have two available mode 

choices, which are auto and bus transit. Based on this point, ,iU  the utility of the mode 

choice i, can be calibrated by the following equation, which will be used later in the 
Multinomial Logit (MNL) or Nested Logit Model (NL) for auto and transit demand 
estimation: 

iiiiii XXU 22110 βββ ++=  

Where iU  =  utility function of mode i; 

         iii 210 ,, βββ  = weighted coefficients of respective attributes of mode i; 

        iX 1   = total travel time of mode i; 

        iX 2  =  travel cost of mode i. 
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A utility-based mode choice model estimates the share of each mode based on the 
utility associated with it. The fraction of the travelers that will select a given mode is 
related to the competing modal utilities. Their relationship has been investigated in 
various forms called discrete choice models, the most popular of which are the logit 
models including the MNL and NL. The following sections discuss these two models in 
detail. 
 

8.3.2.2 Multinomial Logit Model (MNL) 

 
As defined by Khisty and Lall (1998), the logit formulation is a share model that 

divides travelers between the various modes depending on each mode’s relative 
desirability for any given trip. If one mode is faster, cheaper, or has more favorable 
features than other competitive modes, this mode would be relatively more desirable. As 
a result, more people will select it than others. The better a mode, the more utility it has 
for the potential travelers.  

 
For a specific demand pair, the auto travel time and cost are based upon the 

shortest path. When only 1 transit route is found for a specific demand pair, the MNL 
structure introduced here is then collapsed to the binary logit model. However, the 
essence of the mode choice process remains unchanged so that this equation still can be 
used except that only two choices are considered. However, when two or more than two 
transit routes are found for a specific demand pair, the MNL structure might not be 
appropriate for describing the mode split process. The reason is discussed in detail in the 
following section. Figure 8.4 presents a multinomial logit model structure for auto and 
multiple bus transit route choices that can be applied to the BTRNDP.  

 

Auto Transit

Route 1

Transit

Route n  
Figure 8.4 Multinomial Logit Model Structure for Auto Use and Transit Route Choices 

 
The utility function for this MNL model structure can be expressed as follows: 
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As a result, iP , the probability of travelers using mode choice i, is given by: 

∑
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where iU  =  utility of mode i 

    kU  =  utility of mode k 

           n   =  total number of modes in consideration 
 

If there is only one transit route available, then the MNL collapses to a binary 
logit model. Figure 8.5 shows the logit curve for the binary choice model under two 
available choices of mode: transit and auto. 
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Figure 8.5 Logit Curve (FHWA/UTMA, 1977) 

 
As mentioned before, it is generally accepted that the BTRNDP is usually 

investigated before the existence of rail transit, however, one might need to improve, 
redesign or restructure the bus transit network where rail already operates. For simplicity, 
this research assumes that the BTRNDP is investigated in the former case. Note that only 
minor modifications for the proposed model structure (as will be described later in 
Chapter 9) are needed to accommodate the BTRNDP in the second case.  
 

The Multinomial Logit Model (MNL) structure has been widely used in both 
urban and intercity mode choice models primarily due to its simple mathematical form, 
ease of estimation and interpretation, and the ability to add or remove choice alternatives. 
However, the MNL model has also been widely criticized for its IIA (independence of 
irrelevant alternatives) property. The IIA property of the MNL restricts the ratio of choice 
probabilities for any pair of alternatives to be independent of the existence and 
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characteristics of other alternatives in the choice set. This restriction implies that 
introduction of a new mode or improvements to any existing mode will affect all other 
modes proportionately. That is, the new or improved mode will reduce the probability of 
existing modes in proportion to their probabilities before the change (see Chapter 7, Bhat, 
2003). 
 

The IIA property is a major limitation of the MNL model as it implies equal 
competition between all pairs of alternatives, an inappropriate assumption in many choice 
situations. If this model is applied to the BTRNDP among drive alone and several 
candidate transit routes, the results could be misleading because these bus transit route 
alternatives are likely to be more similar to each other than they are to the auto mode due 
to shared attributes which are not included in the measured portion of the utility function. 
For example, buses may have the same fare structure and operating policies, the same 
lack of privacy, control of the environment, and so on. Such similarities, if not included 
in the measured portion of the utility function, lead to correlations between the error 
terms associated with these alternatives, a violation of the assumptions which underlie the 
derivation of the MNL. 
 

The way in which this undesirable characteristic of the IIA property manifests 
itself can be illustrated using this example. Suppose that there are three modes which 
consist of auto, bus transit route 1 and route 2 and assume that the choice probabilities for 
these alternatives (for an individual or a homogeneous group of individuals) are 70%, 
20% and 10% for auto, bus transit route 1 and bus transit route 2 respectively. If the 
service on bus transit route 2 were to be improved in such a way as to increase its choice 
probability to 15%, the MNL model would predict that the shares of the other alternatives 
would decrease proportionately as shown in Table 8.1, maintaining the probability ratios 
between the auto mode and bus transit route 1 alternative. As a result, the MNL model 
predicts that most of the increased ridership in bus transit route 2 mode comes from auto 
mode. This is inconsistent with the expectation and empirical evidence that most of the 
new riders in bus transit route 2 will be diverted from those in bus transit route 1. This 
inconsistency is a direct result of the IIA property of the MNL model. Thus, in these 
types of choice situations, the MNL model will yield incorrect predictions of diversions 
from existing modes. 

 

Table 8.1 Illustration of the IIA Property on Predicted Choice Probabilities 
 

Alternatives 

Choice Probability 

Before Improvements 

to Bus Transit Route 2 

Choice Probability 

After Improvements 

to Bus Transit Route 2 

Change in 

Choice 

Probabilities 

Auto 0.700 0.661 0.039 

Bus Transit Route 1 0.200 0.189 0.011 

Bus Transit Route 2 0.100 0.150 0.050 
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As can be seen, the limitation of the MNL model results from the assumption of 
the independent distribution of error terms in the utility of the alternatives that is used to 
derive the MNL model. Different models can be derived through the use of different 
assumptions concerning the structure of the error distributions of alternative utilities. 
Among them, the Nested Logit (NL) model is the simplest and most widely used. The NL 
model represents important deviations from the IIA property but retains most of the 
computational advantages of the MNL model (see Bhat, 2003). The NL model is 
characterized by grouping (or nesting) subsets of alternatives that are more similar to 
each other with respect to excluded characteristics than they are to other alternatives. 
 

Alternatives in a common nest exhibit a higher degree of similarity and 
competitiveness than alternatives in different nests. This level of competitiveness, 
represented by cross-elasticities between pairs of alternatives (the impact of a change in 
one mode on the probability of another mode) is identical for all pairs of alternatives in 
the nest. Complex tree structures can be developed which offer substantial flexibility in 
representing differential competitiveness between pairs of alternatives; however, the 
nesting structure imposes a system of restrictions concerning relationships between pairs 
of alternatives as will be discussed later in this chapter. 

 

8.3.2.3 Nested Logit Model (NL) 

 

Different from the MNL model, the Nested Logit model is based on the 
assumption that some of the alternatives share common components in their random error 
terms. That is, the random term of the nested alternatives can be decomposed into a 
portion associated with each alternative and a portion associated with groups of 
alternatives. For example, consider a situation where a traveler has n bus transit routes 
available for making an urban trip. The utility equations for these alternatives are: 
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The utility terms for transit route 1 to transit route n each include a distinct 

observed component, ute_1Transit_roV  and ute_nTransit_roV , and a common observed component, 

TransitV ; they also include distinct random components, ute_1Transit_roε  and ute_nTransit_roε , and a 

common random component, Transitε . The common error component creates a covariance 

relationship between the total error components for transit route 1, ute_1Transit_roTransit εε + , 

and transit route n, ute_nTransit_roTransit εε + . This covariance, which violates the assumption 

underlying the MNL model, represents an increased similarity between pairs of nested 
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alternatives (including all the transit routes) and leads to greater similarity and cross-
elasticity between these alternatives. Note that the total error for each of these n 
alternatives is assumed to be Gumbel distributed with variance parameter equal to one, as 
in the MNL model. Figure 8.6 presents a graphical representation for the theoretical 
nested logit model structure for the auto and bus transit route choices.  

 

Auto

Transit

Route 1 Route 2 Route n
 

Figure 8.6 Theoretical Nested Logit Model Structure for Auto and Transit Route Choices 
 

The disadvantage of MNL is as follows: Compared to the nested logit model, the 
multinomial logit model tends to overestimate the transit demand given the fixed total 
travel demand because it usually draws more auto demand due to the IIA property 
inherent in MNL model structure. The advantage of MNL is also obvious: it can be easily 
used to estimate bus transit demand. 

 
The advantage of NL is also clear: It reflects the realistic situation and therefore 

probably is more reasonable for mode choice estimation. Especially when empirical 
results are available, the quality of the results using the nested logit model can be 
guaranteed. The disadvantage of NL is as follows: Practically, it is difficult to get 
empirical results because usually just one transit route is considered in the case 
alternatives. Also, it is harder to use and is more complex compared to the multinomial 
logit model. Table 8.2 presents the characteristics comparisons between the MNL and 
Nested Logit Model. 
 

Table 8.2 Characteristics Comparisons between the MNL and Nested Logit Model 
Model Structures 

Features 
Multinomial Logit Model Nested Logit Model 

Advantages Easy to estimate the demand Reflect the realistic situation 

Disadvantages Tend to overestimate the transit demand 
More complex a model 
Hard to get the empirical results 
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8.3.2.4 BLM-IPM Model 

 

As discussed in the preceding two sections, both the Multinomial Logit (MNL) 
and Nested Logit (NL) Model structure can be used when computing the transit demand 
fraction of total travel demand. Furthermore, when two or more feasible transit routes are 
available, each transit route can be regarded as one choice alternative competing with 
other transit routes and the car mode. Examples of MNL applications can be seen in Lee 
and Vuchic (2000). However, as already presented, the MNL model is not appropriate for 
the BTRNDP due to its IIA (independence of irrelevant alternatives) property and the NL 
model cannot work very well for the BTRNDP because of the unavailability of empirical 
results for model calibration. Especially, as the number of feasible transit routes 
increases, the quality of results from both models becomes worse and therefore the 
solution qualities cannot be guaranteed if one uses either of these two models.  

 
In this research, a two-stage BLM-IPM model is proposed to overcome the 

disadvantages of these two models for the mode choice between auto and transit routes. 
The first stage uses the binary logit model (BLM) to compute the individual probability 
of choosing the transit mode using current empirical results and the utility derived from 
the driving shortest path and the shortest transit path (transfer penalty and travel cost can 
be added if necessary). The aggregate share of the transit demand can be computed by 
multiplying individual choice probability by the total demand. The second stage of this 
model uses an “inversely proportional model” (IPM) to assign transit demand to the 
competing transit routes that are inversely proportional to the total travel time. Note that 
this model implicitly assumes that transit users have made the decision to take transit 
before they decide which transit route to choose if more than one transit route is 
available. It is expected that this BLM-IPM model will work much better than the MNL 
and therefore it is used for the mode choice model in this research. 

 
The following sections combine the above conclusions and apply them to the 

BTRNDP with variable transit demand. The details are presented as follows. 
 

8.4 The NAP for the TRNDP with Variable Transit Demand 
 

Basically speaking, the NAP for the BTRNDP with variable transit demand is a 
bus transit network evaluation tool with the ability to decide the transit trip demand 
between each centroid node pair, assign the transit trips to each route on the proposed 
solution network and determine associated route frequencies. To accomplish these tasks 
for the BTRNDP with variable transit demand, NAP employs an iterative procedure that 
seeks to achieve internal consistency of the transit trip demand and the route frequencies. 
Furthermore, the iterative procedure in the NAP contains three major components, 
namely, a transit demand equilibration procedure, a transit trip assignment procedure and 
a frequency setting procedure.  
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Once the overall candidate solution route set is generated by the ICRSGP and a 
specific set of routes is proposed by the HSP, the NAP is called to evaluate the alternative 
network structure and to determine transit demand and route service frequencies. The 
whole process in the NAP can be described as follows. First, an initial set of route 
frequencies are necessarily specified at the beginning of the trip assignment process. 
Based on these data, transit demands are set tentatively according to the mode choice 
model or one can assign initial transit demand directly by multiplying the total demand 
by a specific percentage (say 30%) at the same time when one assigns the initial route 
frequencies. Second, the trip assignment model is utilized to assign the transit trip 
demand matrix to the set of routes associated with a particular network configuration. 
Third, the frequency setting procedure is called to determine the service frequencies on 
each route in the current proposed solution network. Fourth, the transit demand is 
recomputed using the mode choice model.  These are used as the input frequency and 
input transit demand for the next iteration in the frequency setting procedure and transit 
demand equilibration procedure respectively. If the bus transit demand matrix and these 
frequencies are considered to be different from the previous input frequencies by a user-
defined parameter (say 5%), the process iterates until the internal consistency of the 
transit demand matrix and route frequencies is achieved. If convergences are achieved 
both in the transit demand matrix and route frequencies, the transit demands and the route 
frequency are then determined. Meanwhile, many other performance measures are also 
obtained. 

