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Optimal Transmission Scheduling over a Fading
Channel with Energy and Deadline Constraints

Alvin Fu, Eytan Modiano, and John N. Tsitsiklis

Abstract— We seek to maximize the average data throughput
of a single transmitter sending data over a fading channel to a
single user class. The transmitter has a fixed amount of energy
and a limited amount of time to send data. Given that the
channel state determines the throughput obtained per unit of
energy expended, the goal is to obtain a policy for scheduling
transmissions that maximizes the expected data throughput. We
develop a dynamic programming formulation that leads to an
optimal transmission schedule, first where the present channel
state is known just before transmission, and then to the case
where the current channel state is unknown before transmission,
but observed after transmission and evolves according to a
Markov process. We then extend our approach to the problem of
minimizing the expected energy required to send a fixed amount
of data over a fading channel given deadline constraints.

Index Terms— Resource allocation, fading channel, wireless
networks, dynamic programming, scheduling.

I. INTRODUCTION

FOR MANY wireless transmitters, increased efficiency in
data transmission provides significant benefits. Most such

devices are battery powered, and often the energy required for
data transmission is a significant drain on the battery. Higher
energy efficiency may result in the use of a smaller battery
or in a longer battery lifetime. Alternatively, increasing data
throughput leads to more efficient bandwidth utilization and
higher revenue.

The requirements for optimizing performance are frequently
contradictory and must be balanced. For example, increasing
transmission rates often result in decreased energy efficiency.
A well-designed mobile transmitter must not only maximize
data throughput, but also optimize the use of resources,
effectively cope with a fading channel, and meet operational
constraints. These constraints may include a limit on available
energy, and a deadline by which transmission must be com-
pleted. In this paper, we attempt to address these issues for a
lone transmitter sending data to a single user class.

A successful solution to this class of problems would
be useful in a wide variety of applications. For instance,
a battery-powered laptop computer or cellular phone might
want to upload a file to the internet using the minimum
amount of energy possible while still meeting network timeout
constraints. A communications satellite, remote sensor, or
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deep space probe might want to maximize data transfer in the
face of a specific time window to transmit data and a limited
amount of available energy. Many other wireless devices have
similar or more stringent energy, power, and time limitations.

The tradeoff between expended energy and throughput is
of prime importance in increasing transmitter efficiency. This
relationship will depend on the fade state of the channel
being used by the transmitter. For a given fade state, the
data throughput is usually concave in expended energy (and
the expended energy is convex in throughput). This concavity
property results from a number of factors. First, the channel
capacity is a concave function of power. It is a well-known
result of information theory that the capacity C of a Gaussian
channel, with noise spectral density N/2 watts, power P watts,
and bandwidth W hertz, is given by the Shannon capacity
equation

C = W log2

(
1 +

P

NW

)
(1)

where C is given in bits per second [1]. The maximum
possible information throughput in a given amount of time
is hence a logarithmic, concave function of the energy ex-
pended. Moreover, channel capacity is an approximately linear
(and concave) function of energy in a low signal-to-noise
ratio or high bandwidth environment. Second, under a fixed
modulation scheme, throughput usually has a locally linear
relationship to expended energy. If, in addition, a power limit
is imposed - a maximum on the amount of energy that can
be consumed at any time - then this linear relation becomes
piecewise linear and concave.

Resource allocation for fading channels is a popular topic
in information theory. However, the analysis is most often
performed for multiple user classes, the resource being allo-
cated is usually average power or bandwidth, and the quantity
to be maximized is most often Shannon capacity. Goldsmith
and Li [2] [3] and Tse and Hanly [4] found capacity limits
and optimal resource allocation policies for such channels.
Biglieri et al. [5] examined power allocation schemes for
the block-fading Gaussian channel. Tse and Hanly [6] also
studied channel allocations in multi-access fading channels
that minimize power consumption. Of particular relevance is
the paper of Goldsmith and Varaiya [7], which computed the
expected Shannon capacity for fading channels, under the con-
dition that both the receiver and transmitter know the current
channel state. This work was extended by Negi and Cioffi
[15], who calculated capacity and provided power allocation
strategies under an additional delay constraint and assuming
that a Gaussian codebook is used. None of these papers,
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however, explore the effects of scheduling transmissions with
a finite amount of available energy.

The problem of energy efficient scheduling over a fading
channel has received much attention recently. Ferracioli et al.
[8] propose a scheduling scheme for the third generation cellu-
lar air interface standard that takes channel state into account
and seeks to balance service priority and energy efficiency.
Wong et al. [9] study channel allocation algorithms for cellular
base stations. Given known channel characteristics, the authors
seek to assign channels in such a way as to minimize total
power consumed by all the mobile users communicating with
a base station. A recent paper by Tsybakov examines the
problem of transmission time minimization between cellular
base stations and mobile users [10], but does not consider
situations with limited energy. Berry and Gallager [11] analyze
schemes that trade off transmission power and buffer delay,
while Zhang and Wasserman [12] use dynamic programming
and partially observable Markov models to study the tradeoff
between throughput and energy efficiency under incomplete
channel state information. Many other publications on similar
topics can be found in the literature [13] [14] [15] [16] [17].

Perhaps the work closest to this paper is that of El Gamal
et al. [18] and Collins and Cruz [19]. Both papers study the
problem of minimizing expended energy for a transmitter with
a buffer accepting packets arriving according to a random
process. El Gamal et al. postulate a hard deadline constraint for
all data packets, and increased energy efficiency with slower
transmission rates. The problem is to choose transmission rates
for each data packet that would allow transmission after arrival
and before the deadline, while minimizing expended energy.
The paper does not include the effects of a fading channel.
Collins and Cruz use dynamic programming and a duality
argument to develop a near-optimal transmission policy for
minimizing energy in a fading channel with an average delay
constraint and a power limit. They assume energy expenditure
that is linear with transmitted data and only two possible
channel fade states.

