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Abstract

In this paper, we present a novel and principled

approach to learn the optimal transport between

two distributions, from samples. Guided by the

optimal transport theory, we learn the optimal

Kantorovich potential which induces the optimal

transport map. This involves learning two convex

functions, by solving a novel minimax optimiza-

tion. Building upon recent advances in the field

of input convex neural networks, we propose a

new framework to estimate the optimal transport

mapping as the gradient of a convex function that

is trained via minimax optimization. Numerical

experiments confirm the accuracy of the learned

transport map. Our approach can be readily used

to train a deep generative model. When trained be-

tween a simple distribution in the latent space and

a target distribution, the learned optimal transport

map acts as a deep generative model. Although

scaling this to a large dataset is challenging, we

demonstrate two important strengths over stan-

dard adversarial training: robustness and discon-

tinuity. As we seek the optimal transport, the

learned generative model provides the same map-

ping regardless of how we initialize the neural

networks. Further, a gradient of a neural network

can easily represent discontinuous mappings, un-

like standard neural networks that are constrained

to be continuous. This allows the learned trans-

port map to match any target distribution with

many discontinuous supports and achieve sharp

boundaries.
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1. Introduction

Finding a mapping that transports mass from one distri-

bution Q to another distribution P is an important task in

various machine learning applications, such as deep genera-

tive models (Goodfellow et al., 2014; Kingma & Welling,

2013) and domain adaptation (Gopalan et al., 2011; Ben-

David et al., 2010). Among infinitely many transport maps

T that can map a random variable X from Q such that T (X)
is distributed as P , several recent advances focus on dis-

covering some inductive bias to find a transport map with

desirable properties. Research in optimal transport has been

leading such efforts, in applications such as color transfer

(Ferradans et al., 2014), shape matching (Su et al., 2015),

data assimilation (Reich, 2013), and Bayesian inference

(El Moselhy & Marzouk, 2012). Searching for an optimal

transport encourages a mapping that minimizes the total cost

of transporting mass from Q to P , as originally formulated

in Monge (1781), and provides the inductive bias needed

in many such applications. However, finding the optimal

transport map in general is a challenging task, especially in

high dimensions where efficient approaches are critical.

Algorithmic solutions are well-established for discrete vari-

ables; the optimal transport can be found as a solution to

linear program. Building upon this mature area, typical

approaches for general distributions use quantization of the

space, which becomes computationally intensive for high-

dimensional variables we encounter in modern applications

(Evans & Gangbo, 1999; Benamou & Brenier, 2000; Pa-

padakis et al., 2014).

There has been a vast amount of works to extend the com-

putation of the optimal transport map to high-dimensional

setting (Seguy et al., 2017; Genevay et al., 2016; Xie et al.,

2019; Liu et al., 2018; Chen et al., 2019). In this paper, we

propose a novel minimax optimization approach to search

for the optimal transport under the quadratic distance (i.e. 2-

Wassertstein metric). A major challenge in a minimax for-

mulation of optimal transport is that the constraints in the

Kantorovich dual formulation (3) are notoriously challeng-

ing. They require the evaluation of the functions at every

point in the domain, which is not tractable. A common

straightforward heuristics sample some points and add those

sampled constraints as regularizers. Such regularizations

create biases that hinder learning the true optimal transport.
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(a) Data samples (b) Our transport map (c) Displacement vector field (d) Level sets

Figure 1. Results on Checkerboard dataset. (a) Samples from the source (orange) and target (green) distributions; (b) The learned transport

map and the generated distribution, via Algorithm 1; (c) The learned displacement vector field generated by ∇g(y)− y; (d) The level sets

of the original dual variable g(y)− 1

2
|y|2. The experimental details are included in Section 4.1.

Our key innovation is to depart from this common practice;

we instead eliminate the constraints by restricting our search

to the set of all convex functions, building upon the funda-

mental connection from Brenier’s Theorem 3.1. This leads

to a novel minimax formulation in (5). Leveraging on recent

advances in input convex neural networks, we propose a

new architecture and a training algorithm for solving this

minimax optimization. We establish the consistency of our

proposed minimax formulation in Theorem 3.3. In particu-

lar, we show that the solution to this optimization problems

yields the exact optimal transport map. We provide stability

analysis for the proposed estimator in Theorem 3.6.

