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Abstract— In this letter, a novel framework for delay-optimal
cell association in unmanned aerial vehicle (UAV)-enabled wire-
less cellular networks is proposed. In particular, to minimize the
average network delay under any arbitrary spatial distribution
of the ground users, the optimal cell partitions of the UAVs and
terrestrial base stations are determined. To this end, using the
powerful mathematical tools of optimal transport theory, the
existence of the solution to the optimal cell association problem
is proved and the solution space is completely characterized.
The analytical and simulation results show that the proposed
approach yields substantial improvements in terms of the average
network delay.

Index Terms— UAV, cell association, transport theory, delay,
unmanned aerial vehicles, cellular networks.

I. INTRODUCTION

THE use of unmanned aerial vehicles (UAVs) such as
drones and balloons is an effective technique for improv-

ing the quality-of-service (QoS) of wireless cellular networks 
due to their inherent ability to create line-of-sight (LoS) 
communication links [1]–[6]. One of the important challenges 
in UAV-based communications is cell (or user) association. 
Sharma et al. [7] analyzed the user-UAV assignment for capac-
ity enhancement of heterogeneous networks. However, this 
work is limited to the case in which users are uniformly dis-
tributed within a geographical area. Silva et al. [8] proposed 
a power-efficient cell association scheme while satisfying the 
rate requirement of users in cellular networks. However, the 
work in [8] does not consider the presence of UAVs and 
the adopted objective function does not account for network 
delay. In [9], the optimal deployment and cell association of 
UAVs are determined with the goal of minimizing the UAVs’ 
transmit power while satisfying the users’ rate requirements. 
However, the work in [9] mainly focused on the optimal 
deployment of the UAVs and does not address the cell 
association problem. In fact, none of the previous studies 
in [1]–[9] addressed the delay-optimal cell association problem 
considering both UAVs and terrestrial base stations, for any 
arbitrary distribution of users.

The main contribution of this letter is to introduce a novel 
framework for delay-optimal cell association in a cellular

This research was supported by the U.S. National Science Foundation under 
Grants AST-1506297 and ACI-1541105, by the ERC Starting Grant 
305123 MORE (Advanced Mathematical Tools for Complex Network 
Engineering), and by the Academy of Finland. The associate editor 
coordinating the review of this paper and approving it for publication was
X. Lin. (Corresponding author: Mohammad Mozaffari.)

M. Mozaffari and W. Saad are with the Wireless@VT, Electrical
and Computer Engineering Department, Virginia Tech, VA 24061 USA
(e-mail: mmozaff@vt.edu; walids@vt.edu).

M. Bennis is with the Centre for Wireless Communications, 90014 Oulu,
Finland (e-mail: bennis@ee.oulu.fi).

M. Debbah is with the Mathematical and Algorithmic Sciences Lab-
oratory, Huawei France R&D, Paris, France, and also with the Cen-
traleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France (e-mail:
merouane.debbah@huawei.com).

network in which both UAVs and terrestrial base stations
(BSs) co-exist. In particular, given the locations of the UAVs
and terrestrial BSs as well as any general spatial distribution
of users, we find the optimal cell association by exploiting
the framework of optimal transport theory [10]. Within the
framework of optimal transport theory, one can address cell
association problems for any general spatial distribution of
users. For instance, the main advantage of optimal transport
theory is that it allows deriving tractable solutions for a variety
of cell association problems in wireless networks. In our
problem, using optimal transport theory, we first prove the
existence of the optimal solution to the cell association prob-
lem, and, then, we characterize the solution space. The results
show that, our approach results in a significantly lower delay
compared to a conventional signal strength-based association.
Here, we note that, our work is different from [9] in terms
of the system model, the objective function, the problem
formulation as well as analytical results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a geographical area D ⊂ R2 in which K terrestrial
BSs in set K are deployed to provide service for ground users
that are spatially distributed according to a distribution f (x, y)
over the two-dimensional plane. In addition to the terrestrial
BSs, M UAVs in set M are deployed as aerial base stations to
enhance the capacity of the network. We consider a downlink
scenario in which the BSs and the UAVs use a frequency
division multiple access (FDMA) technique to service the
ground users. The locations of BS i ∈ K and UAV j ∈ M
are, respectively, given by (xi , yi , hi ) and (xuav

