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Optimal Transmission of Progressive Sources Based

on the Error Probability Analysis of SM and OSTBC
Seok-Ho Chang, Member, IEEE, Pamela C. Cosman, Fellow, IEEE, and Laurence B. Milstein, Fellow, IEEE

Abstract—This paper studies the optimal design of multimedia
progressive communication systems that are combined with low-
complex open-loop multiple-input multiple-output techniques.
First, we analyze the behavior of the crossover point of the
error probability curves for orthogonal space-time block codes
(OSTBC) and spatial multiplexing (SM) with a zero-forcing linear
receiver. We mathematically prove that, in the high signal-to-noise
ratio (SNR) regime, for both the information outage probabil-
ity and the uncoded bit error rate, as data rate increases, the
crossover point for the error probability monotonically decreases,
and the crossover point for the SNR monotonically increases. We
prove that this holds, regardless of the numbers of transmit and
receive antennas and the spatial multiplexing rate of OSTBC. We
next show how those results can be exploited for the optimal trans-
mission of progressive sources, such as embedded image, which
require unequal target error rates in their bitstream. That is, the
computational complexity involved with the optimal space-time
coding of progressive bitstream can be decreased.

Index Terms—Bit error rate (BER), information outage prob-
ability, multimedia progressive sources, multiple-input multiple-
output (MIMO) systems, orthogonal space-time block codes
(OSTBC), spatial multiplexing (SM), zero-forcing linear receiver.

I. INTRODUCTION

THE growing demand for multimedia services has invoked

intense research on cross-layer design [1], which is par-

ticularly important for transmission over mobile radio chan-

nels. Multimedia progressive sources such as embedded image

or scalable video [2]–[4], which are expected to have more

prominence in the future, employ a mode of transmission such

that as more bits are received, the source can be reconstructed

with better quality at the receiver. However, these advances in

source codecs have also rendered the encoded bitstreams very

sensitive to channel impairments, which can be severe in mobile

channels.

Multiple-input multiple-output (MIMO) channels are able

to provide huge gains in terms of reliability and transmission
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rate. Spatial diversity schemes, such as orthogonal space-time

block codes (OSTBC) [5], [6], can combat channel fading and

increase link reliability. The OSTBC is an important subclass

of linear STBC, in the sense that it has an extremely simple and

optimal linear receiver, and it achieves the full diversity. Spatial

multiplexing (SM) [7], [8] transmits independent data sub-

streams on each transmit antenna and increases the transmission

data rate. Since SM does not decouple the data substreams at

the receiver, the complexity of the optimal maximum-likelihood

decoding is quite high. As a result, it is of practical interest to

look for suboptimal linear receivers.

In this paper, we study the optimal design of such a low-

complex MIMO system for the transmission of multime-

dia progressive sources. We first compare OSTBC and SM

from the viewpoint of their error probabilities. Note that

the diversity–multiplexing tradeoff (DMT) [9] has become a

standard tool in the characterization of the performance of

space-time codes, in slowly varying fading channels at high

signal-to-noise ratio (SNR) and the large spectral efficiency

regime. On the other hand, our approach focuses on how the

crossover point of the error probability curves for the space-

time codes behaves in the high SNR regime. In some liter-

ature, the crossover point of the ergodic capacity curves is

investigated: The work in [10] compares ergodic capacities of

beamforming, double space-time transmit diversity, and SM

with a zero-forcing (ZF) receiver, and shows that spatial cor-

relation has an effect on the location of the crossover point. In a

similar way, the work in [11] compares ergodic capacities of

OSTBC and SM with a ZF receiver. On the other hand, we

compare error probabilities, such as information outage prob-

ability and uncoded bit error rate (BER), of OSTBC and SM

for arbitrary numbers of antennas. Note that some results for

the uncoded BER with two transmit antennas were presented in

[12] by the authors of this paper.

We mathematically prove the monotonic behavior of the

crossover points as a function of the transmission data rate. That

is, we show that as the data rate increases, the crossover point in

error probability monotonically decreases, whereas that in the

SNR monotonically increases; these results are strictly proven

for arbitrary numbers of transmit and receive antennas, and the

spatial multiplexing rate of OSTBC. Regarding the SM, our

analysis is focused on a ZF linear receiver, in part since the joint

probability distribution of the post-processing SNRs for that

receiver is properly characterized such that error probability

can be obtained in a closed form. Note that novel wireless

communication systems are targeting very large spectral effi-

ciencies because of hot spots and pico-cell arrangements [13].

For such systems employing high data rates, because of power
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consumption, the use of low-complexity linear receivers may be

mandatory.

Transmission of images or video over MIMO systems has

been studied by some researchers. For example, in [14], the au-

thors took advantage of spatial multiplexing to transmit scalable

video streams, and the work in [15] studied progressive video

transmission via spatial diversity schemes. Instead of those

extreme designs (i.e., full spatial multiplexing or full spatial

diversity), in [16]–[19], the tradeoff between spatial multiplex-

ing and diversity was studied to minimize the distortion of

the source. Specifically, in [17]–[19], the optimal point on the

diversity–multiplexing tradeoff region for MIMO channels was

investigated with information-theoretic approaches, based on

the work in [9]. In [16], layered source coding in the MIMO

system is considered. On the other hand, in this paper, we

exploit our analysis of the crossover point for the optimal space-

time coding of multimedia progressive sources. The progressive

sources have the key feature that they have steadily decreasing

importance for bits later in the stream, which makes unequal

target error rates very useful. Our analysis for the crossover

point is used to optimally assign OSTBC or SM techniques to

each portion of the progressive bitstream to be transmitted over

Rayleigh fading channels.

II. SYSTEM MODEL

Consider a MIMO system with Nt transmit and Nr receive

antennas communicating through a frequency flat-fading chan-

nel. A space-time codeword S = [s1 s2 · · · sT ] of size Nt × T is

transmitted over T symbol durations via Nt transmit antennas.

At the kth time symbol duration, the transmitted and received

signals are related by

yk = Hsk + nk, k = 1, . . . , T (1)

where yk is the Nr × 1 received signal vector, H is the Nr ×
Nt channel matrix, and nk is a Nr × 1 zero-mean complex

AWGN vector with E [nkn
H
l ] = σ2

nINr
δ(k − l), where (·)H

denotes Hermitian operation. We assume that the entries of H

are independent identically distributed (i.i.d.) ∼ CN (0, 1) and

that H is random but constant over the duration T of a code-

word (quasi-static Rayleigh i.i.d. fading). Let γs denote SNR

per symbol. We define γs := E [|(sk)i|2]/σ2
n, where (sk)i is the

ith component of the transmit signal vector sk (i = 1, . . . , Nt).
Let Ns denote the number of symbols packed within a space-

time codeword S. The spatial multiplexing rate is defined as

Ns/T . We assume no channel state information (CSI) at the

transmitter and perfect CSI at the receiver.

