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Foreword

The spectacular revival of mathematical optimal transportation can be traced back

to the 1990s. A comprehensive presentation of the first modern developments and
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applications can be found in the monographs by Villani (2003, 2008) and – in a

more probabilistic setting – Rachev and Rüschendorf (2006). They were mostly

theory-oriented.

Offering a Riemannian metric on the space of measures defined on general

manifolds, optimal transportation has spread far in mathematics and scientific

computation. The construction of Wasserstein gradient flows, for instance, intro-

duced by Jordan, Kinderlehrer and Otto (1998), led to a new understanding of

nonlinear parabolic equations and is an active research field. Developed on the

infinite-dimensional space of measures but also including discrete, possibly finite

‘empirical’ measures, optimal transportation theory offers an elegant bypass of the

discretization process, a familiar but sometime burdensome routine for numerical

analysts working on continuous models.

Use of the optimal transportation framework in the natural sciences appeared

during the same period. The fundamental paper of Brenier (1991) was in fact pre-

ceded and inspired by an earlier paper, Brenier (1989), constructing weak solutions

to Euler geodesics variational interpretation (Arnold 1966). Other applications

began to appear in fields as diverse as medical imaging (Haker, Zhu, Tannenbaum

and Angenent 2004), meteorology (Cullen and Purser 1984), astrophysics (Frisch,

Matarrese, Mohayaee and Sobolevski 2002) and optics (Glimm and Oliker 2003,

Wang 2004).

Similar developments occurred in parallel in economics, for which optimal

transportation tools have been instrumental, particularly in the study of the fam-

ous ‘principal–agent’ problem; see Carlier (2001), Ekeland (2010), Figalli, Kim

and McCann (2011) and Rochet and Chone (1998). The role of optimal trans-

portation in economics is presented in depth in Galichon (2016); it will not be

covered in this paper. Other important variants of optimal transportation will be

omitted, for example transport occurring on discrete Markov chains (Maas 2011)

and branched transport and optimal transportation networks; see Pegon (2017) and

Bernot, Caselles and Morel (2008) for a review of these topics. It continues to

pop up in fields as diverse as number theory (Steinerberger 2020), quantum mech-

anics (Golse and Paul 2021), relativity (Cavalletti and Mondino 2020), genomics

(Lavenant 2021) . . .

The generic optimal transportation problem is a nonlinear optimization problem.

Kantorovich relaxation (which earned Kantorovich the Nobel Prize for Economics)

as a linear program was a giant leap forward for the theory but at the heavy

computational price of replacing the space of transport maps with the space of

couplings, hence squaring the number of unknowns. Combined with the cubic

complexity of linear programming solvers, it was never used as such in the above-

mentioned applications.

The tighter convex relaxation proposed by Benamou and Brenier (2000) offered

the first convergent and tractable algorithm. It is difficult to assess its computational

complexity precisely because it adds a time dimension, but one can safely estimate

that it is somewhere between quadratic and cubic. The proposed dynamic vision
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of optimal transportation has also been inspirational, and has strongly influenced

subsequent research in the field.

Significant progress was achieved in the early 2010s. Based on the convexity of

the ‘semi-dual’ formulation of optimal transportation, a damped Newton method

was proposed to solve the Monge–Ampère (Benamou, Froese and Oberman 2014)

and semi-discrete (Mérigot 2011) settings, respectively. This approach resulted in

the first linear complexity solvers. The ‘damping’ ensures that the optimization is

kept to the domain of strict convexity of the optimal transportation cost. So far

this approach has essentially been limited to the most commonly used Euclidean

quadratic cost (1.1), but a general analysis of the method is available in Kitagawa,

Mérigot and Thibert (2019).

Another strategy, based on a convexification of Kantorovich relaxation, was

initiated by Cuturi (2013) and in the economics context by Salanié and Galichon

(2012) independently. It has been popular ever since for several different reasons.

It does not solve the optimal transportation problem but yields its ‘Schrödinger

entropic approximation’, a connection well known in probability and statistical

physics (Léonard 2014). It is simple to implement and applies to virtually any op-

timal transportation generalization. There is a trade-off between the computational

cost and the ‘entropic bias’, or the precision error, with classical optimal trans-

portation. It is very competitive for estimating the transportation cost but not the

transport plan itself. Finally it is easily parallelizable and, while naively quadratic,

linear-cost off-the-shelf software can be found in Feydy (2019), for instance.

These numerical breakthroughs triggered an acceleration of the use of optimal

transportation for numerical modelling and solutions in an increasing number of

domains, including the recent and productive machine learning topic. Following

all these developments is far beyond my mental abilities and energy. Here is a first

disclaimer: this review paper will necessarily be incomplete, and biased towards

my personal scientific environment. I apologize for the important contributions I

have missed.

The first lecture notes oriented towards PDEs I came across – those of Evans

(2001) – are still available online and useful! As optimal transportation is now

taught at graduate level across the globe, a wealth of such lecture notes is available

on the internet. Several books are also out: the book by Santambrogio (2015) is

a modern self-contained review of the theory with a wide range of applications.

As suggested by the title, Optimal Transport for Applied Mathematicians, this is

definitely the reference book for applied mathematicians working in this field. In

§ 8.4.4, for instance, it provides an easy introduction to semi-geostrophic equations

(Cullen 2006) and early universe reconstruction (Frisch et al. 2002), two important

applications of optimal transportation. The paper by Peyré and Cuturi (2019) is a

precious resource with precise descriptions of the algorithms and their analysis, in

particular entropic regularization. It is nicely complemented by the book chapter

by Mérigot and Thibert (2020), which presents the semi-discrete approach in more

detail along with its link to entropic regularization. Finally, Carlier (2021) has
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provided a didactic presentation of the mathematics and the algorithmics of convex

duality and convex optimization, which are ubiquitous in optimal transportation.

As we will try to emphasize, convex Fenchel–Rockafellar duality is a cornerstone of

optimal transportation. A good knowledge of these techniques, and the associated

methods of solution, is compulsory for numerical analysts interested in optimal

transportation as a research topic.

This paper has been designed and organized to present, in a unified and compact

framework, the basic theory, the motivations and also the insight behind recent

optimal transportation developments, made possible by the algorithmic advances

mentioned above. It synthesizes a large corpus; each section could be expanded

into a longer technical survey paper. Except for the last section, the paper should be

browsed or read linearly, at least the first time. Sections present – in a non-technical

way – elements of the theory and algorithms together with flagship applications,

and often use earlier expositions. The presentation will remain formal with some

elements of proof. The chain of logic and the derivation of formulae will often

be sketchy, and may be considered as exercises for the reader. I try to indicate

precisely references with detailed proofs and rigorous mathematical formulations.

In an attempt to keep the presentation self-contained, I have also gathered some

required basic tools and results in footnotes. A list of notations is available after

this introduction.

By definition, this paper should be useless for optimal transportation experts. It

may, however, offer a broader vision of the topic and unseen connections between

the many concepts used. For beginners, it cannot replace careful study of the

monographs cited above but may instead be used as a study guide; each section

roughly corresponds to one or two lectures.

A second disclaimer: my knowledge and understanding is of course the result of

many years, even decades, of listening to lectures, discussing with colleagues and

reading the literature. The scientific fruits will appear in some form or another in

this paper.

Many thanks to Irène Wadspurger, Francis Collino, Guillaume Carlier and Gab-

riel Peyré for their pre-reading and correction of this manuscript.

I am deeply grateful to the Editorial Board of Acta Numerica for their invitation.

Many thanks to Glennis Starling for copy-editing the document and improving my

English.

This foreword would not be complete without acknowledging the fantastic group

of colleagues and students at MOKAPLAN and our close collaborators. The list is too

long to be reproduced here, but if they read these lines they will know they are part

of the family. I thank them warmly for their friendship, patience, contributions,

advice and vision.

Outline

Section 1 contains in a condensed form the classical presentation of the original
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Monge optimal transportation, the Kantorovich linear program and basic linear

programming and linear assignment methods. This can be found in the general

references above. Notations are introduced, and in particular the important idea

that we can use the same set of notations for measures with continuous densities

and discrete measures.

See Santambrogio (2015, §1), Carlier (2021, §6) and Peyré and Cuturi (2019,

§2) for comprehensive presentations.
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Section 2 introduces the Kantorovich dual problem and its role in the study of

the well-posedness of optimal transportation. The key notion is the 2-transform

optimality of the Kantorovich potentials. This can also be used to tighten the linear

Kantorovich problem into a concave ‘semi-dual’ problem. It leads to two modern

numerical approaches: the Monge–Ampère and semi-discrete approaches. We

present an application to the reflector cost.

As for Section 1, see Santambrogio (2015, §1), Carlier (2021, §6) and Peyré and

Cuturi (2019, §2), and also Mérigot and Thibert (2020, §2).

Section 3 gives the basics of the distance on the space of probability measures.

It also introduces entropic optimal transportation and the Sinkhorn algorithm and

discusses the smoothing bias on the distance introduced by the approximation.

This bias may be useful when computing interpolations or barycentres of discrete

measures for the optimal transportation metric. These notions naturally lead to the

introduction of time and dynamic optimal transportation in the next section.

Rigorous proofs (there are different techniques) are detailed in Santambrogio

(2015, §5). See Peyré and Cuturi (2019, §4) for entropic optimal transportation.

Section 4 brings the notion of time or dynamics to optimal transportation. This

led to the computational fluid dynamics formulation (also known as ‘Benamou–

Brenier’). This approach seems artificial when considering the classical source-to-

target optimal transportation problem but was beneficial from the computational

point of view. It also helps us to understand the richer models in Sections 5

and 6.1, and the Riemannian-like distance over the set of probability densities

used, in particular, in the Wasserstein gradient flow theory (Section 7.2).

Classical first-order optimization ‘proximal splitting’ methods are applicable.

See Carlier (2021, §7) and the review by Chambolle and Pock (2016).

Section 5 covers the optimal transportation treatment of Euler geodesics, its con-

nection with dynamic optimal transportation and the use of optimal transportation

solvers in this context.

I recommend Daneri and Figalli (2016) as a complete and precise review. See

also Brenier (2020, §2).

Section 6 makes the connection between entropic optimal transportation and the

Schrödinger problem in statistical physics. The entropic bias can also be interpreted

as adding a diffusion to the transport model. The application of the Sinkhorn

algorithm to variational mean field games is a good illustration. It also changes the

nature of the transport from deterministic to stochastic and hyperbolic to parabolic.

Quite remarkably, using the volatility as a control allows us to extend most of the

classical optimal transportation results. A good example is martingale optimal

transportation used in finance.

Léonard (2014) is THE reference. It is a probabilistic presentation but the (long)

introduction is accessible to all.
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Section 7 introduces arguably the most active area of applications. We move

one level up and use the optimal transportation distance as a metric (or ‘loss’ in

the machine learning terminology) for variational problems set on the space of

probability and non-negative Radon measures. It was a crucial motivation in the

development of ‘unbalanced’ optimal transportation distances and the introduction

of a simple but very efficient variation of entropic optimal transportation called

Sinkhorn divergence. This is illustrated via gradient flow problems.

See Santambrogio (2015, §8) for Wasserstein gradient flows and Peyré and Cuturi

(2019, §7-8) for losses and applications. The reference monograph on the theory

of gradient flows is the book by Ambrosio, Gigli and Savare (2005).

Section 8 covers a few subjects and directions, which I have been interested in and

are open or partly open.

1. Introduction

1.1. What is optimal transportation?

A general presentation on optimal transport traditionally starts with a reference

to Gaspard Monge’s problem ‘des déblais et des remblais’ (1781): minimize the

amount of work to shovel some mass from a source to a target ‘configuration’

(we will define this last term more precisely). The energy is defined as the total

distance the shovel, which contains exactly one unit of mass, has been carried

over. Gaspard Monge was a military engineer and his motivation concerned

fortifications: shovelling a ditch and using the soil to elevate a protective bank. In

real life, the actual digging/building process is affected by accessibility/structural

stability constraints: shovel transfers are done in sequence, and some sequences

are infeasible (imagine you want to start placing the dirt on top of the earth bank

with no foundations). One way to keep the Monge fortification analogy in line with

modern mathematical formulations of optimal transportation is to use a ‘magic’

shovel. The magic shovel would be able to dig and carry all units of mass (one

shovel) instantly, according to a predefined mapping, from the source to the target

configuration.

We therefore look for a ‘transport’ map) , in the mathematical sense, between two

source/target sets, denoted -0 and -1, i.e. ) : -0 → -1. The simplest situation,

considered in most of this review, corresponds to -0 = -1 = - , a compact

metric space. The source and target ‘configurations’ are real-valued non-negative

mass measures on -0 and -1; we will first assume they are non-negative Radon

measures,1 denoted `0 and `1. In mathematical notation, `0 ∈ M+(-0) and

`1 ∈ M+(-1). Because the shovel always carries the same amount of mass,

1 Continuous linear forms over the set of continuous functions on the compact space - .
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the transport map is constrained to ‘conserve the mass’. This translates into the

following mathematical measure-preserving constraint.

For any `1-measurable set �1 ⊂ -1, )−1(�1) is a `0-measurable subset of

-0 and `0()−1(�1)) = `1(�1) (in the modern literature this is generally denoted

)#`0 = `1: we say ) ‘pushes forward’ `0 to `1).2 As a direct consequence, the

total mass also needs to be preserved: `0(-0) = `1(-1). Setting the total mass to

1, we may restrict the space of `0 and `1 to probability measures. We will use the

notation `0 ∈ P(-0) and `1 ∈ P(-1). In fact, `0,13 will often be discrete empirical

measures (sums of Dirac masses) but might also be absolutely continuous measures

with respect to Lebesgue measure. In the continuous case and by abuse of notation

the probability densities will still be denoted `0,1.

The Monge shovel ‘carries a unit of mass’ instead of volume because the relevant

measure of work is mass times distance. In the simplest Monge configuration,

densities4 are constant and can be scaled to 1, i.e. mass and volume are equivalent.

In this case the mass conservation then implies that -0 and -1 have the same

cardinality (a finite number of elements) or volume (infinite number of elements)

for the set of admissible maps ) to be non-empty. If we want to tackle non-constant

densities, the shovel has to pile several shovel/mass units on the same target location

in order to reach the prescribed mass density and dig several units of mass from

the same place, then send them to different locations. The second requirement

rules out the map representation as each element in -0 may only possess one image

)(G0) ∈ -1.

1.2. Kantorovich relaxation

The mathematical framework to deal with this limitation was invented by Leonid

Kantorovich in 1954. Instead of a map he proposed looking for couplings. These

represent the amount of mass transported between all pairs (G0, G1) ∈ -0×-1. These

couplings are called Kantorovich transport plans. They are probability measures,

here denoted c, on the product space -0 × -1: c ∈ P(-0 × -1). For all measurable

subsets (�0, �1) ⊂ -0 × -1, c(�0, �1) is the amount of mass transported from �0

to �1. The mass conservation is now automatically enforced: you receive exactly

what you send. The original formulation of the problem requires the transported

mass to reach the exact target configuration. Therefore you cannot send more or

less than what is available, and likewise for the reception. This translates into

2 It can also be expressed as
∫
-0

( 5 ◦ )) `0 dG0 =
∫
-1

5 `1 dG1 for any continuous test function

5 ∈ C(-). If ) is smooth and one-to-one, the change of variable G1 = )(G0) gives
∫

-0

( 5 ◦ )) d`0 dG0 =

∫

-0

( 5 ◦ )) det(�)) (`1 ◦ )) dG0,

a variational formulation for the Jacobian equation det(�)) (`1 ◦ )) = `0.
3 The (·)0,1 will systematically denote the ordered pair ((·)0, (·)1).
4 That is, mass per volume or how much mass is located at each element of the sets.
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marginal constraints on the plans:5 〈1-1
, c〉-1

= `0 and 〈1-0
, c〉-0

= `1 (see the

footnote for the definition of the brackets). This is often written using the canonical

projection %-0
: (G0, G1) → G0 (not to be mistaken for P(-), the probability space

over -) and the push-forward notation %-0
#c = `0 and %-1

#c = `1. The last

ingredient we need to describe our first formal optimal transportation problem is

the displacement cost 2 : (G0, G1) ∈ - × - → 2(G0, G1), i.e. the cost of moving the

shovel from G0 to G1. The mathematical and modelling properties of 2 are of course

of tantamount importance and we will return later to this point. In line with Monge

modelling, this is often linked to the metric associated with - . The standard case

is the square of the Euclidean distance and we will mostly restrict to this case in

our presentation:

-0,1 = compact subsets of R3 , 2(G0, G1) =
1

2
‖G1 − G0‖2. (1.1)

Kantorovich’s problem will be the first formal optimal transportation problem

discussed in this paper. Optimizers will always carry a (·)∗ throughout the paper,

that is,

c∗ ∈ arg inf
c∈Π(`0,`1)

〈2, c〉-0×-1
, (1.2)

where Π(`0, `1) is the following set of admissible transport plans:

Π(`0, `1) := {c ∈ P(-0 × -1) : %-1
#c = `0 and %-0

#c = `1}. (1.3)

We stress that (1.2)–(1.3) is a linear optimization problem with linear constraints

in c. Minimizers exist but may not be unique simply on the condition that 2 ∈
C(-0 × -1) and Π(`0, `1) is compact for weak-★ topology of measures.6

Let us give a trivial example. Choose `0 = X00
and `1 = X01

, two Dirac

masses at 00 and 01. We can set the unit of mass to 1 and Monge transport

is done in just one shovel displacement between 00 and 01. The transport cost

is the displacement cost, 2(00, 01). Generalizing to `0 = (1 − U0) X00
+ U0 X10

(U ∈]0, 1[) and the same `1, the transport map is again trivial. There will be

(1 − U0) shovel displacement between 00 and 01 and U0 between 10 and 01. The

cost (1 − U0) 2(00, 01) + U0 2(10, 01) is bilinear in the weight U0 and the distance

between points. Let us complicate this slightly to `1 = (1 − U1) X01
+ U1 X11

. If

U0 ∉ {U1, 1 − U1}, there is no measure-preserving Monge map. We can, however,

find Kantorovich transport plans. They are 2 × 2 matrices assigning mass between

couples in (00, 10) × (01, 11). The Kantorovich formulation is more general than

the Monge formulation and subsumes Monge. See also Figure 1.1.

5 The notation 〈 5 , U〉Ω will stand for the duality product
∫
Ω
5 dU between continuous functions

5 ∈ C(Ω) and probability measures U ∈ P(Ω); the Ω subscript will often be omitted if we just

consider a unit constant function.
6 A sequence of measures `= converges to ` for the weak-★ topology if lim=→+∞〈 5 , `=〉- =

〈 5 , `〉- for all 5 ∈ C(-).
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Figure 1.1. Blue, `0 = U0 X00
+ (1− U0) X10

; red, `1 = U1 X01
+ (1− U1) X11

; black,

c∗. The optimal plan cannot be reduced to a map when U0 ≠ (U1, 1 − U1).

1.3. Linear programming

The first and most obvious numerical method to attack the Kantorovich problem

numerically is the linear programming approach. It assumes that the data are given

in discrete form, for : = 0, 1, `: =
∑#:

8=1
F:,8XG:,8 . The measures `: may be

empirical measures set on #: points in -: -: = {G:,8}8=1,#:
or a discretization of

probability densities on this discrete set representing a Cartesian grid, for instance.