In this paper, we show that dynamic programming can be
used to generate optimal solutions to the dual problems of
maximizing expected throughput given limited energy, and
of minimizing expected energy given minimum throughput
constraints. We solve both problems for a single energy-
limited transmitter serving a single user class in the presence
of a fading channel and hard deadline constraints.

For each problem, we first describe a method of finding
an optimal solution for the problem under the unrealistic
assumption that channel states are known for all time. The
procedure is then generalized to the realistic case where
only the current channel state and probability distributions
for future channel states are known, and further extended
to the case where the current channel state is unknown, but
the channel state evolves according to a Markov process.
We provide tractable numerical methods for the general case
where data throughput is concave in expended energy, and
closed form optimal policies for special cases. Finally, a
number of numerical examples and simulations are provided.

II. THROUGHPUT MAXIMIZATION

A. System Model

We consider a single transmitter operating over a fading
channel, sending information to a single user or user type.
Time is assumed to be discrete, and in each time slot the
channel state changes according to a known probabilistic
model. The channel state determines the throughput that can
be obtained per unit energy expended by the transmitter, and is
modeled as a random process. The transmitter is also assumed
to have a battery with a fixed amount of energy units available
for use. The objective is to find a transmission schedule that
maximizes expected throughput, subject to a constraint on the
total energy that can be expended, and a deadline by which
the energy must be consumed (or otherwise wasted).

Let ak be the available energy in the battery at time slot k.
The battery starts with a1 units of energy and must complete
transmission by time slot n. The energy consumed at time
slot k is denoted by ck. Thus, the available energy ak evolves
according to ak+1 = ak − ck, with ck ≤ ak for all k.

The throughput obtained by consuming energy depends on
the channel fade state. Let qk be the channel quality at time
k, and let f(c, q) be the throughput obtained by consuming
c units of energy in the presence of channel quality q. The
function f(c, q) is assumed concave and non-decreasing in c
(for example, it may be linear in c).

The objective is to maximize the expected data throughput
achieved by the transmitter given n time slots to transmit data
and a1 units of initial energy. Thus, the problem is to maximize

E

[
n∑

k=1

f(ck, qk)

]
(2)

subject to the constraints that ck ≥ 0 for all k and
n∑

k=1

ck ≤ a1 (3)

In the following subsections, we first study throughput
maximization under the conditions that the channel fade state
qk is known ahead of time and the throughput/energy tradeoff
f(c, q) is a concave function. Next, we assume that qk is
random with known distribution function pqk

(q) (independent
across time), and that qk is not revealed until just before
transmission at time k. We develop a dynamic programming
algorithm that provides an optimal policy for the case where
f(c, q) is concave, and obtain a closed-form optimal policy for
the special case where f(c, q) is linear, but subject to a power
limit. Finally, we extend our results to the the case where qk
follows a Markov process and is only observed at the end of
time slot k.

B. Known Channel Quality

Let us start by examining the throughput maximization
problem in the simple case where channel quality qk is known
at time k for all k ≥ 0. Although knowing the channel fade
state for all time is an unrealistic assumption, the solution to
this problem provides insight, and is used to solve the problem
when the channel fade state is unknown. Since the tradeoff
between throughput and energy is precisely known for each
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time slot, we may define fk(c) = f(c, qk). Then expression
(2) can be restated as maximizing

n∑
k=1

fk(ck) (4)

subject to the same constraints as before, and where each
function fk(c) is concave and known. Furthermore, since
it cannot hurt to use up all available energy, note that the
constraint given in (3) is active and met with equality.

Assuming that each fk(c) is differentiable, we may apply
the Kuhn-Tucker optimality conditions. It is well known that
when the objective function is concave and the constraints
linear, any solution satisfying the Kuhn-Tucker conditions is
optimal. The optimality conditions are the following: for all
k,

f ′
k(ck) − λ− μk = 0

μkck = 0, μk ≥ 0, ck ≥ 0,
n∑

k=1

ck = a1

where f ′
k(c) is the derivative of fk(c), and where λ and

the μk are Lagrange multipliers. The last two conditions
are simply the constraints of the maximization. In addition,
complementary slackness holds; that is, either μk = 0 or
ck = 0. From this we conclude that for every k, an optimal
solution has either f ′

k(c) = λ or ck = 0.
Given that each fk(c) is concave, this solution has an

interpretation similar to that of waterfilling in the parallel
Gaussian channel. In the waterfilling process, one allocates
energy to the least noisy Gaussian channel until the marginal
return is lower than that of the next best channel, at which
point energy is allocated evenly. Here, we allocate energy to
the best time slot until the marginal throughput (determined
by f ′

k(c)) is reduced to that of the next best time slot, at which
point energy is allocated in such a fashion as to keep marginal
throughput identical for both time slots, and so forth.

Note that a similar waterfilling-type solution applies more
generally, as long as fk(c) is concave, so that the differen-
tiability assumption is in fact not necessary. One only needs
to work with one-sided derivatives, which are guaranteed to
exist under the concavity assumption.

C. Unknown Channel Quality

Now, let us examine the problem of throughput maximiza-
tion under the assumptions that the channel quality qk is not
known until just before transmission at time k, and that qk is
random and independent across time, with a known distribu-
tion function pqk

(q), which may be different at different times
k.

This is a much more realistic scenario than the one of
subsection II-B. This model can be applied in situations where
the channel coherence time is on the order of the duration of
the time slot. For instance, studies have shown that satellite
channels are stable enough over relatively short periods of
time (less than an hour) such that attenuation is well-described
by a stationary log-normal distribution [20]. Furthermore, the
spectral power of signal level variation is strongly biased
toward the region of 0.01 to 0.1 Hz in clear weather, and

the variation is much slower in rain [21]. Given a time slot on
the order of several seconds in length, it is hence realistic to
assume that the channel throughput qk per unit energy can be
measured before a significant change in its value, and before
transmission takes place.