III. ANALYSIS FOR THE BEHAVIOR OF THE CROSSOVER

POINTS OF THE ERROR PROBABILITY CURVES

A. Average Uncoded BER

We first express the BER of the OSTBC for an M -ary

square quadratic-amplitude modulation (QAM) constellation.

A closed-form expression for the BER of such a constellation

for single-input single-output (SISO) systems in an AWGN

channel is given by [20, eq. (14)]. For OSTBC, the same

constellation symbol, (sk)i, is transmitted Nt times during T
symbol durations; thus, for an M -ary QAM, the SNR per bit,

γb, is given by γb = Nt × γs/ log2 M . The instantaneous post-

processing SNR per symbol is given by γs ‖H‖2F , where ‖ · ‖F
denotes the Frobenius norm. From these, it can be readily

shown that the exact BER of the OSTBC for an M -ary square

QAM is expressed as (2), shown at the bottom of the page,

where

µ(i) =

√

3(2i+ 1)2(log2 M)γb
2Nt(M − 1) + 3(2i+ 1)2(log2 M)γb

.

We next present the BER of the SM scheme. For a ZF receiver,

the instantaneous post-processing SNR on each substream is

known to be a chi-square random variable [21], [22]; thus, the

exact BER expression is achievable. The SNR per bit is given

by γb = γs/ log2 M . The exact BER of SM with a ZF receiver

for an M -ary square QAM, which is denoted by Pb,SM−ZF, is

given in [23, eq. (3.12)].

In the following, we will find the crossover point of the

BER curves of OSTBC and SM with a ZF receiver. The BER

expressions given by (2) and [23, eq. (3.12)] are polynomials

in γb with degrees greater than four, even for the simplest

case of a 2 × 2 channel matrix. For these equations, there

exists no closed-form solution for the crossover point. Thus,

we will explore the asymptotic regime of high SNR to analyze

the peculiar behavior of the crossover point. For high SNR,

the BER is dominated by the error function term having the

minimum Euclidian distance. If we discard the terms having

non-minimum Euclidian distances and use
√

x/(1 + x) ≈ 1 −
1/(2x) for x ≫ 1, we have

Pb,OSTBC ≈ P app
b,OSTBC =

(

2NtNr − 1

NtNr

)

× 4(
√
M − 1)√

M log2 M

(

Nt(M − 1)

6 log2 M

)NtNr
(

1

γb

)NtNr

. (3)

Pb,OSTBC =
4√

M log2 M

log2

√
M

∑

k=1

(1−2−k)
√
M−1

∑

i=0

[

(−1)

⌊

i·2k−1
√

M

⌋

(

2k−1 −
⌊

i · 2k−1

√
M

+
1

2

⌋)(

1 − µ(i)

2

)NtNr

×
NtNr−1
∑

j=0

{

(

NtNr − 1 + j

j

)(

1 + µ(i)

2

)j
}

⎤

⎦ (2)
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In the same way, it can be shown that Pb,SM−ZF can be

approximated as

Pb,SM−ZF ≈ P app
b,SM−ZF =

(

2(Nr −Nt) + 1

Nr −Nt + 1

)

× 4(
√
M − 1)√

M log2 M

(

M − 1

6 log2 M

)Nr−Nt+1 (
1

γb

)Nr−Nt+1

. (4)

We compare the BERs of OSTBC and SM under the condition

that the transmission data rates of both are set to be equal. To

do this, we employ m-ary QAM for the SM, and mNt/rs-ary

QAM for the OSTBC, where rs denotes the spatial multiplex-

ing rate of the OSTBC. Note that, for Nt = 2, the Alamouti

scheme achieves rate rs = 1, whereas rs = 3/4 is the maximum

achievable rate for Nt = 3 or 4 in the complex OSTBC [24].

We assume that m ≥ 4 (i.e., QPSK) and Nr ≥ Nt ≥ 2. If we

let M = mNt/rs in (3) and let M = m in (4), we have

P app
b,OSTBC =

(

2NtNr − 1

NtNr

)

4rs(m
Nt/2rs − 1)

mNt/2rsNt log2 m

×
(

rs(m
Nt/rs − 1)

6 log2 M

)NtNr (

1

γb

)NtNr

. (5)

P app
b,SM−ZF =

(

2(Nr −Nt) + 1

Nr −Nt + 1

)

4(
√
m− 1)√

m log2 m

×
(

m− 1

6 log2 m

)Nr−Nt+1 (
1

γb

)Nr−Nt+1

. (6)

We find the SNR, γ∗
b , for which (5) and (6) are the same. It can

be shown that γ∗
b is given by

γ∗
b =

(
(

2NtNr−1
NtNr

)

rNtNr+1
s

√
m

(

2(Nr−Nt)+1
Nr−Nt+1

)

6(Nr+1)(Nt−1)Nt(
√
m−1)mNt/2rs

× (mNt/2rs − 1)(mNt/rs−1)NtNr

(log2 m)(Nr+1)(Nt−1)(m−1)Nr−Nt+1

)

1
(Nr+1)(Nt−1)

. (7)

We will prove that γ∗
b is a strictly increasing function in m,

under the condition that m ≥ 4, Nr ≥ Nt ≥ 2, and 0 < rs ≤ 1.

We define function f(m) as

f(m) =

√
m(mNt/rs − 1)

(
√
m− 1)(m− 1)

· m
Nt/2rs − 1

mNt/2rs

×
(

mNt/rs − 1

m− 1

)NtNr−1 (
m− 1

log2 m

)(Nr+1)(Nt−1)

. (8)

Let g(m) =
√
m(mNt/rs − 1)/((

√
m− 1)(m− 1)) be the

first factor of f(m). Then, for m ≥ 4, Nt ≥ 2, and 0 < rs ≤ 1,

we have

dg(m)

dm
=

((

Nt

rs
−1

)

mNt/rs+1−
(

Nt

rs
− 1

2

)

mNt/rs
√
m

− Nt

rs
mNt/rs+

(

Nt

rs
+

1

2

)

mNt/rs

√
m

+ m−
√
m

2
− 1

2
√
m

)/

(

(
√
m−1)(m−1)

)2
>0 (9)

where the inequality is derived from the following:

Let h(m) = p(m) ·mNt/rs/2
√
m be the first four terms of

the numerator of dg(m)/dm, where

p(m) = 2

(

Nt

rs
− 1

)

m
√
m−

(

2Nt

rs
− 1

)

m

− 2Nt

rs

√
m+

2Nt

rs
+ 1. (10)