 
Figure 8.7 shows the flow chart of the NAP for the BTRNDP with variable transit 

demand. It should be noted that the trip assignment process considers each zone (centroid 
node) pair separately. Also, the transit trip assignment model developed here for the 
BTRNDP with variable transit demand adapts the same four-level transit assignment 
process as that presented in Chapter 6 for the BTRNDP with fixed transit demand. As 
already described, this model considers the number of transfers and/or the number of long 
walks to the bus station as the most important criterion. (Note that long walk paths refer 
to those paths that include a walk to a bus stop from a trip origin not directly served by 
transit.) It first checks the existence of the 0-transfer-0-longwalk paths. If any path of this 
category is found, then the transit demand between this centroid node pair can be 
provided with direct route service and the demand is therefore distributed to these routes. 
If not, the existence of paths of the second category, i.e., 0-transfer-1-longwalk path and 
1-transfer-0-longwalk paths are checked. If none of these paths is found, the proposed 
procedure will continue to search for paths of the third category, i.e., paths with 2-
transfer-0-long-walk, 1-transfer-1-long-walk and/or 0-transfer-2-longwalk. Only if no 
paths that belong to these three categories exist, there would be no paths in the current 
transit route system that can provide service for this specific centroid node pair (i.e., these 
demands are unsatisfied). Note that at any level of the above three steps, if more than one 
path exists, a “travel time filter” is introduced for checking the travel time on the set of 
competing paths obtained at that level. If one or more alternative paths whose travel time 
is within a particular range pass the screening process, an analytical nonlinear model (i.e., 
the inversely proportional model) is used to assign the transit trips to the competing 
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transit routes between that centoid node pair that are inversely proportional to the total 
travel time. In addition, policy headway and the demand headway are used together to 
determine the frequencies on each route in the frequency setting procedure. The whole 
process is repeated until all the travel demand pairs in the studied network are traversed. 
Related details of the transit trip assignment model can be seen from the work by Fan and 
Machemehl (2003). 

 
Note that NAP for the BTRNDP with variable demand is essentially the same as 

that with fixed demand except that the former adds one more procedure, namely, the 
transit demand determination procedure. Once internal consistency of both the route 
frequencies and transit demand equilibration are achieved, the optimal transit route 
network can be developed and a variety of computational performance measures is 
obtained accordingly. 
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Figure 8.7 Network Analysis Procedure (NAP) for the BTRNDP with Variable Transit Demand 
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8.5 Solution Framework for the TRNDP with Variable Transit Demand 
 

As mentioned before, the solution methodology for the BTRNDP with variable 
demand does not differ significantly from that for the BTRNDP with fixed demand. The 
solution framework for the BTRNDP with variable transit demand consists of three parts: 
an Initial Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible 
routes incorporating practical industry guidelines; a Network Analysis Procedure (NAP) 
that evaluates the proposed route network, computes performance measures and finds the 
optimal transit network; and a Heuristic Search Procedure (HSP) that guides the search 
techniques. For the first part, the whole ICRSGP procedure for the BTRNDP with 
variable demand is the same as that for the BTRNDP with fixed demand as described in 
chapter 5. The NAP for the BTRNDP with variable demand evaluates and analyzes the 
input bus transit network and determines the transit demand matrix and route frequencies. 
It uses the same methodology as that employed in the BTRNDP with fixed demand and 
adds some additional procedures to tackle the characteristics of variable transit demand. 
The details have been discussed in previous sections.  
 

The six previously proposed solution techniques, including the genetic algorithm, 
local search, simulated annealing, random search, tabu search and exhaustive search 
methods are all used for the BTRNDP with variable transit demand. As pointed out, the 
difference between the solution frameworks of each of these six algorithms for the 
BTRNDP with variable transit demand and that with fixed transit demand only lies in the 
NAP part. But once the NAP with fixed demand is replaced by the NAP with variable 
transit demand, each of the solution frameworks proposed for the BTRNDP with fixed 
transit demand can work for the BTRNDP with variable transit demand. As a typical 
illustration, a genetic algorithm based solution framework for the BTRNDP with variable 
demand is shown in Figure 8.8. For the other five proposed solution techniques, similar 
replacement work can be done. 
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Figure 8.8 A Genetic Algorithm-Based Solution Framework for the BTRNDP with 

Variable Transit Demand 
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8.6 Summary 
 

This chapter focuses on the BTRNDP with variable demand. The underlying 
characteristics of both variable total demand and variable transit demand are presented. 
The mode split procedure including the attributes of alternatives and the setting decision 
rule for mode choice between the auto and transit modes are discussed. Utility and 
disutility functions are introduced and the commonly used MNL and NL model are also 
reviewed. The underlying characteristics of the MNL and NL are discussed and 
advantages and disadvantages of each model are pointed out. A two-stage BLM-IPM 
model (binary logit model-inversely proportional model) for determining the mode 
choice between auto and transit routes is presented for the BTRNDP with variable transit 
demand. It is also pointed out that the ICRSGP for the BTRNDP with variable demand is 
the same as that proposed in Chapter 6 for the BTRNDP with fixed demand. The NAP 
for the BTRNDP with variable transit demand, which builds on the BTRNDP with fixed 
transit demand, is described. Three major components of the NAP, namely, the transit 
demand equilibration procedure, transit trip assignment procedure and the frequency 
setting procedure are presented. The solution framework for the BTRNDP with variable 
transit demand is presented. Implementation methods and numerical results based on 
comprehensive experimental networks are discussed in the next chapter. 
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CHAPTER NINE 

COMPREHENSIVE EXPERIMENTS AND NUMERICAL RESULTS 
 

9.1 Introduction 

 
As described, the objective of the BTRNDP is to develop an optimal transit route 

network that meets user-defined requirements subject to limited economic and 
operational resources. Solution methodologies for the BTRNDP both with fixed and 
variable transit demand are presented in previous chapters. For the BTRNDP with fixed 
demand, the solution framework contains three major components, namely, an Initial 
Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible routes 
incorporating practical bus transit industry guidelines; a Network Analysis Procedure 
(NAP) that assigns transit trips, determines service frequencies and computes 
performance measures; and a Heuristic Search Procedure (HSP) that guides the search 
techniques and updates the proposed solution network. For the BTRNDP with variable 
transit demand, similar solution frameworks are used except that the transit demand 
equilibration procedure is added and included in the NAP to accommodate the variable 
transit demand characteristics. Moreover, for the BTRNDP under both scenarios, five 
heuristic algorithms, including the genetic algorithm, local search, simulated annealing, 
random search and tabu search algorithms, along with an exhaustive search algorithm as 
a benchmark for the BTRNDP with small network, are employed as the solution methods 
for finding an optimum set of routes from the huge solution space. 

 
This chapter focuses on the algorithm implementation and numerical results for 

these proposed solution methodologies. Details of the C++ program codes that are 
developed to implement the above-mentioned six algorithms for the BTRNDP both with 
fixed and variable transit demand are presented. Comprehensive experimental networks 
are designed and successfully tested for the BTRNDP. Numerical results are presented 
and related characteristics underlying the BTRNDP are identified. 

This chapter is organized as follows. Section 9.2 describes the example networks 
that are used for illustrating the proposed solution methodologies. Section 9.3 presents 
the network representation and algorithm implementation details of the C++ 
programming codes for the proposed methodology for solving the BTRNDP. Sections 9.4 
and 9.5 discuss the comprehensive numerical results of the six proposed solution 
methods, including the genetic algorithm, local search, simulated annealing, random 
search, tabu search algorithm and exhaustive search method with fixed and variable 
transit demand respectively using the designed example networks. Sensitivity analyses 
for each algorithm are conducted and algorithms are compared based on the multi-
objective decision making nature of the BTRNDP. Section 9.6 identifies the 
characteristics underlying the BTRNDP. Effects of the route set size on the objective 
function and its components are examined and compared for the BTRNDP both with 
fixed and variable transit demand. Section 9.7 investigates the large network extensions, 
in which effects of network size and demand aggregations on the computation speed and 
solution quality are studied. Section 9.8 describes the redesign of the existing transit 
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network issues and related numerical results are also presented. Finally in section 9.9, a 
summary concludes this chapter. 

 

9.2 Example Network Configuration 

 
To test the feasibility of the proposed solution methodologies in previous chapters 

and examine and compare the quality of the solutions derived from these methodologies, 
three experimental networks are designed, which are shown in Figures 9.1, 9.2 and 9.3 
respectively. Although the size of any of these three networks is relatively smaller 
compared to the real world networks, they can be used as a pilot study to get a “feel” 
about how these algorithms work for the BTRNDP and hopefully generate or provide 
some guidelines for future applications of these algorithms on large networks. For 
simplicity, they are named “small”, “medium” and “large” network respectively 
according to their relative size. In these example networks, the centroid node point of 
each traffic demand zone, the road intersection nodes and current road network structure 
are also given. For example, the small network contains 7 travel demand zones and 15 
road intersections. 
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Figure 9.1 A Small Example Network for Case Study 
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Figure 9.2 A Medium Example Network for Case Study 
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Note that the node, link and network information are usually known beforehand 
and they can be inputted directly. To implement and compare the proposed solution 
methodologies, these three example networks are preprocessed so that all network 
information such as the link connectivity, link distances, node locations, transit origin-
destination trip demands (fixed demand) and total origin-destination trip demands 
(variable transit demand) is obtained. However, the demand distribution nodes are 
generally user-defined and therefore have to be carefully specified by the users (i.e., 
transit planners). As mentioned before, different user-defined input files can result in 
different optimal solution networks. In this research, the network is preprocessed as 
follows: 1) the zonal demands are distributed the same way as with highway network 
demand; and 2) if the same road link contains two or more demand distribution nodes 
from different zones, these distribution nodes are aggregated as one node at their middle 
point. For example, after this preliminary process, 20 centroid distribution nodes, 35 
nodes, and 82 arcs are obtained in the small example network as shown in Figure 9.4. 
The minimum and maximum route lengths are defined. As mentioned in Chapter 5, in the 
first example phase, the ICRSGP generates 286 feasible routes whose distances satisfy 
these two route length constraints. The medium and large network example networks, 
after preliminary processing, are shown in Figures 9.5 and 9.6. 

 
Required information such as the XY coordinates of each node, zone, network 

and transit or/total travel demand from each zone to the other zones for these three 
example networks are presented in the APPENDIX. For a particular city network, 
relevant and necessary data must be specified in four files: zone.dat, network.dat, xy.dat 
and demand.dat. The input formats are designed for these three networks (especially 
using the small network as an input illustration example) and included in the 
APPENDIX. 
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Figure 9.4 The Preprocessed Small Example Network for Case Study 
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Figure 9.5 The Preprocessed Medium Example Network for Case Study
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9.3 Computer Implementations 

9.3.1 Network Representations and Data Structures: 

 
The fundamental network data provided in four input files, (zone.dat, network.dat, 

xy.dat, and demand.dat) include all the information for zone, node, link and network data 
for the current studied network. 

 
Given the above information, the data structures are developed to organize these 

data so that the C++ program can be used to design the optimal transit route network. To 
facilitate the implementation, four classes are defined in the C++ programs: 
 

• Node:  

                 

NodeID

ZoneID

X,Y Coordinates

Print_Node_Information  
 
A special flag value represented by ZoneID is set to distinguish centroid nodes of 

zones from intersection and distribution nodes. Another special flag value is used to 
distinguish intersection nodes from distribution nodes (bus stops). Note that all this 
information is generally user-defined and for the example is presented in the input file 
network.dat, as shown in the APPENDIX.  
 

• Zone:  

                 

ZoneID

NumDistNodes

NumLongWalkNodes

LongWalkNodes

X,Y Coordinates

Print_Zone_Information  
A specific numeric ID, and X and Y coordinates are set for each centroid node. 

The number of distribution nodes associated with this centroid is also recorded and these 
distribution node IDs are stored. The total numbers of intersection nodes or distribution 
nodes in the network that can be reached within a user-defined maximum walking 
distance from this centroid node are recorded. Related zone information can be printed 
whenever needed. This user-defined information is presented in the input file zone.dat, as 
shown in the APPENDIX. 
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• Arc: 

              

OrigID

X,Y Coordinates

DestID

X,Y CoordinatesArcID

ArcWeight

Print_Arc_Information  
 
A specific numeric ArcID is set for each arc (link) in the studied network. The 

Forward Star Representation is the employed data structure in this research to efficiently 
determine the set of arcs outgoing from any node. The origin node and destination node 
of this arc are represented by corresponding node IDs respectively and their X and Y 
coordinates are also read from the node class information and stored for consistency. 
Based on the stored X and Y coordinates of the origin and destination nodes, the weight 
(distance) of this arc is therefore computed and stored in ArcWeight. Note that 
fundamental arc information in the whole network is also user-defined and can be read 
from the input file zone.dat, as shown in the APPENDIX. 
 

• Route:  

                 

RouteID

RouteDist

NumNodes

NodeinArrays

TraversedZones

RouteFrequency

Print_Route_Information

Terminal 1 Terminal 2

 
 
As before, a numerical route ID is set for any generated route. At the same time, 

two terminals are recorded and the route distances are stored. The total number of nodes 
contained in any route and all nodes along the route are stored in dynamically allocated 
arrays. The zones that can be accessed by the route are also recorded. Also, the route 
frequency on this route is computed and stored in RouteFrequency parameter. Note that 
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the route information is generated by the proposed solution methodology using shortest 
path and k-shortest path procedures rather than obtained from the user-defined input file. 
 

• Shortest Path: 
 

Generally speaking, the data structures used in the Dijkstra’s shortest path and 
modified Yen’s k-shortest path algorithm follow the commonly used ones, which contain 
information such as NodeStatus, Previous_Node, Distance and Print_Sp as shown in 
Chapter 5. Once these shortest paths that meet the route length requirements are 
generated, they are stored. 

 

• Demand: 
 
The demand data are stored in an O-D trip demand matrix for the studied 

network. Put another way, the demand data includes the origin and destination zone 
information and the trip demands between any O-D pair. Obviously, this information is 
known before one designs the optimal transit route network and is stored in the user-
defined input file demand.dat. 

 

• Network: 
 
Network class files are used to organize the data from the above classes and treat 

them either as private numbers or as public member functions. The Forward Start 
Representation data structure is used to organize all network information. For simplicity 
of description, the relationships among these defined classes can be simply presented as 
the following graph. 