Under these assumptions, the dynamic programming al-
gorithm can be used to find an optimal policy. As usual
in dynamic programming, we introduce the value function
Jk(a, q), which provides a measure of the desirability of the
transmitter having energy level a at time k, given that the
current channel quality is q. The functions Jk(a, q) for each
stage k are related by the dynamic programming recursion:

Jn(a, q) = f(a, q)

Jk(a, q) = max
0≤c≤a

[
f(c, q) + Jk+1(a− c)

]
(5)

where Jk(a) = E[Jk(a, qk)]. The first term in the right hand
side of equation (5), f(c, q), represents the data throughput
that can be obtained in the current stage by consuming c units
of energy. The available energy in the next stage is then a−c,
and the term Jk+1(a− c) represents the expected throughput
that can be obtained in the future given a− c units of energy.

We claim that Jk(a, q) and Jk(a) are concave functions
of a for all k and q. Indeed, Jn(a, q) = f(a, q) is concave
by assumption. If Jk+1(a, q) is concave, it is clear that
Jk+1(a) = E[Jk+1(a, qk+1)] is also concave, since it is a
weighted sum of concave functions. Finally, Jk(a), as given
by equation (5), is a supremal convolution of two concave
functions. Using the fact that the infimal convolution of two
convex functions is convex [22], it follows that the supremal
convolution of two concave functions is concave.

We now observe that the maximization in equation (5) is of
the same form as the problem of allocating energy between
two channels of known quality. To obtain an optimal policy
for the unknown channel problem of this subsection, we solve
a two-stage known channel problem for each possible value
of ak, at each stage of the dynamic programming recursion.
This is a computationally tractable problem and can be readily
solved numerically. A specific example is given in section IV.

D. Special Case: Piecewise Linear f(c, q)

We now assume that throughput is a piecewise linear func-
tion of expended energy, of the form f(c, q) = qmin(c, P ),
where P represents a limit on energy expended per time
slot, which we denote as the power limit. Such a model
is not unreasonable; we have already seen that a linear
energy-throughput relationship arises in a low signal-to-noise
ratio or high bandwidth environment, while the power limit
might naturally arise as a result of physical limitations in the
transmitter hardware or government regulation.

Substituting into (5), the dynamic programming recursion
becomes

Jk(a, q) = max
0≤c≤a

[
qmin(c, P ) + Jk+1(a− c)

]
(6)

Jn(a, q) = qmin(a, P )
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Here it is possible to precisely identify an optimal policy and
obtain a closed-form formula for the value function.

Theorem 1: The expected value function Jk(a), for 1 ≤
k ≤ n, is piecewise linear, with the form

Jk(a) =γk
k min(a, P )

+ γk+1
k [min(a, 2P ) − min(a, P )]

+ γk+2
k [min(a, 3P ) − min(a, 2P )]

...

+ γn
k [min(a, (n− k + 1)P ) − min(a, (n− k)P )]

(7)

where the number of linear segments is equal to (n− k + 1)
and where γk

k , . . . , γ
n
k are constants that give the slopes of

each segment, and are determined recursively. The base case
is

γn
n = E[qn]

and in the recursion γk
k , γ

k+1
k , . . . , γn

k are calculated from
γk+1

k+1 , . . . , γ
n
k+1 for k < n. The constants γk

k and γn
k are given

by

γk
k = E[max(qk, γk+1

k+1 )] and γn
k = E[min(qk, γn

k+1)]

and γk+1
k , . . . , γn−1

k are given by

γi
k = E[min(qk, γi

k+1) − min(qk, γi+1
k+1)] + γi+1

k+1

Corollary: An optimal policy for 1 ≤ k < n is to set the
consumption ck to:

min(P, ak) for γk+1
k+1 < qk

min(P,max(ak − P, 0)) for γk+2
k+1 < qk ≤ γk+1

k+1

...

min(P,max(ak − (n− k)P, 0)) for qk ≤ γn
k+1 (8)

and to set ck = min(ak, P ) when k = n.
Proof:

We first show that Jk(ak) satisfies equation (7). From the
base case of the dynamic programming recursion, we have

Jn(a) =Eqn [Jn(a, qn)]
=Eqn [qn] min(a, P )
=γn

n min(a, P ),

which establishes equation (7) for the case k = n.
We now assume that Jk+1(a) satisfies equation (7), and

show that Jk(a) has the same property. Repeating equation
(6), we have

Jk(a, q) = max
0≤c≤a

{qmin(c, P ) + Jk+1(a− c)}.

Substituting equation (7) into equation (6), we obtain (9),
shown at the top of the next page.

Using the expression in (9), one may employ an algebraic
approach to prove the theorem. It can be shown that the choice
of

ck =

{
0 if ak ≤ φk(qk)

min(ak − φk(qk), P ) if φk(qk) < ak
(10)

attains the maximum in the right hand side of equation (6).
Here, φk(qk) is a value of u that maximizes the expression

qk(ak − u) + Jk+1(u)

over all u ≥ 0, i.e.,

φk(qk) = arg max
u≥0

[
Jk+1(u) − qku

]
.

It is possible to show that φk(qk) can be taken to be
an integer multiple of P , substitute the value of ck spec-
ified in equation (10), take the expectation over qk, and
then demonstrate that Jk(a) has the proper form. However,
because this approach is somewhat tedious, we discuss an
alternative method. The results from section II-C indicate
that the maximizing value of consumption c in equation
(6) can be obtained by solving a two-stage known channel
problem. One “channel” represents the throughput that can be
obtained by consuming immediately, qmin(c, P ), while the
other channel represents the expected throughput obtained by
saving, Jk+1(a− c).