Then, dp(m)/dm can be expressed as

dp(m)

dm
=

1√
m

[((

Nt

rs
− 1

)√
m− Nt

rs

)

× (3
√
m+ 1) + 2

√
m

]

. (11)

Since m ≥ 4, Nt ≥ 2, and rs ≤ 1, we have
(

Nt

rs
− 1

)√
m− Nt

rs
≥ Nt

rs
− 2 ≥ 0. (12)

From (11) and (12), it follows that dp(m)/dm > 0. We also

have p(4) = −11 + 6Nt/rs > 0. Hence, for m ≥ 4, we have

p(m) > 0, which yields h(m) > 0. In addition, let q(m) =
m−√

m/2 − 1/2
√
m be the last three terms of the numer-

ator of dg(m)/dm. Since m ≥ 4, we have dq(m)/dm =
(m(4

√
m− 1) + 1)/4m

√
m > 0. Further, q(4) = 11/4 > 0.

Thus, q(m) > 0 for m ≥ 4. We showed that h(m) > 0 and

q(m) > 0; thus, (9) holds.

Through some more steps, it can be shown that f(m) is

a strictly increasing function in m, under the condition that

m ≥ 4, Nr ≥ Nt ≥ 2, and 0 < rs ≤ 1. From (7) and (8), it is

seen that as alphabet size, m, increases, γ∗
b strictly increases,

regardless of the numbers of transmit and receive antennas, and

the spatial multiplexing rate of the OSTBC. If we substitute γ∗
b ,

which is given by (7), into (5), the corresponding BER, P ∗
b , is

given by

P ∗
b =

4rNtNr+1
s

Nt

(

2NtNr − 1

NtNr

)

×
(

Nt

(

2(Nr−Nt)+1
Nr−Nt+1

)

rNtNr+1
s

(

2NtNr−1
NtNr

)

)

NtNr
(Nr+1)(Nt−1)

×
(

(
√
m− 1)mNt/2rs

√
m(mNt/2rs − 1)

)

NtNr
(Nr+1)(Nt−1)

× mNt/2rs−1

mNt/2rs log2 m

(

m−1

mNt/rs−1

)

NtNr(Nr−Nt+1)

(Nr+1)(Nt−1) . (13)

We will prove that P ∗
b is a strictly decreasing function in m,

under the condition that m ≥ 4, Nr ≥ Nt ≥ 2, and 0 < rs ≤ 1.

We define function r(m) as

r(m) =
mNt/2rs − 1

mNt/2rs log2 m

( √
m− 1

mNt/2rs − 1
· mNt/2rs

√
m(mNt/2rs + 1)

× m− 1

mNt/2rs − 1

)

NtNr
(Nr+1)(Nt−1)

×
(

m− 1

mNt/rs − 1

)

NtNr(Nr−Nt)

(Nr+1)(Nt−1)

. (14)
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Let s(m) = (mNt/2rs − 1)/(mNt/2rs log2 m) be the first fac-

tor of r(m). In the following, for m ≥ 4, Nt ≥ 2, and 0 < rs ≤
1, we will show that

ds(m)

dm
=mNt/2rs−1

(−1

ln 2
mNt/2rs +

Nt

2rs
log2 m+

1

ln 2

)

/
(

mNt/2rs log2 m
)2

< 0. (15)

Let u(m) = −mNt/2rs/ ln 2 + (Nt/2rs) log2 m+ 1/ ln 2 be

the second factor of the numerator of ds(m)/dm. Then, we

have

du(m)

dm
=

Nt

(2rs ln 2)m
(−mNt/2rs + 1) < 0 (16)

where the inequality follows from m ≥ 4, Nt ≥ 2, and rs ≤ 1.

For m = 4, we have

u(4) =
1 − 4Nt/2rs

ln 2
+

Nt

rs
. (17)

It will be shown that u(4) < 0. Let v(k) = (1 − 4k)/ ln 2 +
2k, where k = Nt/2rs ≥ 1. Then, dv(k)/dk = 2(1 − 4k) < 0,

and v(1) = −3/ ln 2 + 2 < 0. Thus, v(k) < 0 for k ≥ 1, which

indicates that u(4) < 0. From this and (16), it follows that

u(m) < 0 for m ≥ 4. Hence, (15) holds.

It can also be proven that r(m) is a strictly decreasing

function in m, under the condition that m ≥ 4, Nr ≥ Nt ≥ 2,

and 0 < rs ≤ 1. From (13) and (14), we have the result that

as alphabet size, m, increases, P ∗
b strictly decreases, for an

arbitrary number of transmit and receive antennas, and the

spatial multiplexing rate of OSTBC. Further, from (5) and (6),

it can be shown that

P app
b,OSTBC < P app

b,SM−ZF for γb > γ∗
b

P app
b,OSTBC > P app

b,SM−ZF for γb < γ∗
b . (18)

Let P ∗
b,1 and γ∗

b,1 denote the crossover point when a modulation

alphabet size m = M1 is employed, and P ∗
b,2 and γ∗

b,2 denote

the crossover point when an alphabet size m = M2 is used.

Suppose that M1 < M2. Then, from the given results, we have

γ∗
b,1 < γ∗

b,2 and P ∗
b,1 > P ∗

b,2. (19)

B. Information Outage Probability

The information outage probability of the OSTBC is given

by [25]

Pout,OSTBC = P

[

rs log2

(

1 +
γs
rs

‖H‖2F
)

< R

]

(20)

where R is the transmission data rate (bits/s/Hz). Using the

cumulative density function (CDF) of ‖H‖2F , a chi-square

random variable with 2NtNr degrees of freedom, it can be

shown that

Pout,OSTBC = 1 − exp

(

− rs
γs

(2R/rs − 1)

)

×
NtNr
∑

k=1

1

(k − 1)!

(

rs
γs

(2R/rs − 1)

)k−1

. (21)

For the SM scheme, we consider pure spatial multiplexing

[13], [26], where data are split into several substreams, i.e.,

one for each transmit antenna, and each substream undergoes

independent temporal coding to avoid complex joint decoding

of substreams at the receiver. A horizontally encoded V-BLAST

is a popular example. For this scheme, an outage event occurs

when any of the substreams is in outage (i.e., any of the

subchannels cannot support the data rate assigned to it). Thus,

the information outage probability is given by [13], [27]

Pout,SM−ZF = P

[

Nt
⋃

k=1

{

log2 (1 + γsηk) <
R

Nt

}

]

(22)

where ηk is a chi-square random variable with 2(Nr −Nt + 1)
degrees of freedom (k = 1, . . . , Nt) [21], [22]. Based on the

assumption that the ηk’s are independent for a ZF receiver [28]–

[30], and using the CDF of a chi-square random variable, it can

be shown that

Pout,SM−ZF = 1 −
[

exp

(

− 1

γs
(2R/Nt − 1)

)

×
Nr−Nt+1

∑

k=1

1

(k − 1)!

