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Optimal transport of ultracold atoms in the non-adiabatic regime
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We report on the transport of ultracold atoms with optical tweezers in the non-adiabatic regime
i.e. on a time scale on the order of the oscillation period. To quantitatively interpret our data, we
provide a fruitful analogy between the transport and the Fraunhofer diffraction of an object having
a transmittance with the same shape as the one of the velocity profile imposed on center of the trap.
The damping of the Kohn’s mode due to the non-linear mixing turns out to be reminiscent of the
effect of a finite coherence source for its optical counterpart.

PACS numbers: 32.80.Pj,39.25.+k,42.50.Vk

The controlled transport of ultracold atoms is crucial
for the development of experiments in atomic physics. It
renders possible to deliver cold atoms in a region free
of the laser beams and coils of the magneto-optical trap
(MOT), allowing a better optical and mechanical access.
It also opens new perspectives for probing a surface or
any material structure, and for loading atoms in opti-
cal lattices, or for positioning atoms in a high-Q optical
cavity [1, 2]. In addition it renders possible a new gen-
eration of experimental setups where ultracold clouds of
atoms would be delivered on demand on a variety of dif-
ferent experimental platforms separated by macroscopic
distances. This is standard for charged particles and en-
ergetic neutral particles, it has also been recently accom-
plished with ultracold atoms by moving slowly optical
tweezers [3]. Transport of cold packets of atoms is also of
importance as a step towards the continuous production
of a Bose-Einstein condensate [4, 5].

Magnetic transport has been demonstrated in macro-
scopic traps by moving mechanically a pair of coils [6, 7]
or by using a set of coils with time-varying currents [8].
Those traps use a three-dimensional quadrupole config-
uration with a vanishing field at the center. The corre-
sponding linear potential rapidly yields non-linear mixing
resulting in a heating of the sample if the trap displace-
ment is not performed in the adiabatic limit for which
the duration of the transport is long with respect to the
typical oscillation period of the trapped atoms. Alter-
natively one can resort to transport with Ioffe-Pritchard
traps which have a harmonic bottom shape [5, 9, 10, 11],
with optical tweezers as recently demonstrated on Bose
condensed clouds [4] or with 1-D optical lattices [12, 13].

So far, the transport of atoms has been investigated
only in the adiabatic regime. The issue of an optimal
transport beyond this limit has been addressed numer-
ically for ions in Paul traps [14]. In this article, we re-
port on the transport of a cold atom cloud in the non-
adiabatic regime with a high degree of control by means
of optical tweezers. We also demonstrate how a fruitful
analogy with optics permits to work out a new picture
of the transport yielding a simple interpretation of our
data and providing new methods for optimization.

The shape of the moving potential used to transport
the atoms has a crucial role. The harmonic potential is
of particular interest since the center of mass motion or
otherwise stated the Kohn’s mode is not coupled to the
other degrees of freedom, and this is true both in presence
and absence of interactions between atoms and both for
classical and quantum physics.

We begin with a simple one-dimensional analytical
model that provides a good quantitative understanding
of the physics of the center of mass motion of a packet of
atoms transported by a moving harmonic potential. We
consider an atomic packet initially at rest in a harmonic
trap of angular frequency ω0, and with a r.m.s. size ∆x.
The trap position is given by the position of its center
xc(t). For an atom of mass m, the imposed movement
of the trap can be considered as an extra force whose
expression is −mẍc(t) in the frame attached to the trap.

According to Newton’s law, the time dependent posi-
tion x(t) of the center of mass obeys the relation:

x(t) = xc(t) +
1

ω0

∫ t

0

dt′ sin[ω0(t
′ − t)]ẍc(t

′) . (1)

After transporting the atoms from a point A to a point
B (see Fig. 1.a) in a finite time T , the center of mass
may oscillate. The amplitude A of this oscillatory mo-
tion is readily inferred from Eq. (1), and corresponds to
the Fourier transform of the velocity profile of the trap’s
center position:

A(T, ω0) = |F [ẋc](ω0)| , (2)

with F [f ] =
∫ +∞

−∞
f(t)e−iωt dt.