The weights {F:,8}8=1,#:
are strictly positive and sum to 1.

Plugging the discrete data and support into (1.2)–(1.3), brackets become sums

and we obtain the finite-dimensional linear program

c∗ ∈ arg inf
c∈Π(`0,`1)

∑

(8, 9)∈#0×#1

2(G0,8 , G1, 9) c8, 9 . (1.4)

Note that Π(`0, `1) can be rewritten as a set of #0 × #1 matrices with constraints

on sums of rows and

Π(`0, `1) :=

{
(c8, 9) ∈ M#0×#1

(R+) :
∑

9∈[1,#1 ]
c8, 9 = F0,8 and

∑

8∈[1,#0 ]
c8, 9 = F1, 9

}
.

(1.5)

Problem (1.4-1.5) is a discrete linear programming problem in #0×#1 unknowns

and #0+#1 constraints. Numerical resolution with linear solvers which have cubic

complexity in the number of unknowns is therefore out of reach for reasonable

discretizations (typically #: < 100 or even less depending on machine memory).

As discussed in the example at the end of the previous subsection, Monge

solutions are not guaranteed to exist: they will appear when #0 = #1 = # and

a permutation matrix c8, 9=f(8) (f is a permutation of J1, #K) is feasible. There

is only one non-zero element per line and column and the permutation can be
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interpreted as a map. This implicitly constrains the weights to be able to match

exactly {F0,8 = F1,f(8)}8=1,# .

When the weights are all equal (to 1/#), the Birkhoff–von Neumann theorem

(see Carlier 2021, §6.4, or Peyré and Cuturi 2019, §2.3) states that the permutation

matrices are the extreme points of Π(`0, `1). Problem (1.4)–(1.5) is then known

as the linear assignment problem.

Assuming all weights {F:,8}8=1,# are integer multiples of the elemental mass

� := min: {1/#: }, it is always possible to rewrite (1.4) as a linear assignment

problem by piling Dirac masses at the same point, F0,8XG0,8
= �

∑F0,8/�
;=1

XG0,8,;
(and

performing the same decomposition on `1). The new Dirac masses are at the same

location but counted F0,8 times. The weights are units but the size of the problem

and the cost matrix may be larger. Optimal permutations f∗ then characterize the

support of c∗, supp c∗ = {(G0,8 , G1,f∗(8))}8=1,# ′, where # ′ ≥ # is the new bigger

number of unit Dirac masses.

The optimality over permutations translates into an important property called

cyclical monotonicity (Carlier 2021, §6.4): for every subset {G0,8 , G1,8}8=1,� ∈
supp c∗, we have

∑

8∈[1,� ]
2(G0,8 , G1,8) ≤

∑

8∈[1,� ]
2(G0,8+1, G1,8), (1.6)

where by convention G0,�+1 = G0,1. This property is in fact also a sufficient condition

for the optimality.

If we apply (1.6) to a simple pair (8, 8′) and use the quadratic displacement cost

(1.1), we find (after simple computations)7

(G0,8 − G0,8′) · (G1,f∗(8) − G1,f∗(8′)) ≥ 0. (1.7)

This is a simple monotonicity condition on the transport with the important

consequence that the affine trajectories of the planned optimal transport paths

G0,8 ↦→ G1,f∗(8) and G0,8′ ↦→ G1,f∗(8′) cannot intersect.

It allows us to reconcile Monge’s ordinary (not magic) shovel with the mathemat-

ical formulation. The optimality ensures that the map corresponds to a structurally

feasible sequence of shovel transport: there will be no obstruction.

2. Kantorovich duality and the reflector problem

2.1. Kantorovich duality and semi-duality

Kantorovich duality is the application of linear programming duality theory to (1.2).

For simplicity we assume -0 and -1 to be compact; for a general formulation, see

7 (·) · (·) denotes the standard scalar product in R3 .
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Santambrogio (2015, Theorem 1.39). The dual Kantorovich problem is8

(D∗0, D
∗
1) ∈ arg sup

(D0,D1)∈��

〈D0, `0〉-0
+ 〈D1, `1〉-1

, (2.1)

where D0 ⊕ D1(G0, G1) = D0(G0) + D1(G1) and

�� := {(D0, D1) ∈ C(-0) × C(-1) : D0 ⊕ D1 ≤ 2}. (2.2)

The derivation of (2.1) is classical and can be found for instance in Santambrogio

(2015, §1.2) or Carlier (2021, §6.4.1). The dual variables (D0, D1) are the Lagrange

multipliers of the marginal constraints in (1.3). There is a nice economics inter-

pretation in terms of optimal prices: `0 and `1 now represent two different types of

goods, their mass and storage location. For some reason it is decided that the goods

must be swapped, either via ground transport or by selling locally produced goods

instead of moving the already available but misplaced ones. Before deciding on the

method, the government needs to evaluate the feasibility of producing the goods

locally. This depends on the maximal revenue a (single) producer may expect by

selling the goods at price D0 and D1 respectively; this is given by (2.1). Of course

selling will only happen if (2.2) is satisfied, that is, the sale price of a unit of mass

on each side D0 ⊕ D1 is less than the fixed price 2 of swapping a unit of mass

through transport. Assuming maximizers (D∗
0
, D∗

1
) exist, the maximal revenue is the

transport cost,

〈2, c∗〉-0×-1
= 〈D∗0, `0〉-0

+ 〈D∗1, `1〉-1
, (2.3)

and the optimal prices saturate the constraint when c∗ > 0:

D∗0(G0) + D∗1(G1) = 2(G0, G1) for all (G0, G1) ∈ supp c∗,

D∗0(G0) + D∗1(G1) < 2(G0, G1) else.
(2.4)

In the literature (D∗
0
, D∗

1
) are known as the Kantorovich potentials. They are always

defined up to a constant as (D∗
0
+ �, D∗

1
− �) is also a solution for any � ∈ R. The

optimality condition (2.4) imposes a strong structure on the maximizers, in that

they are 2-transforms9 of one another:

D∗0 = (D∗1)2 and D∗1 = (D∗0)2 . (2.5)

As (2.5) is a necessary condition for optimality, the semi-dual formulation idea is

to leverage D1 = (D0)2 to optimize only on D0. This is a key part of the theory

8 ⊕ is the direct sum.
9 A quick summary: 5 2 , the 2-transform of a function 5 : -0 → R ∪ +∞ is defined as 5 2(G1) :=

infG0∈-0
2(G0, G1) − 5 (G0) (note that the definition depends on the domain of 5 ). The domain of

5 2 is m2 5 (-0) = ∪G0∈-0
{m2 5 (G0)}, where m2 5 is the 2-subdifferential of 5 , i.e. the multivalued

map

m2 5 (G0) = {G1 ∈ - : 2(G0, G1) − 5 (G0) ≤ 2(G′0, G1) − 5 (G′0) for all G′0 ∈ -0},
that is, where the 2-transform is defined; this set may be empty. A function 6 is 2-concave if there

exists 5 such that 6 = 5 2 and then the domain is given by Dom(62) = m2 5
22(-0). If 5 is also

2-concave then 5 22 = 5 .
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as the set of potentials {(D0, D
2
0
)} is compact while �� is not (see Santambrogio

2015, §1.6). The other condition D0 = (D1)2 requires D0 to be 2-concave, hence

D0 = D22
0

= ((D0)2)2 = (D1)2 . Finally the domain of (D0)2 must match -1, the

support of `1, where the mass is supported.

The semi-dual optimal transportation problem reads

sup
D0∈�SD

SD(D0) := 〈D0, `0〉-0
+ 〈D20 , `1〉-1

, (2.6)

where

�SD := {D0 is 2-concave and Dom(D20) = -1}. (2.7)

We will comment on the set of constraints in the simpler quadratic cost formalism

in Section 2.3. Expanding the 2-transform in (2.6),10 we get

SD(D0) = 〈D0, `0〉-0
+
〈{
G1 ↦→ inf

G0∈-0

2(G0, G1) + D0(G0)
}
, `1

〉
-1
. (2.8)

The concavity of the cost function D0 → SD(D0) follows directly from the concavity

of D0(·) ↦→ D2
0
(·) := infG0

{2(G0, ·) + D0(G0)} and the linearity of (2.6).

We move from a linear to a concave program at the price of constraint (2.7). The

computation of the critical point of D0 ↦→ SD(D0) is the basis of the Monge–Ampère

and semi-discrete formulations detailed below.

2.2. Existence of Monge map uniqueness of Kantorovich plans

The optimality condition (2.4) is also central to establishing the existence and

uniqueness of Monge maps. This is one of the fundamental contributions of

Brenier (1991) in the Euclidean quadratic cost case (1.1) and it was generalized by

Gangbo and McCann (1996). The idea is straightforward (once you have it!) and

relies on the twist condition on the cost:

for all G0 ∈ -0, the map G1 ∈ -1 ↦→ �G0
2(G0, G1) ∈ TG0

-0 (2.9)

is one-to-one.11 Using (2.9), (2.4) can be solved as an implicit equation in G1; the

solution for all G0 ∈ -0 defines the unique optimal Monge map

) : G0 → G∗1 := {{G1 ↦→ �G0
2(G0, G1)}}−1(�G0

D∗0(G0)). (2.10)

Note that the gradient12 gets rid of the additive constant underdetermination. Pre-

cise theorems can be found in the literature (e.g. Theorem 2.9 of (Dafni, McCann

and Stancu 2013, §6)). We give a few important consequences of this result. First,

condition (2.9) implicitly assumes that 2 is continuous and at least differentiable

with respect to G ∈ - . Defining this differential for all G0 ∈ -0 rules out discrete

measures: `0 has to be absolutely continuous with respect to 1- , the Lebesgue

10 {G ∈ - ↦→ 5 (G) ∈ . }, a function with domain - and valued in . .
11 �G02 is the gradient with respect to the first variable G0, and TG0-0 is a tangent vector to -0 at G0.
12 �G 5 (G) is the gradient of 5 at G.
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Figure 2.1. The simplest non-trivial optimal transport maps are affine and corres-

pond to data in the form of a translation and a dilation 0`1(0 G0 + 1) = `0(G0)

(here 0 = 0.5 and 1 = −0.05); c is null outside the graph {(G0, G1 = )(G0) :=

0 G0 + 1)), G0 ∈ -0}.

measure on - (remember the Dirac counterexample in Section 1.2). The twist

condition (2.9) is obviously satisfied by the Euclidean quadratic cost (1.1), but also

by the more complex reflector cost presented at the end of this section; it only needs

to hold between -0 and -1.

The second important consequence of (2.4) is that the unique transport map

is sufficient to characterize the unique Kantorovich solution. For all Borel sets

�0,1 ⊂ -0,1 and because c∗, while satisfying (1.3), vanishes outside the graph

{G0, G1 = )(G0)},

c∗(�0, �1) = c∗(�0 ∩ )−1(�1), -1) = `0(�0 ∩ )−1(�1)). (2.11)

In compact form, (2.11) is usually written c∗ = (Id-0
, ))#`0, where Id-0

is the

identity map on -0 and (Id-0
, )) := {G0 ↦→ (G0, )(G0))} is a map from -0 to -0×-1.

See Figure 2.1 for an example.

2.3. Monge–Ampère solutions

For the quadratic cost (1.1), 2-concavity can be expressed, after a transformation

of the potentials, using the classical Legendre–Fenchel transform13 (denoted (·)★
and not to be mistaken for the optimizer notation (·)∗):

{
G0 ↦→ 1

2
‖G0 − .‖2 − q(G0)

}★
(G1) := sup

G0∈-
G1 · G1 −

(

1

2
‖G0‖2 − q(G0)

)

=
1

2
‖G1‖2 − q2(G1). (2.12)

13 The Legendre–Fenchel transform 5★ of 5 for a function 5 : -0 → R∪+∞ is defined by 5★(G1) :=

supG0∈-0
(G0 · G1) − 5 (G0) (note that the definition depends on the domain of 5 ); 5★ is always

convex. If 5 is convex , ( 5★)★ = 5 , 5 and 5★ are a.e. differentiable and � 5 ◦� 5★ = � 5★◦� 5 =

Id.
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The functions

q8 =

{
G8 ↦→

1

2
‖G8 ‖2 − D8(G)

}
, 8 = 0, 1, (2.13)

correspond to the seminal setting of Brenier (1991). To optimize (2.6) over the

{q0,1} instead of the {D0,1}, change the maximization into a minimization14 and

add the constant second moments of `0 and `1 (omitted below):

q∗0 := arg inf
q0∈�MA

SD(q0), SD(q0) := 〈q0, `0〉-0
+ 〈q★0 , `1〉-1

. (2.14)

The connection between convexity and the Legendre–Fenchel transform are well

known (see footnote 13). In this setting (2.7) becomes

�MA = {q0 convex and mq0(-0) = -1}, (2.15)

where

mq0(G0) := {G1, G0 · G1 − q0(G0) ≥ G ′0 · G1 − q0(G ′0) for all G ′0 ∈ -0} (2.16)

is the usual subgradient of q0 at G0 (and mq0(-0) = {mq0(G0)}G0∈-0
). As q∗

0
is

convex, subgradients are gradients almost everywhere. This defines the single-

valued Monge map (2.10)

G0 ↦→ G1 = )(G0) = �q∗0(G0) = Id-0
− �D∗0(G0). (2.17)

Likewise (q∗
0
)★ is convex and its domain is constrained to be -1. For almost

every G1 ∈ -1 there is a unique G0 = �(q∗
0
)★(G1) achieving the maximum in the

Legendre–Fenchel transform:

(q∗0)★(G1) = G1 · �(q∗0)★(G1) − q∗0 ◦ �(q∗0)★(G1). (2.18)

Plugging (2.18) into (2.14), a formal application of Danskin’s theorem15 to the

function Φ(G0, G1) = G0 · G1 − q0(G0) yields, for any functional variation Xq0 such

that q∗
0
+ Xq0 remains in (2.15),

SD(q∗0 + Xq0) − SD(q∗0) = 〈Xq0, `0〉-0
− 〈Xq0 ◦ �(q∗0)★, `1〉-1

+$(‖Xq0‖2).

(2.19)

Because of the change of variables (2.13), the maximization is now a minimization

and SD is convex instead of concave. We conclude that the optimal potential

satisfies for all Xq0 the equation

〈Xq0, `0〉-0
− 〈Xq0 ◦ �(q∗0)★, `1〉-1

= 0. (2.20)

14 Use inf{·} = − sup−{·}.
15 We give a simplified formulation. Let Φ : (G0, G1) ∈ -0 ×-1 → R be continuous and convex in G1

for all G0 and -0 be compact. Set Ψ(G1) = supG0
Φ(G0, G1). Then, if {G∗

0
:= arg supG0

Φ(G0, G1)}
is a singleton, Ψ is differentiable at G1 and

�G1Ψ(G1) = mG1Φ(G∗0, G1).

The assumptions on Φ may be considerably relaxed: see Carlier (2021, §5.3).
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The change of variable G1 = �q∗
0
(G0) gives (again formally)

〈Xq0, `0〉-0
− 〈Xq0, (`1 ◦ �q∗0) det(�2q∗0)〉-0

= 0. (2.21)

Therefore the optimal transportation potential, together with the constraint (2.15),

may be understood in a weak sense as a solution of the (so-called) second boundary

value problem for the Monge–Ampère equation:

det(�2q0) =
`0

`1 ◦ �q0

on -0. (2.22)

The link with the Monge–Ampère operator has triggered an important theoretical

activity on the regularity theory of such equations; see Caffarelli (1992) and Figalli

(2017). A short summary is as follows. Assuming -1 is convex (this is imposed by

mq0(-0) = -1) and `0,1 bounded above and below away from 0, we gain two orders

of regularity in Hölder spaces for q0 with respect to the data `0,1, as is classically

expected of second-order elliptic equations. The bounds on the densities force the

right-hand side of (2.22) to be strictly positive and q0 to be strictly convex. This is

necessary for the variational formulation (2.21) to allow q∗
0
+ Xq0 to remain in �

for all ‘small’ Xq0(s).

The PDE (2.22)–(2.15) may be discretized and the resulting nonlinear system

solved with a damped Newton’s method yielding, experimentally at least, a linear
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cost (see Benamou et al. 2014, Benamou and Duval 2019, and the references

therein16). The discretization is delicate: it has to preserve a notion of strict

convexity to keep a well-defined Hessian for the discretization of the convex q0 ↦→
SD(q0), i.e. the Jacobian of (2.22). The Newton’s method damping ensures the

right-hand side of (2.22) remains strictly positive; more on this can be found in

Benamou, Collino and Mirebeau (2016d).

Finally let us mention that the Monge–Ampère formulation has been generalized

to other costs satisfying (2.9); see Section 2.5 below for an example.

2.4. Semi-discrete solutions

When `1 ∈ L1(-1) is simply integrable and `0 =
∑

=∈[1,# ] U= XG0,=
is a finite

sum of weighted Dirac masses, (2.6) becomes an unconstrained finite-dimensional

concave optimization problem called semi-discrete optimal transportation (not to

be confused with semi-dual).

We discuss the two components in (2.6) separately. First we have

〈D0, `0〉-0
=

∑

=∈[1,# ]
U= D0(G0,=),

so we only need to set the # prices {D0,=} := {D0(G0,=)} where the mass is located.

Now, by construction and for all G1 ∈ -1,

D20(G1) = inf
=∈[1,# ]

{2(G0,=, G1) − D0,=} (2.23)

(remember that -0 = supp(`0) = {G0,=}). We could plug this expression directly

into (2.6), but it is helpful to introduce the sets of Laguerre cells. They depend on

the vector D0 = {D0,=} ∈ R# , for all < ∈ [1, #]:

Lag<(D0) := {G1 ∈ -1 : D0,< − 2(G0,<, G1) ≤ D0,= − 2(G0,=, G1) for all = ∈ [1, #]}.
(2.24)

In our economics illustration, Lag< is the subset of -1 where the price is set to

D2
0
(G1) = 2(G0,<, G1) − D0,< (the infimum is reached for < in (2.23)). We now plug

this into (2.6) by using the decomposition -1 = ∪=∈[1,# ] Lag=(D0):

〈D0, `0〉-0
+ 〈D20 , `1〉-1

=

∑

=∈[1,# ]
U= D0,= + 〈D20 , `1〉∪=∈[1,# ] Lag=

=

∑

=∈[1,# ]
U= D0,= +

∑

=∈[1,# ]
〈2(G0,=, ·) − D0= , `1〉Lag=

=

∑

=∈[1,# ]
(U= − `1(Lag=)) D0,= +

∑

=∈[1,# ]
〈2(G0,=, ·), `1〉Lag=

. (2.25)

16 A two-dimensional code is available at https://gforge.inria.fr/scm/browser.php?group_id=9995.

https://gforge.inria.fr/scm/browser.php?group_id=9995
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The last term is constant and can be removed from the maximization. The second

term expresses the mass balance of what is swapped between Lag= and G1,= and the

actual mass to be transported U=. Optimality of this concave program is therefore

obtained by solving the set of # nonlinear equations

U= = `1(Lag=), = ∈ [1, #] . (2.26)

The constraints (2.7) are automatically taken into account by this formulation. First,

the -1 support constraint is implicitly enforced by the computation of the Laguerre

cells (2.24). The 2-concavity condition is more subtle and can be transformed into

a local constraint. If

Lag=(D0) ≠ ∅, = ∈ [1, #], (2.27)

then D22
0

(G0,=) = D0,= for all = ∈ [1, #] and we can use the function D22
0

, which is

by construction 2-concave.