(

1

γs
(2R/Nt − 1)

)k−1
]Nt

. (23)

Next, we will find the crossover point of the outage probability

curves of OSTBC and SM with a ZF receiver. Since the

expressions given by (21) and (23) are not analytically tractable

to obtain a closed-form solution of the crossover point, we

consider high SNR approximate expressions. Using the Taylor

series expansion, (21) can be rewritten as (24), shown at the

bottom of the next page. For high SNR, if we use only the

dominant terms in the numerator and denominator, then

Pout,OSTBC≈P app
out,OSTBC=

1

(NtNr)!

(

rs
γs

(2R/rs−1)

)NtNr

.

(25)

For the SM scheme, the high SNR approximate expression is

given by [28]

Pout,SM−ZF ≈P app
out,SM−ZF

=
Nt

(Nr −Nt + 1)!

(

1

γs
(2R/Nt − 1)

)Nr−Nt+1

.

(26)

We find the SNR, γ∗
s , for which (25) and (26) are the same. It

can be shown that γ∗
s is given by

γ∗
s=

(

(Nr−Nt+1)!rNtNr
s (2R/rs−1)NtNr

(NtNr)!Nt(2
R/Nt−1)Nr−Nt+1

) 1
(Nr+1)(Nt−1)

.

(27)



98 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

Fig. 1. High SNR approximate outage probabilities of OSTBC and SM with a ZF receiver for the given same transmission data rate. For data rate
R1 < R2, these outage probabilities have the following properties: 1) γ∗

s, 1 < γ∗

s, 2; 2) P ∗

out,1 > P ∗

out, 2; 3) P
app

out, i,OSTBC
< P

app

out, i, SM−ZF
for γs, i >

γ∗

s, i
, and P

app

out, i,OSTBC
> P

app

out,i,SM−ZF
for γs, i < γ∗

s, i
(i = 1, 2). This figure can also be used to qualitatively depict the results, given by (18) and (19),

for the uncoded BER.

We define the function w(R) as

w(R) =
(2R/rs − 1)NtNr

(2R/Nt − 1)Nr−Nt+1

=

(

2R/rs − 1

2R/Nt − 1

)Nr−Nt+1

(2R/rs − 1)(Nt−1)(Nr+1).

(28)

Let y(R) = (2R/rs − 1)/(2R/Nt − 1). Then, for R > 0, Nt ≥
2, and 0 < rs ≤ 1, we have

dy(R)

dR
=

ln 2

rsNt
·

2R/rs
(

(Nt−rs)2
R/Nt−Nt

)

+rs2R/Nt

(2R/Nt−1)2
>0

(29)

where the inequality is derived from the following: Let z(R) =
2R/rs((Nt − rs)2

R/Nt −Nt) + rs2R/Nt be a factor of the nu-

merator of dy(R)/dR. It is clear that z(R) is monotonically

increasing in R. Hence, for R > 0, we have z(R) > z(0) = 0,

which indicates that (29) is valid.

From (27)–(29), it follows that γ∗
s is a strictly increasing

function in R, under the condition that R > 0, Nr ≥ Nt ≥ 2,

and 0 < rs ≤ 1. If we substitute γ∗
s into (25), the corresponding

outage probability, P ∗
out, is given by

P ∗
out=

rNtNr
s

(NtNr)!
(2R/rs−1)NtNr

×
(

(NtNr)!Nt

(Nr−Nt+1)!rNtNr
s

· (2
R/Nt−1)Nr−Nt+1

(2R/rs−1)NtNr

)

NtNr
(Nr+1)(Nt−1)

.

(30)

In a similar way, it can be proven that P ∗
out is a strictly

decreasing function in R, under the condition that R > 0, Nr ≥

Nt ≥ 2, and 0 < rs ≤ 1. Hence, as the transmission data rate

R increases, γ∗
s strictly increases, and P ∗

out strictly decreases,

regardless of the numbers of transmit and receive antennas, and

the spatial multiplexing rate of OSTBC. Further, from (25) and

(26), it can be shown that

P app
out,OSTBC < P app

out,SM−ZF for γs > γ∗
s

P app
out,OSTBC > P app

out,SM−ZF for γs < γ∗
s. (31)

Let P ∗
out,1 and γ∗

s,1 denote the crossover point when a transmis-

sion data rate R = R1 is employed, and P ∗
out,2 and γ∗

s,2 denote

the crossover point when a data rate R = R2 is used. Suppose

that R1 < R2. Then, from the results given, we have

γ∗
s,1 < γ∗

s,2 and P ∗
out,1 > P ∗

out,2. (32)

Based on (31) and (32), the high SNR approximate outage

probabilities of OSTBC and SM with a ZF receiver for the given

same data rate are qualitatively depicted in Fig. 1. Suppose that

the target outage probability Pout, T is smaller than P ∗
out,1 but

greater than P ∗
out,2. Then, from Fig. 1, it is seen that OSTBC is

preferable to SM for a data rate R1, whereas SM is preferable

for a data rate R2. Note that the results for the uncoded BER,

given by (18) and (19), are coincidentally analogous to those

for the information outage probability, which are given by (31)

and (32). Hence, the same argument above can be made for the

uncoded BER.

In [31], it is shown that outage probability and symbol error

rate have a relationship at high SNR such that the two error

probability curves differ only by a constant shift in SNR [31,

Proposition 5], which indicates that the insight obtained from

the outage probability can be applicable to the symbol error

rate. However, the work in [31] considered the power outage

probability given by [31, eq. (17)], which differs from the

information outage probability considered in this paper. Note

that information outage probability is closely related to the

block error rate (BLER) of the system where a near-capacity

Pout,OSTBC =

∑∞
k=1

1
(k−1)!

(

rs
γs
(2R/rs − 1)

)k−1

−∑NtNr

k=1
1

(k−1)!

(

rs
γs
(2R/rs − 1)

)k−1

∑∞
k=1

1
(k−1)!

(

rs
γs
(2R/rs − 1)

)k−1
(24)
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Fig. 2. Progressive source transmission system that is combined with open-loop MIMO techniques. Ri and Ci denote the transmission data rate and the space-
time code assigned to the ith packet, respectively (1 ≤ i ≤ NP ).

achieving code is employed. Further, the results in [31] apply

to spatial diversity schemes but do not apply to SM schemes.