 

Network Class

Network

Information

Node Class Zone Class Arc Class SP ClassRoute Class Demand Class

 
 

Note that computer memories are dynamically allocated in network class for 
several sub-classes such as Zone, Node, Link, Route, Shortest Path and Demand classes. 
Furthermore, the functions that are developed to implement the solution algorithms have 
been successfully tested and numerical results are presented in this chapter. 
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9.3.2 Preset User Defined Parameters 

 
As described before, some parameters are required when one designs the optimal 

transit route network. These data can be defined through the input file or the list of 
parameters in the network file by the transit network designers. Generally speaking, the 
parameters for the minimum and maximum route lengths are needed for the Initial 
Candidate Route Set Generation Procedure (ICRSGP), which uses Dijkstra’s label-setting 
shortest path and modified Yen’s K-th shortest path algorithm to generate all feasible 
paths. The Network Analysis Procedure (NAP), which contains the transit trip 
assignment procedure and frequency setting procedure, requires several parameters such 
as the bus travel speed, the load factor, the bus capacity transfer penalty and the 
minimum and maximum headways.  

 
In this research, the penalty for each transfer is chosen to be 5 minutes of 

equivalent in-vehicle travel time, the bus seating capacity is 40 passengers, the maximum 
load factor is taken as 1.3, the minimum headway is set as 5 minutes and the maximum 
headway is chosen as 60 minutes, the transit vehicle and car speed are chosen as 25 and 
40 mile per hour respectively. Other design-related parameters include different weights 
that the transit operators might put on different components of the transit user time. Note 
that the traffic delay at each intersection and the passenger boarding and deboarding time 
are not considered although one should do so for a real-world BTRNDP application. 
However, only very minor modifications are needed for the computer programs to 
accommodate them. In addition, as mentioned before, for each heuristic algorithm, 
different parameters can be chosen that can result in different solution network 
performance. Sensitivity analyses that reflect changes in the objective function 
performance corresponding to different values for these parameters are conducted and 
presented in the following sections. 
 

Using the example networks, several C++ computer programs were made to 
implement the Initial Candidate Route Set Generation Procedure (ICRSGP). Dijkstra’s 
label-setting shortest path algorithm and modified Yen’s k-th shortest path algorithm 
were successfully implemented and all feasible routes and related numerical results were 
written to a file called outputReport.dat. For the Network Analysis Procedure (NAP), a 
C++ program was successfully tested implementing the transit trip assignment model and 
frequency setting procedure for the BTRNDP with fixed demand as well as the transit 
demand determination procedure for the BTRNDP with variable transit demand. In 
conclusion, the proposed solution methodologies were implemented using small, medium 
and large example networks as shown before and have successfully solved the BTRNDP 
both with fixed and variable transit demand. The following sections present 
comprehensive numerical results for each algorithm and associated sensitivity analyses. 
Algorithm comparisons and characteristics underlying the BTRNDP both with fixed and 
variable demand are also discussed. 
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9.4 The TRNDP with Fixed Transit Demand 

 
The following sections first present sensitivity analyses for the heuristic 

algorithms, including the GA, LS, SA, RS and TS methods. Essentially speaking, each 
algorithm has continuous parameters that can fall within a very large range. For example, 
the number of generations in each algorithm can vary from 1 to positive infinity. One 
cannot try all combinations for all parameters including weight set levels for each 
objective function component. Furthermore, even if one could find the optimal parameter 
set at a specific weight set level, this parameter set might not be optimal at another 
weight set level. Therefore, for simplicity, several discrete values are chosen for each 
continuous parameter in all algorithms and the optimal parameter set is decided 
sequentially for each algorithm at a commonly used weight set level (here 0.4, 0.4 and 
0.2 is chosen for the weight of user cost, operator cost and unsatisfied demand cost 
respectively). The following section first presents the sensitivity analyses for each 
algorithm using the small network as an example and then summarizes the sensitivity 
analyses for both the small and medium networks. 
 

9.4.1 Genetic Algorithm 

9.4.1.1 Implementation Presetting 

 
After all candidate routes are generated by the ICRSGP, the GA model is used to 

find the optimum set of routes from the set of candidate routes. The route representation, 
the preset parameters and the algorithm implementation skeleton for the GA model for 
the BTRNDP have been discussed in previous chapters. The numerical results from the 
sensitivity analyses are presented as follows. 

 

9.4.1.2 Numerical Results and Sensitivity Analyses 

 
As mentioned before, the performance of the proposed genetic algorithm model 

greatly depends upon the chosen population size, stopping criteria (i.e., the number of 
generations), crossover probability and mutation probability. The following sections 
present sensitivity analyses of these parameters. 
 
9.4.1.2.1 Effect of Population Size 

 
The effect of population size is examined by varying this value from 5 to 100 and 

the result is given in Figure 9.7(1). It can be seen from the figure that as the population 
size increases, the objective function value tends to decrease. It is also noted that the 
larger the chosen population size, the more the computation time. When the population 
size reaches 30, the optimal objective function is achieved, suggesting that 30 should be 
chosen as the optimal population size for the example network. Similar results can be 
found in Goldberg (1989), where a population size of 30 to 50 was recommended.  
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9.4.1.2.2 Effect of Generations 

 
The effect of stopping criteria is investigated by choosing the number of generations 

ranging from 5 to 50 and the result is provided in Figure 9.7(2). As can be seen, the 
lowest objective function value can be achieved with 20 generations. Therefore, 20 is 
chosen as the optimal number of generations in terms of solution quality. 
 
9.4.1.2.3 Effect of Crossover Probability 

 
The effect of crossover probability is also studied by varying this value from 0.1 to 

0.9. The result shown in Figure 9.7(3) indicates that 0.8 might be the optimal value and as 
a result, it is recommended. 
 
9.4.1.2.4 Effect of Mutation Probability 

 
The effect of mutation probability is examined by varying this value from 0.0001 to 

0.2 and the result is presented in Figure 9.7(4). Achievement of the lowest objective 
function value at 0.1 suggests that the optimal mutation probability might be 0.1. 
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Figure 9.7 Sensitivity Analyses for the Genetic Algorithm 
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9.4.2 Local Search 

 
As can be seen from Chapters 4 and 7, the local search method only has one 

parameter, which is the number of generations. The effect of the number of generations is 
studied by choosing the number of generations ranging from 100 to 10000 and the result 
is provided in Figure 9.8. As can be seen, the lowest objective function value can be 
achieved with 100 generations. Therefore, 100 is chosen as the optimal number of 
generations in terms of both solution quality and efficiency. 
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Figure 9.8 Sensitivity Analyses for the Local Search Algorithm 
 
 

9.4.3 Simulated Annealing 

 

As mentioned before, the performance of the proposed simulated annealing 
algorithm model greatly depends upon the chosen parameters of the temperature, the 
stopping criteria (i.e., the number of generations), the alpha value and the repetition 
counter. The following sections present the sensitivity analyses of these parameters. 
 
9.4.3.1 Effect of Temperature 

 
The effect of the initial temperature value is examined by varying this value from 

100 to 10000 and the result is given in Figure 9.9(1). It can be seen from the figure that as 
the initial temperature increases, the objective function value changes unpredictably. It is 
also noted that the larger the chosen initial temperature, the longer the computation time. 
When the initial temperature is chosen as 1000, the lowest objective function value is 
achieved, suggesting that 1000 should be chosen as the optimal initial temperature for the 
small example network. 
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9.4.3.2 Effect of Generations 

 
The effect of stopping criteria is investigated by choosing the number of 

generations ranging from 5 to 100 and the result is provided in Figure 9.9(2). As can be 
seen, the lowest objective function value is achieved with 30 generations. Therefore, 30 is 
chosen as the optimal number of generations in terms of efficiency. 
 
9.4.3.3 Effect of Alpha Value 

 
The effect of the alpha value is also studied by varying this value from 0.1 to 0.9. 

The result shown in Figure 9.9(3) indicates that 0.6 might be the optimal value and as a 
result, it is recommended. 
 
9.4.3.4 Effect of Repetition Counter 

 
The effect of the repetition counter is examined by varying this value from 5 to 50 

and the result is presented in Figure 9.9(4). As can be seen, the lowest objective function 
value is achieved at 10, suggesting that the optimal repetition counter might be 10. 
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Figure 9.9 Sensitivity Analyses for the Simulated Annealing Algorithm 
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9.4.4 Random Search 

 
The application of the random search algorithm for the BTRNDP has been 

discussed in Chapters 7 and 8. As described, the random search also has only one 
parameter, which is the number of generations. The effect of the number of generations is 
studied by choosing the number of generations ranging from 5 to 10000 and the result is 
provided in Figure 9.10. As can be seen, the lowest objective function value can be 
achieved with 5000 generations. Therefore, 5000 is chosen as the optimal number of 
generations in terms of solution quality. 
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Figure 9.10 Sensitivity Analyses for the Random Search Algorithm 
 
 

9.4.5 Tabu Search Methods 

 
As mentioned in Chapter 7, three versions of the TS methods are used In this 

research,: 1) Tabu search without shakeup procedure (i.e., without the diversification and 
intensification procedure as defined before) and with fixed tabu tenures; 2) Tabu search 
with shakeup procedure and fixed tabu tenures (i.e., the number of restrictions set for 
tabu moves are fixed); and 3) Tabu search with shakeup procedure and variable tabu 
tenures (i.e., the number of restrictions set for tabu moves are randomly generated). The 
differences underlying each TS algorithm are self-explained by the names. The sensitivity 
analyses for each version are presented as follows. 
 

9.4.5.1 Tabu without Shakeup and with Fixed Tenures 

9.4.5.1.1 Effect of Generations 

 
The effect of the number of generations is examined by varying this value from 5 to 

100 and the result is given in Figure 9.11(1). It can be seen from the figure that as the 
number of generations increases, the objective function value tends to decrease. It is also 
noted that the larger the chosen number of generations, the longer the computation time. 
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When the number of generations reaches 30, the optimal objective function is achieved, 
suggesting that 30 should be chosen as the optimal generations for the small network. 
Therefore, a generation of 30 was recommended.  
 
9.4.5.1.2 Effect of Tabu Tenures 

 
The effect of Tabu tenures (i.e., the number of restrictions) is investigated by 

choosing this number ranging from 5 to 40 and the result is provided in Figure 9.11(2). 
As can be seen, the lowest objective function value occurred with 10 restrictions. 
Therefore, 10 is chosen as the optimal number of tabu move tenures. 
 
9.4.5.1.3 Effect of Search Neighbors 

 
The effect of search neighbors is also studied by varying this value from 10 to 100. 

The result shown in Figure 9.11(3) indicates that 20 might be the optimal value and as a 
result, it is recommended. 

 

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

5 10 20 30 40 50 60 70 80 90 100

Generations

Figure 9.11(1)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 (
m

in
u
te

s

 



 

 157

460000

462000

464000

466000

468000

470000

472000

474000

476000

478000

5 10 20 30 40

Tabu Move Tenures

Figure 9.11(2)

O
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 v

a
lu

e
 (
m

in
u
te

s

462000

464000

466000

468000

470000

472000

474000

476000

10 20 30 40 50 60 70 80 90 100

Tabu Search Neighbors

Figure 9.11(3)

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 (
m

in
u
te

s

 
Figure 9.11 Sensitivity Analyses for the Tabu Algorithm without Shakeup and with  

    Fixed Tenures 
 

9.4.5.2 Tabu with Shakeup and Fixed Tenures 

 
The effect of each parameter involved with this TS algorithm is examined by 

varying the parameter value within a specific range and the result is given in Figure 9.12. 
It can be seen from the figure that 80, 10, 10 and 50 might constitute the optimal 
parameter set and therefore, they are recommended as the optimal number of generations, 
the number of search neighbors, the tabu tenures and the shakeup number respectively.  
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Figure 9.12 Sensitivity Analyses for the Tabu Algorithm with Shakeup and  

    Fixed Tenures 
 

9.4.5.3 Tabu with Shakeup and Variable Tenures 

 
Similarly, the effect of each parameter involved with this TS algorithm is also 

examined by varying the parameter value within a specific range and the result is given in 
Figure 9.13. It can be seen from the figure that 20, 40 and 50 might constitute the optimal 
parameter set and is recommended as the optimal number of generations, the number of 
search neighbors and the shakeup number respectively.  
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Figure 9.13 Sensitivity Analyses for the Tabu Algorithm with Shakeup and  

    Variable Tenures 
 

9.4.6 Summary of Sensitivity Analyses 

 
The above subsections presented the sensitivity analyses for each heuristic 

algorithm including the GA, LS, SA, RS and TS methods for the BTRNDP with fixed 
transit demand for the small example network. For sensitivity analyses regarding the 
BTRNDP for the medium network, the same procedure can be followed and the 
following table provides a summary of these sensitivity analyses for each algorithm for 
the BTRNDP with fixed transit demand (including the small and medium networks). 
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Table 9.1 Summary of Algorithm Sensitivity Analyses for the BTRNDP with Fixed Demand 
 

Fixed Demand  

Small Network Medium Network 

Population Size 30 40 

Generations 20 20 

Crossover Probability 0.8 0.8 
Genetic Algorithm 

Mutation Probability 0.1 0.1 

Local Search Generations 100 2000 

Temperature 1000 10000 

Generations 30 20 

Alpha Value 0.6 0.7 
Simulated Annealing 

Repetition Counter 10 10 

Random Search Generations 5000 10000 

Generations 30 50 

Tenures 10 10 
Tabu w/o Shakeup and 

with Fixed Tenures 
Search Neighbors 20 20 

Generations 80 50 

Tenures 10 10 

Search Neighbors 10 10 

Tabu w/t Shakeup and 

Fixed Tenures 

Shakeup Number 50 50 

Generations 20 100 

Search Neighbors 40 70 

Tabu 

Search 

Tabu w/t Shakeup and 

Variable Tenures 
Shakeup Number 50 50 

 
One can see from this table that the values in the optimal parameter set for each 

algorithm change slightly as the network size increases from the small network to the 
medium one. This might suggest that the optimal parameter set can be generalized and 
used for different networks. However, as can be seen, they might also depend on specific 
network characteristics including the network size and its configuration. Therefore, it is 
recommended that when one uses this software or wants to develop a solution framework 
to design an optimal transit route network, it will be better to perform the sensitivity 
analyses for the employed algorithm for the studied specific network although one can 
use the above optimal values in the parameter set as a general guideline. 
 