The formulation, analysis and solution method is explained in great detail in

Mérigot and Thibert (2020). A more computationally oriented survey is that of

Lévy and Schwindt (2018). In the case of the Euclidean quadratic cost (1.1),

Laguerre cells can be computed17 in $(# log(#)) operations. The integration of

the measure `0 on each cell is the only numerical approximation in the method.

Finally, Mérigot (2011) has shown that (2.26) was amenable to a damped Newton’s

method forcing the volume condition (2.27) and yielding a linear cost optimal

transportation solver for the Euclidean quadratic cost.

2.5. The far field reflector cost

Analysts and differential geometers have gone a long way to extend optimal trans-

portation to Riemannian manifolds with a significant impact on pure mathematics.

The place to delve further is Villani (2008). It is also important for numerical

analysts. We illustrate this generalization with an optimal transportation applic-

ation set on the (3 − 1)-dimensional unit sphere S3−1. Here -0 ⊂ (S3−1)+ and

-1 ⊂ (S3−1)− are connected domains in the northern and southern hemispheres

respectively; `0 ∈ -0 represents a given illuminance from a point source (the R3

origin); rays carry `0(G0) light intensity in the direction G0. The other prescribed

marginal is the illumination: `1(G1) is the light intensity in the direction G1. The

reflector ‘freeforming’ problem is to find a surface in R3 such that the specular law

of reflection maps `0 to `1.

This problem has an elegant optimal transportation formulation introduced in-

dependently by Glimm and Oliker (2003) and Wang (2004), as follows.

17 Available software: https://www.cgal.org/, http://alice.loria.fr/index.php/software/4-library/75-

geogram.html, https://github.com/mrgt/MongeAmpere.

https://www.cgal.org/
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
http://alice.loria.fr/index.php/software/4-library/75-geogram.html
https://github.com/mrgt/MongeAmpere
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Let us apply the Monge theory to the displacement cost:18

2(G0, G1) = − log(1 − G0 · G1), (G0, G1) ∈ (-0 × -1). (2.28)

The TWIST condition (2.9) is satisfied; note that the restriction to -0,1 is essential

to preserve the regularity of the cost. A transport map exists, given by (2.10).

Taking the exponential of the equation/inequation over the support of the optimal

transportation plan in (2.4), we get

e−D
∗
1
() (G0))

1 − G0 · )(G0)
= eD

∗
0
(G0) ≤ e−D

∗
1
(G1))

1 − G0 · G1

for all G1 ∈ -1. (2.29)

We now notice that

G0 ∈ -0 ⊂ (S3−1)+ → ParG1
(G0) := G0

e−D
∗
1
(G1))

1 − G0 · G1

(2.30)

is a family of parabolic reflectors in R3 with axis G1 ∈ -1, focal at the origin and

focal length 1
2

e−D
∗
1
(G1).19 A parabolic mirror reflects all incoming light rays in its

axis direction. Equation (2.29) therefore shows that a ray shot in direction G0 will

first touch the parabola Par) (G0) after travelling the distance

eD
∗
0
(G0)

= inf
G1∈-1

{
e−D

∗
1
(G1))

1 − G0 · G1

}
(2.31)

and then be reflected in the G∗
1
= )(G0) direction. The transport map enforces the

law of specular reflection of the surface

Refl = {G0 eD
∗
0
(G0), G0 ∈ -0}.

By construction `1 = )#`0, so the illuminance and illumination constraints are

satisfied. The simplest example corresponds to a single Dirac target `1 = X01
, the

solution being the parabolic mirror Par01
: all the light from `0 is reflected in the 01

direction. The case of two Dirac masses `1 = U1 X01
+ (1 − U1) X11

is sufficient to

get the general idea. According to (2.31) rays will hit the closest parabola, and the

mirror is the inf-envelope of Par01
and Par11

. The focal lengths, depending on the

‘prices’ (D1(01), D1(11)), determine their unique intersection point. It partitions the

support of `0 into the rays reflecting in the 01 and 11 direction respectively. It is

adjusted so that the energy carried splits according to the Dirac weights (U1, 1−U1).

This is easily generalized to " Dirac masses and, as the reflection depends on the

local tangent to the reflector, to densities.

The corresponding 2-Monge–Ampère equation has been solved numerically

using a B-spline collocation method and a multi-scale approach in Brix et al. (2015).

18 Written for vectors in the ambient space R3 .
19 A parabola reflects all incoming rays in the direction of its axis.

See https://en.wikipedia.org/wiki/Parabola#Proof_of_the_reflective_property.

https://en.wikipedia.org/wiki/Parabola#Proof_of_the_reflective_property
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(a)

(b)

Figure 2.2. (a) Different `1 distributions for a fixed source `0. (b) Ray-tracing

resimulation via Monge–Ampère computation of the reflector. Figure reproduced

from Brix, Hafizogullari and Platen (2015) with permission. Copyright © 2015

World Scientific.

The method is tested by providing an image on a projection plane, computing the

corresponding reflector, resimulating via ray-tracing, and finally comparing the two

pictures: see Figure 2.2.

Semi-discrete optimal transportation has been applied to the reflector problem

in de Castro et al. (2016). Equation (2.31) is simply the D1 2-transform. When `1

is discrete we have a finite collection of parabolae, each sending rays to one fixed

direction G1,=. The Laguerre cells contain the ray directions of the source touching

the corresponding parabola. Adjusting the focal length e−D1(G1) amounts to moving

the parabola closer to or further away from the origin such that the amount of

light energy carried by the rays in the Laguerre cell is exactly the weight of the

corresponding target direction; see Figure 2.3.

Use of the Sinkhorn algorithm and the entropic regularization method has been

investigated in Benamou, Ijzerman and Rukhaia (2020).

3. Wasserstein distance and entropic interpolation
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(a) initial (_8)1≤8≤# (b) final (_8)1≤8≤# (c) rendering

(d) final (_8)1≤8≤# (e) reflector (f) rendering

Figure 2.3. The target distribution `1 is a picture of Monge. Calculations were

done with # = 1000 paraboloids for the first row and # = 15 000 paraboloids

for the second row. (a) Paraboloid intersection diagram (the Laguerre cells) for

an initial (D0,=)1≤=≤# . (b,d) Final intersection diagram after optimization. (e)

Reflector surface defined by the intersection of paraboloids. (c,f) Simulation of

the illumination at infinity from a point light source illuminating the northern

hemisphere (S2)+ uniformly, using LuxRender, a physically accurate ray-tracing

engine. Figure reproduced from de Castro, Mérigot and Thibert (2016) with

permission. Copyright © 2016 Springer.

3.1. Displacement interpolation and W2 metric

In this section we will restrict ourselves to the classical Euclidean quadratic cost

(1.1) and show that the optimal value function, or Monge optimal transport ‘work’

W2(`0, `1) :=
√
〈2, c∗〉-0×-1

=

√∫
‖)∗(G0) − G0‖2 3`0(G0), (3.1)

defines a distance, in the mathematical sense on P(-), known as the Wasserstein-2

distance. Identity (nothing moves) and symmetry (transport back) are immediate.
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The triangle inequality is a consequence of the same property for 2, the displacement

cost. Let )`0→d and )d→`1
, respectively, be the optimal Monge maps from `0 to d

and d to `1, and assume they are all absolutely continuous densities of probabilities.

Then )d→`1
◦ )`0→d is an admissible transport from `0 to `1. We have

W2(`0, `1) =

√∫
‖)d→`1

()`0→d(G0)) − G0‖2 3`0(G0)

≤

√∫
‖)d→`1

()`0→d(G0)) − )`0→d(G0)‖2 3`0(G0)

+

√∫
‖)`0→d(G0) − G0‖2 3`0(G0).

The last term is W2(`0, d) and the change of variable G1 = )`0→d(G0) in the first

one gives W2(d, `1) (see Santambrogio 2015, §5.1).

We are now going to make a detour through displacement interpolation and an

incursion into multi-marginal optimal transportation.

We assume that -0 and -1 are subsets of a larger - . The interpolation in P(-)

with respect to the transport cost is

dg := arg inf
d∈P(- )

{(1 − g)W2
2 (`0, d) + gW2

2 (d, `1)}, g ∈ (0, 1). (3.2)

The mapping d ↦→ W2
2
(`0, d) is continuous, differentiable and convex on P(-).

These properties are further discussed in Section 7.2. The interpolation dg is

well-defined. It is the distribution of mass closest to `0 and `1 in the sense of

the weighted average transport cost. We have two nested optimization problems in

(3.2), that is,

inf
d∈P(- )

{
(1 − g) inf

c0→g ∈Π(`0,d)
〈2, c0→g〉-0×- + g inf

cg→1∈Π(d,`1)
〈2, cg→1〉-×-1

}
.

(3.3)

The plans c0→g and cg→1 specify the quantity of mass flowing from G0 ∈ -0 to

some Gg ∈ - and then from Gg ∈ - to G1 ∈ -1. We can rewrite this problem in the

Kantorovich spirit. Instead of looking for coupling, let us search for ‘triplings’: the

quantity of mass, denoted c3, flowing across triplets (G0, Gg , G1) ↦→ c3(G0, Gg , G1)

in the bigger space P(-0 × - × -1):

inf
d∈P(- )

{
inf

c3∈Π3(`0,d,`1)
〈23, c3〉-0×-×-1

}
, (3.4)
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where20

Π3(`0, d, `1) (3.5)

:= {c3 ∈ P(-0 × - × -1) : %-0
#c3 = `0, %-1

#c3 = `1 and %-#c3 = d}

is the set of 3-marginal plans and 23 is given by (3.6) below. For all couples

of 2-plans c0→g ∈ Π(`0, d) and cg→1 ∈ Π(d, `1) there exists a 3-plan c3 ∈
Π3(`0, d, `1) such that c0→g = %-1

#c3 and cg→1 = %-0
#c3 (see Lemma 5.5 in

Santambrogio 2015) and conversely. Problems (3.3) and (3.4) are equivalent.

The intermediate marginal d support can be determined with the help of the

displacement cost:

23(G0, Gg , G1) = (1 − g)
1

2
‖Gg − G0‖2 + g

1

2
‖G1 − Gg ‖2. (3.6)

If c3(G0, Gg , G1) > 0 and because 23 is a strictly convex function of Gg , mass

travelling from G0 to G1 necessarily goes through its minimum Gg = G0 + g(G1 −
G0). Straight trajectories are optimal. The 3-marginal cost 23 therefore simplifies

to the 2-marginal cost 2 (1.1) for the mass carried by minimizers c∗
3

of (3.5)–

(3.4). The integration %-0×-1
#c∗

3
= 〈1, c3〉- coincides with the Kantorovich 2-

plan c∗
0→1

solution of (1.2).21 The 3-plan c∗
3

is fully determined by c∗
3
(G0, Gg , G1) =

c∗
0→1

(G0, G1) if Gg = G0 + g(G1 − G0) and 0 else; remember that optimal transport

paths do not cross. The outer minimization in (3.4) can be eliminated and the

problem relaxed to the simpler

inf
c3∈Π2(`0,`1)

〈23, c3〉-0×-×-1
, (3.7)

where

Π2(`0, `1) := {c3 ∈ P(-0 × - × -1) : %-0
#c3 = `0, %-1

#c3 = `1}. (3.8)

We are back to the 2-marginal constraints, but optimize on the 3-marginal plans.

The solutions of (3.3) are recovered via marginal integrations: dg = %-#c∗
3
,

c∗
0→g

= %-0×-#c∗
3

and c∗
g→1

= %-×-1
#c∗

3
.

At the Monge level, McCann (1997) has shown that, given the map G0 ↦→
)0→1(G0) between `0 and `1, the map

G0 ↦→ )0→g(G0) := G0 + g ()0→1(G0) − G0) ( = Gg above) (3.9)

is the Monge map between `0 and dg , the solution of the interpolation problem

(3.2). He called this process displacement interpolation. It can be used to generate

a smooth dynamic g ∈ (0, 1) → dg sequence of probability measures morphing

`0 to `1 continuously. This process will, in particular, displace the support of dg

20 The marginal distributions are defined using the canonical projections %-0
: (G0, Gg , G1) → G0

and %-0
#c3 = 〈1, c3〉"×-1

and likewise %-1
#c3 = 〈1, c3〉-0×- , %-#c3 = 〈1, c3〉-0×-1

.
21 % is again a canonical projection: %-0 ,-1

: (G0, Gg , G1) → (G0, G1).
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Figure 3.1. Blue, `0; red, `1; black, dg . The interpolation for (a) the W2 distance

and (b) the L2 distance.

smoothly and ‘horizontally’. Assuming `0 and `1 are integrable, it is interesting

to compare with the L2 interpolation of functions, that is,

dg := arg inf
d

{(1 − g) ‖`0 − d‖2
L2 + g ‖d − `1‖2

L2},

which yields a pointwise interpolated sequence dg = (1 − g) `0 + g `1. The mass

will only move ‘vertically’. Figure 3.1 illustrates these fundamentally different

behaviours.

An important remark is that the curve g ∈ (0, 1) ↦→ dg is a geodesic curve

for the W2 distance. For any two times (g0, g1) ∈ [0, 1]2, g ∈]g0, g1 [→ dg is

the displacement interpolation between dg0
and dg1

. The piece of the map (3.9)

Gg0
→ Gg1

is also the Monge map between dg0
and dg1

.

Displacement interpolation is harder to compute than L2 interpolation, but its

ability to model smooth displacements has caught the attention of many researchers

in signal processing. All is far from perfect, though. Signals are not necessar-

ily probability distributions. The measure-preserving/mass-conservation property

also rules out any ‘rigidity’ or ‘geometric’ constraint on supp (dg), but it may be

a no-go for many morphing applications. We discuss these restrictions further in

Sections 4 and 7.

Finally, let us mention attempts at formulating higher-order optimal transporta-

tion interpolations, e.g. Benamou, Gallouët and Vialard (2019c) and Chen, Conforti

and Georgiou (2018).

3.2. Sinkhorn algorithm

A method based on an ‘entropic regularization’ (Cuturi 2013) was introduced to

speed up optimal transportation computations at the price of an approximation.
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The method comes with a parallelization-friendly22 computational method usually

known as the Sinkhorn algorithm. It can be traced back to much older works. We

will present a statistical physics interpretation in Section 6 but it is also linked to

exponential barrier functions in discrete optimization (Cominetti and Martín 1994).

A quick and somewhat dirty derivation of the algorithm (the literature usually

starts with the primal problem) starts from the dual problem (2.1) in its equivalent

formulation

sup
{D0,D1 }

〈D0, `0〉-0
+ 〈D1, `1〉-1

+ 〈]{D0⊕D1−2≤0}, `0 ⊗ `1〉-0×-1
, (3.10)

where ] is the characteristic function.23 The integration of the constraint against the

product measure `0 ⊗ `1 will be discussed for the primal regularized problem in

Section 3.3 below. Entropic regularization replaces the hard constraint (2.2) with

a smooth differentiable barrier function depending on a small parameter24 n :

OTn (`0, `1) := sup
{Dn ,0,Dn ,1 }

�n (Dn ,0, Dn ,1), (3.11)

�n (Dn ,0, Dn ,1) := 〈Dn ,0, `0〉-0
+ 〈Dn ,1, `1〉-1

− n 〈e(Dn ,0⊕Dn ,1−2)/n , `0 ⊗ `1〉-0×-1
.

The penalization is strictly concave. As in the semi-dual approach, this is a large

gain as this formulation is amenable to the solver arsenal of smooth convex/concave

optimization. The Sinkhorn algorithm is the simplest iterative (in :) coordinate

ascent method (we drop the .n notation):

D:0 = arg sup
D0

〈D0, `0〉-0
− n 〈e(D0⊕D:−1

1
−2)/n , `0 ⊗ `1〉-0×-1

,

D:1 = arg sup
D1

〈D1, `1〉-1
− n 〈e(D:

0
⊕D1−2)/n , `0 ⊗ `1〉-0×-1

.
(3.12)

The maximization can be expressed in closed form as25

D:0 = LSE
n
`1,-1

(D:−1
1 ), D:1 = LSE

n
`0,-0

(D:0 ), (3.13)

where we introduced log/sum/exp (LSE), a classical and optimized function in

modern scientific software (e.g. PyTorch):

LSE
n
d,- (D) := {G1 ↦→ −n log(〈e(D−2)/n , d〉- )}, (3.14)

which sends, alternately, a function or vector defined on -0 to one defined on -1,

and reciprocally (remember 2 is defined on -0 × -1). At convergence, (3.13) is an

22 An efficient off-the-shelf GPU implementation is available at

https://www.kernel-operations.io/geomloss/.
23 ]{E≤0} := 0 if E ≤ 0 and +∞.
24 limn→0 n eE/n = ]{E<0} .
25 This is a good exercise.

https://www.kernel-operations.io/geomloss/
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n-smooth version of (2.5)26 up to a constant shift of the potentials. The formulation

(3.12) holds for both continuous and discrete measures. Using the discretization

of Section 1.3, one iteration of (3.13) is quadratic in # . A nice feature of the

algorithm is its formal independence on 2, unlike the Monge–Ampère and semi-

discrete approaches. Details and references can be found in the survey by Vialard

(2019) and the recent papers by Di Marino and Gerolin (2020) and Peyré and Cuturi

(2019, §4.2). It gives a linear convergence rate in27

$(1 − e!2(Diam `0)/n )$(1 − e!2(Diam `1)/n ),

where !2 is the Lipschitz constant of 2. For the Euclidean quadratic cost (1.1) this

is the friendly constant 1, but, as we can see, the dependence on n is not so nice.

We finish this section with several important remarks for the numerical analysts

interested in using (3.13).

The kernel appearing in the iterations scales like e!2(Diam `0,1)/n . In finite pre-

cision this leads to computer underflow and overflow when n is too small or

!2 Diam `0,1, the scale of the ground displacement, is too large (or both). Several

stabilization techniques are available: see Schmitzer (2019).

The operation cost of Sinkhorn iterations can be drastically reduced for the

Euclidean quadratic cost (1.1). Rewrite 〈e(D−2)/n , d〉- in the LSE function as

{H ↦→ 〈eD(G)/n Wn (H − G)), d〉- },

where

Wn (I) =
1

(2cn)3/2
e−‖I ‖

2/(2n ) (3.15)

is a Gaussian with variance n . The normalization constant is not important at this

stage (and we will assume in this section it is absorbed by the potentials (D0, D1))

but will be useful in Section 6.1. If -0 = -1 are 3-dimensional regular Cartesian

grids,

‖I‖2
= ‖I1‖2 + ‖I1‖2 + · · · + ‖I3 ‖2

and the number of I8 points is #1/3 . The exponential matrix tensorizes and the

operation cost of one iteration reduces to $(#1+1/3).

When the problem admits a Monge solution, it is possible to take advantage of

the sparsity of the entropic plan to obtain an $(# log(#)) algorithm via a strategy

that is multiscale in n ; see Schmitzer (2019).

Much more is to be found in Peyré and Cuturi (2019, §4).

26 LSE is also known as ‘soft-min’: limn→0 LSE
n
1,-

(6)(·) = infG∈- 2(·, G) − 6(G).