Further, when used to train deep generative models, our

approach can be viewed as a novel framework to train a gen-

erator that is modeled as a gradient of a convex function. We

provide a principled training rule based on the optimal trans-

port theory. This ensures that (i) the generator converges to

the optimal transport, independent of how we initialize the

neural network; and (ii) represent sharp boundaries when

the target has multiple disconnected supports. Gradient of a

neural network naturally represents discontinuous functions,

which is critical in mapping from a single connected support

to disconnected supports.

To model convex functions, we leverage Input Convex Neu-

ral Networks (ICNNs), a class of scalar-valued neural net-

works f(x; θ) such that the function x 7→ f(x; θ) ∈ R is

convex. These neural networks were introduced by Amos

et al. (2016) to provide efficient inference and optimiza-

tion procedures for structured prediction, data imputation

and reinforcement learning tasks. In this paper, we show

that ICNNs can be efficiently trained to learn the optimal

transport map between two distributions P and Q. To the

best of our knowledge, this is the first such instance where

ICNNs are leveraged for the well-known task of learning

optimal transport maps in a scalable fashion. This frame-

work opens up a new realm for understanding problems

in optimal transport theory using parametric convex neural

networks, both in theory and practice. Figure 1 provides an

example where the optimal transport map has been learned

via our proposed Algorithm 1 from the orange distribution

to the green distribution.

Notation. P(X ) denotes the set of probability measures

on a Polish space X , and B(X ) denotes the Borel sub-

sets of X . For P ∈ P(X ) and Q ∈ P(Y), P ⊗ Q de-

notes the product measure on X × Y . For measurable

map T : X → Y , T#P denotes the push-forward of P
under T , i.e. (T#P )(A) = P (T−1(A)), ∀A ∈ B(Y).

L1(P ) , {f is measurable &
∫
f dP < ∞} denotes the

set of integrable functions with respect to P . CVX(P ) de-

notes the set of all convex functions in L1(P ). Id : x 7→ x
denotes the identity function. 〈·, ·〉 and ‖ · ‖ denote the

inner-product and ℓ2-Euclidean norm.

2. Background on optimal transport

Let P and Q be two probability distributions on R
d with

finite second order moments. The Monge’s optimal trans-

portation problem is to transport the probability mass under

Q to P with the least amount of cost1, i.e.

minimize
T :T#Q=P

1

2
EX∼Q‖X − T (X)‖2. (1)

Any transport map T achieving the minimum in (1) is called

optimal transport map. Optimal transport map may not

exist. In fact, the feasible set in the above optimization

problem may itself be empty, for example when Q is a

Dirac distribution and P is any non-Dirac distribution.

The Monge problem (1) is highly nonlinear and difficult to

analyze. Kantorovich introduced a relaxation of the prob-

lem,

W 2
2 (P,Q) , inf

π∈Π(P,Q)

1

2
E(X,Y )∼π‖X − Y ‖2, (2)

where Π(P,Q) denotes the set of all joint probability distri-

butions (or equivalently, couplings) whose first and second

marginals are P and Q, respectively. The optimal value

1In general, Monge’s problem is defined in terms of cost func-
tion c(x, y). This paper is concerned with quadratic cost function
c(x, y) = 1

2
‖x − y‖2 because of its nice geometrical properties

and connection to convex analysis (Villani, 2003, Ch. 2).
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in (2) is the 2-Wasserstein distance W2(·, ·) squared. Any

coupling π achieving the infimum is called the optimal cou-

pling. Optimization problem (2) is also referred to as the

primal formulation for 2-Wasserstein distance.

Kantorovich also provided a dual formulation for (2), known

as the Kantorovich duality (Villani, 2003, Theorem 1.3),

W 2
2 (P,Q) = sup

(f,g)∈Φc

EP [f(X)] + EQ[g(Y )], (3)

where Φc denotes the constrained space of functions, de-

fined as Φc ,
{
(f, g) ∈ L1(P )× L1(Q) : f(x) + g(y) ≤

1
2‖x− y‖22, ∀(x, y) dP ⊗ dQ a.e.

}
.

The dual problem (3) can be recast as an stochastic optimiza-

tion problem by approximating the expectations using inde-

pendent samples from P and Q. However, there is no easy

way to ensure the feasibility of the constraint (f, g) ∈ Φc

along the gradient updates. Common approach is to trans-

late the optimization into a tractable form, while sacrificing

the original goal of finding the optimal transport map. Con-

cretely, an entropic or a quadratic regularizer is added to

the primal problem (2) (Cuturi, 2013; Essid & Solomon,

2018; Peyré et al., 2019; Blondel et al., 2017). Then, the

dual to the regularized primal problem is an unconstrained

version of (3) with additional penalty term. The uncon-

strained problem can be numerically solved using Sinkhorn

algorithm in discrete setting (Cuturi, 2013) or stochastic

gradient methods with suitable function representation in

continuous setting (Genevay et al., 2016; Seguy et al., 2017).