9.4.7 Exhaustive Search 

 
As presented in previous chapters, an exhaustive search method is developed as a 

benchmark for the BTRNDP with fixed demand using the small network to examine the 
efficiency and measure the quality of solutions obtained from all the above heuristic 
algorithms. Figure 9.14 gives the related numerical results. As one can see from Figure 
9.14(1) and 9.14(2), when the route set size is very small (such as equal to 1), all heuristic 
algorithms seem to be quite good because the global optimal can be captured. This is 
expected because the solution space only contains 286 feasible routes in this case. Put 
another way, for route set size 1, there are only 286 possibilities (i.e., the 1st route to the 
286th route). The sensitivity analyses show that the generations normally would be greater 
than 286. Therefore, the probability of capturing the global optimum solution is very 
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high. However, as the route set size (i.e., the number of transit routes in the proposed 
solution network) increases, the solution qualities obtained from these heuristic 
algorithms seem to decrease dramatically. This is also expected because the combinations 
of feasible route sets change from 286 to 40755 to 3858140 as route set size increase 
from 1 to 2 to 3. That is to say, the solution space for a specific route set size increase 
exponentially as described in Chapter 4 and as shown Figure 9.14 (3). As a result, the 
possibility of capturing the global optimal solution for the heuristic algorithm will 
decrease dramatically (if not exponentially). Therefore, the percentage increases 
compared to the global optimum for all heuristic algorithms increase dramatically as 
shown in Figure 9.14 (2). However, the price that the exhaustive search method paid for 
the achievement of the global optimum value is its extremely long computation time 
compared to any heuristic algorithm, which is clearly shown in Figure 9.14(4). 
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Figure 9.14 Numerical Results Comparisons between the Heuristic Algorithms and  

    the Exhaustive Search Method 
 

As can be seen in Figure 9.14 (1) and (2), as the number of specified routes 
increases, the quality of the solutions obtained from the heuristic algorithms decreases 
significantly compared to that from the exhaustive search method. One therefore might 
reasonably doubt whether the heuristic search methods should be used rather than just 
randomly picking the transit routes for simplicity in the network. To clarify this issue, the 
random search method is chosen as the representative heuristic algorithm and compared 
with random routes-picking method. By running the same programs using 100 
consecutive replications, comparison between these two algorithms are preformed and 
the result is presented in the Figure 9.14 (5). As can be seen, as the number of generations 
currently used in the Random Search Method increases from 5 to 500, the probabilities 
that the random search method outperforms the random routes-picking method improved 
from 76% to 100%. Furthermore, when the number of generations used in the Random 
Search method exceeds 200, one can guarantee that the random search method performs 
much better than the random routes-picking method. Since the optimal parameter for the 
number of generations used in the random search method shown in the previous 
sensitivity analyses table is 5000 or 10000, which is much greater than 200, one can be 
very sure that the random search method produces much better solutions than the random 
routes-picking method in every scenario. 
 

In conclusion, it is recommended that the heuristic search algorithms, rather than 
the exhaustive search method, should be used for the BTRNDP with the large networks. 
 

9.4.8 Multi-Objective Decision Making and Algorithm Comparisons 

 
As mentioned before, the model performance based on each proposed algorithm 

greatly depends upon the chosen value of parameters inherent in that algorithm. In 
previous sections, an optimal set of user-defined parameters associated with each 



 

 165

algorithm are found by first assigning a commonly used weight set to each of the three 
objective function components and then running the developed programming codes based 
on that algorithm several times. The sensitivity analyses are then performed and the 
optimal parameter set are found by choosing those resulting in the lowest objective value 
from that algorithm. For example, the optimal parameter set for the genetic algorithm for 
the BTRNDP with the small network is 30 for population size, 20 for the number of 
generations, 0.8 for the crossover probability and 0.1 for the mutation probability value. 
In this section, these optimal chosen parameters for each algorithm are used and applied 
to the BTRNDP at different chosen weight set levels. The objective is to see how the 
quality of these algorithms varies across different weight levels and one might therefore 
know which algorithm can be used to best solve the BTRNDP. The following sections 
first compare the three employed tabu search algorithms. Based on the comparison 
results, the best tabu algorithm is then chosen for each scenario and compared with other 
heuristic algorithms including the GA, LS, SA and RS method. Related numerical results 
are included. 
 

9.4.8.1 Tabu Search Algorithm Comparisons 

 
Three versions of TS algorithms have been introduced and their sensitivity 

analyses have been conducted. To examine which variation of the TS algorithms is most 
suitable for the BTRNDP with fixed demand, they are compared from a multi-objective 
decision making perspective using both the small and medium network. Figure 9.15 
presents numerical results for the TS algorithm comparisons with fixed demand using the 
small network. 
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Figure 9.15 Tabu Search Algorithm Comparisons using Small Network for the BTRNDP  

       with Fixed Demand 
 

Figure 9.16 presents the numerical results for the TS algorithm comparisons for 
the BTRNDP with fixed demand using the medium network. 
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Figure 9.16 Tabu Search Algorithm Comparisons using Medium Network for the  

       BTRNDP with Fixed Demand 
 

One can see from Figure 9.15 that Tabu Search with shakeup and fixed tenures 
(i.e., fixed iterations) clearly seems to outperform other tabu search algorithms using the 
small network with fixed demand at any weight set level. Therefore, this tabu algorithm 
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is chosen as the best tabu search algorithm. However, one can see from Figure 9.16 that 
the choice becomes much less distinct using the medium network for the BTRNDP with 
fixed demand. In other words, this might suggest that as network size increases, big 
differences among these three tabu search algorithms are unlikely. Put another way, these 
three Tabu Search algorithms seem to converge in solution quality in some sense so that 
either one can be used to represent the Tabu Search algorithm to find the optimal transit 
route set from the solution space. For comparisons with other heuristic algorithms, the 
tabu search without shakeup is selected and comparison details are presented as follows. 
 

9.4.8.2 Heuristic Search Algorithms Comparisons 

 
Figure 9.17 presents numerical results of Heuristic Search Algorithm 

Comparisons using the Small Network with Fixed Demand. For each graph, the weight of 
total unsatisfied demand cost is set at a specific level between 0.1 and 0.8. The x-axis 
denotes the weight of total user cost and the y-axis is the objective function value 
measured in minutes. Note that each point shown for each algorithm in each graph is a 
decision making problem with a particular weight set for the three components contained 
in the objective function, where the weight of total operator cost can be obtained at each 
point by subtracting 1.0 from the weight sum of total unsatisfied demand cost and user 
cost.  

 
As can be seen for each algorithm from any graph, as the weight of total user cost 

increases, the optimal objective function value obtained by using that algorithm tend to 
increase. This is expected because the user cost is usually greater than the operator cost 
and the increase in total user cost due to a 0.1 unit increase in the weight of total user cost 
outweighs the decrease in total operator cost due to a 0.1 unit decrease in the weight of 
total operator cost. As a result, the total objective function value increases.  

 
One interesting phenomenon is that the optimal objective function value obtained 

from the random search method (and also for the local search method in most cases) 
seems to follow a linear pattern. This is expected because the optimal number of 
generations for the random search is found to be 5000, which probably results in a very 
large chance (if not always) of capturing the same optimal solution network due to the 
small-sized network and the small overall solution space. However, it is hypothesized 
that as the network size becomes larger, the random search graph might fluctuate rather 
than following a linear pattern because the optimal solution network might be different 
each time (as will be shown in Figure 9.18). In addition, it is noted that the genetic 
algorithm seems to be more variable than any other algorithm in terms of the optimal 
objective function value (Figure 9.17(1) to 9.17(5) and Figure 9.18.) This might suggest 
that, compared to other algorithms, genetic algorithm may largely depend on the chosen 
parameters at any particular level. If the chosen parameters inherent in GA are fixed, the 
solution quality for the BTRNDP might be unstable. Therefore, to achieve the optimal 
solution network at each weight set level, one might need to run the programming code 
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and get the optimal parameter set at that level although the computational burden would 
become larger. 

 
Furthermore, for each graph (i.e., for each weight level for the total unsatisfied 

demand cost), simulated annealing seems to consistently outperform any other algorithm 
in terms of the quality of solution (i.e., it always results in the lowest objective function 
value). This might reach the conclusion that compared to other heuristic algorithms, 
simulated annealing performs best. Random search seems to be the second best algorithm 
for solving the BTRNDP. The overall model performance of the local search method is 
the third best algorithm. Also note that the local search method is a little worse than the 
simulated annealing algorithm, which is expected due to the inherent characteristics and 
relationship between these two model structures. The genetic algorithm, however, seems 
to be the most undesirable model. This might be possible because although genetic 
algorithm might achieve some better solutions by learning from the previous solutions 
through a genetic approach, it might take much more time inside the algorithm itself to 
look for this achievement (compared to the random search method) while does not take 
much more effort looking for possibly better solutions from other “neighborhood” 
solutions in the candidate solution space (compared to the local search and simulated 
annealing algorithm). Conversely, the simulated annealing algorithm not only can look 
for a good solution with a specific origin-destination node pair through “random search” 
in its early stage, but also can fully explore possibly better neighborhood solutions. Note 
that the tradeoffs between route coverage and the route directness might be well balanced 
between chosen shortest paths or k-th shortest paths between specific origin-destination 
node pairs. It is expected that this inherent characteristics of the simulated annealing 
algorithm might make it particularly suited for the BTRNDP and therefore outperform 
any other algorithm for this small network. 
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Figure 9.17 Heuristic Search Algorithm Comparisons using Small Network for the  

       BTRNDP with Fixed Demand 
 

 
Figure 9.18 present the numerical results of Heuristic Search Algorithm 

Comparisons using Medium Network for the BTRNDP with Fixed Demand. 
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Figure 9.18 Heuristic Search Algorithm Comparisons using Medium Network for the  

       BTRNDP with Fixed Demand 
 
 As can be seen from Figure 9.18, the local search seems to be the most 
undesirable algorithm for solving the BTRNDP with fixed demand using this medium 
network because it produces the worst result in terms of objective function value in most 
cases at any weight set level. Furthermore, compared to that in Figure 9.17, it seems that 
the differences among all heuristic algorithms except the local search method become 
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much less distinct and any of these algorithms seems to yield quite consistent solutions. 
This might suggest that as the network size increases, the heuristic algorithms except the 
local search method tend to yield transit route network solutions for the BTRNDP whose 
qualities are almost are similar. Put another way, when one uses this software or wants to 
develop a new solution framework, any of these heuristic algorithms can be used. 

 

 The above sections present the applications of these heuristic algorithms to the 
BTRNDP with fixed demand. As mentioned in previous chapters, however, there exists a 
variable relationship between the transit demand and the transit route network. Therefore, 
the BTRNDP with variable transit demand is studied and the numerical results are 
presented in the following sections. 

 

9.5 The TRNDP with Variable Transit Demand 

 
Using an approach similar to that for fixed demand, the following sections present 

the sensitivity analyses for each algorithm and comparisons for all heuristic algorithms 
for the BTRNDP with variable transit demand. 

 

9.5.1 Algorithm Sensitivity Analyses 
 

For sensitivity analyses regarding the BTRNDP with variable transit demand, the 
same procedure was followed and the following table provides a summary of these 
sensitivity analyses for each algorithm for the BTRNDP with variable transit demand 
(including the small and medium networks). 

 
When the sensitivity analyses were conducted for the BTRNDP with variable 

demand, the optimal parameter set values for each algorithm also changed as the network 
size increased from a small network to medium one. Furthermore, comparing Table 9.1 
and 9.2, one can see that the parameter changes in Table 9.2 seem to be larger than that in 
Table 9.1. This might suggest that for the BTRNDP with variable transit demand, the 
optimal parameter set might greatly depend on specific network characteristics including 
the network size and its configuration. Therefore, it is strongly recommended that when 
one uses this software or wants to develop a solution framework to design an optimal 
transit route network, one should perform the sensitivity analyses for the studied network 
and use these values as general guidelines. 
 

As before, the following sections first compare the three employed tabu search 
algorithms. Based on the comparison results, the best tabu algorithm is chosen and 
compared with other heuristic algorithms including the GA, LS, SA and RS method. 
Related numerical results are included. 
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Table 9.2 Summary of Algorithm Sensitivity Analyses for the BTRNDP with Variable Demand 
 

Variable Demand  

Small Network Medium Network 

Population Size 80 100 

Generations 20 70 

Crossover Probability 0.8 0.8 
Genetic Algorithm 

Mutation Probability 0.1 0.01 

Local Search Generations 5000 2000 

Temperature 5000 2000 

Generations 100 20 

Alpha Value 0.6 0.6 
Simulated Annealing 

Repetition Counter 10 10 

Random Search Generations 5000 10000 

Generations 10 80 

Tenures 10 10 
Tabu w/o Shakeup and 

with Fixed Tenures 
Search Neighbors 40 10 

Generations 50 50 

Tenures 10 10 

Search Neighbors 10 10 

Tabu w/t Shakeup and 

Fixed Tenures 

Shakeup Number 50 50 

Generations 10 50 

Search Neighbors 40 10 

Tabu 

Search 

Tabu w/t Shakeup and 

Variable Tenures 
Shakeup Number 50 50 

 

9.5.2 Algorithm Comparisons 

9.5.2.1  Tabu Search Algorithm Comparisons 

 
Three versions of TS algorithms have been developed and their sensitivity was 

examined for the BTRNDP with variable demand. To determine which variation of TS is 
the most suitable for BTRNDP with variable demand, they are compared using both the 
small and medium networks. Numerical results show that the tabu search algorithms 
behave like that for the BTRNDP with fixed demand using the medium network. In other 
words, it seems that there are no big differences among these three tabu search algorithms 
in terms of solution quality using both the small and medium networks for the BTRNDP 
with variable demand. Therefore, for conciseness, these graphs are not included in this 
research. Moreover, this might suggest that any of these three algorithms can be used to 
represent the Tabu Search algorithm. For simplicity, the tabu search without shakeup is 
selected as a representative for the tabu search algorithms and details of comparisons 
among all heuristic algorithms are presented as follows. 
 