27 Diam d is the diameter of supp d.
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3.3. Entropic bias

The OTn solution is, however, biased by the penalization term. The entropic bias

is better understood for the Fenchel–Rockafellar primal corresponding to (3.11):

OTn (`0, `1) := inf
cn ∈Π(`0,`1)

〈2, cn 〉-0×-1
+ n KL(cn |`0 ⊗ `1), (3.16)

where KL(a |a0) := 〈log(a/a0)−1, a〉+〈1, a0〉 is the Kullback–Leibler divergence.28

The compact notations may be a bit confusing: a/a0 implies that ` is absolutely

continuous with respect to the measure a0 (continuous or discrete), otherwise KL

takes, by convention, an infinite value. So supp a ⊂ supp a0 and a/a0 is a density.

The penalization a ↦→ KL(a |a0) is strictly convex, positive and vanishes for

a = a0. The penalization n KL(cn |`0 ⊗ `1) biases the entropic plan c∗n towards

the measure `0 ⊗ `1. Figure 3.2 illustrates this effect. The choice of this particular

reference measure is guided by the following consideration: it is our best direct

guess for c∗n in Π(`0, `1) in terms of both support and value. We therefore expect

to reduce the bias with the classical optimal transportation solution introduced by

the regularization. Note that it is possible to choose a reference measure such that

Π(`0, `1) will be empty of plans with the corresponding support. The problem

then becomes infeasible.

A few lines of computations rewrite (3.16) as

inf
cn ∈M(-0×-1)

]{%-0
#cn =`0 } + ]{%-1

#cn =`1 } + n KL(cn |c0
n ), (3.17)

where M is the set of Radon measure and

(G0, G1) ↦→ c0
n (G0, G1) = Wn (G1 − G0)`0(G0)`1(G1). (3.18)

It is important to note that this formulation is unconstrained. The (strict) positivity

of cn is enforced by the KL penalization and its mass sums to 1 because of the

marginal constraints. Optimizers are necessarily in P(-0 × -1).

The equivalence between (3.10) and (3.17) is a direct application of Fenchel–

Rockafellar convex duality; see Theorem 6.3 in Carlier (2021). Specifically, let

(E , E ′) and (F ,F ′) be a pair of dual normed spaces. Let � : E → F be a continuous

linear operator and �′ its adjoint. Let �, � be proper, convex and lower semi-

continuous functions defined on E and F respectively. If there exists f ∈ Dom(�)

such that � is continuous at �f, then

sup
f∈�

−�(−f) − �(�f) = inf
@∈� ′

�★(�′@) + �★(@) (3.19)

and the infimum is attained. Moreover, if there exists a maximizer f∗ ∈ � , then

there exists @∗ ∈ � ′ such that

�f∗ ∈ m�(@∗) and �′@∗ ∈ m�(−f∗). (3.20)

28 Also known as the relative entropy between a and a0. It is strictly convex, vanishes and takes

its minimum at a0, and has an infinite slope at 0. Its Fréchet derivative is formally given by

〈XKL(a |a0), Xa〉 = 〈log(a/a0), Xa〉.
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Figure 3.2. Blue, `0; red, `1. The colour map corresponds to c∗n for different

values of n . The black line is the optimal transport map ) (n = 0). Observe how

the entropic plan ‘turns’, ‘aligns’ and ‘shrinks’ from the product measure `0 ⊗ `1

to the graph of the transport map as n decreases to 0.
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We now apply (3.19) with

� : f := (D0, D1) ∈ C(-0) × C(-1) ↦→ D0 + D1 ∈ C(-0 × -1),

�′ : @ := cn ∈ M(-0 × -1) ↦→ (%-0
#cn , %-1

#cn ) ∈ M(-0) ×M(-1),

� : (D0, D1) ∈ C(-0) × C(-1) ↦→ 〈D0, `0〉-0
+ 〈D1, `1〉-1

,

�★ : (d0, d1) ∈ M(-0) ×M(-1) ↦→ ]{d0=`0 } + ]{d1=`1 },

� : D ∈ C(-0 × -1) ↦→ {@ → KL(@ |c0
n )}★(D) = −n 〈e(D−2)/n , `0 ⊗ `1〉-0×-1

,

�★ : @ ∈ M(-0 × -1) ↦→ �★(@) = n KL(@ |c0
n ). (3.21)

Remember that � = �★★ and � = �★★ are convex though not necessarily continu-

ous. In particular, �★ above takes infinite values. Using this particular choice the

primal–dual optimality conditions (3.20) take the form

c∗n = e
(D∗

n ,0
⊕D∗

n ,1
−2)/n

`0 ⊗ `1 and (%-0
#cn , %-1

#cn ) = (`0, `1). (3.22)

Under the Fenchel–Rockafellar formalism, Sinkhorn iterations are the coordinate

ascents

D:0 = arg sup
D0

−�(−(D0, D
:−1
1 )) − �(� (D0, D

:−1
1 ),

D:1 = arg sup
D1

−�(−(D:0 , D1)) − �(� (D:0 , D1)).
(3.23)

Details and generalizations of this formalism are given in Chizat, Peyré, Schmitzer

and Vialard (2018a).

Let us restrict again to the Euclidean quadratic cost (1.1) and the discrete case

(Section 1.3) to discuss (3.22). The entropic optimal transportation matrix is

c∗n ,(8, 9) = (F0,8 e
D∗

0,8
/n

) Wn (G1, 9 − G0,8) (F1,8 e
D∗

1,8
/n

), (3.24)

where {D0,8} := {Dn ,0(G0,8)} and {D1, 9} := {Dn ,1(G1, 9)} are converged solutions

of the (3.12) Sinkhorn iterations. The Gaussian matrix Γn := {Wn (G1, 9 − G0,8)}
(see (3.15)) is strictly positive and decreases exponentially away from the diagonal

(if the marginal discretizations are identical). On each side there is a diagonal

matrix scaling Γn such that c∗n ∈ Π(`0, `1). Denoting the discretization scale by

ℎ, the effective bandwidth of Γn in finite precision admits a maximum admissible

displacement. It will decrease as ℎ2/n increases. It may again cause the set of

c∗n ∈ Π(`0, `1) in the form (3.24) to be empty.

Decreasing the entropic bias therefore involves ℎ and n ; Berman (2020) gives

quantitative results. Set ℎ = 1/#1/3 = n and assume the ground space discretization

of the smooth densities `0,1 is on the scale of n . After running (3.13) for : n =
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1/n log(1/n) iterations, we get29

‖D:n
0, n

− D∗0‖∞ ≤ � n log

(

1

n

)

. (3.25)

As for the optimal plan, Berman (2020) gives the estimate

c:n
n ≤ �n `0 ⊗ `1, (3.26)

where

(G0, G1) → �n (G0, G1) :=
?

n ?
exp

(

−2(G1, )(G0))

n ?

)

. (3.27)

See (2.10) for the formulation of ) as a function of 2 and D∗
0
. The approximation

c
:n
n is to be understood as (3.22) for the running (3.13) iterates. The parameter ?

is positive and depends on the marginals but is unfortunately not explicit. Estimate

(3.27) is nevertheless important for two reasons. First it shows that the entropic

bias decreases exponentially fast around the continuous transport map (see Fig-

ure 3.2). So even though c
:n
n , in theory, has full support on the grid, it will be

negligible, and even null in finite precision, for an increasing number of points as

n decreases. A detailed numerical description of these phenomena and a proposed

heuristic multi-scale method in n can be found in Schmitzer (2019). A GPU im-

plementation can also be found in Feydy (2020). They both observe numerically

the desired $(# log(#)) complexity arising from the sparsity of the transport plan.

A convergence proof of the multiscale method using (3.26) is given in Benamou

and Martinet (2020). We are back to the performance of the Monge–Ampère and

semi-discrete formulations but only when smooth Monge maps exist.

3.4. Soft displacement interpolation

Computing the Wasserstein interpolant should in principle be as simple as solving

the original optimal transportation problem and using the Monge map (3.9) to push

forward `0 to dg . As discussed in the introduction, Monge maps are concepts

that unfortunately may be lost after discretization and will definitely be lost after

the entropic regularization. So we instead resort to the simplified Kantorovich

formulation (3.7)–(3.8) and will recover dg as the intermediate marginal. The dis-

cretization of (1.2) presented in Section 1.3 was straightforward. The discretization

of (3.7)–(3.8) is more subtle. We have seen that the optimal plan c∗
3

charges triplets

(G0, G0 + g(G1 − G0), G1) when the original optimal transportation solution c∗(G0, G1)

also does. If -: = {G:,8}8=1,# for : = 0, 1, we need to cover all possible dis-

placement interpolants for the discretization of the support dg . This translates into

{G0,8 + g(G1, 9 − G0,8)}(8, 9)∈[1,# ]2 with possibly #2 points. The 3-marginal transport

29 The precise result involves interpolation of the discrete potential with the 2-transform formula

(2.10).
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plan will be a # × #2 × # tensor. Solving the discretized (3.7)–(3.8) linear pro-

gram is not possible for reasonable discretization sizes. One may, of course, use

an arbitrary intermediate grid; the discretization of all three ground spaces may

be, for instance, identical regular Cartesian grids of size # . In so doing, we add a

constraint on the support of dg . This often generates non-smooth oscillating results

even for smooth `0 and `1.

Entropic penalization offers a win–win solution to this problem, in terms of both

computational efficiency and removing the grid pollution explained above. The

suggested primal entropic version of (3.7) is

inf
c3, n ∈Π2(`0,`1)

〈23, c3, n 〉-0×-×-1
+ n KL(c3, n |`0 ⊗ 1- ⊗ `1). (3.28)

As c3 and c share the same marginal constraints (3.8), the dual problem is shown

to be

sup
(Dn ,0,Dn ,1)

〈Dn ,0, `0〉-0
+ 〈Dn ,1, `1〉-1

− n 〈e(Dn ,0⊕Dn ,1−23)/n , `0 ⊗ `1〉-0×-×-1
. (3.29)

It differs from (3.11) only in the final term. Using 23 (see 3.6), the primal–dual

optimality conditions (3.22) are

c∗3, n (G0, Gg , G1) = eD
∗
0
(G0)/n Wn /(1−g)(Gg − G0,8) Wn /g(G1 − Gg) eD

∗
1
(G1)/n . (3.30)

Remember that the non-entropic %-0×-1
#c∗

3
= 〈1, c3〉- is the Kantorovich plan

c∗
0→1

solution of (1.2). Applying the same marginal integration inside (3.30)

amounts to the convolution

〈{Gg ↦→ Wn /(1−g)(Gg − G0) Wn /g(G1 − Gg)}, 1- 〉- = Wn /(g(1−g))(G1 − G0), (3.31)

where we are taking some liberties with the constants and used the convolution of

Gaussian properties.30 We get

%-0×-1
#c∗3, n (G0, Gg , G1) = eD

∗
0
(G0)/n Wn /(g(1−g))(G1 − G0) eD

∗
1
(G1)/n , (3.32)

and recognize c∗
n /(g(1−g))

the solution of OTn ′(`0, `1), n ′ = n/(g(1 − g)) because it

satisfies (3.24) and also belongs to Π(`0, `1) by construction. After discretization,

we use (3.13) with n ′ to compute an approximation to (3.24) and of the potentials

D∗
0,1

shared by (3.32) and (3.30). Then we discretize the formula (3.30) to smoothly

interpolate

dg = %-#c∗3, n = 〈1, c∗3, n 〉-0×-1

=

{
Gg ↦→ (3.33)

(∑

8

(F0,8 e
D∗

0,8
/n

)Wn /(1−g)(Gg − G0,8)

)(∑

9

Wn /g(G1, 9 − Gg)(F1,8 e
D∗

1, 9
/n

)

)}
.

30 The convolution of two Gaussians is a Gaussian. The expectation is the sum of the expectations

and the variance is the product of the variances.
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Figure 3.3. OTn barycentres (the interior) and interpolations (the edges) of four

densities (the corners) for different sets of (_?)?=1..4. Figure reproduced from

Peyré and Cuturi (2019) with permission.

This is the product of two discrete convolutions with Gaussians. If the discretization

ℎ is small compared to the standard deviations n/(1 − g) and n/(1 − g), then the

interpolation will be smooth. Note that the n ′ parameter needs to be small to get

a reasonable approximation of the non-entropic interpolant. This bounds the g

parameter away from 0 and 1.

Generalizing the interpolation, the computation of means or barycentres of

images is a crucial step in the statistical analysis of medical images, for example,

or in texture synthesis (Bonneel, Peyré and Cuturi 2016). Formally, at least,

Wasserstein barycentres are a direct generalization of (3.2). Given a set of %

probability measures {`?}?∈[1,% ] ,

d_ := arg inf
d∈P(- )

%∑

?=1

_? W
2
2 (d, `?), (3.34)

where {_?}?∈[1,% ] ∈ (R+)% are given and
∑%

?=1 _? = 1. The Kantorovich formu-

lation of this problem was worked out by Agueh and Carlier (2011), who showed

the equivalence of different formulation. Replacing W2 with OTn in (3.34) leads to

a Sinkhorn-like algorithm (Benamou et al. 2015); see Figure 3.3 for an illustration.

For a meaningful central limit theorem see Eichinger and Carlier (2021), which

also uses an entropic regularization but this time of d.

4. Dynamic optimal transportation
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4.1. Velocity discretization and Lagrangian computational fluid dynamics

formulation

The 3-marginal formulation developed in Section 3.1 can be generalized to "

marginals. Let the sets {-<} be " identical copies of a compact set - ∈ - , and

consider the problem

c∗" ∈ arg min
c" ∈Π" (d0,d1)

〈2" , c" 〉⊗"
<=0 -<

, (4.1)

where

2" (G0, G1, . . . , G" ) =
1

2 "

"−1∑

<=0

‖G<+1 − G<‖2 (4.2)

and

Π" (d0, d1) :=

{
c" ∈ P

( "⊗

<=0

-<

)

: %-0
#c" = d0, %-"

#c" = d"

}
. (4.3)

What we have discussed in the 3-marginal case remains true for " marginals,

that is, the mass optimally transported from the optimal G∗
0

to G∗
"

travels in straight

lines:

G∗< = G∗0 +
<

"
(G∗" − G∗0), < = J0, "K.

On such an optimal chain {G∗<}<=0· · ·" the mass transported is constant and equal

to d0(G∗
0
). This is because c∗

0→"
= %-0×-"

#c∗
"

is also the solution of (1.2).

This may all seem pointless as the underlying transport can be obtained via a

static c0→" computation, but the following Lagrangian interpretation will lead us

to important variations of optimal transportation, in particular the computational

fluid dynamics (CFD) formulation (Benamou and Brenier 2000).

The optimal chain {G∗<}<=1· · ·" can be interpreted as a straight continuous curve

X ∗ : (g, G∗
0
) ∈ [0, 1] × -0 ↦→ X ∗

g (G∗
0
) initially at G∗

0
and passing through all points

G∗< = X ∗
g<

(G∗
0
) at times g< = (1/")J0, "K. We note that31 ¤X ∗

g (G∗
0
) = "(G∗

<+1
− G∗<)

is a constant for all g ∈]</", (< + 1)/" [ and for all <. The map G∗
0
↦→ X ∗

g (G∗
0
) is

exactly the optimal transportation map between d0 and dg obtained via displace-

ment interpolation (3.9). Hence

{G∗0 ↦→ X ∗
g (G∗0)}#d0 = dg . (4.4)

We have already explained in the discrete case (Section 1.3) that optimal transport

trajectories cannot cross except perhaps at final time 1. This is also the case in the

continuous case. Therefore there exists a vector field (a ‘velocity’ as dg := 1/" is

a time step) (g, G) ∈ [0, 1] × - ↦→ +∗
g(G) ∈ R3 such that ¤X ∗

g (G∗
0
) = V∗

g(X ∗
g (G∗

0
)) =

(1/")(G∗
<+1

− G∗<) for all g ∈ (</", (< + 1)/") and for all <.

31 ¤Xg is the time g derivative along the curve g → Xg (G0).
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Wrapping all the information above in the cost function (4.1), we have

〈2" , c∗" 〉⊗"
<=0 -<

=
"

2

"−1∑

<=0

〈‖Id-<+1
− Id-<

‖2, c∗<→<+1〉-<×-<+1

=
1

2

〈∫ 1

0

‖V∗
g(X ∗)‖2 dg, d0

〉

-0

, (4.5)

where c∗
<→<+1

:= %-<×-<+1
#c∗

"
is the (2-marginal)< → <+1 integration of c∗

"
.

It is legitimate to tighten the optimal transportation optimization to the class of

Lagrangian curves and minimize their kinetic energy

W2
2 (d0, d1) = inf

(X ,V)∈CL(d0,d1)

1

2

〈∫ 1

0

‖Vg(Xg)‖2 dg, d0

〉

-0

, (4.6)

where

CL(d0, d1) :=
{
(g, G) ∈ [0, 1] × - ↦→ Vg(G) ∈ R3 and

(g, G0) ∈ [0, 1] × -0 ↦→ Xg(G0) ∈ -

such that

¤Xg = Vg(Xg), X0 = IdG0
, X1#d0 = d1

}
. (4.7)

This is the Lagrangian CFD formulation. What are the computational benefits

or pitfalls of this dynamic optimal transportation? Let us go back to (4.1) and

consider an #-point Cartesian grid discretization, denoted -# , of the identical sets

{-<}. The marginals d0 and d1 are empirical measures supported on the grid and⊗"
<=0 -# is the fully discretized space–time cylinder. Solving (4.1) then involves

c" , a probability measure over a discrete set of size #" . This is the set of all

possible chains G0 → G1 → · · · → G" lying on the grid and c" mass charges

these chains under the initial and final constraint (4.3). This problem is usually too

large to be tackled numerically and can in any case be simplified to the simpler

interpolation problem described in Section 3.1 corresponding to " = 2.32 Using

the same grid of points, the Lagrangian paths can be represented as # piecewise

affine chains {G<8
}<=J1,"K, 8 = J1, #K. The size of the problem is now $(# "),

and (4.6) becomes

1

2

#∑

8=0

(

dg

"−1∑

<=0

‖G<+1,8 − G<,8 ‖2

)

d0(G0,8). (4.8)

32 However, we will see in Section 6.1 that entropic regularization again offers a tractable numerical

method to compute the geodesic curve g → dg . We will also show in Sections 5 and 6.2 that

the introduction of time allows us to enrich the problem with additional constraints on the "

marginals.
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The mass-preserving constraint becomes

d1(G) =
∑

8∈[0,# ], s.t. G=G",8

d0(G0,8) for all G ∈ -# . (4.9)

The Lagrangian CFD formulation is an intermediate approach between the Monge–

Ampère and semi-discrete methods and the Kantorovich problem (4.1) – when a

Monge solution exists, of course. Instead of considering any set of paths between

time 0 and 1, an Eulerian vector field governs the trajectories on the space–time cyl-

inder [0, 1]×- , and no crossings are allowed. The constraint (4.9), however, makes

the problem non-convex. The next section shows how the Eulerian formulation

fixes the convexity.