The optimal transport can then be obtained from f and g,

using the first-order optimality conditions of the Fenchel-

Rockafellar’s duality theorem (Seguy et al., 2017), or by

training a generator through an adversarial computational

procedure (Leygonie et al., 2019).

In this paper, we take a different approach: solve the dual

problem without introducing a regularization. This builds

upon (Taghvaei & Jalali, 2019), where ICNN for the task of

approximating the Wasserstein distance and optimal trans-

port map is originally proposed. We bring the idea pro-

posed (Taghvaei & Jalali, 2019) into practice by introducing

a novel minimax optimization formulation. We describe our

proposed method in Section 3 and provide a detailed com-

parison in Remark 3.5. Discussion about other related works

(Lei et al., 2017; Guo et al., 2019; Xie et al., 2019; Muzellec

& Cuturi, 2019; Rabin et al., 2011; Korotin et al., 2019; Liu

et al., 2018; Chen et al., 2019) appears in Appendix ??.

3. A novel minimax formulation to learn

optimal transport

Our goal is to learn the optimal transport map T ∗ from Q to

P , from samples drawn from P and Q, respectively. We use

the fundamental connection between optimal transport and

Kantorovich dual in Theorem 3.1, to formulate learning T ∗

as a problem of estimating W 2
2 (P,Q). However, W 2

2 (P,Q)
is notoriously hard to estimate. The standard Kantorovich

dual formulation in Eq. (3) involves a supremum over a set

Φc with a pointwise constraints, which is challenging to

even approximately project onto. To this end, we derive an

alternative optimization formulation in Eq. (5), inspired by

the convexification trick (Villani, 2003, Section 2.1.2). This

allows us to eliminate the distance constraint of Φc, and

instead constrain our search over all convex functions. This

constrained optimization can now be seamlessly integrated

with recent advances in designing deep neural architectures

with convexity guarantees. This leads to a novel minimax

optimization to learn the optimal transport.

We exploit the fundamental properties of W 2
2 (P,Q) and

the corresponding optimal transport to reparametrize the

optimization formulation. Note that for any (f, g) ∈ Φc,

f(x) + g(y) ≤
1

2
‖x− y‖22 ⇐⇒

[
1

2
‖x‖22 − f(x)

]
+

[
1

2
‖y‖22 − g(y)

]
≥ 〈x, y〉.

Hence reparametrizing 1
2‖ · ‖

2
2 − f(·) and 1

2‖ · ‖
2
2 − g(·) by

f and g respectively, and substituting them in (3) yields

W 2
2 (P,Q) = CP,Q − inf

(f,g)∈Φ̃c

{
EP [f(X)] + EQ[g(Y )]

}
,

where CP,Q = (1/2)E[‖X‖22 + ‖Y ‖
2
2] is a constant inde-

pendent of (f, g) and Φ̃c , {(f, g) ∈ L1(P ) × L1(Q) :
f(x) + g(y) ≥ 〈x, y〉, ∀(x, y) dP ⊗ dQ a.e.}. While the

above constrained optimization problem involves a pair of

functions (f, g), it can be transformed into the following

form involving only a single convex function f , thanks to

Villani (2003, Theorem 2.9):

W 2
2 (P,Q)=CP,Q− inf

f∈CVX(P )
EP [f(X)]+EQ[f

∗(Y )], (4)

where f∗(y) = supx〈x, y〉 − f(x) is the convex conjugate

of f(·).

The crucial tools behind our formulation are the following

celebrated results due to Knott-Smith and Brenier (Villani,

2003), which relate the optimal solutions for the dual form

in (4) and the primal form in (2).