In Appendix A, we present discussion for the comparison

between OSTBC and SM with an MMSE linear receiver.

IV. OPTIMAL SPACE-TIME CODING FOR THE

TRANSMISSION OF PROGRESSIVE SOURCES

The analysis in the previous section can be exploited to opti-

mally design a low-complexity MIMO system for the transmis-

sion of the applications that require unequal target error rates

or transmission data rates in their bitstream. In the following,

we present the transmission of multimedia progressive sources

[2]–[4].

Progressive encoders, which are promising technologies for

multimedia communications, employ progressive transmission

so that encoded data have gradual differences of importance in

their bitstreams. Suppose that the system takes the bitstream

from the progressive source encoder and transforms it into a

sequence of NP packets. Such a system is depicted in Fig. 2.

Each of these NP progressive packets can be encoded with

different transmission data rates as well as different MIMO

techniques when it is transmitted over mobile channels, so

as to yield the best end-to-end performance as measured by

the expected distortion of the source. The error probability of

an earlier packet needs to be lower than or equal to that of

a later packet, due to the gradually decreasing importance in

the progressive bitstream. Thus, given the same transmission

power, the earlier packet requires a transmission data rate that

is lower than or equal to that of the later packet.

Let NR denote the number of candidate transmission data

rates employed by a system. The number of possible assign-

ments of NR data rates to NP packets would exponentially

grow as NP increases. Further, in a MIMO system, if each

packet can be encoded with different space-time codes (e.g.,

OSTBC or SM in this case), the assignment of space-time

codes and data rates to NP packets yields a more complicated

optimization problem, compared with a SISO system. Note that

each source, such as an image, has its inherent rate–distortion

characteristic, from which the performance of the expected

distortion is computed. Hence, for example, when a series

of images is transmitted, the above optimization should be

addressed in a real-time manner, considering which specific

image (i.e., rate–distortion characteristic) is transmitted in the

current time slot. To address this matter, for a SISO system,

there have been some studies about the optimal assignment of

data rates to a sequence of progressive packets [32]–[35].

For a MIMO system, we use the analytical results presented

in the previous section to optimize the assignment of space-

time codes to progressive packets. Recall that, for a progressive

source, the error probability of an earlier packet needs to be

lower than or equal to that of a later packet, and the earlier

packet requires a transmission data rate that is lower than or

equal to that of the later packet. Suppose that the kth packet in a

sequence of NP packets is encoded with SM. Then, our analysis

tells us that the k + 1st, k + 2nd, . . . , NP th packets should also

be encoded with SM rather than with OSTBC. This is because

we have proven that, when SM is preferable for a packet with a

transmission data rate of R1, a packet with a data rate of R2(>
R1) should also be encoded with SM, as long as the target error

rate of the latter is the same as or higher than that of the former

(refer to Fig. 1). As a result, it can be shown that the number

of possible assignments of space-time codes to NP packets can

be reduced by 2NP /(NP + 1) times, which indicates that the

computational complexity involved with the optimization can

be exponentially simplified. Note that a progressive bitstream is

typically transformed into a sequence of numerous packets, in

part because multiple levels of unequal error protection (UEP)

are required for the progressive transmission. As an example,

for the transmission of a 512 × 512 image with a rate of 1 bit



100 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 1, JANUARY 2014

per pixel (bpp), a sequence of 512 packets is considered in [32]

(i.e., NP = 512).

Lastly, we briefly describe the difference between the work in

[16] and ours presented earlier. The authors of [16] considered

layered source coding in the MIMO system; for the transmis-

sion of two unequally important source layers, the authors find

the optimal assignment of the space-time codes with various

multiplexing and diversity gains. That work differs from ours

in that the former assumes the same modulation alphabet size

for the space-time codes to be assigned. Accordingly, a space-

time code with a higher diversity gain (but a lower multiplexing

gain) provides a lower data rate and stronger error protection of

the source. On the other hand, as described in [16], a space-

time code with a higher multiplexing gain offers a higher

data rate but retains weaker error protection ability. For this

reason, in [16], the selection of space-time codes is necessarily

related to the UEP of a layered source. From this, as shown in

[16, Table I], it follows that a space-time code with a lower

multiplexing gain should be used for the more important layer,

whereas a space-time code with a higher multiplexing gain is

used for the less important layer. On the other hand, in this

paper, two space-time codes are compared under the condition

that the transmission data rates of both are set to be equal (i.e.,

the modulation alphabet sizes are set to be different). Recall that

the error probability of the more important layer needs to be

lower than or equal to that of the less important layer, and given

the same transmission power, the more important layer requires

a transmission data rate that is lower than or equal to that of

the less-important layer. In addition, recall that, in our analysis,

two space-time codes are compared with the same transmission

data rate, unlike the work in [16], which assumes the same

modulation alphabet size for the space-time codes. From this, it

follows that, without being related to a specific UEP strategy of

a layered source, in this paper, a space-time code is selected for

each layer (or each progressive packet), according to only the

error probability performance; that is, a space-time code that

exhibits a lower error probability for a given transmission data

rate and a target error rate is selected (refer to Fig. 1).

V. NUMERICAL EVALUATION AND DISCUSSION

First, we numerically evaluate the outage probabilities and

the uncoded BERs of OSTBC and SM with a ZF receiver for

the same data rate. The error probabilities are evaluated in

2 × 4 MIMO systems for various data rates R = 6, 9, and

12 bits/s/Hz. The results are shown in Figs. 3 and 4, where solid

curves denote the exact error probabilities, and dashed curves

show the high SNR approximate error probabilities. The trans-

mission data rate, R, and the size of QAM constellation, m,

described below (4) are related by R = Nt log2 m (bits/s/Hz).

Figs. 3 and 4 show that, for both the outage probabilities and the

BERs, the gap between the approximate crossover point and the

exact one becomes smaller as transmission data rate increases.1

For novel wireless communication systems targeting high data

1As indicated in Section III, this is because, as data rate increases, the
crossover point in the SNR monotonically increases; hence, the high SNR
approximate expressions become more accurate.

Fig. 3. Exact and high SNR approximate outage probabilities of OSTBC and
SM with a ZF receiver for 2 × 4 MIMO systems in i.i.d. Rayleigh fading
channels. Solid curves denote the exact outage probabilities, and dashed curves
do the high SNR approximate outage probabilities. The exact and approximate
crossover points are marked with circles.

Fig. 4. Exact and high SNR approximate uncoded BERs of OSTBC and SM
with a ZF receiver for 2 × 4 MIMO systems in i.i.d. Rayleigh fading channels.
Solid curves denote the exact BERs, and dashed curves do the high SNR
approximate BERs. The exact and approximate crossover points are marked
with circles.

rates, the closed-form expressions of the approximate crossover

points, given by (7), (13), (27), and (30), will become more

accurate.