9.5.2.2  Heuristic Search Algorithms Comparisons 
 

Figure 9.19 present numerical results of Heuristic Search algorithm comparisons 
using Small Network for the BTRNDP with Variable Transit Demand.  
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Figure 9.19 Heuristic Search Algorithm Comparisons using Small Network for the  

       BTRNDP with Variable Transit Demand 
 
Figure 9.20 present numerical results of Heuristic Search algorithm comparisons 

using Medium Network for the BTRNDP with Variable Transit Demand.  
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Figure 9.20 Heuristic Search Algorithm Comparisons using Medium Network for the  

       BTRNDP with Variable Transit Demand 
 

As can be seen from Figures 9.19 and 9.20, the numerical results for the 
BTRNDP with variable demand both for the small and medium networks seem to be 
consistently like that for the BTRNDP with fixed demand using the medium network. 
That is to say, it seems that the differences among all heuristic algorithms except the local 
search method are not large and any of these algorithms seems to yield quite consistent 
solutions. This might suggest that as the variable transit demand characteristics of the 
BTRNDP are considered for any network size, the heuristic algorithms except the local 
search method tend to yield transit route network solutions for the BTRNDP whose 



 

 185

qualities are almost at the same level. Put another way, when one uses this software or 
wants to develop a new solution framework, any of these heuristic algorithms (GA, SA, 
RS and TS) can be used. 

 

9.6 Characteristics of the TRNDP 

 
The characteristics of the BTRNDP are very extensive due to its multi-decision 

making nature and the variety of parameters and procedures involved. These 
characteristics might depend upon the network size, the assumption of fixed or variable 
transit demand, the chosen parameters in the solution process, the chosen algorithm and 
the chosen weight set level for each component of the objective function. In this sense, it 
is very hard to generalize all characteristics of the BTRNDP. However, it is expected that 
in most cases, the BTRNDP characteristics should be similar. Therefore, the following 
sections provide broad statements about BTRNDP both with fixed and variable transit 
demand based upon the medium network. Furthermore, since the numerical results based 
upon weights of 0.4, 0.4 and 0.2 for the user cost, operator cost and unsatisfied demand 
cost respectively seem to be very representative, these are chosen for presenting related 
BTRNDP characteristics. 

 
The effect of the number of proposed routes in the transit network solution is 

investigated by varying it from 1 to 10 and the results for the BTRNDP with fixed and 
variable demand are provided in Figures 9.21 and 9.22 respectively. The values of each 
performance measure of the optimal network at each route set size level including the 
user cost, the operator cost, the fleet size required, the percentage of the satisfied transit 
demand and the total objective function value are shown in Figures 9.21(1) through 
9.21(6). 

 

9.6.1 Effects of Route Set Size for the TRNDP with Fixed Demand 

 
For the BTRNDP with fixed transit demand, the characteristics can be presented as 

follows. Generally speaking, as the number of routes provided in the network increases, 
more passengers will be served by transit and therefore, the satisfied transit demand 
increases. Furthermore, if one assumes fixed transit demand, the percentage of satisfied 
transit demand also increases as shown in Figure 9.21(5). Also as a result, the unsatisfied 
demand cost decreases. However, the operator cost tends to increases because the fleet 
size required for the network generally increases. In addition, the user cost generally 
increases because more transit users get involved and the total objective function value 
also increases. The reason might be that although service might be better in some sense 
(such as more passengers get direct route service) as more routes are provided, the 
headway might be longer on some routes. Therefore, the transit user cost as a whole 
might actually increase.  

 
In conclusions, the numerical results in Figure 9.21 indicate that as a whole, as the 

route set size increases, the solution improved initially because more demand was 
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satisfied and unsatisfied demand costs decrease. However, the lowest objective function 
value is achieved with 4 routes for this scenario and increases in the fleet size (i.e., 
operator cost) produces underutilization of routes and does not result in an improved 
objective function value. 
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Figure 9.21 Effect of Route Set Size on Objective Function and its Components for the  

       BTRNDP with Fixed Demand 
 

9.6.2 Effects of Route Set Size for the TRNDP with Variable Demand  

 
For the BTRNDP with variable transit demand, the characteristics seem to follow a 

very similar if not the same pattern as that with fixed transit demand and they can be 
presented as follows. Generally speaking, as the number of routes provided in the 
network increases, more passengers seem to choose transit over auto mode and therefore, 
the percentage of satisfied transit demand out of the total travel demand increases as 
shown in Figure 9.22(5). If one assumes fixed total demand, this might suggest that the 
satisfied transit demand increases. Also as a result, the unsatisfied demand cost decreases. 
However, the operator cost tends to increase because the fleet size required for the 
network generally increases. In addition, the user cost generally increases because more 
transit users get involved and the total objective function value tends to increase. The 
reason might be that although more passengers might get direct transit route service as 
more routes are provided, the headway might be longer on some routes. As the operator 
cost generally also increases as the number of routes increases, the total objective 
function is more likely to increase.  

 
In conclusion, the numerical results in Figure 9.22 indicate that as a whole, as the 

route set size increases, the solution improved initially because more transit demand is 
assigned to the network and unsatisfied demand costs decrease. However, the lowest 
objective function value is achieved with 5 routes for the studied network and increases 
in the fleet size (i.e., operator costs) produce underutilization of routes and does not result 
in an improved objective function value. This situation is the same for the BTRNDP with 
variable demand as that with fixed transit demand. 
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Figure 9.22 Effect of Route Set Size on Objective Function and its Components for the 
BTRNDP with Variable Demand 
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9.6.3 Comparisons between The TRNDP with Fixed and Variable Demand 

9.6.3.1 Characteristic Changes in User Cost, Operator Cost and Unsatisfied 

Demand Cost 

 
Although it seems that the effect of the route set size on the objective function and 

its components follows the same pattern for the BTRNDP both with fixed and variable 
transit demand, there are still some differences between them. That is, the impact of route 
set size on the objective function including user cost, operator cost, fleet size required, 
the percentage of satisfied transit demand and total objective function value for the 
BTRNDP with fixed transit demand seems to be relatively larger than that for variable 
transit demand. This can be seen by comparing fixed and variable demand figures. In 
other words, the effect of the route set size for variable transit demand seems to be less 
distinct than that for the fixed transit demand. This is expected, since the discrete choice 
modeling structure employed in this research consists of a two-staged model, which has a 
nonlinear binary logit curve and an inversely proportional model. Both models act as a 
buffer to reduce the impact of the route set size on the objective function, making the 
BTRNDP with variable transit demand smoother than that for the fixed transit demand. 

 

9.6.3.2 Comparisons between Optimal Solution Networks in Two Scenarios 

 
One can see from Figures 9.21 and 9.22 that the optimal transit route network 

with fixed transit demand is different from that with variable transit demand at the 0.4, 
0.4 and 0.2 weight set level (user cost, operator cost and unsatisfied demand cost 
respectively). The optimal solution networks at any weight set level for these two 
different scenarios are distinct from one scenario to another. As a result, the BTRNDP 
with variable transit demand should be considered. 
 

9.7 Larger Network Extensions 

 
In previous chapters, the small and medium networks are used for the BTRNDP 

with fixed and variable transit demand. Numerical results are presented and algorithm 
comparisons are performed. In this research, the large network as illustrated before is 
introduced to examine the effect of the network size on the computing speed and to 
investigate the effect of demand aggregations both on the computing speed and solution 
qualities compared to that without demand aggregations. In addition, since all heuristic 
algorithms seem to perform quite efficiently, the random search algorithm is chosen as 
the representative for all heuristic algorithms here due to its relative simplicity. The 
following sections present related numerical results. 

 

9.7.1 Effects of Network Size on Computing Speed 

 
As mentioned in Chapter 4, as network size increases, the computational time for 

the BTRNDP either with fixed or variable transit demand grows exponentially. Figure 
9.23 and 9.24 present this effect for the BTRNDP with fixed and variable transit demand 
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respectively (The 1, 2 and 4 in the x-axis indicate the small, medium and large networks 
respectively). One can see from these two Figures and conclude that the effect seems to 
be consistent that the computation time does change nearly proportionally (i.e., almost 
linearly rather than exponentially) as the network size increase from the small to medium 
to large network if the heuristic algorithms are used. For example, the computation time 
for the small network in this research is about 30 minutes, about 8 hours for the medium 
network and about 70 hours for the large network. However, if the exhaustive search 
method is used, as one can see from Figure 9.14(4), the computation time grows 
exponentially as the network size increases. From another perspective, this might suggest 
that the BTRNDP is an NP-hard problem and indicates the validity and necessity of 
employing the heuristic search algorithms to solve the BTRNDP. 
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Figure 9.23 The Effect of Network Size on Computation Time for the BTRNDP with  

       Fixed Transit Demand 

 

In addition, it should be noted that for any network size, the computation speed 
for the BTRNDP with fixed transit demand is always slightly faster than that with 
variable transit demand if chosen parameters are the same under both scenarios. This is 
expected because one more procedure, (i.e., the transit demand equilibration procedure) 
and the two-staged BLM-IPM model are added in the BTRNDP with variable transit 
demand to accommodate this variable transit demand characteristic. However, as shown 
in Figure 9.23 and 9.24, the differences in the computing speed between these two 
scenarios are not very significant because they share the same solution framework except 
the added transit demand equilibration procedure. 
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Figure 9.24 The Effect of Network Size on Computation Time for the BTRNDP with  

       Variable Transit Demand 

 

9.7.2 Effects of Demand Aggregation 

 

The impact of demand aggregation on the computation time and solution quality 
was examined using the large network as an example. Basically speaking, the demands 
are aggregated at the distribution node level so that there is only one possible bus stop for 
each centroid. Additionally, note that the chosen location might be obvious (such as there 
is only one entrance/exit for a particular travel zone) or less obvious (in case two or more 
than two locations can be chosen). For example, one could set the demand aggregation 
point to the bus stop that is on the main street. The locations chosen for bus stops could 
have a great impact on the solution quality. An example of demand aggregations for the 
large network is shown in Figure 9.25 and this network is used to examine the effect of 
demand aggregation on the computation time and solution quality. 
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9.7.2.1 Impact on Solution Quality 

 

The following numerical results are obtained by setting the weight of the 
unsatisfied demand cost to be 0.4 and varying the weights of the user and operator cost 
respectively both with fixed and variable transit demand. Note that the results are very 
representative because similar results have been obtained at other weight set levels. 
Figure 9.26 and 9.27 show the effect of demand aggregations on solution quality both 
with fixed and variable transit demand respectively. 
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Figure 9.26 The Effect of Demand Aggregations on Solution Quality for the BTRNDP 
with Fixed Transit Demand 
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Figure 9.27 The Effect of Demand Aggregations on Solution Quality for the BTRNDP 
with Variable Transit Demand 
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As can be seen from both figures, the objective function values are smaller (more 
desirable) without demand aggregation than with demand aggregation under both 
scenarios. This is expected because the BTRNDP with demand aggregation is a 
constrained optimization version of the BTRNDP without demand aggregation. 
Therefore, the optimal objective function that can be achieved in the latter case is usually 
less than that in the former case (it will be always less if the BTRNDP is a convex 
problem). If one tends to emphasize the solution quality and wants an optimal solution 
network, the BTRNDP without demand aggregation is the better choice.  

 
However, the better solution quality from the BTRNDP without demand 

aggregation comes at the cost of a slower computation speed as shown in the following 
sections. 

 

9.7.2.2 Impacts on Solution Efficiency 

 
Figure 9.28 presents the effect of demand aggregation on computation time for 

the BTRNDP with fixed and variable transit demand. The BTRNDP with demand 
aggregation requires much less computation time than that without demand aggregation 
under both scenarios. For example, the computing time for the BTRNDP with fixed 
demand and demand aggregation is about 3 hours while that for the BTRNDP with fixed 
demand and without demand aggregation is about 72 hours. This is expected because the 
BTRNDP with demand aggregation has a much smaller solution space than that without 
demand aggregation and the number of overlapping nodes among different routes is 
much less. Therefore, the computation time for the NAP for each proposed solution 
network is much less for the BTRNDP with demand aggregation. Therefore, the total 
computation time in the former case is much less the latter case. 
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Figure 9.28 The Effect of Demand Aggregations on Computation Time for the BTRNDP  

       with Fixed Transit Demand and that with Variable Transit Demand 
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9.8 The Redesign of the Existing Transit Network Issues 

9.8.1 Design Strategy and Corresponding Implementation Changes 

 
Previous chapters mentioned the redesign of existing transit networks. This 

situation is very common because in the early stages of the BTRNDP, transit planners 
had only their experience and judgment to design the current transit route network. 
However, these networks contain inefficient characteristics and redesign of the existing 
transit network is potentially beneficial.  

 
Generally speaking, if one redesigns a transit route network, one would usually 

keep some routes that are very efficient as the network skeleton and find some optimal 
routes to serve the transit demand that cannot be satisfied by these kept skeleton routes. 
Moreover, this problem is investigated under the situation that the demand matrix has 
already achieved equilibrium (at least for demand between any node pairs on the kept 
existing routes). Therefore, essentially speaking, the redesign of the transit route network 
can be studied under the assumption of fixed transit demand. (Although transit demand 
on other demand pairs or routes might be variable, for simplicity, fixed transit demand is 
assumed here). Based on these considerations, some minor modifications should be made 
to the current C++ codes. That is to say, the whole skeleton remains unchanged. 
However, at each iteration when the heuristic search algorithm is used to propose the new 
transit route network, one should always keep the efficient routes and store them in a 
specific location in the arrays that are used to store all the proposed solution routes. This 
way, the kept routes will be always included in the optimal transit solution route set at 
any route set size level.  