Theorem 3.1 ((Villani, 2003, Theorem 2.12)). Let P,Q be

two probability distributions on R
d with finite second order

moments. Then,

1. (Knott-Smith optimality criterion) A coupling π ∈
Π(P,Q) is optimal for the primal (2) if and only if

there exists a convex function f ∈ CVX(Rd) such that

Supp(π) ⊂ Graph(∂f). Or equivalently, for all dπ-

almost (x, y), y ∈ ∂f(x). Moreover, the pair (f, f∗)
achieves the minimum in the dual form (4).
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2. (Brenier’s theorem) If Q admits a density with respect

to the Lebesgue measure on R
d, then there is a unique

optimal coupling π for the primal problem. In particu-

lar, the optimal coupling satisfies that

dπ(x, y) = dQ(y)δx=∇f∗(y),

where the convex pair (f, f∗) achieves the minimum

in the dual problem (4). Equivalently, π = (∇f∗ ×
Id)#Q.

3. Under the above assumptions of Brenier’s theorem,

∇f∗ in the unique solution to Monge transportation

problem from Q to P , i.e.

EQ‖∇f
∗(Y )− Y ‖2 = inf

T :T#Q=P
EQ‖T (Y )− Y ‖2.

Remark 3.2. Whenever Q admits a density, we refer to

∇f∗ as the optimal transport map.

Henceforth, throughout the paper we assume that the dis-

tribution Q admits a density in R
d. Note that in view of

Theorem 3.1, any optimal pair (f, f∗) from the dual for-

mulation in (4) provides us an optimal transport map ∇f∗

pushing forward Q onto P . However, optimizing the ob-

jective (4) is challenging because it requires to compute

the conjugate function f∗. To this end, we propose a novel

minimax formulation in the following theorem where we

replace the conjugate with a new convex function.

Theorem 3.3. Whenever Q admits a density in R
d, we have

W 2
2 (P,Q) = sup

f∈CVX(P ),

f∗∈L1(Q)

inf
g∈CVX(Q)

VP,Q(f, g) + CP,Q, (5)

where VP,Q(f, g) is a functional of f, g defined as

VP,Q(f, g) = −EP [f(X)]−EQ[〈Y,∇g(Y )〉−f(∇g(Y ))].

In addition, there exists an optimal pair (f0, g0) achieving

the infimum and supremum respectively, where ∇g0 is the

optimal transport map from Q to P .

Proof sketch. The proof follows from the inequality

〈y,∇g(y)〉 − f(∇g(y)) ≤ f∗(y) for all functions g, and

then taking the expectation over Q, and observing that the

equality is achieved with g = f∗. The technical details

appear in Appendix ??.

Remark 3.4. For any convex function f , the function

g ∈ L1(Q) that achieves the infimum in (5) is convex and

equals f∗. Therefore, the constraint g ∈ CVX(Q) can be re-

laxed to g ∈ L1(Q) without changing the optimal value and

optimizing functions. We numerically observe that the opti-

mization algorithm performs better under this relaxation.

W1 W2
WL-1...

...

Figure 2. The input convex neural network (ICNN) architecture.

Formulation (5) now provides a principled approach to learn

the optimal transport mapping∇g(·) as a solution of a min-

imax optimization. Since the optimization involves the

search over the space of convex functions, we utilize the

recent advances in input convex neural networks (ICNNs)

to parametrize them as discussed in the following section.

3.1. Minimax optimization over ICNNs

We propose using parametric models based on deep neural

networks to approximate the set of convex functions. This is

known as input convex neural networks (Amos et al., 2016),

denoted by ICNN(Rd). We propose estimating the following

approximate Wasserstein-2 distance, from samples:

W̃ 2
2 (P,Q)= sup

f∈ICNN(Rd)

inf
g∈ICNN(Rd)

VP,Q(f, g)+CP,Q. (6)

ICNNs are a class of scalar-valued neural networks f(x; θ)
such that the function x 7→ f(x; θ) ∈ R is convex.

The neural network architecture for an ICNN is as follows.

Given an input x ∈ R
d, the mapping x 7→ f(x; θ) is given

by a L-layer feed-forward NN using the following equations

for l = 0, 1, . . . , L− 1:

zl+1 = σl(Wlzl +Alx+ bl), f(x; θ) = zL,

where {Wl}, {Al} are weight matrices (with the convention

that W0 = 0), and {bl} are the bias terms. σl denotes

the entry-wise activation function at the layer l. This is

illustrated in Figure 2. We denote the total set of parameters

by θ = ({Wl}, {Al}, {bl}). It follows from Amos et al.

(2016, Proposition 1) that f(x; θ) is convex in x provided

(i) all entries of the weights Wl are non-negative;

(ii) activation function σ0 is convex;

(iii) σl is convex and non-decreasing, for l = 1, . . . , L− 1.

While ICNNs are a specific parametric class of convex func-

tions, it is important to understand if this class is rich enough

representationally. This is answered positively by Chen et al.