j , yuav
j , huav

j ),
with hi and huav

j being the heights of BS i and UAV j .
The maximum transmit powers of BS i and UAV j are Pi
and Puav

j . Let Wi and W j be the total bandwidth available
for each BS i and UAV j . Our performance metric is the
transmission delay, which is defined as the time needed for
transmitting a given number of bits. In this case, the delay is
inversely proportional to the transmission rate. We use Ai and
B j to denote, respectively, the area (cell) partitions in which
the ground users are assigned to BS i and UAV j . Hence,
the geographical area is divided into M + K disjoint partitions
each of which is served by one of the BSs or the UAVs.

Given this model, our goal is to minimize the average
network delay by optimal partitioning of the area. Based on the
spatial distribution of the users, we determine the optimal cell
associations to minimize the average network delay. Note that,
the network delay significantly depends on the cell partitions
due to the following reasons. First, the cell partitions determine
the service area of each UAV and BS thus impacting the
channel gain that each user experiences. Second, the number
of users in each partition depends on the cell partitioning.
In this case, since the total bandwidth is limited, the amount
of bandwidth per user decreases as the number of users in a
cell partition increases. Thus, users in crowded cell partitions
achieve a lower throughput which results in a higher delay.
Next, we present the channel models.



Fig. 1. Network model.

A. UAV-User and BS-User Path Loss Models

In UAV-to-ground communications, the probability of hav-
ing LoS links to users depends on the locations, heights,
and the number of obstacles, as well as the elevation angle
between a given UAV and its served ground user. In our model,
we consider a commonly used probabilistic path loss model
provided by International Telecommunication Union (ITU-R),
and the work in [6]. The path loss between UAV j and a user
located at (x, y) is [6]:

� j =
{

K 2
o (d j/do)

2μLoS, LoS link,
K 2

o (d j/do)
2μNLoS, non-line-of-sight (NLoS) link,

(1)

where Ko =
(

4π fcdo
c

)2
, fc is the carrier frequency, c

is the speed of light, and do is the free-space refer-
ence distance. Also, μLoS and μNLoS are different attenu-
ation factors considered for LoS and NLoS links. d j =√

(x − xuav
j )2 + (y − yuav

j )2 + huav
j

2 is the distance between
UAV j and an arbitrary ground user located at (x, y). For the
UAV-user link, the LoS probability is [6]:

PLoS, j = α

(
180

π
θ j − 15

)γ

, θ j >
π

12
, (2)

where θ j = sin−1(
h j
d j

) is the elevation angle (in radians)
between the UAV and the ground user. Also, α and γ are
constant values reflecting the environment impact. Note that,
the NLoS probability is PNLoS, j = 1 − PLoS, j .

Considering do = 1 m, the average path loss is
Kod j

2
[
PLoS, jμLoS + PNLoS, jμNLoS

]
. Therefore, the received

signal power from UAV j considering an equal power alloca-
tion among its associated users will be:

P̄uav
r, j = Puav

j /
(

Nuav
j Kod j

2 [
PLoS, jμLoS + PNLoS, jμNLoS

])
,

(3)

where Puav
j is the UAV’s total transmit power, and Nuav

j =
N

∫∫
B j

f (x, y)dxdy is the average number of users associated
with UAV j , with N being the total number of users. For the
BS-user link, we use the traditional path loss model. In this
case, the received signal power from BS i at user’s location
(x, y) will be:

Pr,i = Pi K −1
o d−n

i /Ni , (4)

where di is the distance between BS i and a given user, Ni =
N

∫∫
Ai

f (x, y)dxdy is the average number of users associated
with BS i , and n is the path loss exponent.

B. Problem Formulation

Given the average received signal power in the UAV-user
communication, the average throughput of a user located at

(x, y) connecting to a UAV j can be approximated by:

Cuav
j = W j

Nuav
j

log2
(
1 + P̄uav

r, j

σ 2

)
, (5)

where σ 2 is the noise power for each user which is linearly
proportional to the bandwidth allocated to the user.

