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Abstract

We solve optimal transportation problem using stochastic optimal
control theory. Indeed, for a super linear cost at most quadratic at in-
finity, we prove Kantorovich duality theorem by a zero noise limit (or
vanishing viscosity) argument.. We also obtain a characterization of
the support of an optimal measure in Monge-Kantorovich minimiza-
tion problem (MKP) as a graph. Our key tool is a duality result for
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1 Introduction.

Optimal transportation theory consists in the study of the following two
minimization problems where P0 and P1 are given Borel probability measures
on Rd and c : Rd × Rd → R+ ∪ {+∞} is measurable ( c is called the cost
function). In the Monge-Kantorovich problem, one considers

inf
{∫

Rd×Rd
c(x, y)µ(dxdy)

}
, (1.1)

on the set of probability measures µ on Rd × Rd with marginals P0 and P1

(namely such that µ(A × Rd) = P0(A) and µ(Rd × B) = P1(B)). In the
Monge problem the object of study is

inf
{∫

Rd
c(x, g(x))P0(dx)

}
, (1.2)

and the infimum is taken over all measurable maps g : Rd �→ Rd such that
the image of P0 by g is P1.
In this paper the cost function has the form

c(x, y) = L(y − x) (1.3)

with L(u) : Rd → [0,∞) convex in u and accordingly we will denote respec-
tively by TMK(P0, P1) and TM(P0, P1) the two minimization problems on the
corresponding set described above:

TMK(P0, P1) = inf
{∫

Rd×Rd
L(y − x)µ(dxdy)

}
, (1.4)

TM(P0, P1) = inf
{∫

Rd
L(g(x) − x)P0(dx)

}
. (1.5)

Our aim in the present paper is to show that for general L, stochastic
optimal control theory can be used efficiently to solve both problems TMK

and TM . This is not clear a priori since classical stochastic control is not
well suited to face problems where both marginals (the initial as well as the
terminal laws) are fixed. However the idea is natural since one can show that

TMK(P0, P1) = inf
{
E

∫ 1

0
L(

dξs

ds
)ds

}
(1.6)
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on the set of Rd- valued absolutely continuous processes (ξs) such that ξ0

(resp. ξ1) has law P0 (resp. P1). One can also consider more general pro-
cesses with a small martingale (or diffusion) part which is interpreted as a
small viscocity coefficient. Here, along this line, and using stochastic optimal
control, we are able to prove Kantorovich duality by zero noise limit (or van-
ishing viscosity) and also to recover that the support of µ optimal for TMK

is a graph (see precise statement in section 3). Moreover in the quadratic
case (when L(u) = |u|2), our present method greatly simplifies the arguments
already used by one of us in [10], [11].

Historically the first mass transportation problem to be set was (1.5) with
L(u) = |u|; this difficult problem remained without solution for a long time
and then was approached by Kantorovich via the relaxed form (1.4). One
reason for the interest in Monge-Kantorovich problem, at least in probabil-

ity and statistics, has been that
√

T (P0, P1) defines a distance on the set of
probability measures, called Wasserstein distance, and this distance metrizes
convergence in distribution (cf. [3], [13]). More recently a geometric ap-
proach related to fluid mechanics and pdes has revived the subject (cf. [1],
[5], [7]) and established another connection with probality via log-Sobolev
inequalities (cf. [15])). There are essentially two types of results concerning
problems (1.4) and (1.5). The first type are dual forms of (1.4) provided
either by convex analysis arguments (cf. [8], [9]) or with Hamilton-Jacobi
pde (cf. [15]). The second type of results are concerned with uniqueness of
µ minimizing (1.4) and characterization of its support (cf. [1], [7]). Precise
statement will be given respectively in Sections 2 and 3.