 
Based on the above descriptions, the computer codes were modified and tested. 

The numerical results are presented as follows. 

 

9.8.2 Numerical Results 

 

The following uses the random search method for the BTRNDP with fixed 
demand for the medium network as a typical example for the redesign of the existing 
transit network. Note that the genetic algorithm is not chosen because its selection 
procedure is expected to change the proposed transit route network according to the 
objective function values of previous solution networks. Keeping some routes, in some 
sense, is the same as adding constraints and this might destroy the characteristics of the 
genetic algorithm and therefore might result in misleading or at least unrepresentative 
numerical results. Therefore, the random search rather than the genetic algorithm is used. 
Also note that the weight set level 0.4, 0.4 and 0.2 as described before are used and the 
numerical results are given in the following sections. 

 
Figure 9.29 provides the current optimal transit route solution network for the 

medium network with fixed demand using the random search method. Note that the 
headway is 20 minutes on the black route and 19 minutes on the pink route respectively. 
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In addition, Figure 9.30 and 9.31 graphically show the optimal transit route solution 
network configuration after keeping one good (efficient) route and that after keeping one 
bad (inefficient) route respectively. Note that the definition of “efficient” and/or 
“inefficient” might affect the numerical results. The two examples as shown here are 
based on the author’s judgment and the numerical results are presented as follows. 
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Figure 9.29 Current Optimal Transit Route Solution Network for the Medium Network  

       with Fixed Demand 
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Figure 9.32 The Effect of Keeping Good (Efficient) and Bad (Inefficient) Routes on 
Solution Quality for the BTRNDP with Fixed Transit Demand 
 

As can be seen from Figure 9.32, the lowest objective function value can always 
be achieved for the BTRNDP with fixed transit demand after keeping good (efficient) 
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routes for any route set size. However, the BTRNDP after keeping bad (inefficient) 
routes seem to result in the worst “optimal” transit route structure for almost every route 
set size. Based on these results, one can conclude that the redesign of the existing transit 
route network might depend on the characteristics of the kept routes. Put another way, it 
might depend on the specific route that one wants to keep. If it’s very efficient, solution 
quality increases and using this algorithm will yield a very good solution network. 
 

9.9 Summary and Conclusions 

 
This chapter focuses on the algorithm implementation and numerical results for 

the proposed solution methodologies. Details of the C++ program codes that were 
developed to implement the six algorithms for the BTRNDP both with fixed and variable 
transit demand are presented.  

 
Three experimental networks are designed and successfully tested for the 

BTRNDP. The network representation and algorithm implementation details of the C++ 
programming codes for the proposed methodology to the BTRNDP are presented. 
Comprehensive numerical results of the six proposed solution methods, including the 
genetic algorithm, local search, simulated annealing, random search, tabu search 
algorithm and exhaustive search method, are presented for the BTRNDP with fixed and 
variable transit demand respectively using three example networks. Sensitivity analyses 
for each algorithm are conducted and algorithms are compared based on the multi-
objective decision making nature of the BTRNDP. The characteristics underlying the 
BTRNDP are identified and effects of route set size on the objective function and its 
components are examined and compared. In the large network extensions, effects of 
network size and demand aggregation on the computation speed and solution quality are 
studied. Redesign of the existing network issues is discussed and related numerical 
results are presented. The next chapter concludes this research with a summary and future 
directions for research are also given. 
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CHAPTER TEN 

SUMMARY AND CONCLUSIONS 

 
10.1 Introduction 

Public transit has been widely recognized as a potential way of reducing air 
pollution, lowering energy consumption, improving mobility and lessening traffic 
congestion. Designing an operationally and economically efficient bus transit network is 
very important for the urban area’s social, economic and physical structure. 

The primary objective of this research is to develop a robust optimization tool 
using systematical heuristic approaches and demonstrate these tools using comprehensive 
experimental networks for the computer-aided design of the optimal transit route 
networks. The TRNDP involves the minimization of some generalized costs subject to a 
variety of constraints, which reflect system performance requirements and/or resource 
limitations. The decision one seeks to make is the determination of a transit route 
network configuration including a set of transit routes and their associated bus 
frequencies. Although several research efforts have examined this subject in the past 
decade, the present work is the first effort to apply systematic heuristic solution 
approaches to the TRNDP.  

The following sections are organized as follows. In section 10.2, the principal 
features of the solution approaches designed for the TRNDP are reviewed and a summary 
of conclusions for the numerical results derived from computational tests is discussed. 
Section 10.3 presents a brief discussion of the limitations of the current approaches and 
possible directions for further research are also given.  

 

10.2 Summary and Conclusions 

As mentioned, the optimal transit route network design problem addressed in this 
research involves finding a bus transit route network configuration and associated service 
frequencies that achieve a desired objective with a variety of given constraints. The 
literature describing previous solution approaches to the TRNDP has been reviewed. As 
mentioned by several researchers including Baaj (1990), six main sources of complexity 
often preclude finding a unique optimal solution for the TRNDP and these are the 
following: (1) great difficulty in defining the decision variables and expressing the 
objective function; (2) non-convexities and non-linearity are involved in the cost 
associated with the transit network configuration; (3) combinatorial complexity arises 
from the discrete nature of the route design problem, making the TRNDP an NP-hard 
one; (4) many important tradeoffs among conflicting objectives need to be addressed, 
making the TRNDP an inherently multi-objective decision making problem; (5) spatial 
layout of routes makes it very hard to design an acceptable and operationally feasible set 
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of routes with the need to address many important design criteria; and (6) the nature of 
variable transit demand even with a given total travel demand makes the already-difficult 
TRNDP more complex. These sources of complexity render the solution search space 
computationally intractable and the computational burden of the problem grows 
exponentially with the size of the studied transit network. 

Previous approaches that were used to solve the TRNDP can be classified into 
three categories: practical guidelines and ad hoc procedures; analytical optimization 
models for idealized situations; and meta-heuristic approaches for more practical 
problems. Principal shortcomings of previous approaches include the failure to consider 
the TRNDP where the demand should be distributed among the bus stops serving an 
origin (destination) rather than to the centroid (single point); failure to address the 
inherent multiple objective nature of the transit route network design problem; failure to 
consider the transit route network design problem in the context of variable demand; 
failure to incorporate practical service guidelines; and failure to consider essential aspects 
of the problem in the solution process. Building on several previous approaches, the 
solution methodology proposed in this research includes the following major features: 1) 
Systematic heuristic methods for transit route generation and improvement; 2) a transit 
network evaluation model to compute a variety of system performance measures; 3) 
systematic use of context-specific knowledge to guide the search technique; and 4) 
accommodate different design requirements for the TRNDP under different scenarios. 

The proposed solution approach consists of three main components: an Initial 
Candidate Route Set Generation Procedure (ICRSGP) that generates all feasible routes 
incorporating practical guidelines that are commonly used in the bus transit industry; a 
Network Analysis Procedure (NAP) that achieves the transit demand, assigns the transit 
trips, determines the service frequencies on each route and computes many performance 
measures; and a Heuristic Search Procedure (HSP) that scientifically guides the feasible 
solution generation and search process. In the third step, five heuristic algorithms, 
including the Genetic Algorithm, Local Search, Simulated Annealing, Random Search 
and Tabu Search Methods, along with the Exhaustive Search Method as a benchmark to 
examine the efficiency and measure the quality of the solutions obtained from these 
heuristic algorithms for the TRNDP with small network, are applied to select an optimum 
set of routes from the huge solution space. 

Comprehensive experiments are performed, sensitivity analyses for each 
algorithm are conducted and algorithms are compared based on the multi-objective 
decision making nature of the TRNDP. The numerical results showed that the values in 
the optimal parameter set for each algorithm changes slightly as the network size 
changes, suggesting that the optimal parameter set might also depend on specific network 
including the network size and its configuration. Although one can use the optimal values 
in the parameter set for each algorithm as a general guideline, it is recommended to 
perform sensitivity analyses for the employed algorithm for the studied specific network. 
The exhaustive search method is examined for the TRNDP using a small network. The 
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results showed that although this method can find the global optimum, it requires 
extremely long computation time to get this unique optimal solution. Since the 
computation time for this method grows exponentially, the heuristic search algorithms, 
rather than the exhaustive search method, are recommended for use for the TRNDP with 
the large networks. 

To determine which tabu search version is most suitable for the TRNDP both with 
fixed and variable demand, tabu search algorithms are compared from a multi-objective 
decision making perspective using different sized networks. The results showed that for 
any network size, there are no big differences among the three tested algorithms so that 
either one can be used for the TRNDP. Similar conclusions result from the comparison 
among all five heuristic algorithms, including the genetic algorithm, local search, 
simulated annealing, random search and tabu search. In other words, the heuristic 
algorithms except the local search method tend to yield transit route network solutions for 
the TRNDP whose qualities are almost equal. Therefore, any of these heuristic algorithms 
(such as the GA, SA, RS and TS) can be used for the TRNDP. 

Characteristics underlying the TRNDP are also identified and effects of the route 
set size on the objective function and its components are examined and compared. The 
numerical results show that for the TRNDP both with fixed and variable demand, as the 
route set size increases, the solution improves initially because more demand is assigned 
to the network routes and unsatisfied demand costs decreases. However, after a threshold 
point at the optimal route set size, increases in the fleet size (i.e., operator cost) produce 
underutilization of routes and does not result in an improved objective function value. 
Moreover, the effect of route set size with variable transit demand seems to be less 
distinct than for fixed transit demand due to its inherent discrete choice modeling 
structures. Also, the solution networks for the TRNDP with fixed demand (including the 
transit route network structure and service frequencies) are distinct from those with 
variable demand. As a result, the TRNDP with variable transit demand is recommended 
to be used for real-world applications. 

In the large network extensions, the effects of network size and demand 
aggregation on computation speed and solution quality are studied. The numerical results 
indicated that as network size increases, the computation time for any heuristic algorithm 
increases dramatically, suggesting the necessity of employing an heuristic search 
algorithm to solve the TRNDP. In addition, the TRNDP without demand aggregation 
produces significantly more desirable objective function values than that with demand 
aggregation. The redesign of existing networks is discussed and related numerical results 
are also presented. It is concluded that the redesign of the existing transit route network 
might depend on the characteristics of the kept routes. That is to say, if the retained route 
skeleton is very efficient, solution quality increases and using the employed solution 
methodology will yield a very good solution network. 

The principal unique contributions of this work result from the following aspects:  
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1) In the present version, the route generation procedure is mainly used for a long 
range planning tool which generates a new set of bus transit routes to provide associated 
service for transit users. However, the methodology developed in this work can be also 
used to support short or medium range planning because it allows for the transit planner 
to specify some routes based on his/her experience or keeping a subset of routes of the 
existing transit system and then design or modify the transit network taking into account 
the presence of such predetermined routes. This point can be seen from the numerical 
results as already shown in Chapter 9. This is extremely important because any transit 
planning tool intended to be used in practice should offer this capability and the current 
developed transit route network design optimization tool can help meet this requirement. 
Furthermore, the current optimization tool can be easily modified to be used for subway 
transit route system design, where there are fewer routes than bus networks, higher 
service frequencies, larger passenger transit capacities and more transferring activity 
among routes. Essentially, the subway network design problem is just a variant of the 
optimal transit route network design problem and therefore with some minor 
modifications, the overall framework would be applicable in this context. Also, the 
developed heuristic methodology can also be used for many other research topics related 
to transportation routing problems such as locating a single light rail line although minor 
modifications still need to be performed. Lastly, the current version can also be extended 
to integrated design or redesign of bus and rail transit route network systems. 

2) It considers the TRNDP in a more real world general context where the transit 
demand is distributed among bus stops serving an origin (destination) rather than 
aggregating them to a zone centroid (single point). This enables more applicability of the 
transit assignment process when the transit transfers occurred. 

3) It can explicitly address the TRNDP as a multi-objective decision problem and 
generates different sets of routes and determines their associated service frequencies 
corresponding to built-in tradeoffs between conflicting objectives.  

4) A computer-based route generation procedure that can explicitly incorporate 
several practical guidelines and industry rules of thumb and form a complete solution 
space consisting of all feasible routes while doesn’t heavily rely on user experience or the 
demand matrix. The optimal transit route network is described using the network 
evaluation procedure and heuristic search methods. 

5) A transit network analysis procedure with the following important features: i) It 
can accommodate different route design requirements for the TRNDP under two different 
scenarios, namely both with fixed and variable transit demand and it uses an iterative 
procedure to obtain total transit trip demand for the TRNDP with variable transit demand; 
ii) It uses a two-staged binary logit model and inversely proportional model to reflect the 
choice process for the trip makers and compute the number of transit users; iii) It 
incorporates a trip assignment procedure which explicitly considers transfer  and long-
walk related characteristics and assigns trips among related transit routes. This enables 
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the evaluation and design of the TRNDP under a much more real situation; iv) It 
computes system performance measures reflecting the quality of service, user cost, the 
resources required by the operator and unsatisfied demand cost and can be used as a 
sensitivity analysis tool for system performance measures and a variety of variables and 
parameters; v) It uses C++ programming language as the software development tool, 
which greatly facilitates the implementation of the path enumeration, route evaluation 
and solution search techniques.  

6) It uses systematic heuristic algorithms to scientifically guide the route set 
solution generation and search process and identify the most applicable algorithms for the 
TRNDP of different network size and different service deign requirements in each 
scenario. The results demonstrate the robustness of these algorithms as an optimization 
tool for the TRNDP. 

7) The developed transit route optimization tool explicitly considers the variable 
relationship between the generated set of bus routes and the transit trip demand matrix, 
and this makes this work much more applicable than any previous.  