4.2. Eulerian computational fluid dynamics and hidden convexity

To do so, again use the discrete time representation (4.5):

〈2" , c∗" 〉⊗"
<=0 -<

=
"

2

"−1∑

<=0

〈‖Id-<+1
− Id-<

‖2, c∗<→<+1〉-<×-<+1

=
1

2

"−1∑

<=0

〈
dg‖ 1

dg
(X ∗

g<+1
− X ∗

g<+1
)‖2, d0

〉

-0

(4.10)

=
1

2

"−1∑

<=0

〈
dg‖ 1

dg
(X ∗

g<+1
◦ (X ∗

g<
)−1 − Id-<

)‖2, d<

〉

-<

.

The last line is obtained via the change of variable G< = X ∗
<(G0) and using (4.4). We

have played with the time step dg = 1/" to produce a velocity at (g<, G< = X ∗
g<

),

and for small dg (we omit ·∗ for clarity),

Vg<(G<) ≃ 1

dg
(Xg<+1

(X −1
g<

(G<)) − G<). (4.11)

Neglecting the discretization error (which is nil for straight optimal curves), we

complete the Lagrangian-to-Eulerian-coordinates transformation in (4.10) and ob-

tain

〈2" , c∗" 〉⊗"
<=0 -<

≃ 1

2

"−1∑

<=0

〈dg‖Vg< ‖2, d<〉-<
. (4.12)

We now turn to the measure-preserving constraint (4.4). On all time intervals

[g<, g<+1] we can use the geodesic property of the curve g → d∗g (Section 3.1).

For all < = 0, " − 1, )< = X ∗
g<+1

◦ (X ∗
g<

)−1 is the optimal map from d∗g< to

d∗g<+1
and in particular )<#d∗g< = d∗g<+1

. Using the approximation (4.11) and the
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Jacobian equation formulation (2), the constraint becomes33

dg< = det(�G)<) (d<+1 ◦ )<)

≃ det(1-<
+ dg �GVg<) (d<+1 ◦ (Id-<

+ dg Vg<))

≃ (1-<
+ dg Tr(�GVg<)) (d<+1 + dg �Gd<+1 · Vg<). (4.13)

To first order in dg, we end up with

1

dg
(d<+1 − dg<) ≃ −d<+1 · �Vg< − �Gd<+1 · Vg< = − divG(d<+1Vg<). (4.14)

The Eulerian CFD formulation is obtained by letting dg → 0 in (4.12) and (4.14):

W2
2 (d0, d1) = inf

(d,V)∈CE(d0,d1)

∫ 1

0

1

2
〈‖Vg(G)‖2, dg〉- dg, (4.15)

where

CE(d0, d1) :=
{
(g, G) ∈ [0, 1] × - ↦→ (dg(G),Vg(G)) ∈ R+ × R3

such that

mgdg + divG(dg Vg) = 0 and dg=0,1 = `0,1

}
. (4.16)

The partial differential equation mgdg + divG(dg Vg) = 0 is called the con-

tinuity equation in computational fluid dynamics. It must be understood as the

measure-preserving constraint (4.4). Rigorous proofs of the Lagrangian/Eulerian

formulation require careful mathematical analysis and can be found in Brenier

(2020) or Santambrogio (2015, §6.1).

The Eulerian formulation ‘breaks’ the Lagrangian path dynamics and replaces

it with the continuity equation. The nonlinearity in the initial/final marginals

(4.9) disappears. The continuity equation becomes linear under the simple change

of variable, from velocity to momentum: (d,V) → (d, < := d V). ‘Hidden

convexity’ is revealed when plugging it into the integrand of the cost function.

Indeed (d,V) → 1
2
d‖V ‖2 becomes

(d, <) → �(d, <) :=
1

2 d
‖<‖2. (4.17)

Convex analysis tells us that, as a homogeneous function of degree one, this is a

convex function; more precisely it is the Legendre–Fenchel dual of the characteristic

function of a convex set. The change of variable holds at first glance only for d > 0

but can be made legitimate by replacing � with �★★, its bi-dual Legendre–Fenchel

transform (see footnote 13) extended to R × R3 . Keeping the notation �, we find

that

for all (0, �) ∈ R × R3 , �★(0, �) := j0+ 1
2 ‖� ‖2≤0, (4.18)

33 Tr is the trace of a square matrix, and we have used the classical identity det(Id + dg�) ≃
1 + dg Tr(�) for small dg.
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and redefining �,

(�★★) = �(d, <) :=




1

2 d
‖<‖2 if d > 0

0 if d = 0 and < = 0

+∞ else

(4.19)

for all (d, <) ∈ R × R3 . Remarkably, (4.15)–(4.16) also fits the abstract Fenchel–

Rockafellar formalism (3.19) with

� : f := (q, q0, q1) ∈ C([0, 1], -) × C(-0) × C(-1) ↦→ (mgq, �Gq),

�′ : @ := (d, <) ∈ (M([0, 1] × -))3+1 ↦→ − (mgdg + divG <, d0,−d1),

� : (q, q0, q1) ↦→ 〈q0, `0〉-0
+ 〈q1, `1〉-1

,

�★ : (0, d0, d1) ↦→ j0=0,d0=`0,d1=`1
,

� : (0, 1) ↦→ 10+ 1
2 ‖1 ‖2≤0,

�★ : @ ↦→
∫

-

∫ 1

0

�(@) dG dg (4.20)

(we assume above that `0,1 has compact support, to avoid discussion of bound-

ary conditions (4.16)). With this particular choice, the primal–dual optimality

conditions (3.20) take the form

mgd
∗
g + divG(d∗g �Gq

∗) = 0, d∗g=0,1 = `0,1,

mgq
∗
g +

1

2
‖�Gq

∗
g ‖2

= 0, d∗g a.e. on [0, 1] × - .
(4.21)

We have taken some liberties with the definition of the spaces above, but the general

idea that this is a duality result between continuous functions and measures is valid.

The system (4.21) must be understood in a weak sense. For a rigorous treatment

see Santambrogio (2015, §6.1).

The concave dual problem supf∈� −�(−f) − �(�f) is34

(q∗0, q
∗
1) := arg inf

{q : mg qg+‖�G qg ‖2/2≤0}
〈q0, `0〉-0

+ 〈q1, `1〉-1
. (4.22)

It is worth mentioning that the semi-dual formulation (e.g. Section 2.1 and equation

(2.14)) can be recovered by substituting the explicit Lax–Oleinik formula solution

of the Hamilton–Jacobi equation35 (4.21) q1(G1) = infG q0(G)+ 1
2
‖G1−G‖2 in (4.22).

The Lax–Oleinik formula also holds backwards, and setting

(D0, D1) =

(

1

2
‖Id-0

‖2 − q0,
1

2
‖Id-1

‖2 − q1

)

(4.23)

34 Use inf(·) = − sup−(·).
35 A classical result in the calculus of variations: qC (G) = infG0 q0(G0) + C �★(C−1(G − G0)) is the

solution of the Hamilton–Jacobi equation mgqg + �(�Gqg ) = 0 if � is convex and superlinear.
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we recover the maximization problem (2.1) and 2-concave duality (2.5).

The non-smooth convex optimization problem (4.15) is amenable to first-order

optimization methods and in particular a technique called proximal splitting. A

notable advantage of these methods is to preserve the positivity of the density

d during the optimization and therefore its stability; this is detailed in Benamou

and Carlier (2015). The discretization on regular grids is discussed in Papadakis,

Peyré and Oudet (2014). For rigorous Galerkin discretizations in time and space of

the CFD problem, see the recent papers by Lavenant (2021), Natale and Todeschi

(2020) and their references. See also Hug, Maitre and Papadakis (2020), Guittet

(2003) and Andreev (2017).

The recent book by Carlier (2021, §7.4) gives a comprehensive review of these

methods and their convergence. The method advocated by Benamou and Brenier

(2000) is a Douglas–Rachford solver called ALG2 (in Fortin and Glowinski 1985)

and belongs to this family of proximal splitting methods. Even though the con-

vergence of such an optimization algorithm is slow, the CFD approach remained

state-of-the-art for a decade, the hidden convexity and the reduced size of the

problem " # instead of #2 giving an advantage over linear programming. At this

time, I am not aware of any convincing way to apply second-order optimization

methods such as the damped Newton’s algorithm used for the Monge–Ampère and

semi-discrete methods. The difficulty seems to be connected with the ability of the

CFD formulation to handle locally vanishing Wasserstein geodesics.

Other instances of hidden convexity are given in Brenier (2020) and in particular

the theory of generalized incompressible flows (Brenier 1989), a precursor to

modern optimal transportation and multi-marginal optimal transportation. See the

next section.

5. Variational formulations for Euler equations

5.1. Euler geodesics

The general setting in this section, in particular the space–time cylinder, is identical

to Section 4 above. A flow is a (possibly infinite) collection of Lagrangian particles

{Xg(G0)} for (g, G0) ∈ [0, 1] × -0. It is incompressible if the ‘material density is

constant within a fluid parcel’. This is mathematically translated into the Eulerian

property dg = 1- ; for all g ∈ [0, 1], dg is the mean field density of particles at time

g when their number tends to ∞. The mass per volume is uniformly constant. As in

Section 4.1, a curve of densities evolves in time via push-forwards by the Lagrangian

map G0 ↦→ Xg(G0). The Lagrangian flow interpretation of incompressibility can be

written as

Xg#1-0
= 1-g

for all g ∈ [0, 1] . (5.1)

The density is constant, but an incompressible fluid does not necessarily remain

still. ‘Lagrangian stillness’ would be Xg(G0) = G0 for all (g, G) ∈ [0, 1] × -0 or

Vg(G) = 0 for all g ∈ [0, 1] × - . For example, let us consider a fluid with non-zero
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initial velocity V0(G). If we let the particles evolve in straight lines G0 + g V0(G0)

then they may move closer to or further away from each other, hence violating

the incompressibility, or exit the domain, or both. To maintain incompressibility

and remain in the domain, there needs to be a change in velocity: an acceleration

or deceleration. Under this condition a moving incompressible flow may still end

up with a different final particle configuration at time 1, X1 : G0 → X 5 (G0) ≠ G0,

but the particle trajectories are not straight. The acceleration is provided by a

mean pressure field generated by the particles themselves. Under the additional

assumption that the flow is a diffeomorphism for all g, the Jacobian equation

interpretation (see footnote 2) of incompressibility is det(�G0
Xg) = 1. The set

of such Lebesgue-preserving diffeomorphisms in - is denoted SDiff(-). As in

the optimal transportation case (Section 4.1), the Eulerian vector field Vg can be

defined and the familiar divG Vg = 0 incompressibility condition can be derived

from (4.14). This tells us, at the pointwise infinitesimal level, that dilations or

compressions must be balanced coordinate-wise.

Two centuries after Leonhard Euler, Arnold (1966) gave a geodesic interpretation

of the Euler equations. Replacing Vg with ¤Xg , taking into account the final

configuration constraint (X 5 is given) and also the incompressibility, modify (4.6)–

(4.7) to obtain

EG(X 5 ) := inf
(Xg ,Vg )∈�EG(X 5 )

〈
1

2

∫ 1

0

‖ ¤Xg ‖2 dg, 1-0

〉

-0

, (5.2)

where

�EG(X 5 ) :=
{
(g, G) ∈ [0, 1] × - ↦→ Vg(G) ∈ R3 and

(g, G0) ∈ [0, 1] × -0 ↦→ Xg(G0) ∈ -

such that

¤Xg = Vg(Xg),

X0 = Id-0
, X1 = X 5 ,

Xg ∈ SDiff(-) for all g ∈ [0, 1]
}
. (5.3)

The cost EG(- 5 ) minimizes, with respect to the L2(-,R3) metric, the length of

the flow between Id-0
and X 5 , constrained onto the set of Lebesgue-preserving

diffeomorphisms SDiff(-). This is the definition of a geodesic for the optimal flow

g → X ∗
g . The particle acceleration must be tangent to SDiff(-) and therefore36 the

gradient of a ‘pressure’ potential ?∗:

¥X ∗
g = �G ?

∗
g(X ∗

g ) for all g ∈ [0, 1] . (5.4)

36 This is a classical result obtained formally by integration by parts (brackets denote the L2 scalar

product and I have skipped discussion of the boundary conditions), that is,

〈V , �G ?〉 = −〈divG V , ?〉L2(- ) = 0.
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Together with constraints (5.3), this is the Lagrangian formulation of the Euler

equation with initial and final time boundary conditions on the particle configur-

ation. The equivalence with the Euler partial differential equations in (Vg , ?g)

mgVg + Vg · �G(Vg) = �G ?g ,

divG Vg = 0
(5.5)

is well known and can also be recovered (as in Section 4.2) using Fenchel–

Rockafellar optimality conditions. This pure Eulerian formulation, however, cannot

model the Lagrangian initial–final particle boundary conditions.

The existence of global-in-time solutions to Euler equations remains a challenge.

Arnold’s approach offers a way to characterize solutions with the variational for-

mulation (5.2)–(5.3). However, SDiff is not closed in L2(-,R3) and the existence

of an Eulerian vector field is conditional on the flow remaining in SDiff. As such,

(5.2)–(5.3) can only be used with additional regularity assumptions on X 5 ; see

Ebin and Marsden (1970).

5.2. Generalized geodesics

The idea in Brenier (1989) is to relax the constraint Xg ∈ SDiff(-) in (5.3).

Following (5.1), replace SDiff with S = {X ∈ L2(-, -), X#1- = 1- }, i.e. still

measure-preserving maps but not necessarily diffeomorphisms. Particles may

cross, and the existence of an Eulerian velocity V is not guaranteed. The constraint
¤Xg = Vg is relaxed and we optimize on Xg alone:

GEG(X 5 ) := inf
Xg ∈�GEG(X 5 )

〈
1

2

∫ 1

0

‖ ¤Xg ‖2 dg, 1-0

〉
, (5.6)

where

�GEG(X 5 ) :=
{
(g, G0) ∈ [0, 1] × -0 ↦→ Xg(G0) ∈ -

such that

X0 = Id-0
, X1 = X 5 ,

Xg ∈ S(-) for all g ∈ [0, 1]
}
. (5.7)

The set S is closed and is even the completion of SDiff for 3 < 3. A numerical

method based on a discretization of (5.3)–(5.7) has been proposed by Mérigot and

Mirebeau (2016). It uses a finite number of particles following piecewise affine

paths {G<8
}<=0,...," , 8 = J1, #K, as in the Lagrangian CFD optimal transportation

formulation (4.8). Discrete incompressibility requires that particles, while moving,

remain at every time g< equi-distributed in space with respect to Lebesgue measure.

There are many such configurations corresponding to local minima of the non-

convex semi-discrete optimal transportation functional:

{G<8
}8=1,...,# → W2

2

( ∑

8=1,...,#

XG<8
, 1-

)

. (5.8)
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Mérigot and Mirebeau (2016) propose penalizing (5.6) with (5.8) to approximately

maintain the incompressibility instead of using the hard constraint in (5.7). The

final configuration is also enforced through a penalization. The now unconstrained

functional to minimize is

inf
{G<8

}<=0,...,",8=1,...,#

1

2

#∑

8=0

(

dg

"−1∑

<=0

‖G<+1,8 − G<,8 ‖2

)

+ _1

#∑

8=0

‖G",8 − X 5 (G0,8)‖2 + _2

"−1∑

<=0

W2
2

( ∑

8=1,...,#

XG<8
, 1-

)

. (5.9)

A careful scaling of the parameters (", #, _1, _2) is needed to ensure convergence

to geodesics (5.2)–(5.3) when they exist. The same technique has been adapted to

the Euler–Dirichlet problem (Gallouët and Mérigot 2018).

The incompressible Beltrami flow on the unit square X = [0, 1]2 is an analyt-

ical non-trivial global-in-time solution of Euler equations. It corresponds to the

stationary velocity and pressure

V∗(G) = (− cos(c 0) sin(c 1), sin(c 0) cos(c 1)),

?∗(G) =
1

2
(sin(c 0)2 + sin(c 1)2),

(5.10)

where G = (0, 1) are the Cartesian coordinates. It can be used as a test case for Euler

geodesics. Figure 5.1 is reproduced from Mérigot and Mirebeau (2016). Particles

are labelled with just three different colours to provide for a general description

of the flow. The first line shows the precomputed configuration X 5 for different

final times; this is the classical solution of ¤X ∗
g = V∗. The following lines show the

Euler geodesic solution of (5.9). For small times and as predicted by the theory,

the solution remains classical. For larger times a shorter geodesic is found in the

larger set S by allowing particles close to the centre of rotation to cross and travel

directly to the final configuration. The observed ‘mixing’ suggests that the solution

is dependent on the discretization and points to a looser relaxation (see the next

subsection).

5.3. Generalized incompressible flows

So far we have only dropped the diffeomorphism constraint. To go further, and

following the Kantorovich paradigm, we now allow the unit of mass at all G0 to split

and be carried by more than one path. Let us consider the set Ω = C0([0, 1], -) of

all possible continuous paths in the space–time cylinder. The mass carried by every

path g ∈ [0, 1] → l(g) will be modelled as c(l), where c ∈ P(Ω) now denotes

probabilities on the space of curves Ω. The Eulerian density of paths dg ∈ P(-)
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(a) C = 0.0 (b) C = 0.95 (c) C = 1.1 (d) C = 1.3 (e) C = 1.5

(f) C = 0.0 (g) C = 0.25 ∗ Cmax (h) C = 0.5 ∗ Cmax (i) C = 0.75 ∗ Cmax (j) C = Cmax = 0.95

(k) C = 0.0 (l) C = 0.25 ∗ Cmax (m) C = 0.5 ∗ Cmax (n) C = 0.75 ∗ Cmax (o) C = Cmax = 1.1

(p) C = 0.0 (q) C = 0.25 ∗ Cmax (r) C = 0.5 ∗ Cmax (s) C = 0.75 ∗ Cmax (t) C = Cmax = 1.3

(u) C = 0.0 (v) C = 0.25 ∗ Cmax (w) C = 0.5 ∗ Cmax (x) C = 0.75 ∗ Cmax (y) C = Cmax = 1.5

Figure 5.1. (a–e) Beltrami flow in the unit square at various time steps, a classical

solution to Euler’s equation. The colour of the particles depends on their initial

position. (f–j, k–o, p–t, u–y) Generalized fluid flows that are reconstructed for

different final times Cmax, i.e. using boundary conditions displayed in the first and

last columns. When g := Cmax < 1, we recover the classical flow, while for Cmax ≥ 1

the solution is no longer classical and includes mixing. Figure reproduced from

Mérigot and Mirebeau (2016) with permission. Copyright © 2016 Society for

Industrial and Applied Mathematics. All rights reserved.
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at each time g can be recovered as the ‘time’ marginal37

dg := 4g#c, where 4g : l ∈ Ω → l(g) ∈ -. (5.11)

The transport plan between times g0 and g1 is given by38

cg0→g1
:= (4g0

, 4g1
)#c. (5.12)

If c0→1(G0,X
5 (G0)) = 1-0

, the unit of mass initially at G0 ends up finally at X 5 (G0)

and only there.39 The final configuration Lebesgue-preserving map X 5 : -0 ↦→ -1

therefore corresponds to the plan

c0→1 = (Id-0
,X 5 )#1-0

. (5.13)

A generalized incompressible flow will be the solution of

GIF(X 5 ) := inf
c∈�GIF(X 5 )

〈
1

2

∫ 1

0

‖ ¤l(g)‖2 dg, c

〉

Ω

, (5.14)

where

�GIF(X 5 ) :=
{
c ∈ P(Ω) :

(40, 41)#c = (Id-0
,X 5 )#1-0

4g#c = 1-g
for all g ∈ [0, 1]

}
. (5.15)

In line with the Kantorovich formulation of optimal transportation, we are back

to a ‘simple’ Eulerian linear programming problem but set on a ‘large’ infinite-

dimensional space P(Ω). The last line in (5.15) is Eulerian incompressibility

and the middle line the initial/final boundary conditions. Note that even though

(40, 41)#c is fully described by the map X 5 , it does not imply that the generalized

flow itself concentrates on a diffeomorphism in SDiff for all time. Mass can divide

and flow from G0 to X 5 (G0) along an arbitrary number of paths, possibly crossing

with different velocities.