The simplest way to transport the packet of atoms
from a point A to a point B separated by a distance d is
to accelerate at a constant rate a during a time τ and to
decelerate at the opposite rate −a during the same time,
yielding a Λ velocity profile (see Fig. 1.a). The parame-
ters d, a and τ are then linked by the relation aτ2 = d.
The resulting final amplitude, plotted on Fig. 1.b, is de-
duced from Eq. (2): A(2τ, ω0) = d.sinc2(ω0τ/2), where
the sinc(x) function is defined as sin(x)/x. Its zeros as
a function of time are the optimal transport durations
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FIG. 1: (Color online). (a) We consider the transport of a
packet of atoms from a point A to a point B with a Λ-shape
profile for the velocity imposed on the center of the harmonic
trapping potential. (b) The residual amplitude A oscillation
of the center of mass after transport is the Fourier transform
of the velocity profile. An optimal transport (A = 0) can
be performed within a time on the order of the period of
oscillation T0 = 2π/ω0.

2τn = 2nT0, where T0 = 2π/ω0 is the period of oscillation
of the trap, and n a non zero integer. They correspond
to a transport without residual dipole mode excitation.
It is worth noticing that A2 is nothing but the far field
Fraunhofer diffraction pattern of an object with a trans-
mittance given by a Λ-shape similar to the one of the
velocity profile. We find, for this specific example, that
it is possible to move optimally a packet of atoms on
any distance d on a time as short as twice the oscillation
period. This is to be contrasted with the transport in
the adiabatic limit (ω0τ ≫ 1) for which the transport’s
duration is long compared to T0.

A reasonable definition of an “adiabatic criterium” for
the transport of a packet is that the amplitude of the
center of mass motion remains small with respect to its
size ∆x, or otherwise stated that the maximum accelera-
tion of the trap during the whole transport remains small
with respect to the acceleration scale ω2

0∆x. We point
out that the result obtained above is valid for arbitrary
values of the acceleration a = d/τ2, the movement can
thus be deeply in the non-adiabatic regime.

The Fourier transform formulation of the transport
allows for many enlightening analogies. For instance,
the minimum duration of an optimal transport, inde-
pendently of the specific shape of the velocity profile, is
necessarily larger than the period of oscillation T0. Our
example of a Λ velocity profile is already close to this
limit. As another example, a more elaborated sequence
where a packet of atoms is transported from a point A to
a point B, and then from B to C with a similar velocity
profile can be regarded as a Young’s two-slit experiment.

For the experimental implementation, we have used
optical tweezers generated by a focused laser beam (see
Fig. 2). We use an Ytterbium fiber laser (IPG LASER,
model YLR-300-LP) with a central wavelength of 1072
nm and a FWHM linewidth of 4 nm. The wavelength of
the laser is larger than the atomic resonance wavelength

elongated MOT

800 mm

72 mm -28 mm
translational stage

vacuum chamber

FIG. 2: Sketch of the main part of the experimental setup
(not to scale) — see text.

of 780.24 nm of the Rubidium 87 atoms, and thus, atoms
are attracted to the region of maximum intensity [15].
The laser beam intensity is controlled and stabilized to
better than 0.1% in a power range up to 100 W. The
beam is expanded with a two-lens telescope to a waist of
about 6 mm, and focused inside the vacuum chamber by
a lens with a 802 mm focal length (see Fig. 2). This final
lens is mounted on a translation stage (Newport linear
motor stage, model XMS100), allowing one to move the
optical tweezers longitudinally on a 100 mm range with
an absolute repeatability on the order of a few hundreds
of nm. The waist is on the order of 50 ± 4 µm, corre-
sponding to a Rayleigh length of 10.0 ± 0.5 mm, and a
potential depth Udepth of 3 mK at 80 W.

The optical tweezers are loaded from an elongated
MOT. The cigar-shape of the MOT results from the two-
dimensional magnetic gradients: (0, 5,−5) G/cm. The
MOT, loaded from a Zeeman slower, has a capture rate
on the order of 2×1010 atoms/s. To maximize the loading
of atoms into the dipole beam, the optical tweezers are
superimposed on the MOT along its long axis. In addi-
tion, we favour the selection of atoms in the hyperfine low
level 5S1/2, F = 1 by removing the repump light in the
overlapping region similarly to the dark MOT technique
[16].