(2018, Theorem 1). In particular, they show that any convex

function over a compact domain can be approximated in sup

norm by a ICNN to the desired accuracy. This justifies the

choice of ICNNs as a suitable approximating class for the

convex functions.
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Source Target Transp.

(a) Barycentric-OT (b) W1-LP (c) W2GAN (d) Our approach

Figure 3. The transport maps learned by various approaches on ‘Checker board’ and ‘mixture of eight Gaussians’ datasets. (a) Barycentric-

OT (Seguy et al., 2017); (b) W1-LP (Petzka et al., 2017); (c) W2-GAN (Leygonie et al., 2019); (d) Our approach (Algorithm 1). The

source distribution Q is highlighted in orange, target distribution P in green, the transported distribution T#Q in red, and the transport

map with blue arrows.

The proposed framework for learning the optimal transport

provides a novel training method for deep generative models,

where (a) the generator is modeled as a gradient of a convex

function and (b) the minimax optimization in (6) (and more

concretely, Algorithm 1) provides the training methodology.

On the surface, Eq. (6) resembles the minimax optimization

of generative adversarial networks based on Wasserstein-1

distance (Arjovsky et al., 2017), called WGAN. However,

there are several critical differences making our approach

attractive.

First, because WGANs use optimal transportation distance

only as a measure of distance, the learned generator map

from the latent source to the target is arbitrary and sensitive

to the initialization (see Figure 4) (Jacob et al., 2018). Sensi-

tivity to the initialization is observed o lead to mode collapse

in Stacked MNIST experiment (Lin et al., 2018). On the

other hand, our proposed approach aims to find the optimal

transport map and learns the same mapping regardless of

the initialization (see Figure 1).

Secondly, in a WGAN architecture (Arjovsky et al., 2017;

Petzka et al., 2017), the transport map (which is the genera-

tor) is represented with neural network that is a continuous

mapping. Although, a discontinuous map can be approx-

imated arbitrarily close with continuous neural networks,

such a construction requires large weights making train-

ing unstable. On the other hand, through our proposed

method, by representing the transport map with gradient

of a neural network (equipped with ReLU type activation

functions), we obtain a naturally discontinuous map. As a

consequence we have sharp transition from one part of the

support to the other, whereas GANs (including WGANs)

suffer from spurious probability masses that are not present

in the target. This is illustrated in Section 4.3. The same

holds for regularization-based methods for learning optimal

transport (Genevay et al., 2016; Seguy et al., 2017; Leygo-

nie et al., 2019), where transport map is parametrized by

continuous neural nets.

Remark 3.5. In a recent work, Taghvaei & Jalali (2019)

proposed to solve the semi-dual optimization problem (4)

by representing the function f with an ICNN and learning

it using a stochastic optimization algorithm. However, each

step of this algorithm requires computing the conjugate

f∗ for all samples in the batch via solving a inner convex

optimization problem for each sample which makes it slow

and challenging to scale to large datasets. Further it is

memory intensive as each inner optimization step requires

a copy of all the samples in the dataset. In contrast, we

represent the convex conjugate f∗ using ICNN and present a

novel minimax formulation to learn it, in a scalable manner.

3.2. Stability analysis of the learned transport map

Theorem 3.3 establishes the consistency of our proposed

optimization: if the objective (5) is solved exactly with a

pair of functions (f0, g0), then ∇g0 is the exact optimal

transport map from Q to P . In this section, we study the

error in approximating the optimal transport map∇g0, when

the objective (5) is solved up to a small error. To this end,

we build upon the recent results from Hütter & Rigollet
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(2019, Prop. 8) regarding the stability of optimal transport

maps.

Recall that the optimization objective (5) involves a min-

imization and a maximization. For any pair (f, g), let

ǫ1(f, g) denote the minimization gap and ǫ2(g) denote the

maximization gap, defined according to:

ǫ1(f, g) = V(f, g)− inf
g̃∈CVX(Q)

V(f, g̃), (7)

ǫ2(f) = sup
f̃∈CVX(P )

inf
g̃∈CVX(Q)

V(f̃ , g̃)− inf
g̃∈CVX(Q)

V(f, g̃)

Then, the following theorem bounds the the error between

∇g and the optimal transport map ∇g0 as a function ǫ1 and

ǫ2. We defer its proof to Appendix ??.