In this special case, the two channels have a special struc-
ture: they are both piecewise linear. We may take advantage
of this property when applying the waterfilling solution (as
outlined in Section II-B). The derivatives of both Jk+1(a− c)
and qmin(c, P ) are decreasing piecewise constant functions
whose values change every P units. Allocating energy to the
function with the highest marginal throughput simply consists
of picking the function with the highest slope. The resulting
Jk(a, q) is again piecewise linear and can be determined
precisely since its slopes are known.
�
The optimal policy can be explained as follows: Assume ak

units of energy are available at time k. At each time slot at
most P units of energy may be consumed. If qk were known
for all k, maximizing throughput would consist of selecting
the �ak

P � time slots with the best channel quality and allocating
energy to the best time slots. Assuming there are enough time
slots available, this would entail consuming P units of energy
in �ak

P � time slots and ak − P �ak

P �, which is the remaining
energy, in another time slot.

Of course, channel quality is in fact unknown. However, the
constants γi

k are representative of expected channel qualities
during future time slots as seen just before time k. The γi

k

values are ordered: γk
k is the expected value of the best channel

and γn
k is the expected value of the worst, in the sense that

γk
k = max

τ
E [qτ ] , and γn

k = min
τ
E [qτ ]

where the optimization is over all non-anticipative stopping
times, i.e. stopping policies, that satisfy k ≤ τ ≤ n. If we
assume that the ordered list γk+1

k+1 , . . . , γ
n
k+1 comprises the

actual future channel fade states, sorted in order of quality,
we may derive an optimal policy from the earlier case with
known channel quality. The policy would be as follows: Take
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Jk(a, q) = max
0≤c≤a

{qmin(c, P ) + γk+1
k+1 min(a− c, P )

+ γk+2
k+1 [min(a− c, 2P ) − min(a− c, P )]

...

+ γn
k+1[min(a− c, (n− k)P ) − min(a− c, (n− k − 1)P )]} (9)

the current channel state qk, insert it into the ordered list. If
qk is among the best �ak

P � channel qualities, consume P units
of energy. If this is not the case and qk is the �ak

P �th best
channel quality, consume ak − P �ak

P � units. Otherwise, do
not consume any energy. Theorem 1 and its corollary state
that this policy is in fact optimal; the assumption that the
constants γk+1

k , . . . , γn
k are the actual future channel qualities

is unnecessary.

E. Additional Problem Variations

The approach we have developed for the throughput maxi-
mization problem can be used to solve several other variants
of the main problem. One important situation is the case where
the channel state for the current time slot cannot be analyzed
quickly enough for it to be known at the transmitter before
transmission.

Under this circumstance, if the channel state for each time
slot is independent of the channel state of previous time
slots, the problem of throughput maximization becomes trivial.
However, if channel states are dependent and information
about the channel state in previous time slots is available, a
Markov model becomes attractive.

The simplest of these is a Markov chain where the prob-
ability distribution for the state of the channel in the current
time step is dependent only on the state of the channel in the
previous time step. The model is more general than the one
examined in section II-C, because time slots can be chosen to
be shorter in length than the coherence time of the channel,
and the independence assumption used in the previous model
is a special case of the Markov chain model. Such models
can be found in the literature; Wu and Negi have used a
Rayleigh-Rician Markov chain to model a flat-fading cellular
communications system [24].

The earlier results can be extended to this more general case
where channel dependency is modeled as a Markov chain. The
objective is again to maximize the quantity

E

[
n∑

k=1

f(ck, qk)

]
subject to the constraints that ck ≥ 0 for all k and

n∑
k=1

ck ≤ a1

The value function satisfies

Jk(a, q) = max
0≤c≤a

{Eqk
[f(c, qk))|qk−1 = q]

+Eqk
[Jk+1(a− c, qk)|qk−1 = q]} (11)

and at the last stage, stage n, the value function is

Jn(a, q) = Eqn [f(a, qn)|qn−1 = q].

The value function Jk(a, qk−1) is concave in a for any fixed
qk−1. This can be shown by induction. By assumption, f(c, q)
is concave. Its expectation is again concave since the weighted
sum of concave functions is concave. Then both Jn(a, qn)
and its expectation, Eqn [Jn(a − c, qn)|qn−1] are concave.
Now assume that Jk+1(a, qk) is concave. Then its expectation
Eqk

[Jk+1(a − c, qk)|qk−1] is concave as well. Furthermore,
Eqk

[f(c, qk))|qk−1] is another expectation of a concave func-
tion, so this term is concave as well. Finally, Jk(a, qk−1) is a
supremal convolution of two concave functions and so must
be concave.

We have seen from the above discussion that both terms
on the right hand side of equation (11) are concave. An
optimal policy can thus be obtained using our earlier tech-
niques. More precisely, in the Markovian model, the ex-
pectation Eqk

[qk|qk−1] and probability distribution function
pqk

(qk|qk−1) take the place of qk and pqk
(qk) in the case

of independent channels. Once this substitution is made, we
obtain a problem of the type analyzed in Section II-C.

In the special case where the energy/throughput trade-
off f(c, q) is piecewise linear and of the form f(c, q) =
qmin(c, P ), it is also possible to obtain an optimal policy
in closed form. The expected value function Jk(a, q) has the
same form as equation (7) for q fixed, and an optimal policy
in the form of expression (8) can be found.

More specifically, the expected value function Jk(a) and
each γi

k in the value function can be computed in the following
fashion: Let us suppose that the channel quality takes discrete
states qk ∈ {s1, . . . , sm}, where each possible state si is a
distinct discrete value of qk. We also assume that the transition
probability matrix A of size m×m governs state transitions,
where row i of the matrix gives the probability of transitioning
from state qk = si to state qk+1 = {s1, . . . , sm}.