From Figs. 3 and 4, it is seen that as the data rate increases,

the crossover point for the outage probabilities as well as the

uncoded BERs behaves in a way predicted by the analysis given

by (19) and (32) (refer to Fig. 1). If we focus on an outage

probability of 10−3, in Fig. 3, OSTBC outperforms SM for

the data rate of 6 bits/s/Hz, whereas the latter outperforms the

former for 8 bits/s/Hz. We note that this preference is a function

of transmission data rate and the target outage probability of

an application. For example, if the target is 10−1, the SM

outperforms the OSTBC even for the data rate of 6 bits/s/Hz.
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Fig. 5. Exact outage probabilities of OSTBC and SM with a ZF receiver for
3 × 3 MIMO systems in i.i.d. Rayleigh fading channels and spatially correlated
Rayleigh fading channels with ρt = ρr = 0.7. Solid curves denote the exact
outage probabilities for i.i.d. channels, and dotted curves do the exact outage
probabilities for correlated channels. The crossover points are marked with
circles.

A similar argument can be made for the uncoded BERs shown

in Fig. 4.

In the following, instead of the i.i.d. MIMO Rayleigh fading

channels described in Section II, we consider spatially corre-

lated Rayleigh fading channels. Discussion for the analysis in

the spatially correlated channels is presented in Appendix B.

Here, we numerically investigate the behavior of the crossover

point in those channels. MIMO channels with spatial corre-

lation can be modeled as Hc = R
1/2
r HR

1/2
t [36], where Rt

is an Nt ×Nt transmit spatial correlation matrix, Rr is an

Nr ×Nr receive spatial correlation matrix, (·)1/2 stands for

the Hermitian square root of a matrix, and H is an Nr ×Nt

i.i.d. channel matrix as defined below (1). We use the exponen-

tial correlation model at the transmitter and the receiver with

(Rt)i, j = ρ
|i−j|
t and (Rr)i, j = ρ

|i−j|
r , where (·)i, j denotes the

(i, j)th element of a matrix, and ρt and ρr are the transmit

and receive spatial correlation coefficients between adjacent

antennas, respectively. The exact outage probabilities and BERs

are evaluated, as an example, for 3 × 3 MIMO systems with

various spatial correlation coefficients. The simulation results

for ρt = ρr = 0.7 are shown in Figs. 5 and 6, where solid

curves denote the error probabilities for i.i.d. channels, and dot-

ted curves show the error probabilities for correlated channels.

It is seen that the crossover points in the spatially correlated

channels behave in the same way as do those for the i.i.d.

Rayleigh fading channels.2

In Section IV, we presented the optimal space-time coding

for the transmission of progressive sources. In the following,

we will compare the performances of the optimal space-time

coding and the suboptimal ones for progressive transmission.

We evaluate the performances for 2 × 2 MIMO systems using

the source coder SPIHT [37] as an example, and provide

2For other spatial correlation coefficients, the corresponding crossover points
also exhibit the same behavior; thus, they are not depicted here.

Fig. 6. Exact uncoded BERs of OSTBC and SM with a ZF receiver for
3 × 3 MIMO systems in i.i.d. Rayleigh fading channels and spatially correlated
Rayleigh fading channels with ρt = ρr = 0.7. Solid curves denote the exact
BERs for i.i.d. channels, and dotted curves do the exact BERs for correlated
channels (the two BER curves for R = 6 bits/s/Hz in correlated channels merge
at very low SNR, and is not depicted here). The crossover points are marked
with circles.

results for the standard 8 bpp 512 × 512 Lena image with a

transmission rate of 0.5 bpp. We assume a slow fading channel

such that channel coefficients are nearly constant over an image,

and the channel estimation at the receiver is perfect. The end-

to-end performance is measured by the expected distortion of

the image.

In the following, we describe the evaluation of the expected

distortion. The system takes a compressed progressive bit-

stream from the source encoder and transforms it into a se-

quence of packets with error detection and correction capability.

Then, as shown in Fig. 2, the coded packets are encoded by

the space-time codes. At the receiver, if a received packet is

correctly decoded, the next packet is considered by the source

decoder. Otherwise, the decoding is terminated, and the source

is reconstructed from only the correctly decoded packets due to

the nature of progressive source code.

Let Pi(γ̇s, i) denote the probability of a decoding error of the

ith packet (1 ≤ i ≤ NP ), where γ̇s, i is the instantaneous SNR

per symbol for ith packet, and NP is the number of packets.

Then, the probability that no decoding errors occur in the first

n packets with an error in the next one, Pc,n, is given by

Pc,n=Pn+1(γ̇s,n+1)
n
∏

i=1

(1−Pi(γ̇s,i)) , 1≤n≤NP −1. (33)

Note that Pc,0 = P1(γ̇s,1) is the probability of an error in the

first packet, and Pc,NP
=

∏NP

i=1(1 − Pi(γ̇s, i)) is the probabil-

ity that all NP packets are correctly decoded. Let {dn} denote

the distortion of the source using the first n packets for the

source decoder (0 ≤ n ≤ NP ). The {dn} can be expressed as

dn = D(
∑n

i=1 ri), where ri is the number of source bits in ith
packet, D(x) denotes the operational distortion–rate function

of the source, and d0 = D(0) refers to the distortion when

the decoder reconstructs the source with none of the received

information. Then, the expected distortion of the source, E[D],
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can be expressed as (34), shown at the bottom of the page,

where p(γ̇s, i) is the probability density function (PDF) of the

instantaneous SNR for ith packet, i.e., γ̇s, i. Note that p(γ̇s, i)
is a function of the average SNR per symbol, γs, and the

transmission data rate and the space-time code assigned to the

ith packet; hence, E[D] is also a function of those parameters.

Let Ci denote the space-time code assigned to ith packet.

One can find the optimal set of space-time codes Copt =
[C1, . . . , CNP

]opt, which minimizes the expected distortion

over a range of average SNRs using the weighted cost function

as follows:

argmin
C1,...,CNP

∫∞
0 ω(γs)E[D]dγs
∫∞
0 ω(γs)dγs

(35)

where w(γs) in [0, 1] is the weight function. For example,

w(γs) can be given by

ω(γs) =

{

1, for γA
s ≤ γs ≤ γB

s

0, otherwise.
(36)

Note that in broadcast or multicast systems, the weight function

in (36) indicates that SNRs of multiple receivers are uniformly

distributed in the range of γA
s ≤ γs ≤ γB

s . Equation (35) in-

dicates that C1, . . . , CNP
are chosen such that the total sum

of the expected distortion of the receivers distributed in the

range of γA
s ≤ γs ≤ γB

s is minimized. Note that the amount

of computation involved in (35) exponentially grows as NP

increases. Alternatively, as presented in Section IV, we may

choose the codes C1, . . . , CNP
with the constraint that the

k + 1st, k + 2nd, . . . , NP th packets should be encoded with

SM (i.e., OSTBC is excluded) if the kth packet is encoded

with SM.