Theorem 3.6. Consider the optimization problem (5). As-

sume Q admits a density and let ∇g0(·) denote the optimal

transport map from Q to P . Then for any pair (f, g) such

that f is strongly convex, we have

‖∇g −∇g0‖
2
L2(Q) ≤

2

α
(ǫ1(f, g) + ǫ2(f)),

where ǫ1 and ǫ2 are defined in (7), and ‖ · ‖L2(Q) denotes

the L2-norm with respect to measure Q.

Remark 3.7. Dependency in Thm. 3.6 on α is fundamental.

For small α, there are examples where the optimization gaps

are small but the error in LHS is large. Further, Thm. 3.6

captures the difficulty of training if true distribution has

supports that are (nearly) disjoint. In this case, the optimal

function f is not strongly convex and hence the upper-bound

is large. Numerically, in order to search over strong convex

f , we can add a small quadratic term to the output of ICNN.

4. Experiments

In this section, first we qualitatively illustrate our proposed

approach (see Figure 3) on the following two-dimensional

synthetic datasets: (a) Checkerboard, (b) Mixture of eight

Gaussians. We compare our method with the following

three baselines: (i) Barycentric-OT (Seguy et al., 2017),

(ii) W1-LP, which is the state-of-the-art Wasserstein GAN

introduced by (Petzka et al., 2017), (iii) W2GAN (Leygonie

et al., 2019). Note that while the goal of W1-LP is not to

learn the optimal transport map, the generator obtained at

the end of its training can be viewed as a transport map. For

all these baselines, we use the implementations (publicly

available) of Leygonie et al. (2019) which has the best set

of parameters for each of these methods. In Section 4.2

and Section 4.3, we highlight the respective robustness and

the discontinuity of our transport maps as opposed to other

approaches. Finally, in Section 4.4, we show the effective-

ness of our approach on the challenging task of learning

the optimal transport map on a variety of synthetic and real

world high-dimensional data. Full experimental details are

provided in Appendix ??.

Training methodology. We utilize our minimax formu-

lation in (6) to learn the optimal transport map. We

parametrize the convex functions f and g using the same

ICNN architecture (Figure 2). Recall that to ensure convex-

ity, we need to restrict all weights Wℓ’s to be non-negative

(Assumption (i) in ICNN). We enforce it strictly for f , as the

maximization over g can be unbounded, making optimiza-

tion unstable, whenever f is non-convex. However, we relax

this constraint for g (as permitted according to Remark 3.4)

and instead introduce a regularization term

R(θg) = λ
∑

Wl∈θg

‖max(−Wl, 0)‖
2
F , (8)

where λ > 0 is a regularization constant and the maximum

is taken entry-wise for all the weight parameters {Wl} ⊂
θg. We empirically observe that this relaxation makes the

optimization converge faster.

For both the maximization and minimization updates in (6),

we use Adam (Kingma & Ba, 2014). At each iteration, we

draw a batch of samples from P and Q denoted by {Xi}
M
i=1

and {Yj}
M
j=1 respectively. Then, we use the following ob-

jective for optimization which is an empirical counterpart

of (6):

max
θf :Wℓ≥0,∀ℓ∈[L−1]

min
θg

J(θf , θg) +R(θg), (9)

where θf , θg are the parameters of f and g, respectively,

Wℓ ≥ 0 is an entry-wise constraint, and

J(θf , θg) =
1

M

M∑

i=1

f(∇g(Yi))− 〈Yi,∇g(Yi)〉 − f(Xi).

This is summarized in Algorithm 1. In the remainder of

the paper, we interchangeably refer to Algorithm 1 as either

‘Our approach’ or ‘Our algorithm’2.

Remark 4.1. Note that the regularization term R(θg) is

data-independent and does not introduce any bias to the

optimization problem. For any convex function f , the mini-

mizer of the problem (9) is still a convex function g as dis-

cussed in Remark 3.4. We use this regularization to guide

the algorithm towards neural networks that are convex.

4.1. Learning the optimal transport map

As highlighted in Figure 1 and Figure 3d, qualitatively, we

observe that our proposed procedure indeed learns the opti-

mal transport map on both the Checkerboard and Mixture of

eight Gaussians datasets. In particular, our transport map is

2Source code is available at https://github.com/

AmirTag/OT-ICNN.

https://github.com/AmirTag/OT-ICNN
https://github.com/AmirTag/OT-ICNN
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(a) W1-LP: Trial 1 (b) W1-LP: Trial 2 (c) W2GAN: Trial 1 (d) W2GAN: Trial 2

Figure 4. Transport maps learned by W1-LP (Petzka et al., 2017) and W2GAN (Leygonie et al., 2019) under different random initialization.