 

10.3 Directions for Further Research 

In this section, some of the limitations of current solution approaches for the 
TRNDP are presented and directions for further research are also discussed. 

The solution approaches tackle the locations of bus stops around a specific transit 
demand zone along any route as exogenous data (i.e., they are given through an input 
file). However, in the real-world bus planning process, the optimal number and locations 
of bus stops should be determined as part of the TRNDP rather than predetermined. The 
incorporation of determining bus stops would add realism for the solution approach. The 
literature shows that possible solution approaches for this consideration include an 
integrated application of the dynamic programming and heuristic algorithm. In addition, 
after setting the bus stops, the work of driver scheduling and bus scheduling on each 
route in the whole transit route network should be performed because the transit trip 
assignments are essentially schedule-based once the schedules are set. Existing literatures 
indicate that heuristic algorithms, such as tabu search methods, can be used for driver 
scheduling and bus scheduling, while branch and bound algorithm-based programming 
can be used for solving the schedule-based transit trip assignments. Furthermore, it is 
noted that proposing the bus routes, determining the number and locations of bus stops, 
setting the bus and driver schedules and assigning the transit trip based on the determined 
schedules should all be included as sequential decisions in the TRNDP. Also, current 
algorithms other than the employed heuristic ones for solving combinatorial algorithms, 
such as set-covering algorithm, can also be considered for solving the TRNDP. As 
extensions of these works, they might be potentially good and possibly produce quality 
solutions. To make the current solution approach more complete and usable, these work 
need to be added.  
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The capability to display the solutions of transit route sets represented by node 
connectivity lists is extremely important and useful for the TRNDP.  Put another way, if 
the changes (at least the improvements) in the current optimal solution set of routes’ 
layout can be showed graphically and dynamically along the searching process, the 
transit planners are therefore able to see an instant picture of route layouts and the 
corresponding user and operator cost as well as the measures of performance of the 
developing network dynamically. Also, the graphical display technology for several 
network descriptors would enable them to develop a ‘feel’ for the performance of the 
route design and quickly notice the sensitivity of the resulting solutions to different user 
input parameters. Especially when the solution approaches are applied to different time 
periods, the operations on the generated solution route set, such as identifying which 
routes to disconnect or detecting when the frequency of service on some routes to 
increase or decrease, a graphical display of the sets of routes’ layouts is almost 
necessitated. 

The solution approach requires further testing on different transit networks and 
different transit demand matrices. The solution approach provides alternative design 
features that are applicable to the TRNDP both with fixed and variable transit demand. 
However, the conclusion remarks about the solution approached are derived from the 
numerical results using limited designed networks. In addition, the sensitivity analyses 
parts are performed sequentially although one should try all combinations of all the 
parameters to determine the optimal parameter set for each algorithm. To make these 
results more conclusive, more comprehensive (especially as large as the real-world sized) 
experimental networks are still needed for testing these algorithms.  

Lastly, to make the solution approach more versatile, other service choice 
dimensions need to be incorporated. Examples of these service choices that might 
improve the design performance of bus transit systems can be seen from the concepts of 
express bus service that serves two bus terminals non-stop or with limited stops in the 
middle and the transit transfer center that facilitates transit transfers. In this regard, some 
minor modifications to the solution approach are needed to help achieve these 
requirements. 

The numerical results were tested using the computers available with the 
Microsoft Windows XP System, 1.03GHz clock speed, 512MB of RAM and a 35GB 
hard drive. As hardware improves, the authors believe that the heuristic algorithms and 
the optimization software derived from this research will become more viable and 
practicable for real sized large network. As a result, an operationally and economically 
efficient optimal transit route network with associated service frequencies can be 
obtained, making the development of our neighborhoods more sustainable. The reduced 
air pollution, lowered energy consumption, improved mobility and less traffic congestion 
can be beneficial for the social, economic and physical structure of our next generations’ 
world. 
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APPENDIX 

 
The input files for all designed three experimental networks are included as 

follows: 

 

Small Network: 
 

Network.dat: 

 
7 35 82 (total number of zones total number of nodes total number of arcs) 
1 2 3 4 5 6 7 (Zone_IDs) 
1 0 (Node_ID “0” means this node is an intersection node) 
2 0  
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 1 1 (Node_ID this number of zones this node is in Zone_IDs) 
17 1 1 
18 2 1 2 
19 2 1 3 
20 1 2 
21 2 2 5 
22 2 2 3 
23 1 3 
24 2 3 6 
25 2 3 4 
26 1 4 
27 2 4 7 
28 1 4 
29 1 5 
30 1 5 
31 2 5 6 
32 1 6 
33 2 6 7 
34 1 7 
35 1 7 
1 1 16 (Link_ID  Link_origin Link_destination) 
2 1 17 
3 2 16 
4 2 19 
5 2 23 
6 3 23 
7 3 25 
8 3 26 
9 4 26 
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10 4 28 
11 5 17 
12 5 18 
13 5 20 
14 6 18 
15 6 19 
16 6 22 
17 7 11 
18 7 22 
19 7 24 
20 8 24 
21 8 25 
22 8 27 
23 8 33 
24 9 27 
25 9 28 
26 9 35 
27 10 20 
28 10 21 
29 10 29 
30 11 7 
31 11 21 
32 11 31 
33 12 29 
34 12 30 
35 13 30 
36 13 31 
37 13 32 
38 14 32 
39 14 33 
40 14 34 
41 15 34 
42 15 35 
43 16 1 
44 16 2 
45 17 1 
46 17 5 
47 18 5 
48 18 6 
49 19 2 
50 19 6 
51 20 5 
52 20 10 
53 21 10 
54 21 11 
55 22 6 
56 22 7 
57 23 2 
58 23 3 
59 24 7 
60 24 8 
61 25 3 
62 25 8 
63 26 3 
64 26 4 
65 27 8 
66 27 9 
67 28 4 
68 28 9 
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69 29 10 
70 29 12 
71 30 12 
72 30 13 
73 31 11 
74 31 13 
75 32 13 
76 32 14 
77 33 8 
78 33 14 
79 34 14 
80 34 15 
81 35 9 
82 35 15 

 

 

XY.dat 
 
1 0 900 (Node_ID X_Coordinate Y_Coordinate)  
2 400 900 
3 800 900 
4 1200 900 
5 0 700 
6 400 700 
7 400 500 
8 800 500 
9 1200 500 
10 0 300 
11 400 300 
12 0 100 
13 400 100 
14 800 100 
15 1200 100 
16 100 900 
17 0 800 
18 200 700 
19 400 800 
20 0 600 
21 200 300 
22 400 625 
23 600 900 
24 550 500 
25 800 725 
26 1050 900 
27 1025 500 
28 1200 800 
29 0 200 
30 100 100 
31 400 225 
32 500 100 
33 800 275 
34 1000 100 
35 1200 300 
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Zone.dat 
 
7 (total number of zones) 
1 100 800 4        (Zone_ID       X_Coordinate     Y_Coordinate     total number of distribution nodes) 
2 300 600 4 
3 600 650 5 
4 1050 800 4 
5 100 200 4 
6 500 250 4 
7 1000 300 4 
 
 

Small Network & Fixed Transit Demand: 
 
Transit Demand Matrix: 
 

Demand.dat: 
 
7 
0 1 2 3 4 5 6 7 
1 0 400 200 600 800 500 800 
2 400 0 1200 200 400 600 200 
3 200 1200 0 600 1000 400 1000 
4 600 200 600 0 400 800 500 
5 800 400 1000 400 0 400 600 
6 500 600 400 800 400 0 200 
7 800 200 1000 500 600 200 0 

 

 

Small Network & Variable Transit Demand: 
 
Total Demand Matrix: 
 

Demand.dat: 
 
7 
0     1        2        3        4        5        6        7     
1     0        2136     1108     9488     10333    4991     13350     
2    2136     0        5424     2919     3257     3539     3060     
3    1108     5424     0        4600     9379     2190     8079     
4     9488     2919     4600     0        8829     7732     4486     
5    10333    3257     9379     8829    0        2751     10362     
6     4991     3539     2190     7732     2751     0        1467     
7     13350    3060     8079     4486     10362    1467     0    
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Medium Network: 

 
Network.dat: 
 
14 72 180 
1 2 3 4 5 6 7 8 9 10 11 12
 13 14 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 
25 0 
26 0 
27 0 
28 0 
29 0 
30 1 1  
31 1 2  
32 1 3  
33 1 4  
34 1 1  
35 2 1 2 
36 1 2  
37 1 3  
38 2 3 4 
39 1 4  
40 2 1 5 
41 2 2 6 
42 2 3 7 
43 2 4 8 
44 1 5  
45 2 5 6 
46 1 6  
47 1 7  
48 2 7 8 
49 1 8  
50 1 6  
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51 1 9  
52 1 7  
53 2 8 10 
54 1 9  
55 1 9  
56 1 10  
57 1 10  
58 2 5 11 
59 1 12  
60 1 9  
61 1 13  
62 2 10 14 
63 1 11  
64 2 11 12 
65 1 12  
66 1 13  
67 2 13 14 
68 1 14  
69 1 11  
70 1 12  
71 1 13  
72 1 14  
1 1 30 
2 1 34 
3 2 30 
4 2 31 
5 2 35 
6 3 31 
7 3 36 
8 3 4 
9 4 3 
10 4 37 
11 4 32 
12 5 32 
13 5 38 
14 5 33 
15 6 33 
16 6 39 
17 7 34 
18 7 40 
19 7 44 
20 8 35 
21 8 40 
22 8 45 
23 8 41 
24 9 41 
25 9 36 
26 9 46 
27 9 10 
28 10 9 
29 10 37 
30 10 42 
31 10 47 
32 11 38 
33 11 42 
34 11 43 
35 11 48 
36 12 39 
37 12 43 
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38 12 49 
39 13 45 
40 13 50 
41 13 19 
42 14 46 
43 14 50 
44 14 51 
45 14 54 
46 15 47 
47 15 51 
48 15 55 
49 15 52 
50 16 48 
51 16 52 
52 16 53 
53 16 56 
54 17 49 
55 17 53 
56 17 57 
57 18 44 
58 18 58 
59 18 63 
60 19 13 
61 19 58 
62 19 59 
63 19 64 
64 20 54 
65 20 59 
66 20 60 
67 20 65 
68 21 55 
69 21 60 
70 21 61 
71 21 66 
72 22 56 
73 22 61 
74 22 62 
75 22 67 
76 23 57 
77 23 62 
78 23 68 
79 24 63 
80 24 69 
81 25 64 
82 25 69 
83 25 70 
84 26 65 
85 26 70 
86 26 27 
87 27 66 
88 27 26 
89 27 71 
90 28 67 
91 28 71 
92 28 72 
93 29 68 
94 29 72 
95 30 1 
96 30 2 
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97 31 2 
98 31 3 
99 32 4 
100 32 5 
101 33 5 
102 33 6 
103 34 1 
104 34 7 
105 35 2 
106 35 8 
107 36 3 
108 36 9 
109 37 4 
110 37 10 
111 38 5 
112 38 11 
113 39 6 
114 39 12 
115 40 7 
116 40 8 
117 41 8 
118 41 9 
119 42 10 
120 42 11 
121 43 11 
122 43 12 
123 44 7 
124 44 18 
125 45 8 
126 45 13 
127 46 9 
128 46 14 
129 47 10 
130 47 15 
131 48 11 
132 48 16 
133 49 12 
134 49 17 
135 50 13 
136 50 14 
137 51 14 
138 51 15 
139 52 15 
140 52 16 
141 53 16 
142 53 17 
143 54 14 
144 54 20 
145 55 15 
146 55 21 
147 56 16 
148 56 22 
149 57 17 
150 57 23 
151 58 18 
152 58 19 
153 59 19 
154 59 20 
155 60 20 
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156 60 21 
157 61 21 
158 61 22 
159 62 22 
160 62 23 
161 63 18 
162 63 24 
163 64 19 
164 64 25 
165 65 20 
166 65 26 
167 66 21 
168 66 27 
169 67 22 
170 67 28 
171 68 23 
172 68 29 
173 69 24 
174 69 25 
175 70 25 
176 70 26 
177 71 27 
178 71 28 
179 72 28 
180 72 29 
 

XY.dat 
1 0 1700 
2 400 1700 
3 800 1700 
4 1200 1700 
5 1600 1700 
6 2000 1700 
7 0 1300 
8 400 1300 
9 800 1300 
10 1200 1300 
11 1600 1300 
12 2000 1300 
13 400 900 
14 800 900 
15 1200 900 
16 1600 900 
17 2000 900 
18 0 500 
19 400 500 
20 800 500 
21 1200 500 
22 1600 500 
23 2000 500 
24 0 100 
25 400 100 
26 800 100 
27 1200 100 
28 1600 100 
29 2000 100 
30 150 1700 
31 650 1700 
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32 1450 1700 
33 1925 1700 
34 0 1550 
35 400 1500 
36 800 1450 
37 1200 1550 
38 1600 1500 
39 2000 1450 
40 150 1300 
41 700 1300 
42 1400 1300 
43 1838 1300 
44 0 950 
45 400 1050 
46 800 1150 
47 1200 1050 
48 1600 1100 
49 2000 1150 
50 750 900 
51 1050 900 
52 1350 900 
53 1800 900 
54 800 750 
55 1200 750 
56 1600 750 
57 2000 750 
58 150 500 
59 650 500 
60 1050 500 
61 1350 500 
62 1850 500 
63 0 350 
64 400 300 
65 800 250 
66 1200 350 
67 1600 350 
68 2000 350 
69 150 100 
70 650 100 
71 1350 100 
72 1850 100 
 

Zone.dat 
14 
1 150 1550 4 
2 650 1450 4 
3 1450 1550 4 
4 1925 1450 4 
5 150 950 4 
6 750 1150 4 
7 1350 1050 4 
8 1750 1150 4 
9 1050 750 4 
10 1850 750 4 
11 150 350 4 
12 650 250 4 
13 1350 350 4 
14 1850 350 4 
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Large Network: 
 