Next, we recursively define matrix Bk as a matrix of size
m× (n−k+1) at each stage k ∈ {1, . . . , n}. At stage n, Bn

is an m× 1 vector and is given by

Bn = As

where the column vector s has elements s1, . . . , sm. The
matrix Bk−1 is computed from Bk by

Bk−1 = H{A [Bk|s]}
where H{·} is an operator that sorts the elements of each row
of its operand matrix in decreasing order from left to right,
and [Bk|s] is a matrix formed by appending the column vector
s to Bk.
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Given qk−1 = si, the values of γk
k , . . . , γ

n
k that determine

Jk(a, qk−1) are simply the n− k+ 1 elements of the ith row
of Bk. That is, at time k, for j in the range k ≤ j ≤ n,

γj
k = bi,j−k+1

where bl,m is the element of B in the lth row and mth column.
Once the value function is calculated, obtaining the optimal

policy is straightfoward; it is the same as expression (8), except
that qk is replaced by its expected value Eqk

[qk|qk−1]. The
proof that the value function takes the form stated and that
the policy is optimal is similar to that of Theorem 1, and is
omitted for brevity.

In addition to the above extension to a Markov model,
there are also a wide variety of other problem variations. For
instance, one might allow the transmitter to receive additional
energy input at each stage, and to have a battery of finite
size. These formulations are a straightforward extension of
the previous result and can be found in [23].

III. ENERGY MINIMIZATION

A. System Model

We have thus far analyzed a situation where we have a
given amount of energy, and wish to maximize the expected
throughput within a fixed time period. These results can be
extended to the case where the transmitter has a given amount
of data that must be sent within a fixed time period of length
n, and wishes to minimize the expected amount of energy
required to do so. Let the variable dk be the number of
data units remaining to be sent at time k, and let sk be the
amount of data that is actually sent at time k. Thus dk evolves
according to dk+1 = dk − sk. The channel quality at time
k is given by a variable qk, which is random. Transmitting
sk units of data requires g(sk, qk) units of energy, and the
function g(sk, qk) is assumed to be convex and differentiable
in sk. Since the transmission must be completed by time n,
the objective is to find a transmission policy that minimizes
the expected energy

E

[
n∑

k=1

g(sk, qk)

]
(12)

subject to the constraints that sk ≥ 0 for all k and
∑n

k=1 sk ≥
d1.

We show that the energy minimization problem, in the
presence of a convex energy/throughput function g(s, q),
can be solved using methods similar to those used for the
throughput maximization problem. We first examine energy
minimization for the case where the channel quality qk is
known at time k = 0 for all k. We assume throughout
that the random variables qk are independent, with known
probability distribution pqk

(q). Next, we study the case where
qk is revealed to the transmitter just before transmission at time
k. We present a dynamic programming algorithm that can be
used to obtain an optimal policy. Furthermore, when g(s, q) is
linear and subject to a power limit, and qk only takes values
which are integer multiples of a minimum channel quality
qmin, we are able to describe an optimal policy in closed
form.

B. Known Channel Quality

We first examine the energy minimization problem in the
simple case where the channel quality qk is completely known
ahead of time. This problem is analogous to the known channel
throughput maximization problem, and the solution is similar.
Since the channel quality is known, the tradeoff between
throughput and energy is known for all time. Then we may
define gk(s) = g(s, qk). The objective is then to solve the
problem

min
n∑

k=1

gk(sk)

subject to the constraints that sk ≥ 0 for all k and
∑n

k=1 sk ≥
d1. Applying the Kuhn-Tucker optimality conditions, we see
that for every k, the optimal solution has either g′k(sk) = λ
or sk = 0, where λ is a constant and g′k(sk) is the derivative
of gk(sk). This solution has a waterfilling interpretation: it is
optimal to send data during the best time slot until the marginal
energy cost (determined by g′k(·)) is increased to that of the
next best time slot, at which point data is allocated in such
a fashion as to keep marginal energy costs identical for both
time slots, and so forth.

C. Unknown Channel Quality

We now assume that the channel quality qk is not known
until just before transmission at time k. This problem is similar
to that of section II-C, and as before, we may use dynamic
programming to solve it. The value functions Jk(d, q) for each
stage k are related by the following recursion:

Jk(d, q) = min
0≤s≤d

[
g(s, q) + Jk+1(d− s)

]
(13)

where the base case is given by Jn(d, q) = g(s, q) and
the expected value function Jk(d) is defined by Jk(d) =
E[Jk(d, qk)]. It can be shown that since gk(s, q) is convex
in s, Jk(d, q) and Jk(d) are also convex in d. This property
implies that the problem reduces to a series of two-stage
known channel problems. These problems are computationally
tractable and can be solved to obtain an optimal policy.

D. Special Case: Linear g(s, q)

We now examine the special case where g(s, q) is linear in
s/q, so that q is proportional to the amount of data transmitted
per unit energy consumed. A linear function g(s, q) implies
that there is no limit on the amount of data that can be sent or
on the energy that can be consumed in a single time step. In
such a situation, the problem reduces to an optimal stopping
problem. However, if we impose a power limit, the problem
becomes more difficult.