We follow the discretization in Section 4.1: let Ω# ," =
⊗"

<=0 -# be the

discrete (in space and time) cylinder, where -# is a fixed #-point grid and

{g<}, < = J1, "K is a time discretization. The discretization of c is a multi-

marginal plan c",# ∈ P(Ω# ," ).

37 By definition (see Section 1) and for any measurable subset � ⊆ - , 4g#c(�) = c({l ∈ Ω, l(g) ∈
�}).

38 For any pair of measurable subsets (�g0 , �g1 ) ∈ -g0 × -g1 , we have (4g0 , 4g1 )#c(�g0 , �g1 ) =

dc({l ∈ Ω, (l(g0), l(g1)) ∈ �g0 × �g1 }).
39 Remember that d1 = %-1

#c0→1 is a probability measure and therefore necessarily c0→1(G0, G1) =

0 for all G1 ≠ X 5 (G0). We have already discussed (see (2.11)) how a transport map can be encoded

into a plan.
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Resorting once more to a piecewise affine approximation of paths (see (4.1)–

(4.2)) and using an #-point grid -# for the space discretization, we end up with

inf
c",# ∈Π",# (X 5 )

〈2" , c",# 〉⊗"
<=0 -#

, (5.16)

where40

Π",# (X 5 ) :=
{
c",# ∈ P(Ω",# ) :

%-0×-1
#c",# = (Id-0

,X 5 )#1-#
,

%-<
#c",# = 1-#

for all < = 0 . . . ,"
}
. (5.17)

This problem minimizes the same action as the CFD optimal transportation problem

(see (4.1)), but the incompressibility constraint is active on all marginals. We will

see another example of multi-marginal constraints in Section 6.2. It is convenient

to eliminate the 2-marginal ‘plan’ constraint (second line in (5.17)). It can be

relaxed by adding a penalization to the displacement cost (_ > 0 and ‘large’):

2",X 5 (G0, , G1, . . . , G" ) =
1

2 "

"−1∑

<=0

‖G<+1 − G<‖2 + _ ‖G" − X 5 (G0)‖2. (5.18)

The problem becomes

inf
c",# ∈Π",#

〈2",X 5 , c",# 〉⊗"
<=0 -#

, (5.19)

where

Π",# =
{
c",# ∈ P(Ω",# ) :

%-<
#c",# = 1-#

for all < = 0, . . . ,"
}

(5.20)

no longer depends on X 5 . From the numerical point of view, this problem suffers

from the same difficulties as the discrete Kantorovich problem (1.4) on an even

larger scale (Section 1.3).

5.4. Entropic regularization for generalized incompressible flows

Following Benamou, Carlier and Nenna (2019a), we propose to use the entropic

regularization (as presented in Section 3.3) and adapt the Sinkhorn algorithm (3.12)

to solve (5.19)–(5.20). Dropping some of the indices for clarity,

inf
cn ∈Π",#

〈2",X 5 , cn 〉⊗"
<=0 -#

+ n KL(cn |1Ω",#
) (5.21)

40 %-<
#c",# is the discrete analogue of 4g<#c.
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can be rewritten as

inf
cn ∈R"×#

"∑

<=0

j%-<#cn =1-#
+ n KL(cn |c0

n 1Ω",#
), (5.22)

where (Wn is a Gaussian kernel: see (3.15); note that we have normalized the

constant to 1) and

c0
n (G0, G1, . . . , G" ) := Wn /_(G" − X 5 (G0))

∏"−1

<=0
Wn /dg(G<+1 − G<) (5.23)

for (G0, G1, . . . , G" ) ∈ Ω# ," and dg = 1/(2") a time step. Note that this is now a

discrete optimization problem over " × # real tensors.

The generalization of Fenchel–Rockafellar duality (3.19) (see also (3.21) on the

larger multi-marginal space) is relatively straightforward:

� : f := (D0, D1, . . . ,D" ) ∈ (R# )" ↦→
"∑

<=0

D< ∈ R"×# ,

�′ : @ := cn ∈ R#×" ↦→ (%-0
#cn , %-1

#cn , . . . , %-"
#cn ) ∈ (R# )" ,

� : (D0, D1, . . . ,D" ) ∈ (R# )" ↦→
"∑

<=0

〈D<, 1-#
〉,

�★ : (d0, d1, . . . , d" ) ∈ (R# )" ↦→
"∑

<=0

jd<=1-#
,

� : D ∈ R"×# ↦→ �(D) = n 〈eD/n , c0
n 1Ω",#

〉⊗"
<=0 -<

,

�★ : @ ∈ R#×" ↦→ �★(@) = n KL(cn |c0
n 1Ω",#

). (5.24)

The primal–dual optimality conditions (3.20) take the form

c∗n = e(
∑"

<=0 D
∗
<)/n c0

n 1Ω",#
, %-<

#c∗n = 1- for all <. (5.25)

Likewise the coordinate ascent Sinkhorn algorithm (3.23) generalizes to

D:< = arg sup
D<

−�(−{D:0 , . . . , D
:
<−1, D<, D

:−1
< , . . . , D:−1

" })

− �(�{D:0 , . . . , D
:
<−1, D<, D

:−1
< , . . . , D:−1

" }) (5.26)

for all < = 0, . . . , " at each : iteration. As for the 2-marginal Sinkhorn, these are

strictly concave unconstrained problems, leading to the nonlinear set of equations:

mD< �(−{D:0 , . . . , D
:
<−1, D<, D

:−1
< , . . . , D:−1

" })
= mD<�(� {D:0 , . . . , D

:
<−1, D<, D

:−1
< , . . . , D:−1

" }). (5.27)
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The left-hand side mD< � = 1-#
is given. The right-hand side simplifies to

D< → mD< �(� {D0, . . . , D<−1, D<, D<, . . . , D" })

= 〈e(
∑"

<′=0
D′<)/n , c0

n 1Ω",#
〉-0×···×-<−1×-<+1×···-"

= eD</n 〈e(
∑

<′≠< D<)/n , c0
n 1Ω",#

〉-0×···×-<−1×-<+1×···×-"
. (5.28)

As in the classic Sinkhorn algorithm, the equation (5.27) is explicit in D<. The

numerical limits of this algorithm ultimately rest on the computational cost of the

sum in (5.28). The product structure of (5.23) involves only two successive (in

a circular way) marginal kernels, and the chain of summations in the expression

above is ‘broken’ at <: < + 1 → · · · → G" → G0 → · · · → G<−1. Computing

(5.28) consists in " independent matrix vector products
∑

9

Wn /dg(G?, 9 − G?+1,8) eD?, 9/n ,

where ? runs over the chain and the indices (?, 9) and (? + 1, 8) over the space

discretization at times ? and ? + 1. We finally find that computing (5.28) for all

{<} requires $("2 #2) operations which can be reduced to $("2 #1+1/3) using

the separability of Euclidean quadratic cost (1.1). See Benamou et al. (2019a)

for more on the convergence of the entropic regularization as n → 0. For the

convergence rate of multi-marginal Sinkhorn, see Di Marino and Gerolin (2020).

We applied this method to the numerical resolution of the Beltrami flow (5.10)

with " = 16 and # = 642. As in Section 5.2, we use three colours to label the

mass initially. It is split into three non-overlapping subdomains of -0 called ', �

and � (red, green and blue). This is the first line in Figures 5.2 and 5.3. The first

column shows the exact Beltrami flow for increasing times. The last three columns

show where this mass has been sent by plotting41

G< → %-0×-<
#cn ('/�/�, G<), (5.29)

using a variable transparency depending42 on (5.29). The second column adds the

three RGB channels.

Figures 5.2 and 5.3 correspond to two different final configurations X 5 given

by the exact Beltrami flow at (small) time ) = 0.9 and (large) time ) = c. The

diffusion induced by entropic regularization (n = 1� − 04) smoothing can be

observed on the short time geodesic (Figure 5.2). As in Figure 5.1, mass takes a

shortest path in the large time simulation (Figure 5.3). There is also mass splitting

and mixing, suggesting GIF is indeed a looser relaxation than generalized geodesics

(Section 5.2).

41 cn is given by (5.25), and (5.29) is the measure of the mass transported from the grid points in

regions '/�/�, respectively, to the grid point G< at the discrete time g<.
42 No mass has perfect transparency: one sees the white background, full mass 1 is the true opaque

colour (blue, red, green), and if the mass is in between it is partially transparent.
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(a) C = 0

(b) C = )
4

(c) C = )
2

(d) C = 3)
4

(e) C = )

Figure 5.2. Final time, ) = 0.9. Columns, classical colour tracking of the

Lagrangian solution with no mixing in the first column, %' + %� + %� in the

second column and %'/%�/%� in the remaining three columns. Rows (a–e), time

evolution. The final Lagrangian configuration at the bottom left is the final datum

-) in c0,) = (Id, -) )#1. Figure reproduced from Benamou et al. (2019a) with

permission. Copyright © 2019 Springer.
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(a) C = 0

(b) C = )
4

(c) C = )
2

(d) C = 3)
4

(e) C = )

Figure 5.3. Final time,) = c. Columns, classical colour tracking of the Lagrangian

solution with no mixing in the first column, %' + %� + %� in the second column

and %'/%�/%� in the remaining three columns. Rows (a–e), time evolution. The

final Lagrangian configuration at the bottom left is the final datum -) in c0,) =

(Id, -) )#1. Figure reproduced from Benamou et al. (2019a) with permission.

Copyright © 2019 Springer.
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6. The Schrödinger problem and transport by diffusion

6.1. The Schrödinger problem

At convergence, Sinkhorn equations (3.13) are

D∗0 = LSE
n
`1,-1

(D∗1), D∗1 = LSE
n
`0,-0

(D∗0). (6.1)

This is a direct consequence of the optimality conditions (3.22). As mentioned in

Section 3.2, the entropic regularization machinery holds in the continuous setting

and this will make the exposition easier here. We will also assume that `0,1 are

smooth densities over R3 with finite second moments. The change of variable

( 5 ∗0 , 6
∗
1) = (2cn)3/2 (eD

∗
0
/n `0, e

D∗
1
/n `1) (6.2)

in (6.1) gives (after a few lines)

5 ∗0 60 = `0 and 51 6
∗
1 = `1, (6.3)

where ( 51, 60) are obtained using forward and backward time integration of a

heat flow, respectively. The heat flow is expressed using the Laplace operator

Δ = divG(�G) (in our previous notation) as the generator of the semi-group,43

that is,

6g = e−(n g/2)Δ 6∗1, g : 1 → 0 and 5g = e(n g/2)Δ 5 ∗0 , g : 0 → 1. (6.4)

This reformulation relies on the interpretation of (3.15) as a heat kernel. It implies

that the problem is now set on - = R3 (the periodic torus with the corresponding

periodic cost 2 is also possible). The heat flows (6.4) have a Lagrangian stochastic

differential equation interpretation, ( 5g , 6g) are the probability laws44 of two inde-

pendent random processes X ±
g following the standard Brownian motions Bg :

dX ±
g = ±

√
n dBg , X +

0 ∼ 5 ∗0 and X −
1 ∼ 6∗1. (6.5)

The Sinkhorn algorithm (3.12) may be interpreted as Picard-type iterations to

determine the initial and final laws ( 5 ∗
0
, 6∗

1
). We explain below how the density

of transport in time is retrieved through the ‘interference’ product between the

forward and backward probability laws (see also Figure 6.1). A similar approach

was proposed by Guéant (2012) in the variational mean field games context (next

section).

We know that ( 5 ∗
0
, 6∗

1
) are the solutions of the dual problem (3.11). The

Schrödinger problem is a probabilistic interpretation of the primal problem as-

sociated to (3.11) under the change of variable (6.2). It is a reformulation (again a

few lines of calculations) of (3.16):

c∗n := arg inf
cn ∈Π(`0,`1)

n KL(cn |c0
n 1-0×-1

), (6.6)

43 ℎg (G) = (e(n g/2)Δℎ0) (G) :=
∫
W(n g/2)(G − G′) ℎ0(G′) dG′.

44 Xg ∼ dg is to be understood as ‘the probability law of Xg is dg ’: %(Xg ∈ �) = dg (�) for any

measurable � ⊂ - .
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where the transport part of the cost is embedded in

c0
n (G0, G1) := Wn (G1 − G0). (6.7)

As in Section 5.3, let us use the time flow in g. Let 'n ∈ P(Ω) denote the

Wiener measure.45 Then c0
n is the density of '0→1

n := (40, 41)#'n , the 0 → 1

transition probability measure associated to 'n . If, for example, `0,1 = 1- , i.e.

Lebesgue measure, then the solution to (6.6) is simply c∗n = '0→1
n . More generally,

c∗n = (40, 41)#&∗
n , where &∗

n solves a dynamic version of (6.6):

&∗
n := arg inf

&n ∈P(Ω), (40,41)#&n ∈Π(`0,`1)

n KL(& n |'n ). (6.8)

This last step requires a careful analysis, which can be found in Léonard (2014).

The Lagrangian stochastic differential equation interpretation is interesting. The

minimizer of (6.8) is Markovian and the law of a diffusion process with constrained

initial and final time law:

dX ∗
g = −�Gq

∗(X ∗
g ) dg +

√
n dBg , X ∗

0,1 ∼ `0,1. (6.9)

The law of X ∗
g ∼ 4g#&∗

n = d∗g is the entropic optimal transportation interpolation.

The drift �Gq
∗ and volatility can be deduced from the PDE interpretation (6.12)

below. As in the case of the generalized incompressible flows, the mass at G0 can be

split along�0-path solutions of (6.9). The measure &∗
n is closest to 'n in the sense

of KL entropy (known in this context as the Boltzmann–Shannon entropy) and

constrained to have `0,1 as the initial and final densities in time, respectively. The

value function can also be interpreted (using Sanov’s theorem: see Léonard 2014)

as (minus the log of) the event probability that, given `0,1, the Wiener measure

satisfies (40, 41)#'n ∈ Π(`0, `1).

The Schrödinger interpretation of optimal transportation is somewhat technical

for numerical analysts not well versed in probability theory. There is a more formal

PDE interpretation that will, as in the non-entropic case, lead to a CFD-like model

and link entropic optimal transportation with diffusion.

The optimality conditions (6.4) are rewritten as

(−mg − n Δ) 6g = 0 61 = 6∗1 and (mg − n Δ) 5g = 0, 50 = 5 ∗0 . (6.10)

We apply the ‘Hopf–Cole-type’ transformation

{ 5g , 6g} →
{
dg = 5g 6g , 6g = exp

(

− 1

2 n
qg

)}
(6.11)

45 'n is a measure on Ω = C([0, 1], -),

' ∼ 1

(2cn)3/2

∫
Law(G +

√
n B) dG,

where B is the standard Brownian motion starting at 0, i.e. the Markov process whose generator

is the operator above nΔ.
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Figure 6.1. This is an illustration of the ‘interference product’ in (6.11) for two

Dirac masses `0,1 (one at the initial time and the other at the final time) and a

diminishing entropy/diffusion parameter n . It also explains the numerical stability

limit of the entropic approach. The normalization is achieved by the potentials;

when the heat kernel is numerically 0 instead of extremely small, it is no longer

possible.

to (6.10) and obtain the Eulerian version of (6.9):

(mg − n Δ) dg + divG(dg �Gqg) = 0,

(−mg − n Δ) qg +
1

2
‖�Gqg ‖2

= 0.
(6.12)

The second equation is a Hamilton–Jacobi–Bellman equation and the first equation

a Fokker–Planck equation for the density dg . The optimality condition (6.3)

becomes the familiar marginal constraints

d0,1 = `0,1. (6.13)
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The Fenchel–Rockafellar formalism (4.20) can be used simply by replacing � with

�n : (q, q0, q1) ↦→ ((−mg − n Δ) q, �Gq), the adjoint becoming (�n )′ : (d, <) ↦→
−((mg − n Δ) dg + �G <, d0,−d1). The solution (d∗, q∗) of (6.12)–(6.13) is the

(unique) minimizer of

inf
(d,V)∈FP(d0,d1)

∫ 1

0

1

2
〈‖Vg(G)‖2, dg〉- dg, (6.14)

where

FP(d0, d1) :=
{
(g, G) ∈ [0, 1] × - ↦→ (dg(G),Vg(G)) ∈ R+ × R3 :

(mg − n Δ) dg + divG(dg Vg) = 0 and dg=0,1 = `0,1

}
. (6.15)

It is similar to the CFD formulation (4.15)–(6.15) but, as expected, with the entropic

regularization the interpretation in terms of transport maps is completely lost, and

the mass is transported along the stochastic paths (6.9).

6.2. Variational mean field games

Variational mean field games are a specific subclass of mean field games, introduced

in Lasry and Lions (2007), which can be tackled with the numerical and theoretical

tools used in dynamic optimal transportation. For a general introduction to mean

field games and their link with Nash equilibria of multi-agent systems, see Achdou

et al. (2020). We will restrict ourselves to the simplest variational mean field

games generalization of (6.14)–(6.15):

inf
(d,V)∈FP(d0)

∫ 1

0

1

2
〈‖Vg(G)‖2, dg〉- dg +

∫ 1

0

�(dg) dg + �1(d1), (6.16)

where � and �1 are convex function in C(%(-),R) and

FP(d0) :=
{
(g, G) ∈ [0, 1] × - ↦→ (dg(G),Vg(G)) ∈ R+ × R3 :

(mg − n Δ) dg + divG(dg Vg) = 0 and dg=0 = `0

}
. (6.17)

Note that d is now completely determined by the velocity Vg though the resolution

of the initial value problem in (6.17). The final density d1 appears in the cost

�1(d1) in (6.16). This formulation belongs to the well-known class of optimal

control of a system governed by partial differential equations Lions (1971), here

a Fokker–Planck equation representing (in the mean field games paradigm) the

density of players whose trajectories are subject to white noise and optimized to

achieve global minimum cost. Individual trajectories are not observable, only the

mean field density. This formulation also holds when n = 0, under the name

of ‘deterministic mean field games’. The Fokker–Planck equation becomes the

continuity equation of the CFD formulation.
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With a slight variation of (4.20),

Xg → (mg − n Δ) in �′,

�★ → {(0, d0) ↦→ ]{0=0,d0=`0 }},

�★ →
{
@ := (d, %) ↦→

∫

-

∫ 1

0

�(@) dG dg +
∫ 1

0

�(dg) dg + �1(d1)

}
,

we can once more apply Fenchel–Rockafellar duality. The optimality system (4.21)

becomes

(mg − n Δ)d∗g + divG(d∗g �Gq
∗) = 0, d∗0 = `0,

(−mg − n Δ) q∗g +
1

2
‖�Gq

∗
g ‖2

=
m

md
�(dg), (6.18)

q∗1 =
m

md
�1(d1), d∗g a.e. on [0, 1] × - .