The dipole trapping beam is turned on at a power of 80
W during the 500 ms loading time of the MOT. Then, we
increase the MOT detuning in 5 ms from −3Γ to −7.7Γ,
Γ being the natural frequency width of the excited state.
This procedure improves significantly the optical tweez-
ers loading. The magnetic field and repumping light are
switched off and a 1 ms polarization stage is applied to
optically pump atoms to the F = 1 ground sublevel. Fi-
nally all the MOT beams are turned off. The number of
atoms in the optical tweezers is as high as 3 × 107 cor-
responding to a peak atomic density of 5× 1012 at/cm3.
These numbers are measured 50 ms after switching off
the MOT beams, so a first evaporation has already oc-
curred on this timescale since the collision rate is larger
than 500 s−1.

The atomic packet is further cooled down by forced
evaporation achieved by lowering the beam power i.e. the
trap depth. Two different cooling schemes were used. In
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the first one, referred to scheme 1, the initial trapping
beam power is lowered in two linear ramps by a factor
of 23 within 600 ms. The final atomic cloud temper-
ature is 27 ± 1.0 µK. In scheme 2 the beam power is
decreased in four linear ramps by a factor of 170 within
3300 ms, resulting in a 3.7 ± 0.5 µK temperature of the
atomic packet. To render the trapping potential as har-
monic as possible one has to maximize the parameter
η = Udepth/kBT . This is achieved by adiabatically in-
creasing the power P after evaporation. In this process,
Udepth scales as P , while the temperature T increases at a
lower rate (∝ P 1/2) resulting in an increase of η ∝ P 1/2.
The trapping beam power after this re-compression and
before transporting the atoms reaches 37 W (resp. 42
W). The η parameter is thus equal to 13 (resp. 50) for
scheme 1 (resp. 2). These two different schemes permit
to identify the conditions under which a non-adiabatic
transport can be performed when the anharmonicities of
the trapping potential are not completely negligible.

The radial angular frequencies of the recompressed
trap were inferred from a parametric heating experiment:
ωx = 2π · (1600 ± 100) Hz and ωy = 2π · (2100 ± 100)
Hz. The longitudinal angular frequency was measured by
examining the cloud dipole mode oscillations. We find
ω0 = 51± 2 rd/s (resp. ω0 = 56± 2 rd/s) for the scheme
1 (resp. 2). The initial number of atoms and cloud tem-
perature before the transport is 2.1× 106 at 160± 11 µK
(resp. 5.7× 106 at 43± 2 µK) for the scheme 1 (resp. 2),
corresponding to a r.m.s. size ∆x = (kBT/mω2

0)
1/2 ≃ 2.4

mm (resp. 1.2 mm).

The transport experiment has been carried out in a sin-
gle vacuum chamber. We consequently imposed a “round
trip” displacement of the optical tweezers going from the
MOT location A to a point B placed 22.5 mm from it
along the beam direction, and back to A (see Fig. 3a).
The transport’s duration is 4τ and the velocity profile
has a “Λ − V shape”. It corresponds to a Young’s two
slit like experiment with a time separation of 2τ . The dif-
ferent transport durations were obtained by varying the
acceleration a from 0.2 to 3.3 m.s−2, ensuring a transport
in the non-adiabatic regime.

The transport is accompanied by a heating of the
cloud. For scheme 1 (resp. 2), we find a relative increase
of temperature of 10% (resp. 75%) after a transport du-
ration longer than one period of oscillation (ω0τ ≥ 2π).
The cloud at the lower temperature is obviously more
sensitive to heating mechanism such as transverse shak-
ing of the cloud, or photon scattering. The latter effect
remains relatively small for both schemes, while the for-
mer could be reduced by using an air bearing translation
stage instead of a standard linear rail guided translation
stage.

For each amplitude measurement A(4τ, ω0), we chose
an acceleration value a, or equivalently a transport du-
ration τ = (d/a)1/2, and we measure the center of mass
oscillations after the transport by recording a set of typi-
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FIG. 3: (Color online) (a) Back and forth transport from A to
B and B to A (d = 45 mm) with the velocity profile imposed
to the trap. (b) (resp. (c)) The measured amplitude A of the
center of mass dipole oscillation for the conditions of scheme
1 (resp. 2), see text. Inset of (b): Typical data of the position
of the center mass as a function of time. The dashed line is the
theoretical prediction of Eq. (3) with the measured angular
frequency ω0 of the trap.

cally 30 images separated from one another by 10 ms.
The images are acquired using a standard absorption
imaging technique on a CCD camera. Since the imaging
process is destructive, the whole experimental sequence
has to be redone for each picture.