The power limit effectively imposes a limit of Pqk on the
throughput, where P is the power limit and qk is the channel
quality. If d is the amount of data remaining to be sent, the
dynamic programming recursion becomes

Jk(d, q) = min
0≤s≤min(d,Pq)

{s
q

+ Jk+1(d− s)} (14)
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where Jk(d) = E[Jk(d, qk)]. We impose an infinite cost for
not sending all the data by the last stage; the terminal cost
function is

Jn+1(d, q) =

{
0 for d ≤ 0
∞ for d > 0 (15)

For any possible channel quality q, let φk(q) be a value of
u that minimizes the expression

d− u

q
+ Jk+1(u) (16)

over all u ≥ 0. Thus,

φk(q) = arg min
u≥0

[
Jk+1(u) − u

q

]
A value of s that attains the minimum in the right-hand side
of equation (14) can be expressed in terms of φk(q), leading
to an optimal policy of the following form:
Theorem 2: There exists an optimal policy of the form

sk =

{
0 if dk ≤ φk(qk)

min(dk − φk(qk), P qk) if φk(qk) < dk

Proof:
Equation (14) can be rewritten as

Jk(d, q) = min
max(0,d−Pq)≤u≤d

{d− u

q
+ Jk+1(u)}

We know that Jk(u) is convex in u. Expression (16) is also
convex in u since it is a sum of convex functions. We further
notice that the range u ≥ 0 contains the range max(0, d −
Pq) ≤ u ≤ d.

As a result, an optimizing value of u is simply φk(q)
projected on the interval [max(0, d − Pq), d]. The theorem
follows. �

In effect, φk(qk) is a threshold beyond which the energy
cost of sending data immediately exceeds the cost of saving
data for later transmission. It does not depend on the amount
of remaining data dk, and is hence easy to compute. This
property allows the development of numerical methods that
considerably speed the process of calculating the value func-
tion, and which are detailed in [23].

When qk is discrete and is restricted in value to integer
multiples of a constant qmin, it is possible to obtain closed
form expressions for the optimal policy and value function. It
turns out that the expected value function Jk(a) is a piecewise
linear function with n−k+1 segments, each with slope 1/ηi

k,
where 1 ≤ i ≤ n − k + 1, and where ηi

k is defined by the
following:
Definition: Given an m-dimensional list (α1, . . . , αm) sorted
in ascending order, and an i-dimensional list consisting of i
repetitions of the same number x, let θ(i, x, α1, . . . , αm) be
the (m + 1) dimensional sorted list obtained by (i) merging
and sorting the two lists, and (ii) keeping the largest m + 1
elements.
Definition: Define the constants ηi

k for 1 ≤ k ≤ n and
1 ≤ i ≤ n− k + 1 recursively in the following fashion: The
base case for k = n (and i = 1) is given by

1
η1

n

= E

[
1
qn

]

and the recursion to obtain η1
k−1, . . . , η

n−k+2
k−1 from

η1
k, . . . , η

n−k+1
k is given by(

1
η1

k−1

, . . . ,
1

ηn−k+2
k−1

)
= E

[
θ

(
qk
qmin

,
1
qk
,

1
η1

k

, . . . ,
1

ηn−k+1
k

)]
(17)

The slopes 1/η1
k, . . . , 1/η

n−k+1
k reflect the expected mar-

ginal energy cost of sending a data packet. At each time
slot, data may be sent immediately for a cost of 1/qk energy
units per unit of data. Since there is a power limit P , a
maximum of Pqk units may be sent during each time slot.
Alternatively, data may be sent in future stages for an expected
cost determined by Jk+1(d). This function has slope 1/η1

k+1

for the first Pqmin units of data, and 1/ηi
k+1 for each ith

additional Pqmin units of data. By following the approach of
section III-C, the minimum energy cost may be obtained. The
resulting value function Jk(d, q) is a piecewise linear function
with slopes

θ

(
qk+1

qmin
,

1
qk+1

,
1
η1

k

, . . . ,
1

ηn−k+1
k

)
(18)

for 0 ≤ d ≤ (n−k+1)Pqmin. Furthermore, the slopes for the
expected value function Jk−1(a) at time k − 1 are given by
equation (17). The theorem below formalizes these notions.
Theorem 3: Suppose the channel quality qk is restricted
to integer multiples of qmin. Then the expected value function
is given by

Jk(d) =
1
η1

k

min(d, Pqmin)

+
1
η2

k

[min(d, 2Pqmin) − min(d, Pqmin)]

...

+
1

ηn−k+1
k

[min(d, (n− k + 1)Pqmin)

− min(d, (n− k)Pqmin)]

Corollary: An optimal policy at time k (for 1 ≤ k ≤ n − 1)
is to set sk as follows:

sk =

���
��

min(dk, P qk), if qk > η1
k+1,

min(max(dk − Pqmin, 0), P qk), if η2
k+1 < qk ≤ η1

k+1,
min(max(dk − 2Pqmin, 0), P qk), if η3

k+1 < qk ≤ η2
k+1,

and so forth until qk < ηn−k
k+1 , where sk = min(max(dk −

(n− k)Pqmin, 0), P qk).
The proof of the theorem is similar to that of Theorem

1. The major difference arises because of the power limit. In
the throughput maximization problem, the limiting resource is
energy and the maximum amount of energy that can be con-
sumed during each time step is P . In this energy minimization
problem, the constraining resource is data and the maximum
amount of data that can be sent at each time step is Pqk. There
is hence a dependence on qk that is not present in the earlier
problem. However, by imposing an integer constraint on the
possible values of qk, we can obtain a closed form expression
for the expected value function. Once this is done, the problem
is reduced to a two-stage known channel quality problem, and
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the waterfilling property discussed in section II-B dictates the
optimal policy.

As in the case of throughput maximization, there are a
number of variations of the energy minimization problem
which can be solved using the approach outlined above. For
example, our methods can accommodate Markov channel fade
states, and also additional incoming data that arrive after time
k = 0 and have different deadlines [23].

IV. NUMERICAL EXAMPLES

A. Throughput Maximization, Nonlinear f(c, q)
We first consider a specific instance of the throughput

maximization problem where the energy/throughput tradeoff
function f(c, q) is nonlinear and derived from the Shannon
capacity of a bandlimited Gaussian channel. We first examine
a scenario using realistic parameters for a satellite transmitter,
and then explore the effects of varying the parameters and
using suboptimal heuristics.