This is the general form of our mean field games. Picking � := 0 and the char-

acteristic function �1 := ]{d1=`1 }, for example, brings us back to the Schrödinger

problem (Section 6.1).

As in the entropic treatment of the generalized incompressible flows (Sec-

tion 5.4), we are going to relax (6.16)–(6.17) to measures on curves. By ana-

logy with the PDE interpretation (4.15)–(6.15) of the Schrödinger problem in its

dynamic form (6.8), (6.16)–(6.17) has its own dynamic Schrödinger version:

inf
&n ∈P(Ω), 40#&n =`0

n KL(& n |'n ) +
∫ 1

0

�(dg) dg + �1(d1). (6.19)

Going back to the discretization-in-space-and-time technique developed in Sec-

tion 5.4 and re-using all the notation of Section 5, we get from (5.22)

inf
cn ∈R"×#

n KL(cn |c0
n 1Ω",#

) +
"∑

<=0

�<(%-<
#cn ). (6.20)

This is a slightly generalized version as � may now depend on time and �" is the

new notation for �1. The {�<} are assumed to be convex. The initial condition

can be enforced with �0(d) := ]{d=`0 }. The gamma-convergence to variational

mean field games (6.16)–(6.17) is established in Benamou, Carlier, Di Marino and

Nenna (2019b). We again apply the Fenchel–Rockafellar duality (3.19):

� : f := (D0, D1, . . . , D" ) ∈ (R# )" ↦→
"∑

<=0

D< ∈ R"×# ,

�′ : @ := cn ∈ R#×" ↦→ (%-0
#cn , %-1

#cn , . . . , %-"
#cn ) ∈ (R# )" ,

� : (D0, D1, . . . , D" ) ∈ (R# )" ↦→
"∑

<=0

�★
<(D<),
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�★ : (d0, d1, . . . , d" ) ∈ (R# )" ↦→
"∑

<=0

�<(d<),

� : D ∈ R"×# ↦→ �(D) = n 〈eD/n , c0
n 1Ω",#

〉⊗"
<=0 -<

,

�★ : @ ∈ R#×" ↦→ �★(@) = n KL(cn |c0
n 1Ω",#

). (6.21)

We recognize (5.24) with an abstract version of �. The primal–dual optimality

condition (5.25) and Sinkhorn algorithm (5.27) are unchanged but for an important

point. The chain of dependence of marginals in the cost G0 → G1 → · · · → G"
is no longer circular. If one is willing to pay the memory cost, the operation cost

of one sweep of the Sinkhorn iteration can be taken down to $(" #2), and to

$(" #1+1/3) when using the separability of the Euclidean quadratic cost (1.1). Of

course one still needs to iterate to reach convergence.

We illustrate this numerical approach with a simulation from Benamou et al.

(2019b). Initial and final densities are prescribed with �0," (d) = ]{d=`0,1 }. The

‘agents’ must avoid multiple obstacles moving in time and this is modelled letting

�<(d) = 〈]-\$<
, d〉- ,$< be the moving sets,46 and we are paying an infinite price

if some mass (and therefore agents) is present. In this case � is linear, but entropic

regularization still yields a strictly convex minimization problem. The boundaries

of the obstacles are the white circles in the snapshots displayed in Figures 6.2–

6.4. They correspond to different levels of diffusions: n = 1, 10−1, 10−2. The

discretization is " = 32 and # = 1282.

6.3. Martingale optimal transportation and transport by diffusion

Motivated by applications in finance (see Beiglböck and Juillet 2016, Beiglböck,

Henry-Labordère and Touzi 2017, Ghoussoub, Kim and Lim 2019 and the ref-

erences therein), martingale optimal transportation is a recent branch of optimal

transportation where the transport plan is constrained to satisfy a martingale con-

straint. As with ‘standard’ optimal transportation, it can be formulated as a dynamic

problem, but we will start with the static version to simplify the exposition. The

vector space - ⊂ R3 describes all possible prices for 3 underlying assets in a

portfolio. The marginals `0,1 ∈ P(-0,1) represent the state of the market at times

0 and 1, i.e. the distribution over the set of asset prices of a portfolio. The set of

transport plans c ∈ P(-0 × -1) describes all market changes for the distribution

of the portfolio between times 0 and 1. The displacement cost 2 is now interpreted

as the pay-off (a fixed gain or loss depending on the prices G0 ∈ -0 ⊂ - and

G1 ∈ -1 ⊂ -). Assuming the market changes are given by a fixed transport plan

c, also called a model, the Monge–Kantorovich cost 〈2, c〉-0×-1
is the yield of the

option (i.e. the right to buy the portfolio `1 at time 1 knowing `0). The buying

46 The characteristic function ]�(G) = 0 if G ∈ � and +∞ else. - \ � is the complement of the set �

in - .
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(a) g = 0 (b) g = 4 (c) g = 8

(d) g = 12 (e) g = 16 (f) g = 20

(g) g = 24 (h) g = 28 (i) g = 32

Figure 6.2. Planning mean field games on the torus with moving obstacles and

densities at different time steps; n = 1 and 32 time steps. Figure reproduced from

Benamou et al. (2019b) with permission. Copyright © 2019 World Scientific.

price of this option should not exceed the yield in order to prevent loss. If nothing

is known about the market mechanisms, this price can be bounded below by

inf
c∈Π(`0,`1)

〈2, c〉-0×-1
. (6.22)

We recognize the familiar Kantorovich problem (1.2). This approach is called

‘model-free hedging’ because the sets of admissible changes on the market are

really ‘free’: there are no constraints other than the marginals. The real world is

not that simple, and the optimal price 〈2, c∗〉-0×-1
may be greatly underestimated.

It seems generally agreed that, at least, a ‘no-arbitrage’ constraint must be added.

Using the notation in this paper and assuming we are dealing with densities, it takes
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(a) C = 0 (b) C = 4 (c) C = 8

(d) C = 12 (e) C = 16 (f) C = 20

(g) C = 24 (h) C = 28 (i) C = 32

Figure 6.3. Planning mean field games on the torus with moving obstacles, fixed

initial and final densities similar to Figure 6.2 and densities at different time steps;

n = 0.1 and 32 time steps. Figure reproduced from Benamou et al. (2019b) with

permission. Copyright © 2019 World Scientific.

the form

〈Id-1
, c〉-1

= Id-0
`0. (6.23)

This is the so-called martingale constraint. It states that considering the initial

wealth G0 `0(G0) at G0, markets cannot ‘arbitrage’ a strategy to generate more (or

less) wealth at time 1 from the portfolio components previously at G0. Wrapping

up, martingale optimal transportation is

c∗ := arg inf
c∈ΠMrt(`0,`1)

〈2, c〉-0×-1
, (6.24)

where

ΠMrt(`0, `1) := {c ∈ Π(`0, `1), 〈Id-1
, c〉-1

= Id-0
`0}. (6.25)
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(a) C = 0 (b) C = 4 (c) C = 8

(d) C = 12 (e) C = 16 (f) C = 20

(g) C = 24 (h) C = 28 (i) C = 32

Figure 6.4. Planning mean field games on the torus with moving obstacles and

densities at different time steps; n = 0.01 and 32 time steps. Figure reproduced

from Benamou et al. (2019b) with permission. Copyright © 2019 World Scientific.

Because of the additional martingale constraints,ΠMrt(`0, `1) may be empty. Char-

acterizing the class of `0,1 such that there exists a martingale c ∈ ΠMrt(`0, `1) is

the subject of a classical result called Strassen’s theorem.47

In the mathematical finance literature, martingale optimal transportation is writ-

ten in probabilistic notation. Let X0 ∼ `0 and X1 ∼ `1 be two random variables

on - . Transport plans c are the set of joint laws of (X0,X1). Then (6.22) is

reformulated as the mathematical expectation

inf
X0,1∼`0,1

E(2(X0,X1)). (6.26)

47 Formally, ΠMrt(`0, `1) ≠ ∅ if `1 dominates `0 in the convex order, meaning 〈q, d1〉-1
≥

〈q, d0〉-0
for all convex functions q.
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The martingale constraint (6.23) is given using the conditional expectation

E(X1 |X0) = X0, `0 a.e. (6.27)

Departing from finance, let us look at the martingale optimal transportation

problem when the displacement cost is the Euclidean quadratic cost (1.1). In the

probabilistic formalism (6.26) and using (6.27), we get

inf
X0,1≃`0,1

E(‖X1 − E(X1 |X0)‖2 |X0), (6.28)

the minimization of the conditional variance of X1 knowing X0. This is in line with

Monge optimization of mass transport: if mass follows a stochastic path X0 → X1,

and (X0,X1) is a martingale, minimizing the transport work may only be achieved

by acting on the variance or equivalently the volatility of the stochastic process.

In a striking parallel with Sections 4.1 and 6.1, Huesmann and Trevisan (2019)

have provided a dynamic interpretation that sheds new light on the martingale

constraint. All martingales (X0,X1) ∼ c ∈ ΠMrt(`0, `1) can be represented as a

joint probability c = (40, 41)#&, where & is the law of a diffusion process

dXg =
√
Ug dBg , X0,1 ∼ `0,1. (6.29)

Martingale optimal transportation is controlled by the volatility parameter Ug . The

law ofXg , again called dg , therefore satisfies the diffusion equation and initial/final

boundary conditions:

(mg − UgΔ) dg = 0, d0,1 = `0,1. (6.30)

A dynamic generalization of martingale optimal transportation (6.26) is proposed

in Huesmann and Trevisan 2019 related to the CFD formulation. Its simplest

version is (the cost 2 needs to be reinterpreted):

inf
(Ug ,dg ) satisfies (6.30)

∫ 1

0

〈2(Ug), dg〉- dg. (6.31)

Needless to say, the mathematical tool is again convex duality, and the full

optimal transportation machinery described in Section 6 applies. At this time,

the interplay between the entropic-regularization-induced diffusion, if one uses the

Sinkhorn algorithm, and the controlling diffusion is still unclear.

Classical dynamic optimal transport optimizes the velocities, while transport by

diffusion optimizes the volatilities. Both can be combined into semi-martingale

optimal transportation, where stochastic paths are also controlled using a determ-

inistic drift {g ↦→ Vg}:
dXg = Vg dg + √

Ug dBg , X0,1 ∼ `0,1. (6.32)

If Ug := 0, we are back to standard optimal transportation. If Ug is fixed and equal

to n , this is entropic optimal transportation, and if Vg := 0, this is the martingale

optimal transportation above. For these generalizations, see Léonard (2014) and

Guo and Loeper (2018) and the references therein.
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7. Transport distances as loss/fidelity

7.1. Variational Russian dolls

So far we have described static and dynamic optimal transportation problems as

linear or convex optimization problems set on the configuration space - and the

rich links existing between various deterministic or stochastic models, in particular

in the dynamic case (Sections 4, 5 and 6). The optimizers of these variational

problems were characterized as measures on - for the primals and continuous

functions on - for the duals, respectively. This is our smallest Russian doll.

The intermediate Russian doll is at the P(-) level. In Section 3 we saw that

freezing one marginal (say the first d0) in the W2 cost gives a mathematical

metrization on the space of probability measures P(-). The distance-to-d0 (d0 ∈
P(-)) information given by the Wasserstein loss functional

d ∈ P(-) ↦→ W2
2 (d0, d) (7.1)

was sufficient to define meaningful (and useful) notions such as interpolation

and barycentres in P(-). A comprehensive review of transport-based statistical

applications on this space can be found in Kolouri et al. (2017). Statistical (or

machine) learning can be seen as a powerful inference tool in M+(-): it naturally

explains the explosion of work connecting optimal transportation to this domain.

Finally, the theory of Wasserstein gradient flows, presented below in Section 7.2,

may now be seen as an autonomous research topic and is the subject of several

surveys; see Ambrosio et al. (2005) or Santambrogio (2015, §8).

The last (and largest) fascinating Russian doll is the Gromov–Wasserstein dis-

tance on the space of metric-measured spaces introduced by Mémoli (2011) and

Sturm (2020). Using our notation, a metric-measured space is a triplet (-, `, 2),

where ` is a reference measure on - and the displacement cost 2 a distance.

Gromov–Wasserstein is a generalization of the optimal transportation distance

between two such metric-measured spaces (-0, `0, 20) and (-1, `1, 21). It is im-

portant for applications where the spaces supporting the distributions `0,1 cannot

be embedded into a common - . The problem is known to be NP-hard; see Peyré,

Cuturi and Solomon (2016), who propose an approximate entropic regularization

method.

Below we discuss the middle Russian doll.

7.2. W2 gradient flows

We are concerned with functionals defined onP(-). Let us first recap the properties

of (7.1). Using the dual formulation (2.1), this is equivalent to

d ∈ P(-) ↦→ sup
(D0,D1)∈��

〈D0, d0〉-0
+ 〈D1, d〉- . (7.2)

The Wasserstein loss functional is the upper envelope of linear functionals in d,
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d ↦→ 〈D0, d0〉-0
+ 〈D1, d〉- , and it is therefore convex. Formally, again, Danskin’s

theorem (see footnote 15) implies that (7.2) is differentiable and its functional

gradient48 (we are in the intermediate Russian doll environment) is simply given

by the Kantorovich optimal potential D∗
1
:

m{d ↦→ W2
2
(d0, d)}

md
= D∗1. (7.3)

Looking back at the economics interpretation of the dual Kantorovich problem

(Section 2.1), it makes sense. If the producer wants to increase revenue by lobbying

the government into modifying the repartition of one of the goods, they just need

to look at the local prices.

A gradient flows in - aims to find a minimizer of some convex differentiable

‘energy’ G ∈ - ↦→ �(G) ∈ R. This is achieved by solving, from some initial

X0 = G0, the ordinary differential equation ¤Xg = −�G�(Xg), until it becomes

stationary and therefore reaches a minimum. Using an implicit discretization in

time, we get

Xg+ dg − Xg = − dg �G�(Xg+ dg), (7.4)

which, if � is strictly convex, admits the well-known variational formulation

Xg+ dg := arg inf
X ∈-

1

2
‖Xg − X ‖2 + dg �(G). (7.5)

Starting with Jordan et al. (1998), this concept has been lifted to the space of

probability measures P(-) using the Wasserstein distance instead of the Euclidean

quadratic cost (1.1):

`g+ dg := arg inf
`∈P(- )

1

2
W2

2 (`g , `) + dg�(`). (7.6)

According to the dynamic optimal transportation formulation, the density ` minim-

izes its kinetic energy plus some penalization depending on the additional energy

�. A sequence of probability measures {dg<}<=0,... (g< = < dg) minimizing the

energy � is built iterating (7.6). The minimization (7.6) is a particular instance of

the mean field game (6.16)–(6.17) with � := 0 and �1 := dg �, where we have

interpreted the W2 distance with its CFD formulation. Using the mean field game

optimality condition (6.18), there is, on all intervals (g<, g<+1), a curve in time of

48 The Fréchet derivative of d ∈ P(X ) ↦→ �(d), if it exists, is defined as, for any variation b such

that d + b ∈ P(-),

lim
‖ b ‖→0

1

‖b‖ �(d + b) − �(d) =

〈
m�

md
(d), b

〉

-

.
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probability measures {`∗g}. Reparametrizing time, it satisfies

mgd
∗
g + divG

(

d∗g
�Gq

∗

dg

)

= 0, d∗g=g<,g<+1
= (`<, `<+1),

1

dg
q∗g<+1

=
m

md
�(`g<+1

).

(7.7)

In the limit dg → 0, it is possible to show rigorously (see Santambrogio 2015, §8)

that the curve g → dg satisfies, in a weak sense, the initial value problem

mgdg − divG

(

dg �G

(

m�

md
(dg)

))

= 0, d0 given. (7.8)

This is a gradient descent of the energy � with respect to the geometry of the

support space P(-) described by the Wasserstein distance. The simplest and

famous example in Jordan et al. (1998), mathematically consistent with the second

law of thermodynamics,49 is the negative Gibbs entropy �(d) = KL(d |1- ), from

which one recovers the dissipative heat equation; see also Gentil (2020) for a review

of entropy and gradient flows.

This approach to functional gradient flows is well documented and has been

applied to many nonlinear dissipation/diffusion models, in particular to derive the-

oretical rates of convergence to equilibria. From the numerical point of view, all

optimal transportation numerical techniques, with or without entropic regulariza-

tion, can be applied and provide, naturally, mass conservation and non-negativity

of the density; see Benamou, Carlier and Laborde (2016a), Cancès, Gallouët and

Todeschi (2020), Matthes and Osberger (2014), Benamou, Carlier, Mérigot and

Oudet (2016c) and Peyré (2015), among others.

The power of the Wasserstein variational approach is nicely illustrated in a

model of crowd motion under congestion proposed in Maury, Roudneff-Chupin,

Santambrogio and Venel (2011). Individuals try to exit a room - . Let the door be

a part of the boundary, and denote it by D. They follow the ‘closest exit’ direction

signs posted everywhere in - . This is given as the gradient of the eikonal �G� ,

where

� :=

{
G ↦→ inf

G0∈D

1

2
‖G − G0‖

}
. (7.9)

At the ‘microscopic’ level, people are modelled by hard spheres of positive radius

', which cannot overlap. At the macroscopic level, one asks that the mean field

density does not exceed a fixed threshold, say 1. The density of the crowd of people

may vary but it has a compressibility hard limit. The proposed energy for the

Wasserstein gradient flow is

� := d ∈ P(-)) ↦→
{
〈�, d〉- if d ≤ 1 a.e. in - ,

+∞ else.
(7.10)

49 A system particle evolves towards thermodynamic equilibrium by maximizing Gibbs entropy.
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(a) (b)

Figure 7.1. (a) ‘Microscopic’ agent simulation at a fixed time. The colour map

indicates the pressure. (b) The ‘macroscopic’ gradient flow at the same time. The

density saturates to 1 in the darkest regions. Figure reproduced from Maury et al.

(2011) with permission. Copyright © 2011 American Institute of Mathematical

Sciences.

While moving, the density strives to minimize the distance to the exit but cannot

exceed the compressibility limit. The energy is convex but obviously not differen-

tiable. It is nevertheless shown in Maury et al. (2011) that the curve-of-densities

solution of (7.6) converges to a (weak) solution of

mgdg − divG(dg (�G � − �G ?)) = 0, d0 given,

0 ≤ d ≤ 1, ? ≥ 0, ? (1 − d) = 0, a.e. in - .
(7.11)

The velocity �G � points to the exit but, because of the congestion constraint and

reminiscent of the Euler problem (Section 5), a pressure ? kicks in locally when

the density reaches 1, to correct the trajectories. Figure 7.1 shows a convincing

comparison with a microscopic simulation.

7.3. Inverse problems and unbalanced optimal transportation

The classical least-squares approach to the solution of ill-posed linear system � G =

1∗ is the variational problem G∗ := arg infG∈-
1
2
‖�G − 1∗‖2. Likewise, defining an

abstract model

Mod := (\, d0) ∈ Θ × P(X ) ↦→ d1 = )\#d0 ∈ P(-) (7.12)

as a family of transport map)\ : P(-) → P(-) parametrized by a set of parameters

\ ∈ Θ, the Wasserstein loss can be used in at least two ways. Assuming a

computational definition of the model in terms of \ and d0 (the forward map) is
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known, then, given some observed input and output of the model (d0, d1), the

inverse problem

\∗ := arg inf
\ ∈Θ

1

2
W2

2 ()\#d0, d1) (7.13)

stands for the set of model parameters best approximating the observation density.