The throughput of the user if it connects to BS i is:

Ci = Wi

Ni
log2

(
1 + Pr,i

σ 2

)
. (6)

Now, let L = K ∪M be the set of all BSs and UAVs. Here,
the location of each BS or UAV is denoted by sk , k ∈ L.

We also consider Dk =
{

Ak, if k ∈ K ,

Bk, if k ∈ M ,
denoting all the cell

partitions, and Q (v, sk, Dk) =
{

b/Ck, if k ∈ K ,

b/Cuav
k , if k ∈ M ,

where

v = (x, y) is the 2D location of a given ground user, and
b is the number of bits that must be transmitted to location
v. Then, our optimization problem that seeks to minimize the
average network delay over the entire area will be:

min
Dk

∑
k∈L

∫
Dk

Q (v, sk, Dk) f (x, y)dxdy, (7)

s.t.
⋃
k∈L

Dk = D, Dl ∩ Dm = ∅ ∀l �= m ∈ L, (8)

where both constraints in (8) guarantee that the cell partitions
are disjoint and their union covers the entire area, D.

III. OPTIMAL TRANSPORT THEORY FOR CELL

ASSOCIATION

Given the locations of the BSs and the UAVs as well as
the distribution of the ground users, we find the optimal cell
association for which the average delay of the network is
minimized. Let gk(z) = Nz

Wk
, with Wk being the bandwidth

for each BS or UAV k and z is a generic argument. Also,
we consider:

F(v, sk) =
{

b/log2
(
1 + Pr,k(v, sk)/σ

2
)
, if k ∈ K ,

b/log2

(
1 + P̄uav

r, j (v, sk)/σ
2
)

, if k ∈ M .
(9)

Now, the optimization problem in (7) can be rewritten as:

min
Dk

∑
k∈L

∫
Dk

[
gk

(∫
Dk

f (x, y)dxdy

)
F(v, sk)

]
f (x, y)dxdy,

(10)

s.t.
⋃
k∈L

Dk = D, Dl ∩ Dm = ∅ ∀l �= m ∈ L, (11)

where Dk is the cell partition of each BS or UAV k.
Solving the optimization problem in (10) is challenging

and intractable due to various reasons. First, the optimization
variables Dk , ∀k ∈ L, are sets of continuous partitions which
are mutually dependent. Second, f (x, y) can be any generic
function of x and y that leads to the complexity of the
given two-fold integrations. To overcome these challenges,
next, we model this problem by exploiting optimal transport
theory [10] in order to characterize the solution.

Optimal transport theory [10] allows analyzing complex
problems in which, for two probability measures f1 and f2



on � ⊂ Rn , one must find the optimal transport map T from
f1 to f2 that minimizes the following function:

min
T

∫
�

c (x, T (x)) f1(x)dx; T : � → �, (12)

where c(x, T (x)) denotes the cost of transporting a unit mass
from a location x to a location T (x).

Our cell association problem can be modeled as a semi-
discrete optimal transport problem. Here, the users follow
a continuous distribution, and the base stations can be con-
sidered as discrete points. Then, we need to map the users
to the BSs and UAVs such that the total cost function is
minimized. In this case, the optimal cell partitions are directly
determined by the optimal transport map [11]. Next, we prove
the existence of the optimal solution to the problem in (10).

Theorem 1: The optimization problem in (10) admits an
optimal solution given N �= 0, and σ �= 0.

Proof: Let ak = ∫
Dk

f (x, y)dxdy, and for ∀k ∈ L,

E=
{

a = (a1, a2, ..., aK+M) ∈ RK+M; ak ≥ 0,
K+M∑
k=1

ak = 1

}
.