Algorithm 1 The numerical procedure to solve the opti-

mization problem (9).

Input: Source dist. Q, Target dist. P , Batch size M ,

Generator iterations K, Total iterations T
for t = 1, . . . , T do

Sample batch {Xi}
M
i=1 ∼ P

for k = 1, . . . ,K do

Sample batch {Yi}
M
i=1 ∼ Q

Update θg to minimize (9) using Adam method

end for

Update θf to maximize (9) using Adam method

Projection: w ← max(w, 0), for all w ∈ {W l} ∈ θf
end for

able to cut the continuous mass symmetrically and transport

it to the nearest target support in both these examples. Also,

Figure 3 illustrates the qualitative difference of our approach

compared to other approaches, in terms of non-optimality

and existence of trailing dots. The existence of trailing dots

is due to representing the transport map with continuous

neural networks, discussed in Section 4.3.

4.2. Robustness of learning transport maps

In this section we numerically illustrate that the generator in

W1-LP and W2GAN finds arbitrary transport maps, and it

is sensitive to initialization as discussed in Section 3. This is

in stark contrast with our proposed approach which finds the

optimal transport independent of the initialization. We con-

sider the previous Checkerboard example (Figure 1a) and

train W1-LP and W2GAN with different random initializa-

tions. The resulting transport maps for two different random

trials are depicted in Figure 4a and Figure 4b for W1-LP,

and Figure 4c and Figure 4d for W2-GAN. In addition to

the fact that the learned transport map is very sensitive to

initializations, the quality of the samples generated by those

trained models are also sensitive. This is a major challenge

in training GANs (Lin et al., 2018).

4.3. Learning discontinuous transport maps

The power to represent a discontinuous transport mapping

is what fundamentally sets our proposed method apart from

the existing approaches, as discussed in Section 3. Two

prominent approaches for learning transport maps are gen-

erative adversarial networks (Arjovsky et al., 2017; Petzka

et al., 2017) and regularized optimal transport (Genevay

et al., 2016; Seguy et al., 2017). In both cases, the transport

map is modeled by a standard neural network with finite

depth and width, which is a continuous function. As a con-

sequence, continuous transport maps suffer from unintended

and undesired spurious probability mass that connects dis-

joint supports of the target probability distribution.

First, standard GANs including the original GAN (Good-

fellow et al., 2014) and variants of WGAN (Arjovsky et al.,

2017; Gulrajani et al., 2017; Wei et al., 2018) all suffer

from spurious probability masses. Even those designed to

tackle such spurious probability masses, like PacGAN (Lin

et al., 2018), cannot overcome the barrier of continuous

neural networks. This suggests that fundamental change

in the architecture, like the one we propose, is necessary.

Figure 3b illustrates the same scenario for the transport map

learned through the WGAN framework. We can observe the

trailing dots of spurious probability masses, resulting from

undesired continuity of the learned transport maps.

Similarly, regularization methods to approximate optimal

transport maps, explained in Section 2, suffer from the same

phenomenon. Representing a transport map with an inher-

ently continuous function class results in spurious probabil-

ity masses connecting disjoint supports. Figure 3a, corre-

sponding to Barycentric-OT, illustrates those trailing dots

of spurious masses for the learned transport map from al-

gorithm introduced in Seguy et al. (2017). We also observe

a similar phenomenon with Leygonie et al. (2019) as illus-

trated in Figure 3c.

On the other hand, we represent the transport map with the

gradient of a neural network (equipped with non-smooth

ReLU type activation functions). The resulting transport

map can naturally represent discontinuous transport maps,
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(a) Estimated distance
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Figure 5. Numerical results on high-dimensional experiments of Section 4.4: (a) Convergence of our estimated W2 distance to the actual

value when transporting N (0, Id) to N (α1, Id) where d = 784; (b) Transporting a 784-dim Gaussian to a 2-dim Gaussian mixture

embedded in 784-dim space; (c) Samples from the source distribution corresponding to first five MNIST digits, embedded into 16-dim.

feature space. (d) Image of the samples under the learned optimal transport map, where the target distribution is the last five digits.

as illustrated in Figure 1b and Figure 3d. The vector field

of the learned transport map in Figure 1c clearly shows the

discontinuity of the learned optimal transport. The spurious

points in Figure 3d are due to finite sample effects and are

expected to decrease with more training samples.