To compare the image quality, we use the peak-signal-to-

noise ratio (PSNR), defined as 10 log(2552/E[D]) (dB). We

evaluate the PSNR performance as follows. We first compute

(35) using the expected distortion, E[D], given by (34), and the

weight function, w(γs), given by (36). Next, with the optimal

set of codes, Copt = [C1, . . . , CNP
]opt, obtained from (35), we

evaluate the PSNR over a range of SNRs given by (36). In this

evaluation, error correction coding is not considered.

The performance is evaluated for the case when a sequence of

15 packets is transmitted (i.e., NP = 15) as an example, and we

assume that the transmission data rates are assigned in a manner

such that R1 = R2 = R3 = 4 (bits/s/Hz), R4 = R5 = R6 =

6 (bits/s/Hz), R7 = R8 = R9 = 8 (bits/s/Hz), R10 = R11 =
R12 = 10 (bits/s/Hz), and R13 = R14 = R15 = 12 (bits/s/Hz),
where Ri denotes the data rate employed by the ith packet. For

this specific setup, the optimal set of space-time codes com-

puted from (35) is given by C1 = C2 = · · · = C6 = OSTBC,

and C7 = C8 = · · · = C15 = SM. Fig. 7 shows the PSNR of

such an optimal set of space-time codes, in addition to showing

the PSNRs of other suboptimal sets of codes, such as the second

best set of codes, the worst set of codes, and the sets at the

75th and 50th percentiles among the sets of codes (note that

the number of possible sets of space-time codes is 2NP ). Fig. 7

also shows the PSNR corresponding to the expected distortion

that is averaged over all the possible sets of space-time codes.

From this example, it is seen that PSNR performance of the

progressive source tends to be sensitive to the way space-time

codes are assigned to a sequence of packets, due to the unequal

transmission data rates and target error rates of the progressive

bitstream.

Fig. 8 shows the PSNR performance when (35) is computed

with the constraint presented in Section IV (in this case, the

number of possible sets of space-time codes is NP + 1). For

reference, some curves in Fig. 7 are repeated in Fig. 8. We note

that the same optimal set of codes has been obtained when (35)

is computed with and without the constraint. That is, without

losing any PSNR performance, the computational complexity

involved with the optimization can be reduced by exploiting

the proof of the monotonic behavior of the crossover point,

as shown in Fig. 1. It is also seen that the expected distortion

averaged over all the possible sets of space-time codes becomes

better when the constraint in Section IV is introduced, which

shows that, on the average, the constraint in Section IV is a

good strategy for the space-time coding of progressive sources.

VI. CONCLUSION

When progressive sources are transmitted over open-loop

MIMO systems, due to the differences of importance in the

bitstream, the tradeoff between the space-time codes should be

clarified in terms of their target error rates and data rates. To

address this matter, we analyzed the behavior of the crossover

point of the error probability curves for OSTBC and SM with

a ZF linear receiver. To make the analysis tractable, we ex-

plored the asymptotic regime of high SNR. Emerging wireless

E[D] =

∞
∫

0

· · ·
∞
∫

0

{

NP
∑

n=0

(dnPc,n)

}

p(γ̇s,1) · · · p(γ̇s,N )dγ̇s,1 · · · dγ̇s,N

=

∞
∫

0

· · ·
∞
∫

0

⎧

⎪

⎨

⎪

⎩

D(0)P1(γ̇s,1) +

NP−1
∑

n=1

(

D

(

n
∑

i=1

ri

)

Pn+1(γ̇s,n+1)

n
∏

i=1

(1 − Pi(γ̇s, i))

)

+D

⎛

⎝

Np
∑

i=1

ri

⎞

⎠

NP
∏

i=1

(1 − Pi(γ̇s, i))

⎫

⎪

⎬

⎪

⎭

p(γ̇s,1) · · · p(γ̇s,N )dγ̇s,1 · · · dγ̇s,N (34)
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Fig. 7. PSNR performance of the optimal set of space-time codes and
suboptimal ones for the transmission of progressive 8 bpp 512 × 512
Lena image for 2 × 2 MIMO systems in i.i.d. Rayleigh fading channels.
1) Optimal code set: C1 = · · · = C6 = OSTBC and C7 = · · · = C15 = SM.
2) Second best code set: C1 = · · · = C6 = OSTBC, C7 = · · · = C14 =
SM, and C15 = OSTBC. 3) 75th percentile code set: C1 = OSTBC, C2 =
· · · = C11 = SM, C12 = OSTBC, C13 = C14 = SM, and C15 = OSTBC.
4) 50th percentile code set: C1 = OSTBC, C2 = C3 = C4 = SM, C5 =
OSTBC, C6 = SM, C7 = · · · = C11 = OSTBC, C12 = SM, and C13 =
C14 = C15 = OSTBC. 5) Worst code set: C1 = C2 = SM, C3 = OSTBC,
C4 = SM, C5 = OSTBC, C6 = SM, C7 = · · · = C11 = OSTBC, C12 =
SM, and C13 = C14 = C15 = OSTBC.

Fig. 8. PSNR performance of the optimal set of codes and suboptimal ones
with the same setup as that in Fig. 7, except that (35) is computed with the
constraint presented in Section IV. 1) Optimal code set: C1 = · · · = C6 =
OSTBC and C7 = · · · = C15 = SM. 2) Second best code set: C1 = · · · =
C5 = OSTBC and C6 = · · · = C15 = SM. 3) Worst code set: C1 = · · ·

= C15 = SM.

communication systems are targeting large spectral efficiencies

and will operate at high SNR, due to hot spots and pico-cell

deployments. For such systems, the high SNR regime analysis

will become more relevant. In addition, for a system with a

large number of antennas and large spectral efficiencies, the use

of low-complex space-time codes and linear receivers may be

required, due to complexity and power consumption issues.

The analytical results for the information outage probability

and the uncoded BER coincided such that, as data rate in-

creases, the crossover point in error probability monotonically

decreases, whereas that in the SNR monotonically increases.