Now, considering f (x, y) = f (v) and c (v, sk) =
gk(ak)F (v, sk), for any given vector a, problem (10) can
be considered as a classical semi-discrete optimal transport
problem. First, we prove that c (v, s) is a semi-continuous
function. Considering the fact that sk is discrete, we have:

lim
(v,s)→ (v∗,sk )

F (v, s) = lim
v→v∗ F (v, sk). Note that, given any sk ,

k belongs to only of K and M sets. Given sk , F(v, sk) is a
continuous function of v. Then, considering the fact that given
ak , gk(ak) is constant, we have lim

(v,s)→ (v∗,sk)
gk(ak)F (v, s) =

gk(ak)F (v∗, sk). Therefore, c(v, s) is a continuous function
and, hence, is also a lower semi-continuous function. Now,
we use the following lemma from optimal transport theory:

Lemma 1: Consider two probability measures f and λ on
D ⊂ Rn . Let f be continuous and λ = ∑

k∈N
akδsk be a discrete

probability measure. Then, for any lower semi-continuous cost
function, there exists an optimal transport map from f to λ
for which

∫
D c (x, T (x)) f (x)dx is minimized [11].

Considering Lemma 1, for any a ∈ E , the problem in (10)
admits an optimal solution. Since E is a unit simplex in RM+K

which is a non-empty and compact set, the problem admits an
optimal solution over the entire E .

Next, we characterize the solution space of (10).
Theorem 2: To acheive the delay-optimal cell partitions

in (10), each user located at (x, y) must be assigned to the
following BS (or UAV):

k = arg min
l∈L

{ al

Wl
F(vo, sl)

}
. (13)

Given (13), the optimal cell partition Dk includes all the points
which are assigned to BS (or UAV) k.

Proof: As shown in Theorem 1, there exist optimal
cell partitions Dk , k ∈ L which are the solutions to (10).
Now, consider two partitions Dl and Dm , and a point vo =
(xo, yo) ∈ Dl . Also, let Bε(vo) be a ball with a center vo
and radius ε > 0. We then generate the following new cell

partitions
�
Dk (which are variants of the optimal partitions):⎧⎪⎪⎨

⎪⎪⎩

�

Dl = Dl\Bε(vo),
�

Dm = Dm ∪ Bε(vo),
�

Dk = Dk , k �= l, m.

(14)

Let aε = ∫
Bε(vo) f (x, y)dxdy, and

�
ak = ∫

�
Dk

f (x, y)dxdy.

Considering the optimality of Dk , k ∈ L, we have:

∑
k∈K

∫
Dk

gk (ak) F(v, sk) f (x, y)dxdy

(a)≤ ∑
k∈K

∫
�
Dk

gk

(
�
ak

)
F(v, sk) f (x, y)dxdy. (15)

Now, canceling out the common terms in (15) leads to:∫
Dl

gl (al) F(v, sl) f (x, y)dxdy

+
∫

Dm

gm (am) F(v, sm) f (x, y)dxdy

≤
∫

Dm∪Bε(vo)
gm (am + aε) F(v, sm) f (x, y)dxdy

+
∫

Dl\Bε(vo)
gl (al − aε) F(v, sl) f (x, y)dxdy,

∫
Dl

(gl (al) − gl (al − aε)) F(v, sl) f (x, y)dxdy

+
∫

Bε(vo)
gl (al − aε) F(v, sl) f (x, y)dxdy

≤
∫

Dm

(gm (am + aε) − gm (am)) F(v, sm) f (x, y)dxdy

+
∫

Bε(vo)
gm (am + aε) F(v, sm) f (x, y)dxdy, (16)

where (a) comes from the fact that Dk , ∀k ∈ L are optimal
and, hence, any variation of such optimal partitions, shown

by
�
Dk , cannot lead to a better solution. Now, we multiply

both sides of the inequality in (16) by 1
aε

, take the limit when
ε → 0, and use the following equalities:

lim
ε→0

aε = 0, (17)

lim
aε→0

gl(al) − gl(al − aε)

aε
= g′

l(al), (18)

lim
aε→0

gm(am + aε) − gm(am)

aε
= g′

m(am), (19)

then we have:

g′
l (al)

∫
Dl

F(vo, sl) f (x, y)dxdy + gl (al) F(vo, sl)

≤ g′
m (am)

∫
Dm

F(vo, sm) f (x, y)dxdy+gm (am) F(vo, sm).