Network.dat: 
 
28 160 418 
1 2 3 4 5 6 7 8 9 10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24 
25 26 27 28 
1 0  
2 0  
3 0  
4 0  
5 0  
6 0  
7 0  
8 0  
9 0  
10 0  
11 0  
12 0  
13 0  
14 0  
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 
25 0 
26 0 
27 0 
28 0 
29 0 
30 0 
31 0 
32 0 
33 0 
34 0 
35 0 
36 0 
37 0 
38 0 
39 0 
40 0 
41 0 
42 0 
43 0 
44 0 
45 0 
46 0 
47 0 
48 0 
49 0 
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50 0 
51 0 
52 0 
53 0 
54 0 
55 0 
56 0 
57 0 
58 0 
59 0 
60 0 
61 0 
62 0 
63 0  
64 0  
65 0  
66 1 1 
67 1 2 
68 1 3 
69 1 4 
70 1 5 
71 1 6 
72 1 1 
73 2 1 
74 2 2 
75 1 3 
76 1 4 
77 2 4 
78 2 5 
79 1 1 
80 2 2 
81 2 3 
82 2 4 
83 1 5 
84 1 6 
85 1 7 
86 1 7 
87 1 8 
88 1 8 
89 1 9 
90 1 9 
91 1 6 
92 1 13 
93 2 7 
94 1 8 
95 1 11 
96 1 9 
97 2 6 
98 1 10 
99 1 10 
100 1 14 
101 1 11 
102 1 11 
103 1 12 
104 1 12 
105 1 10 
106 2 11 
107 1 15 
108 1 12 
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109 1 13 
110 1 13 
111 1 14 
112 2 14 
113 1 15 
114 1 15 
115 2 13 
116 1 17 
117 1 14 
118 2 15 
119 1 20 
120 1 16 
121 1 16 
122 1 17 
123 1 17 
124 1 18 
125 1 18 
126 1 19 
127 2 19 
128 1 20 
129 1 16 
130 1 21 
131 1 17 
132 1 22 
133 1 18 
134 1 23 
135 1 19 
136 2 20 
137 1 21 
138 1 21 
139 1 22 
140 1 22 
141 1 23 
142 1 23 
143 1 24 
144 1 25 
145 1 21 
146 2 22 
147 1 27 
148 1 23 
149 1 28 
150 1 24 
151 1 25 
152 1 25 
153 1 26 
154 2 26 
155 1 27 
156 1 28 
157 2 24 
158 1 26 
159 1 27 
160 1 28 
1 1 66 
2 1 72 
3 2 66 
4 2 67 
5 2 73 
6 3 67 
7 3 68 
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8 3 74 
9 4 5 
10 4 68 
11 4 75 
12 5 4 
13 5 69 
14 5 76 
15 6 69 
16 6 70 
17 6 77 
18 7 70 
19 7 71 
20 7 78 
21 8 71 
22 8 84 
23 9 17 
24 9 72 
25 9 79 
26 10 73 
27 10 79 
28 10 80 
29 10 85 
30 11 12 
31 11 74 
32 11 80 
33 11 86 
34 12 11 
35 12 81 
36 12 87 
37 13 14 
38 13 75 
39 13 81 
40 13 88 
41 14 13 
42 14 76 
43 14 82 
44 14 89 
45 15 77 
46 15 82 
47 15 83 
48 15 90 
49 16 78 
50 16 83 
51 16 91 
52 17 9 
53 17 92 
54 17 109 
55 18 85 
56 18 92 
57 18 93 
58 18 98 
59 19 20 
60 19 86 
61 19 93 
62 19 99 
63 20 19 
64 20 28 
65 20 87 
66 20 94 
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67 21 88 
68 21 94 
69 21 95 
70 21 100 
71 21 101 
72 22 89 
73 22 95 
74 22 96 
75 22 102 
76 23 24 
77 23 31 
78 23 90 
79 23 96 
80 24 23 
81 24 91 
82 24 97 
83 24 103 
84 25 84 
85 25 97 
86 25 104 
87 26 98 
88 26 105 
89 26 110 
90 27 28 
91 27 36 
92 27 99 
93 27 105 
94 28 20 
95 28 27 
96 28 100 
97 28 111 
98 29 101 
99 29 106 
100 29 112 
101 30 31 
102 30 39 
103 30 102 
104 30 106 
105 31 23 
106 31 30 
107 31 32 
108 31 113 
109 32 103 
110 32 107 
111 32 108 
112 32 114 
113 33 42 
114 33 104 
115 33 108 
116 34 109 
117 34 115 
118 34 120 
119 35 36 
120 35 110 
121 35 115 
122 35 121 
123 36 27 
124 36 35 
125 36 116 
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126 36 122 
127 37 111 
128 37 116 
129 37 117 
130 37 123 
131 38 112 
132 38 117 
133 38 124 
134 39 30 
135 39 40 
136 39 125 
137 40 39 
138 40 113 
139 40 118 
140 40 126 
141 41 114 
142 41 118 
143 41 119 
144 41 127 
145 42 33 
146 42 119 
147 42 128 
148 43 52 
149 43 120 
150 43 129 
151 44 121 
152 44 129 
153 44 130 
154 44 137 
155 45 122 
156 45 130 
157 45 131 
158 45 138 
159 46 123 
160 46 131 
161 46 132 
162 46 139 
163 47 124 
164 47 132 
165 47 133 
166 47 140 
167 48 125 
168 48 133 
169 48 134 
170 48 141 
171 49 126 
172 49 134 
173 49 135 
174 49 142 
175 50 127 
176 50 135 
177 50 136 
178 50 143 
179 51 128 
180 51 136 
181 51 150 
182 52 43 
183 52 144 
184 52 151 
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185 53 137 
186 53 144 
187 53 145 
188 53 152 
189 54 55 
190 54 138 
191 54 145 
192 54 153 
193 55 54 
194 55 139 
195 55 146 
196 56 140 
197 56 146 
198 56 147 
199 56 154 
200 57 141 
201 57 147 
202 57 148 
203 57 155 
204 58 142 
205 58 148 
206 58 149 
207 58 156 
208 59 143 
209 59 149 
210 59 157 
211 60 61 
212 60 151 
213 60 152 
214 61 60 
215 61 153 
216 61 158 
217 62 154 
218 62 158 
219 62 159 
220 63 64 
221 63 155 
222 63 159 
223 64 63 
224 64 156 
225 64 160 
226 65 157 
227 65 160 
228 65 150 
229 66 1 
230 66 2 
231 67 2 
232 67 3 
233 68 3 
234 68 4 
235 69 5 
236 69 6 
237 70 6 
238 70 7 
239 71 7 
240 71 8 
241 72 1 
242 72 9 
243 73 2 
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244 73 10 
245 74 3 
246 74 11 
247 75 4 
248 75 13 
249 76 5 
250 76 14 
251 77 6 
252 77 15 
253 78 7 
254 78 16 
255 79 9 
256 79 10 
257 80 10 
258 80 11 
259 81 12 
260 81 13 
261 82 14 
262 82 15 
263 83 15 
264 83 16 
265 84 8 
266 84 25 
267 85 10 
268 85 18 
269 86 11 
270 86 19 
271 87 12 
272 87 20 
273 88 13 
274 88 21 
275 89 14 
276 89 22 
277 90 15 
278 90 23 
279 91 16 
280 91 24 
281 92 17 
282 92 18 
283 93 18 
284 93 19 
285 94 20 
286 94 21 
287 95 21 
288 95 22 
289 96 22 
290 96 23 
291 97 24 
292 97 25 
293 98 18 
294 98 26 
295 99 19 
296 99 27 
297 100 21 
298 100 28 
299 101 21 
300 101 29 
301 102 22 
302 102 30 



 

 229

303 103 24 
304 103 32 
305 104 25 
306 104 33 
307 105 26 
308 105 27 
309 106 29 
310 106 30 
311 107 31 
312 107 32 
313 108 32 
314 108 33 
315 109 17 
316 109 34 
317 110 26 
318 110 35 
319 111 28 
320 111 37 
321 112 29 
322 112 38 
323 113 31 
324 113 40 
325 114 32 
326 114 41 
327 115 34 
328 115 35 
329 116 36 
330 116 37 
331 117 37 
332 117 38 
333 118 40 
334 118 41 
335 119 41 
336 119 42 
337 120 34 
338 120 43 
339 121 35 
340 121 44 
341 122 36 
342 122 45 
343 123 37 
344 123 46 
345 124 38 
346 124 47 
347 125 39 
348 125 48 
349 126 40 
350 126 49 
351 127 41 
352 127 50 
353 128 42 
354 128 51 
355 129 43 
356 129 44 
357 130 44 
358 130 45 
359 131 45 
360 131 46 
361 132 46 
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362 132 47 
363 133 47 
364 133 48 
365 134 48 
366 134 49 
367 135 49 
368 135 50 
369 136 50 
370 136 51 
371 137 44 
372 137 53 
373 138 45 
374 138 54 
375 139 46 
376 139 55 
377 140 47 
378 140 56 
379 141 48 
380 141 57 
381 142 49 
382 142 58 
383 143 50 
384 143 59 
385 144 52 
386 144 53 
387 145 53 
388 145 54 
389 146 55 
390 146 56 
391 147 56 
392 147 57 
393 148 57 
394 148 58 
395 149 58 
396 149 59 
397 150 51 
398 150 65 
399 151 52 
400 151 60 
401 152 53 
402 152 60 
403 153 54 
404 153 61 
405 154 56 
406 154 62 
407 155 57 
408 155 63 
409 156 58 
410 156 64 
411 157 59 
412 157 65 
413 158 61 
414 158 62 
415 159 62 
416 159 63 
417 160 64 
418 160 65 
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XY.dat 
 
1 0 2900 
2 400 2900 
3 800 2900 
4 1600 2900 
5 2000 2900 
6 2400 2900 
7 2800 2900 
8 3200 2900 
9 0 2500 
10 400 2500 
11 800 2500 
12 1200 2500 
13 1600 2500 
14 2000 2500 
15 2400 2500 
16 2800 2500 
17 0 2100 
18 400 2100 
19 800 2100 
20 1200 2100 
21 1600 2100 
22 2000 2100 
23 2400 2100 
24 2800 2100 
25 3200 2100 
26 400 1700 
27 800 1700 
28 1200 1700 
29 1600 1700 
30 2000 1700 
31 2400 1700 
32 2800 1700 
33 3200 1700 
34 0 1300 
35 400 1300 
36 800 1300 
37 1200 1300 
38 1600 1300 
39 2000 1300 
40 2400 1300 
41 2800 1300 
42 3200 1300 
43 0 900 
44 400 900 
45 800 900 
46 1200 900 
47 1600 900 
48 2000 900 
49 2400 900 
50 2800 900 
51 3200 900 
52 0 500 
53 400 500 
54 800 500 
55 1200 500 
56 1600 500 
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57 2000 500 
58 2400 500 
59 2800 500 
60 400 100 
61 800 100 
62 1600 100 
63 2000 100 
64 2400 100 
65 2800 100 
66 160 2900 
67 640 2900 
68 1360 2900 
69 2160 2900 
70 2680 2900 
71 3120 2900 
72 0 2700 
73 400 2700 
74 800 2700 
75 1600 2700 
76 2000 2650 
77 2400 2700 
78 2800 2750 
79 160 2500 
80 600 2500 
81 1360 2500 
82 2240 2500 
83 2680 2500 
84 3200 2460 
85 400 2300 
86 800 2300 
87 1200 2300 
88 1600 2300 
89 2000 2300 
90 2400 2300 
91 2800 2460 
92 160 2100 
93 600 2100 
94 1440 2100 
95 1840 2100 
96 2320 2100 
97 3080 2100 
98 400 1900 
99 800 1900 
100 1440 2000 
101 1600 1900 
102 2000 1900 
103 2800 1900 
104 3200 1900 
105 640 1700 
106 1840 1700 
107 2640 1700 
108 3120 1700 
109 0 1620 
110 400 1620 
111 1200 1620 
112 1600 1620 
113 2400 1500 
114 2800 1500 
115 200 1300 
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116 960 1300 
117 1440 1300 
118 2600 1300 
119 3040 1300 
120 0 1100 
121 400 1100 
122 800 1100 
123 1200 1100 
124 1600 1220 
125 2000 1220 
126 2400 1100 
127 2800 1100 
128 3200 1100 
129 240 900 
130 640 900 
131 960 900 
132 1440 900 
133 1840 900 
134 2160 900 
135 2560 900 
136 3000 900 
137 400 700 
138 800 700 
139 1200 700 
140 1600 700 
141 2000 700 
142 2400 700 
143 2800 700 
144 280 500 
145 640 500 
146 1400 500 
147 1840 500 
148 2160 500 
149 2560 500 
150 3040 580 
151 220 300 
152 400 350 
153 800 300 
154 1600 350 
155 2000 400 
156 2400 300 
157 2800 300 
158 1360 100 
159 1840 100 
160 2560 100 
 
 

Zone.dat 
 
28    
1 160 2700 4 
2 640 2700 4 
3 1360 2700 4 
4 2160 2650 4 
5 2680 2750 4 
6 3040 2460 5 
7 560 2300 4 
8 1440 2300 4 
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9 2320 2300 4 
10 640 1900 4 
11 1840 1900 4 
12 3120 1900 4 
13 160 1620 4 
14 1440 1620 4 
15 2640 1500 4 
16 240 1100 4 
17 960 1100 4 
18 1840 1220 5 
19 2560 1100 4 
20 3040 1100 4 
21 640 700 4 
22 1440 700 4 
23 2160 700 4 
24 2960 700 4 
25 280 350 3 
26 1360 300 4 
27 1840 400 4 
28 2560 300 4 
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