The position of the center of mass of the cloud as a
function of time is inferred from a 2D Gaussian fit . We
deduce the amplitude of oscillation of the center of mass
by fitting this position data (see insets of Fig. 3b). The
theoretical amplitude of oscillation after the transport is
readily obtained from Eq. (2):

A(4τ, ω0) = 2d.sinc2(ω0τ/2)| sin(ω0τ)| . (3)

One recognizes the contribution of a Λ or V shape trans-
mittance in the first two factors. The last factor simply
accounts for “interferences” between the Λ and V veloc-
ity profiles. We distinguish in the forthcoming discussion
two kinds of zeros: the even ones originating from the
“diffraction” factor (ω0τ = 2pπ, p being an integer) and
an extra set of odd zeros due to the “interference” factor
only (ω0τ = (2p + 1)π, p being an integer).

The comparison of our experimental data with the the-
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ory is made with only one adjustable parameter: a global
multiplying factor for the amplitude. Indeed the angu-
lar frequency ω0 is directly measured by the dipole mode
analysis. We find a very good agreement between our
data and formula (3) (see Figs. 3b and c). The shown
error bars reflect the fitting uncertainties.

We observe a non-vanishing amplitude of the dipole
mode for the first observed odd zero (ω0τ = 3π) for the
data of scheme 1 by contrast to the data of scheme 2.
We interpret this phenomenon by taking into account
the non-linear mixing resulting from anharmonicities of
the trapping potential. This effect is stronger for scheme
1 which is characterized by a smaller η parameter com-
pared to the one of the scheme 2. The non-linear mix-
ing mimics a damping that turns out to be analogous to
the effect of the finite spatial or temporal coherence of a
source illuminating the two slits of a Young’s experiment.

For a transportation made of a succession of similar
velocities profiles, we have worked out the results of
the simplest damping model with a friction like force
(−2mγẋ). For the Λ − V profile, the formula for the
pseudo-amplitude Ã of the dipole mode reads

Ã = A0.
Ω2

ω2
0

|1 − V1 cos(Ωτ)|
(Ωτ/2)2

.|1 − V2 cos(2Ωτ)|1/2 , (4)

with Ω = (ω2
0 − λ2)1/2 and the visibility factors Vn ≃

1 − n2(γτ)2/2 in the regime where γτ ≪ 1. We thus
obtain two kinds of minima for the dipole mode ampli-
tude affected by the damping in a different manner: The
ones that result from “interferences” factor and that are
sensitive to the damping of the center of mass oscilla-
tion at the first order (min(Ã) ≃ 2

√
2A0γτ) and the

ones of the “diffraction pattern” factor that are nearly
“decoherence-free” (min(Ã) ≃ A0γ

3τ3/2) and thus pre-
ferred for a robust optimized transportation. This re-
fined analysis yields a visibility V2 of 85% (resp. 100%)
for scheme 1 (resp. 2). In addition the curvature of
those minima is important (see Fig. 3b and c). Indeed,
a flat minimum enhances the robustness of the transport
against fluctuations of the movement duration or the trap
frequencies.

The same qualitative features for the zeros of the am-
plitude of the dipole mode remain valid for a Λ − Λ ve-
locity profile. In addition, we emphasize that a vanishing
amplitude can always be recovered by shaping the veloc-
ity profile to compensate for the damping effect.

The theoretical framework presented in this article to
analyze our data on the transport of atoms using opti-
cal tweezers allows to work out a more elaborated shape
yielding very flat minima. Apodization techniques, com-
monly used in optics, can be transposed to the velocity

profile to remove the secondary peaks of the amplitude of
the motion after the transport. Velocity profiles derived
in this manner would permit one to transport or stop the
optical tweezers in a very optimized fashion for the trans-
port of atoms even in presence of a residual damping.
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