(20)

Now, given gk(z) = Nz
Wk

, we can compute g′
l(al) =

dgl(z)
dz

∣∣∣
z=al

= N
Wk

, then, using ak =∫
Dk

f (x, y)dxdy leads to:

N

Wl
al F(vo, sl) + Nal

Wl
F(vo, sl)

≤ N

Wm
am F(vo, sm) + Nam

Wm
F(vo, sm),

as a result:
al

Wl
F(vo, sl) ≤ am

Wm
F(vo, sm). (21)

Finally, (21) leads to (13) that completes the proof.



Fig. 2. Average network delay per 1Mb data transmission.

Theorem 2 provides a precise cell association rule for
ground users that are distributed following any general dis-
tribution f (x, y). In fact, the inequality given in (21) rep-
resents the condition under which the user is assigned to a
BS or UAV l. For the special case of a uniform distribution of
the users, the result in Theorem 2 leads to the classical SNR-
based association in which users are assigned to base stations
that provide strongest signal. From Theorem 2, we can see
that there is a mutual dependence between al and Dl (i.e. cell
association), ∀l ∈ L. To solve the equation given in Theorem 2,
we adopt an iterative approach which is shown to converge to
the global optimal solution [11]. In this case, we start with
an initial cell partition (e.g. Voronoi diagram), and iteratively
update the cell partition based on Theorem 2.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider an area of size 4 km×4 km
in which 4 UAVs and 2 macrocell base stations are deployed
based on a traditional grid-based deployment. The ground
users are distributed according to a truncated Gaussian distri-
bution with a standard deviation σo. This type of distribution
is suitable to model a hotspot area. The simulation parameters
are given as follows. fc =2 GHz, transmit power of each BS is
40 W, and transmit power of each UAV is 1 W. Also, N = 300,
W j = Wi = 1 MHz, and the noise power spectral density is
-170 dBm/Hz. We consider a dense urban environment with
n = 3, μLoS = 3 dB, μNLoS = 23 dB, α = 0.36, and γ =
0.21 [6]. The heights of each UAV and BS are, respectively,
200 m and 20 m [4], [6], [7]. All statistical results are averaged
over a large number of independent runs.

In Fig. 2, we compare the delay of the proposed cell associa-
tion with the traditional SNR-based association. We consider a
truncated Gaussian distribution with a center (1300 m,1300 m),
and σo varying from 200 m to 1200 m. Lower values of σo
correspond to scenarios in which users are more concentrated
around the hotspot center. Fig. 2 shows that the proposed
cell association significantly outperforms the SNR-based asso-
ciation in terms of the average delay. For low σo values,
the average delay decreases by 72% compared to the SNR-
based association. This is due to the fact that, in the proposed
approach, the impact of network congestion is also taken
into account. Hence, the proposed approach avoids creating
highly loaded cells. In contrast, an SNR-based association can
yield highly loaded cells. As a result, in the congested cells,
each user will receive a low amount of bandwidth that leads
a low transmission rate or equivalently high delay. In fact,
compared to the SNR-based association case, our approach is
more robust against network congestion and its performance
is significantly less affected by changing σo.

As an illustrative example, Fig. 3 shows the locations of
the BSs and UAVs as well as the cell partitions obtained
using the SNR-based association and the proposed delay-
optimal association. In this case, users are distributed based

Fig. 3. Cell partitions associated to UAVs and BSs given the non-uniform
spatial distribution of users.

on a 2D truncated Gaussian distribution with mean values
of (1300 m,1300 m), and σo = 1000 m. As shown in Fig. 3,
the size and shape of cells are different in these two asso-
ciation approaches. For instance, the gray cell partition in
the proposed approach is smaller than the SNR-based case.
In fact, the gray partition in the SNR-based approach is
highly congested and, consequently, its size is reduced in the
proposed approach so as to decrease the congestion as well as
the delay.

V. CONCLUSION

In this letter, we have proposed a novel framework for delay-
optimal cell association in UAV-enabled cellular networks. In
particular, to minimize the average network delay based on
the users’ distribution, we have exploited optimal transport
theory to derive the optimal cell associations for UAVs and
terrestrial BSs. Our results have shown that, the proposed cell
association approach results in a significantly lower network
delay compared to an SNR-based association.
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