If, on the contrary, the model’s dependence on \ is unknown or too complicated,

another method, now called ‘supervised learning’, is to replace it with a surrogate

convolutional neural network (CNN) model N\ (d0) ≃ Mod(d0) for all d0. The

parameters, still denoted by \, are now independent of the model and characterize

the CNN. Given a collection of observations (d0,8 , d1,8),

\∗ := arg inf
\ ∈Θ

1

2

∑

8

W2
2 (N\ (d0,8), d1,8) (7.14)

is the optimal set of parameters for the CNN N\∗ to approximate the model Mod.

The advantages of the transport distance have already been discussed in Sec-

tion 3. First, as indicated by the name, it is a distance on the space of probability

measures allowing a generalization toP(-) of interpolation, barycentres, geodesics

and more. It also ‘metrizes weak convergence’.50 This property is important in

supervised learning, for example, as the learning samples (d0,8 , d1,8) are usually

discrete observations: histograms or empirical measures. One expects the loss

used in (7.14) to be at least continuous with respect to this sampling process.

There are limits to the use of standard transport distances for such inverse

problems. On the curse of dimensionality suffered by the accuracy of the sampling

process for W2, see Chizat et al. (2020) Vacher, Muzellec, Rudi, Bach and Vialard

(2021) and the references therein.

Another serious issue is linked to mass conservation, or rather the frequent lack

of it for realistic models. Noise or discrete approximations may be a reason but the

model itself may not be conservative: 〈1- ,Mod(d0)〉 ≠ 〈1- , d0〉. The simplest fix

is to introduce an additional normalization, i.e. replace (7.12) with

Modnormalized := (\, d0) ↦→ d1 =
Mod(d0)

〈1- ,Mod(d0)〉 , (7.15)

but it may seriously modify the mass distribution and changes the modelling.

A different approach was proposed in Benamou (2003), where the term ‘un-

balanced transport’ was introduced. It corresponds to the mean field game (6.16)

(Section 7.2),

inf
(d,V)∈FP(d0)

∫ 1

0

1

2
〈‖Vg(G)‖2, dg〉- dg + �1(d1), (7.16)

50 For a sequence d=
∗
⇀ d in P(-), lim=→+∞W2

2
(d=, d) = 0.
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where � := 0 and

�1 : d1 → 1

2
‖d1 − `1‖2

L2 (7.17)

is a relaxation of the target marginal condition. The Fokker–Planck equation

constraint (6.17) corresponding to a noisy transport may be used and solved using

the entropic optimal transportation machinery presented in Section 6. It is also

possible to replace (mg − n Δ) with mg , i.e. n = 0, giving the deterministic continuity

equation constraints

CE(d0) :=
{
(g, G) ∈ [0, 1] × - ↦→ (dg(G),Vg(G)) ∈ R+ × R3 :

mgdg + divG(dg Vg) = 0 and dg=0 = `0

}
, (7.18)

and use the proximal splitting methods mentioned in Section 4.2. This is the method

followed in Benamou (2003). In (7.16)–(7.18) all the mass initially distributed as

`0 is transported. The relaxation (7.17) is the price to pay for the mass default. This

part of the cost is static and allows for mass to be created or destroyed anywhere

independently of the support d0. It is, however, known to fail to define a distance

between non-negative Radon measures (`0, `1) ∈ M+ ×M+.

The fix, independently proposed by Chizat, Peyré, Schmitzer and Vialard (2018b),

Liero, Mielke and Savaré (2016) and Kondratyev, Monsaingeon and Vorotnikov

(2016), is based firstly on introducing a reaction term in the constraint allowing for

mass creation/destruction:

)'(d0) :=
{
(g, G) ∈ [0, 1] × - ↦→ (dg(G),Vg(G), Ag(G)) ∈ R+ × R3 × R :

mgdg + divG(dg Vg) = Ag dg and dg=0,1 = `0,1

}
. (7.19)

Note that, thanks to the reaction term, the equation is not conservative and we can

impose the usual initial/final boundary conditions in time.

Secondly, competition is established between transport and reaction in the cost

function:

W2
FR(`0, `1) := inf

(d,V ,A )∈)'(d0)

∫ 1

0

1

2

〈
‖Vg(G)‖2 + 1

4
‖Ag(G)‖2, dg

〉

-

dg. (7.20)

The problem (7.20)–(7.19) remains convex and the Wasserstein–Fisher–Rao dis-

tanceWFR(`0, `1) is a well-defined distance onM+(-). It shares a lot of the theory:

a static Kantorovich formulation, entropic version, geodesics and barycentres. A

gradient flow illustration follows.

Di Marino and Chizat (2020) derived the free boundary ‘Hele-Shaw’ tumour

growth model proposed in Mellet, Perthame and Quirós (2017) as theWFR gradient

flow (replace W2 with WFR in (7.6)) for the energy

� := d ∈ M+(-) ↦→
{
−_ d(-) if d ≪ 1- ,

+∞ else.
(7.21)
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(a)

(b)

Figure 7.2. Evolution on a non-convex two-dimensional domain (‘bone’ obstacles

in black). (a) Evolution of the density. The colour map is linear from white to blue

as the density goes from 0 to 1. (b) Pressure represented by a striped colour map

to make the level sets apparent. The white area corresponds to ? = d = 0. Figure

reproduced from Di Marino and Chizat (2020) with permission. Copyright © 2020

Société de Mathématiques Appliquées et Industrielles.

In the limit it yields51

mgdg − divG(dg �G ?) = (_ − ?)+ dg , d0 given,

0 ≤ d ≤ 1, ? ≥ 0, ? (1 − d) = 0, a.e. in - .
(7.22)

Minimizing � increases the proportion of dead cells modelled by d. It expands

according to the ‘geometry’ of the reaction diffusion equation. As in (7.10), there

is a compressibility limit as the proportion of dead cells cannot exceed 1, resulting

in the apparition of a pressure governing the flow of cells. The parameter _, called

the ‘homeostatic pressure’, corresponds to the equilibrium between natural cell

division and cell death. The reaction rate is positive only when the pressure is

below _ and new cells appear; see Figure 7.2.

7.4. Sinkhorn divergence

Use of the entropic OTn (`0, `1) (defined in (3.11)) as a proxy for OT(`0, `1)

is widespread, in particular for the applications presented in the above sections.

Unfortunately OTn is not a distance on P(-), and in particular OTn (`0, `0) > 0.

The identity Monge map cannot be represented by a diffuse entropic plan in the form

(3.22): when n → +∞, c∗n will tend to the most diffuse admissible transport plan,

`0 ⊗ `0 and OTn (`0, `0) → 〈2, `0 ⊗ `0〉. Assuming, without loss of generality,

51 (·)+ = max(0, .) is the positive part.
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that the mean of `0 is the origin and 2 is the Euclidean quadratic cost (1.1), let us

define the sequence of dilated distributions

`_ := G ↦→ 1

_3
`0

(

G

_

)

for _ > 1.

Then 〈2, `0 ⊗ `_〉 = 1/2 (1 + 1/_2)<2(`)52 is strictly decreasing as _ → +∞. In

particular,

〈2, `0 ⊗ `0〉 > 〈2, `0 ⊗ `_〉. (7.23)

So OTn obviously does not metrize weak convergence (see footnote 50), but also

`0 is not even guaranteed to be a minimizer of ` ↦→ OTn (`0, `) (depending of

course on n , _).

The tempting way to fix the problem is to decrease n to reduce the entropic bias,

but the stability and rate of convergence seriously deteriorate when n → 0 (see

Section 3.2). One remedy (see Feydy et al. 2019 and the references therein) is to

replace OTn with

(n (`0, `1) = OTn (`0, `1) − 1

2
(OTn (`0, `0) + OTn (`1, `1)). (7.24)

We immediately see that, at least, the identity bias discussed previously is removed:

(n (`, `) = 0. This loss is called Sinkhorn divergence, and Feydy et al. (2019)

proved that it is symmetric in `0 and `1, and remains positive and convex with

respect to d0 and d1. It also metrizes the weak convergence of measures. It yields a

better optimal transportation cost proxy than OTn at the same computational cost.

Details, references and simulations can be found in Ramdas, Garcia and Cuturi

(2017). Figure 7.3 shows the comparison of a gradient descent

`g+ dg := `g+ dg − dg
m

m`
Loss(`, `1) (7.25)

for different losses and `0 ≠ `1. It tests the ability of the Loss to ‘drive’ the distri-

bution `0 to the ‘minimizer’ `1 and whether it metrizes the weak convergence. As

expected, for the same regularization n = 0.1, (n performs much better than OTn .

8. A few missing topics amongst many . . .

8.1. Multi-marginal optimal transportation and DFT

The prototype "-marginal problem is

inf
c" ∈Π"

〈2" , c" 〉⊗"
<=0 -<

, (8.1)

52 <2(`) = 〈Id2, `〉 is the second moment of `.
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Figure 7.3. Gradient descent (7.25) for different losses; `0 is in green, `1 in blue

and `g in red. Figure reproduced from Feydy et al. (2019) with permission.

where

Π" :=

{
c" ∈ P

( "⊗

<=1

-<

)

: %-<
#c" = `<, < = 1, . . . , "

}
, (8.2)

and the {`<} are given probability measures. Multi-marginal optimal transporta-

tion appeared in Section 3 and underlies all dynamic optimal transportation models

(Sections 4, 5 and 6). The multi-marginal cost (4.2) there arises from the discret-

ization of the kinetic energy ((4.15) reverting to (4.12)) and is closely linked to the

Euclidean quadratic cost (1.1).

The Coulomb ‘repulsive cost’

2" (G1, . . . , G" ) =

"∑

8=1

"∑

9>8

1

|G8 − G 9 |
(8.3)
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appears in density functional theory, a branch of quantum chemistry; see Friesecke

et al. (2013) and Buttazzo, De Pascale and Gori-Giorgi (2012). All marginals `<
are a single d, the identical density probability distribution for the " electrons in a

given molecule. The optimal transportation value function is the Coulomb repulsive

energy whose minimizers characterize the state of strictly correlated electrons. The

dimensionality of this problem is daunting: it is naturally set in dimension 3 = 3 but

the plan itself is a probability measure over (R3)×" . The sparsity of multi-marginal

DFT plans is studied in Friesecke and Vögler (2017a) For a review of results on

the sparsity – or lack – of multi-marginal optimal plans for general costs, see Pass

(2015) and Di Marino, Gerolin and Nenna (2017). The global interactions between

marginals prevents the tensorization gains used for the kernel (5.23); Altschuler

and Boix-Adsera (2020) studied the complexity of available algorithms with respect

to the structure of the multi-marginal cost. An entropic numerical approach was

carried out by Benamou, Carlier and Nenna (2016b). Relaxations/simplifications

are still under investigation; see Alfonsi, Coyaud, Ehrlacher and Lombardi (2021),

Friesecke and Vögler (2017b, 2018) and Cotar et al. (2015), among others.

8.2. L1 optimal transportation, the Beckman problem and optic flows

Contrary to the Euclidean quadratic cost (1.1), the L1 optimal transportation cost

(originally considered by Monge)

2(G0, G1) = ‖G1 − G0‖ (8.4)

does not lead to a well-posed primal Kantorovich problem (1.2) and Monge map

solutions (2.10). This is well documented in Santambrogio (2015, §3.1) and Peyré

and Cuturi (2019, §6).

The uniqueness issue is easily explained using the one-dimensional ‘bookshelf’

example. Books (all with the same weight) are arranged on a shelf and there is just

one free spot at the furthest right. The librarian is a maniac and only admits free

spots at the furthest left. You are in charge of fixing this problem but you are lazy.

Will you pick the book on the furthest left and place it at the furthest right? Or will

you shift all the books on the shelf one by one? The Euclidean quadratic cost (1.1)

will tell you the second solution is optimal while the cost (8.4) says both strategies

require the same amount of work. The only important choice is the direction of

transport, and for 3 = 1 this is an easy binary choice.

The optimality conditions (2.4) still hold. Using the distance property of 2 and

assuming -0 = -1 = - , the Kantorovich potentials can be shown to be 1-Lipschitz

and complementary: D∗
0
= −D∗

1
. The dual Kantorovich problem (2.1) may be

tightened to

W1(`0, `1) := sup
{D0, ‖�G D0 ‖≤1}

〈D0, `1 − `0〉. (8.5)

This new formulation has a well-posed primal called the Beckman problem. We
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can again use the Fenchel–Rockafellar formalism (3.19) and adapt the dynamic

CFD version (4.20) to the ‘static’ version:

� : f := q ∈ C(-) ↦→ −�Gq,

�′ : @ ∈ -(-)3 ↦→ divG @,

� : q ↦→ 〈q, `1 − `0〉- ,
�★ : 0, ↦→ j0=`1−`0

,

� : 1 ↦→ 1‖1 ‖≤1,

�★ : @ ↦→
∫

-

‖@‖ dG dg. (8.6)

With this particular choice the primal–dual optimality conditions (3.20) take the

form

divG(@∗) = `1 − `0, on - ,

@∗ = ‖@∗‖�Gq
∗, ‖@‖ a.e. on - .

(8.7)

For a rigorous derivation of these equations and the space settings, see Santam-

brogio (2015, §4.3); boundary issues in particular are delicate. The system (8.7)

can be interpreted53 as the eikonal and transport equations of geometric optics

‖�Gq
∗‖ = 1, divG(‖@∗‖�Gq

∗) = `1 − `0 (8.8)

arising from the high-frequency wave equation asymptotic ansatz

5 (g, G) ≃ �(g, G)((g − q(G))

in homogeneous space.54 Here q∗ is the static phase and ‖@∗‖ =
∫ 1

0
�2(g, G) dg

is the energy travelling through G. Problem (1.2) finds the optimal transportation

kinematics q∗ with prescribed initial/final amplitudes �2({0, 1}, ·) = `0,1.

A different high-frequency wave asymptotic analysis linking the CFD formula-

tion to a paraxial approximation of the Helmholtz equation has been carried out by

Rubinstein and Wolansky (2004).

The link with optics is natural as the cost (8.4) is simply the length of rays

(G0 → G1), i.e. the travel time with index of refraction 6 := 1. It can be replaced by

the general Riemannian distance

2 := 36(G0, G1) = inf
{Xg ∈, 1,1([0,1],- ), X0=G0,X1=G1 }

∫ 1

0

6(Xg)‖ ¤Xg ‖ dg, (8.9)

yielding minimum travel times of rays from G0 to G1. The geometry of the rays

depends on 6: the eikonal equation in (8.8) generalizes to ‖�Gq
∗‖ = 6. See

Figure 8.1 for an illustration in different configurations.

53 The calculation can be done using high-frequency asymptotics (see Symes 1998, §5, for example).
54 The wave speed is constant equal to 1, and g ↦→ ((g) is a wavelet in time triggered at a point

source G( . The acoustic wave equation is (m2
g − Δ) 5 = ((g) XG( .
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(a) (b)

(c) (d)

Figure 8.1. Arrow directions correspond to (1/6) �Gq
∗ and their length is propor-

tional to ‖@∗‖. Level curves correspond to the right-hand side density term of the

divergence `0,1 source target data to be transported (Gaussian densities except in

(b), where the target is a collection of three Dirac masses). (a,b) 6 := 1; (c,d) 6

is a lens (c) and a two-layer (d) medium. Figure reproduced from Benamou and

Carlier (2015) with permission. Copyright © 2015 Springer Nature.
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More general metrics are possible, for example Finsler metrics (Benamou, Carlier

and Hatchi 2018) and nonlinear congestion problems (Benmansour, Carlier, Peyré

and Santambrogio 2009), where 6 depends on the energy ‖@∗‖.55

8.3. Signed measures and full seismic waveform inversion

Transport distances have been used recently to attack the problem of full seismic

waveform inversion. This is a well-known nonlinear inverse problem:

\∗ := arg inf
\

1

2
‖(C − `1‖2

L2 , (C = Mod\ (`0) (8.10)

where one tries to recover the underground parameters \∗ of a ‘forward’ wave

propagation model Mod\∗ mapping a wave source (C (a surface explosion at a

fixed source) to a ‘seismogram’ `1 (time × surface signal recordings at fixed

receivers). The classical least-squares loss in (8.10) is known to lead to an ill-

posed minimization problem with many local minima. A pathology is seen, called

‘cycle skipping’, linked to phase shifts in the \∗-observed (or \-guessed) oscillatory

signals. A simple computation shows that a shift in the distribution support g ↦→
W2

2
(`0(·), `0(. + g)) = (g2)/2 is convex and even quadratic for the W2 distance.

Yang and Engquist (2018) therefore proposed replacing L2 with W2 (8.10) to

convexify the problem and eliminate cycle skipping. Time signals are, however,

not probability measures and some data transformation is needed. There is little

understanding of the interpretation of time oscillatory signals in terms of mass or

probability measures. In particular, they are not positive. Just considering the

energy of the signal to fix the problem (but losing the phase information), the

source/target may also not have the same total mass because of acquisition noise

or dissipation in the forward model Mod\ .

The problem of defining an optimal transport distance for general signed meas-

ures is discussed in Mainini (2012). The simplest idea is to split the positive and

the negative part56 of the signals and consider the sum of the Wasserstein distances

(`0, `1) ↦→ W2
2 (`+0 , `

+
1) +,2

2 (`−0 , `
−
1 ). (8.11)

If this expression makes sense, i.e. the positive and negative parts are ‘balanced’ (the

same total mass), then this cost remains a distance on P(-). If not, then one may

try replacingW2 with the unbalancedWFR distance (7.20) as in Li, Lamoureux and

Liao (2020), but it does not define a proper distance. Several signal transformations

and normalizations are investigated in Yang and Engquist (2018).

The second idea is to use the W1 distance (8.5). It remains well-defined and a

distance for signed measures. There are no positivity constraints but the (signed)

55 I am still wondering if it may be linked to high-frequency asymptotics of a nonlinear auto-

(de)focusing optic model.
56 `+ = max {`, 0} and `− = max {−`, 0}.
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total mass balance

〈1, `1 − `0〉 = 0 (8.12)

needs to be satisfied.

Using positive and negative parts, a simple computation shows that

W1(`0, `1) = W1(`+0 + `−1 , `
−
0 + `+1). (8.13)

It is not clear how to interpret this formula, as the distance optimizes transport

between composite distributions aggregating information from the source and the

target data. It was used with convincing results in Métivier et al. (2016), where the

total mass balanced constraint is relaxed.

The geophysical community represents seismograms as collections of independ-

ent time ‘lines’ (the time recordings at each location). Instead of considering

the total acquisition as a time × surface image, summing line-wise the optimal

transportation distance between observed and simulated lines at the same receivers

seems to perform well, and to decrease the dimension of the optimal transportation

problems to be solved. Lines may also be interpreted as shapes in the time × sig-

nal amplitude ‘graph space’ (Métivier, Brossier, Mérigot and Oudet 2019). After

a discretization in time, they give empirical measures living in Rtime × Ramplitude

space.
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