This was proven for an arbitrary number of transmit and receive

antennas, and the spatial multiplexing rate of OSTBC (i.e.,

regardless of how the OSTBC is designed). As a result, for both

the outage probability and the uncoded BER, our analysis al-

lows a tradeoff between OSTBC and SM in terms of their target

error rates and transmission data rates. These results, which are

conceptually depicted in Fig. 1, to the best of our knowledge,

have never been proven nor stated in a mathematical manner in

the literature.

We next showed that those analytical results can be used to

simplify the computations involved with the optimal space-time

coding of a sequence of numerous progressive packets for the

transmission of multimedia sources. The work in this paper has

significance in terms of its impact on the area of multimedia

communications and its analysis for the monotonic behavior of

the crossover points, which deepens our understanding of the

tradeoff between the space-time codes. This technical approach

may be considered to analyze other codes such as quasi-

OSTBC or the Golden code as future work.

APPENDIX A

COMPARISON BETWEEN OSTBC AND SM

WITH AN MMSE RECEIVER

The outage probability for an MMSE receiver can be

also expressed as (22). The marginal distribution of the

post-processing SNR for an MMSE receiver is given by

[38, eqs. (11)–(13)]. Since the Nt substream outage events

are not independent for an MMSE receiver [28], the outage

probability given by (22) cannot be computed with the marginal

distribution. That is, we need the joint probability of the outage

events, not just the marginal probabilities. To make the anal-

ysis tractable for an MMSE receiver, if we assume that the

post-processing SNRs are statistically independent (this is the

assumption used in [28]), the high SNR approximate outage

probability can be expressed as [28, eq. (8)]. From this and (25),

it can be shown that the crossover points in SNR and the outage

probability are given by

γ∗
s =

(

(Nr −Nt + 1)!rNtNr
s 2R(Nt−1)/Nt

(NtNr)!

× (2R/rs − 1)NtNr

(2R/Nt − 1)Nr

) 1
(Nr+1)(Nt−1)

. (37)

P ∗
out =

rNtNr
s

(NtNr)!

(

(2R/rs − 1)(Nr+1)(Nt−1)(NtNr)!

(Nr −Nt + 1)!rNtNr
s 2R(Nt−1)/Nt

× (2R/Nt − 1)Nr

(2R/rs − 1)NtNr

)

NtNr
(Nr+1)(Nt−1)

. (38)

It can be proven that γ∗
s is a strictly increasing function of

the data rate, R, under the condition that Nr ≥ Nt ≥ 2 and

that 0 < rs ≤ 1. On the other hand, it is not clear whether

P ∗
out is a strictly decreasing function of R under the same
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conditions, but we have been able to come up with a counter-

example showing that P ∗
out is not a strictly decreasing function

for the case of Nr = Nt = 2 and rs = 1 (i.e., the Alamouti

coding). From this, it follows that the results for a ZF re-

ceiver do not always hold for an MMSE receiver. Further, we

stress that the given outage probability analysis is based on

the assumption that the post-processing SNRs are statistically

independent for an MMSE receiver. Although some simulation

results show that the assumption can be properly used [28],

it is obvious that the given analysis is only approximately

valid, even for high SNR. Regarding the BER analysis, the

uncoded BER of an MMSE receiver can be expressed as
∫∞
0

∑ξ
i=1 αiQ(

√
βix)f(x)dx, where f(x) is the marginal PDF

of the post-processing SNR given by [38, eqs. (11)–(13)], and

αi, βi, and ξ are constants. Even for high SNR, it is not clear

that the BER can be expressed in a closed form. For these

reasons, we restricted the analysis of this paper to the case of

a ZF linear receiver, for both the outage probability and the

uncoded BER.

However, considering the fact that an MMSE receiver con-

verges to a ZF receiver at high SNR, we do not exclude the pos-

sibility that, for a future work, there will be some mathematical

analyses for an MMSE receiver which will produce the same

results as those for a ZF receiver. In summary, since the joint

distribution of the SNRs is not properly characterized, and the

expectation of the Q-function with regard to the marginal dis-

tribution of the SNR is not analytically tractable, we restricted

the scope of this paper to the case for a ZF linear receiver.

APPENDIX B

COMPARISON IN THE SPATIALLY CORRELATED

RAYLEIGH FADING CHANNELS

For spatially correlated Rayleigh fading channels, the PDF

of the post-processing SNR for OSTBC can be expressed as

[39, eqs. (3) and (6)]. From this and [20, eq. (14)], the exact

BER of M -ary QAM for OSTBC can be derived as [39, eqs. (6)

and (8)–(10)]. For high SNR, we discard the Q-function terms

having non-minimum Euclidean distances in [39, eq. (7)], and

accordingly, only i = 0 is considered in [39, eq. (8)]. Further, if

we use
√

x/(1 + x) ≈ 1 − 1/(2x) for x ≫ 1, [39, eq. (8)] can

be approximated as

PM−PAM
e (n; ρ) ≈ 1

M
∏N

q=1(cραq)uq

BM,0

N
∑

q=1

uq
∑

l=1

uq,l(ρ)

×(cραq)
l

⎡

⎣

1

D2
M,0cραq

l−1
∑

j=0

(

2j

j

)

4−j

(

1 +
D2

M,0cραq

2

)−j
⎤

⎦

(39)

where

µq, l(ρ) = (−1)uq−l
∑

Φ

N
∏

j=1,j �=q

(

uj − 1 + ij
ij

)

×
(

1

cρ

(

1

αj
− 1

αq

))−(uj+ij)

, (40)

ρ is the SNR; BM,0, DM,0, and c are constants; and N ,

αq , and uq are parameters that are related to the eigenvalues

of the Kronecker product of the transmit and receive spatial

correlation matrices. In a similar way, we can derive a high

SNR approximate BER for SM with a ZF receiver in spatially

correlated channels. However, it is seen that, even for high SNR,

the BER expression given by (39) and (40) is a complicated

function of SNR, such that it is not clear whether there exists a

closed-form solution for the crossover point of the BER curves

for OSTBC and SM.

We now consider the information outage probability. For SM

with a ZF receiver in spatially correlated channels, the marginal

PDF of the post-processing SNR is characterized by [10, eq.

(32)], and from this, the marginal CDF can be computed in a

closed form [40]. Thus, the closed-form outage probability of a

single substream can be readily derived. However, in spatially

correlated channels, it is unclear whether Nt substream outage

events are statistically independent. If they are not independent,

we need the joint distribution of the post-processing SNRs for

Nt substreams, which, to our knowledge, is not known. For

these reasons, the analysis of this paper is restricted to the case

of i.i.d. Rayleigh fading channels, for both the uncoded BER

and the outage probability. However, in Section V, we present

some numerical results for spatially correlated channels.
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