Our use of the Shannon capacity function (1) is motivated
by the fact that the channel capacity can be nearly achieved in
a Gaussian channel using variable rate coding. Accordingly,
for this example we define the energy/throughput tradeoff
function f(c, q) as

f(c, q) = W log
(
1 +

c q

W

)
Here, W is again bandwidth, while cq represents the signal

to noise ratio. The term c represents power from the transmitter
and is controlled by the satellite operator. In contrast, q
is an attenuation factor that varies randomly and includes
antenna gains, free space losses, atmospheric effects, and
noise. It represents the channel quality and is the average
signal-to-noise ratio (SNR) when the transmitter is operating
at maximum power.

As mentioned earlier, satellite channels can be modeled
using a stationary log-normal distribution with time slots of
appropriate length. Accordingly, we take each time slot to
be ten seconds long. As a result, we can assume that q
changes every time slot and follows a log-normal distribution
with a fixed mean and variance. Furthermore, given a time
slot ten seconds long, it is also realistic to assume that
the channel throughput q per unit energy can be measured
before a significant change in the channel quality, and before
transmission takes place.

A realistic set of numbers for an actual satellite operating in
the 5 GHz frequency band might be for it to have a transmitter
with 100 watts of maximum power, a bandwidth of 30 MHz,
and an average received SNR on the ground of 30 dB at
maximum power. 100 watts of maximum power, applied over
a ten-second time slot, implies that c can vary between 0 and
1000, and that the limit on expended energy is 1000 watt-
seconds per time slot. We assume that the variable q, which
represents the SNR, follows a discrete 50-point log-normal
distribution with a standard deviation of 1.3 on the underlying
Gaussian. We further assume that the satellite has 10500 watt-
seconds of energy to expend over 60 time slots (ten minutes).

Fig. 1 shows the energy consumption pattern generated by
the optimal policy for a single trajectory of q. The y-axis
plots the SNR in dB, and also gives the percentage of the
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Fig. 1. Channel quality and energy consumption: SNR = 30 dB, W = 30
MHz.
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Fig. 2. Channel quality and energy consumption: SNR = 40 dB, W = 1
MHz.

available energy that is consumed during each time step (hence
a figure of 10% represents 1050 watt-seconds). Notice that the
policy radiates at maximum power over the minimum number
of time slots. This is due to the fact that with the parameters
given above, the function f(c, q) is very nearly linear. Under
such conditions, the throughput is directly proportional to the
power, and if it makes sense to radiate one watt of power, it
makes sense to radiate at maximum power. There is one time
slot where the transmitter does not radiate at maximum power;
this is due to the fact that the initial energy in the battery was
purposely chosen so as not to be precisely divisible by the
power limit. (We further explore the special case of a linear
f(c, q) in the next section.)

However, if radiated power increases and bandwidth de-
creases, f(c, q) becomes increasingly concave, and increasing
power rapidly meets with diminishing throughput returns.
Under such conditions, the optimal policy is to radiate in more
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Fig. 3. Channel Quality and Energy Consumption: SNR = 50 dB, W = 100
KHz.
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Fig. 4. Performance of heuristics vs SNR.

time slots, and with a lesser amount of power. In the limit, the
optimal policy is to use an equal amount of energy at every
timeslot. To demonstrate this point, Figs. 2 and 3 show the
optimal policy in a higher SNR regime where average SNR at
maximum power is set at 40 dB and 50 dB, while bandwidth is
set at 1 MHz and 100 KHz respectively. All other parameters
remain constant. As can be seen from the figures, the optimal
algorithm uses more time-slots as the SNR increases.

In Fig. 4, we plot average SNR versus the throughput
obtained by three different heuristics as a percentage of
the throughput obtained by the optimal policy generated by
our dynamic programming recursion. The “uniform” heuristic
spreads the available energy uniformly across all available
timeslots, while the threshold heuristic transmits (at full
power) only if the current channel quality is in the top 20%
of possible channel qualities. The greedy heuristic simply
transmits at full power until it runs out of energy. Note that
the threshold heuristic is more appropriate at low SNRs, while
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Fig. 5. Average transmitted bits vs transmission time.
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Fig. 6. Channel quality, consumption, and thresholds.

the uniform heuristic is asymptotically optimal as SNR goes
to infinity.

Fig. 5 is a graph that shows the effect of increasing
transmission time on average throughput for three different
average received signal-to-noise ratios. As might be expected,
increasing the available time for transmission invariably in-
creases the average throughput.

B. Throughput Maximization, Piecewise Linear f(c, q)

In this subsection, we examine the performance of an
optimal policy for throughput maximization in the case where
f(c, q) is piecewise linear. We compare the performance of an
optimal policy to a threshold heuristic that transmits whenever
the channel quality is above a fixed threshold. We find that
no matter what threshold is used in the heuristic, we are able
to obtain superior average performance by using our optimal
policy.

The scenario consists of 50 time steps where the channel
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Fig. 7. Throughput for optimal and threshold policies.

throughput qk per unit energy is integer valued and Rayleigh
distributed with a mean of 20 during each time step. It is
assumed that consuming c units of energy yields qk min(c, P )
units of throughput, where the power limit P for each time step
is 10 units of energy. The initial energy is 95 energy units.
Fig. 6 shows a set of randomly generated channel qualities
and the consumption schedule as determined by the optimal
policy. The figure also shows a set of thresholds corresponding
to values of γi

j generated by the optimal policy. This allows
one to gain an idea of how the optimal policy functions.
The topmost dashed line is the value of γk+1

k+1 at each time
step k. This represents the expected throughput that can be
obtained per unit energy for the first ten units of energy saved.
The dashed line just below the top is the value of γk+2

k+1 .
Unsurprisingly, this represents the expected throughput per
unit energy for the next ten units of energy saved. The pattern
continues for the rest of the dashed lines.