4.4. High dimensional experiments

We consider the challenging task of learning optimal trans-

port maps on high dimensional distributions. In particular,

we consider both synthetic and real world high dimensional

datasets and provide quantitative and qualitative illustration

of the performance of our proposed approach.

Gaussian to Gaussian. Source distribution Q = N (0, Id)
and target distribution P = N (µ, Id), for some fixed

µ ∈ R
d and d = 784. The mean vector µ = α(1, . . . , 1)⊤

for some parameter α > 0. Because both distributions are

Gaussian, the optimal transport map is explicitly known:

T ∗(x) = x+ µ and hence W 2
2 (P,Q) = ‖µ‖2/2 = α2d/2.

In Figure 5a, we compare our estimated distance W̃ 2
2 (P,Q),

defined in (6), with the exact value W 2
2 (P,Q), as the train-

ing progresses for various values of α ∈ {1, 5, 10}. Intu-

itively, learning is more challenging when α is larger. Fur-

ther, error in learning the optimal transport map, quantified

with the metric ‖µT (Q) − µ‖2, where µT (Q) is the mean

of the transported distribution T#Q, is reported in Table 1.

For comparison, the result using the W2GAN approach is

included.

Table 1. The error between the mean of transported and that of the

target distributions. The source and target are 728-dim. Gaussians.

APPROACH α = 1 α = 5 α = 10

OUR APPROACH 0.19 ± 0.015 13.95 ± 1.45 29.05 ± 5.16

W2GAN 1.30 37.9 66.7

High-dim. Gaussian to low-dim. mixture. Source dis-

tribution Q is standard Gaussian N (0, Id) with d = 784,

and the target distribution P is a mixture of four Gaussians

that lie in in the two-dimensional subspace of the high-

dimensional space R
d, i.e. the first two components of the

random vector X ∼ P is mixture of four Gaussians, and

the rest of the components are zero. The projection of the

learned optimal transport map onto the first four compo-

nents is depicted in Figure 5b. As illustrated in the left

panel of 5b, our transport map correctly maps the source

distribution to the mixture of four Gaussians in the first two

components. And it maps the rest of the components to zero,

as highlighted by a red blob at zero in the right panel.

MNIST {0, 1, 2, 3, 4} to MNIST {5, 6, 7, 8, 9}. We con-

sider the standard MNIST dataset (LeCun et al., 1998) with

the goal of learning the optimal transport map from the set

of images corresponding to first five digits {0, 1, 2, 3, 4} to

the last five digits {5, 6, 7, 8, 9}. To achieve this, we em-

bed the images into the a space where the Euclidean norm

‖ · ‖ between the embedded images is meaningful. This

is in alignment with the reported results in the literature

for learning the L2-optimal transport map (Yang & Karni-

adakis, 2019, Sec. 4.1). We consider the embeddings into a

16-dimensional latent feature space given by a pre-trained

Variational Autoencoder (VAE). We simulate our algorithm

on this feature space. The results of the learned transport

map are depicted in Figure 5. Figure 5c presents samples

from the source distribution and Figure 5d illustrates the

source samples after transportation under the learned op-

timal transport map. We observe that the digits that look

alike are coupled via the optimal transport map, e.g. 1→ 9,

2→ 8, and 4→ 9.

Gaussian to MNIST. The source is 16-dimensional stan-

dard Gaussian distribution, and the target is the 16-

dimensional latent embeddings of all the MNIST digits. The

MNIST like samples that are generated from the learned

optimal transport map are depicted in Figure 6.
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Figure 6. MNIST like samples generated by the learned optimal

transport map from Gaussian source distribution in feature space.

These experiments serve as a proof of concept that the al-

gorithm scales to high-dimensional setting and real-world

dataset. We believe that further improvements on the per-

formance of the proposed algorithm requires careful tuning

of hyper-parameters which takes time to develop (similar to

initial WGAN) and is a subject of ongoing work.

5. Conclusion

We presented a novel minimax framework to learn the op-

timal transport map under W2-metric. Our framework is

in contrast to regularization-based approaches, where the

constraint of the dual Kantorovich problem is replaced with

a penalty term. Instead, we represent the dual functions

with ICNN, so that the constraint is automatically satisfied.

Further, the transport map is expressed as gradient of a con-

vex function, which is able to represent discontinuous maps.

We believe that our framework paves way for bridging the

optimal transport theory and practice.
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