The lines represent thresholds between consuming and
saving energy. With the battery full, at energy state 95, the op-
timal policy consumes energy when channel quality is higher
than the bottom-most threshold line. This line represents the
expected throughput that can be obtained by the 91st to
100th unit of energy saved. Whenever the current possible
throughput is higher than the expected future throughput, the
optimal policy consumes.

After the first transmission, the battery only has 85 units
of energy. At this point, the threshold line second from the
bottom becomes relevant because it represents the expected
throughput from the 81st through 90th energy units saved. The
optimal policy consumes when the current channel quality is
greater than this threshold. Notice also that the optimal policy
will only consume five energy units if the current channel
quality is greater than this threshold but less than the threshold
just above it.

Fig. 7 shows the average throughput obtained by the op-
timal policy and different fixed threshold policies. The fixed
threshold policies always consume as much energy as possible
when the channel state is better than or equal to the threshold,
and save energy otherwise. The average throughput for each
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Fig. 8. Expected throughput under an optimal policy for different κ and
initial energy.

policy was obtained by generating 500 different channel
state trajectories and applying the policies to each trajectory.
The horizontal dashed line represents the average throughput
obtained by the optimal threshold policy, and the solid line
plots the throughput obtained by a fixed threshold policy as
a function of the threshold. The leftmost point on the curve
(threshold = 1) represents a greedy heuristic that transmits
no matter what the channel quality, while the rightmost points
represent heuristics that transmit only for the very best channel
states. As can be seen from the figure, the optimal policy
obtained a higher average throughput than any possible simple
fixed threshold policy. The advantage of the optimal policy
is further enhanced by the fact that finding the best simple
threshold is often nontrivial. Moreover, Fig. 7 shows a large
sensitivity to error: a poorly chosen threshold will result in a
rapid decrease in performance.

C. Throughput Maximization, Markov Channel Model

In this section, we use a version of the Markovian fad-
ing channel model detailed in [24]. We assume the en-
ergy/transmission tradeoff is piecewise linear and given by
f(c, q) = qmin(c, P ). The channel quality at time k, qk, is
generated by the model

qk = |κqk−1 + vk|
where the noise vn is zero-mean complex Gaussian with
standard deviation σ per unit dimension, and κ is a constant.
Thus, qk follows a Rician distribution with parameters κqk−1

and σ. The constant κ is given by κ = .5
Tc
Ts , where Tc is the

coherence time of the channel and Ts is the length of the time
slot.

For this example, we assume a channel coherence time of
10ms. A timeslot of length 10ms (used by third generation
W-CDMA systems) would result in κ = .5. We also assume a
standard deviation of σ = 10, 50 time slots, an initial channel
quality of q0 = 20 and a power limit P of 10 energy units
per time slot. Finally, we limit qk and energy states to integer
values.
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Fig. 9. Channel quality, data sent, and thresholds.

Fig. 8 shows the expected throughput obtained by the
optimal policy developed in section II-E for different values
of κ and different initial energies. In the degenerate case
when κ = 0, channel quality for each time slot follows
a Rayleigh distribution and is completely independent. The
expected throughput is simply the expended energy multiplied
by the mean of the Rayleigh distribution, which is σ

√
π
2 . As κ

increases, the transmitter is increasingly able to predict future
channel states, and can hence obtain increasing throughput.

D. Energy Minimization

We now present a similar example of an energy minimiza-
tion problem. We consider a scenario where the transmitter
has 50 time steps to send 95 units of data. Channel quality qk
is integer and Rayleigh distributed with a mean of 20, and a
power limit of 10 energy units is imposed. Sending s units of
data requires s/qk units of energy.

Fig. 9 shows the channel qualities and the data transmission
schedule as determined by our optimal policy. The figure also
shows a set of thresholds corresponding to values of ηi

k+1

generated by the optimal policy. The topmost dashed line
is the value of η1

k+1 for each time step k. This represents
the expected data that can be transmitted per unit energy for
the first ten units of energy saved. The pattern continues;
the dashed line just below the top is the value of η2

k+1 and
represents the expected throughput per unit energy for the next
ten units of energy saved. These threshold lines are used in
the same fashion as those of Fig. 6.

Unlike the problem of throughput maximization, a policy
that uses a fixed threshold at all times would not be appro-
priate. This is because unless the threshold is below qmin,
the expected cost would be infinite, as there is a positive
probability that the channel quality would be equal to qmin

at all times. We consider instead a threshold policy of the
following type: For times k such that

n− k ≤ d0

Pqmin
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Fig. 10. Energy consumed for optimal and threshold policies.

(that is, using the parameters in this example, for k ≥ 41), the
threshold is at zero and we always transmit at full power. For
earlier times, we transmit if and only if the channel quality is
above a threshold.

Fig. 10 shows the average energy consumed by different
fixed threshold policies as a percentage of that consumed by
the optimal policy. The results were obtained by applying the
policies to 500 randomly generated channel state trajectories.
The optimal policy obtained a significantly lower energy cost
than any possible threshold policy of the type described above.

V. CONCLUSION

This paper used dynamic programming to develop strategies
for transmission optimization over a wireless fading chan-
nel with energy, power and deadline constraints. Through-
put maximization and energy minimization strategies were
developed, first for channels with known fade states, and
then for channels with fade states unknown until just before
transmission. For the general case, the concave form of the
value function was shown, and a method of finding the
optimal policy was provided. In addition, closed-form optimal
policies were derived for the special case of a piecewise linear
energy-throughput relationship. Furthermore, the problem of
throughput maximization in the case where fade states are not
known before transmission and evolve according to a Markov
process was also examined. Again, a general methodology was
developed, along with a closed-form optimal policy for the
piecewise linear special case.
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