Our approach is based on a new duality theorem which we have obtained
recently (cf. [12]). It turns out that the present paper together with [12] pro-
vide a global treatment of optimal transportation by stochastic control. We
believe that our approach may be of interest for at least two reasons. Firstly
our key arguments establish a complete correspondence with the determin-
istic setting: Hamilton-Jacobi pde is replaced by Hamilton-Jacobi-Bellman
pde with small viscosity coefficient and we rely heavily on the representa-
tion of a solution to Hamilton-Jacobi-Bellman pde as the value function of a
control problem. This is the exact analogue of Hopf-Lax formula. It is this
representation which enables us to prove the semiconvexity of the stochastic
value function (cf. [6]) as it is the case in the deterministic setting. Thus
stochastic control theory exactly contains the analogue of what is needed
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in the deterministic framework. Secondly, we see an interest at the tech-
nical level: our characterization of the support of the optimum for (1.4) is
valid when L is superlinear and at most quadratic at infinity which is easy
to check. Superlinearity is a standard requirement in the theory of optimal
transportation whereas papers on this subject (cf. [7]) assume (except for
the quadratic case L(u) = |u|2) that L satisfies a cone type condition which
is easy to check only for radial L.

In our approach by zero noise limit there are still questions left. For in-
stance, when L(u) ∼ |u|2 at infinity, as an application of our duality theorem,
we were able to describe the optimal process of our stochastic control prob-
lem as the solution of a forward-backward system ( cf. [12]). This process
should be a small variation of the deterministic optimal trajectory obtained
for (1.4)-(1.5), which is the McCann displacement interpolation between P0

and P1 ( for details see for instance [15]). This means that the optimal pro-
cess should converge to this trajectory when its diffusion part tends to zero.
Our future aim is to prove such a result.

The paper is organized as follows: in section 2 we recall basic results
about optimal transportation and prove Kantorovich duality by zero noise
limit. In section 3, by the same method, we recover the description of the
support of an optimal measure for (1.4) as a graph.

2 Monge-Kantorovich duality by zero noise

limit.

We will be working under the following assumptions: L(u) : Rd → [0,∞) is
convex in u,
(A.1) L is superlinear: for some δ > 1,

lim inf
|u|→∞

L(u)

|u|δ > 0.

(A.2) (i)L ∈ C3(Rd),
(ii) D2

uL(u) is positive definite for all u ∈ Rd,
We denote by H the Legendre transform of L:

H(z) := sup
u∈Rd

{< z, u > −L(u)}, (2.1)
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for z ∈ Rd; Dx := (∂/∂xi)
d
i=1 and < ·, · > denotes the inner product in Rd.

Let us begin this section by a brief overview of duality results for Monge-
Kantorovich problem.

2.1 Duality results for Monge-Kantorovich problem.

Duality plays a fundamental role in the study of Monge-Kantorovich prob-
lem. We recall below two duality results and indicate briefly the relationship
between them. For details we refer the reader to [13] or [15]. In the sequel
we will refer to the first result as Kantorovich duality. It was proved first by
Kantorovich ( cf. [8]) when the cost function is a distance and generalized
by Kellerer ( cf. [9]).

Theorem 2.1

TMK(P0, P1) = sup
{∫

Rd
ψ(y)P1(dy) −

∫
Rd

ϕ(x)P0(dx)
}
, (2.2)

where the supremum is taken over all pairs (ϕ, ψ) ∈ L1(P0)×L1(P1) satisfying
ψ(y) − ϕ(x) ≤ L(y − x).

A second duality result has been proved by Evans and provides a dynamical
interpretation for mass transportation problem based on calculus of varia-
tions as follows (cf. [4], [15]):

Theorem 2.2

TMK(P0, P1) = sup
{∫

Rd
Φ(1, y)P1(dy) −

∫
Rd

Φ(0, x)P0(dx)
}
, (2.3)

where the supremum is taken over all continuous viscosity solutions Φ to the
following Hamilton-Jacobi equation:

∂Φ(t, x)

∂t
+ H(DxΦ(t, x)) = 0 ((t, x) ∈ (0, 1) × Rd) (2.4)

Let us mention that Theorem 2.1 can be proved by a minimax principle
(a detailed proof is given in [15]). In the quadratic case, the supremum in
the right-hand side of (2.2) is unchanged if one restricts to the set of pairs
of integrable functions (ϕ, ψ) which are Legendre transforms of each other;
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moreover this property extends to non quadratic costs by extending Legendre
transforms to L-transforms.. Therefore, using Hopf-Lax, ϕ can be seen as
the value at time 0 of the solution of an Hamilton-Jacobi pde corresponding
to terminal (at time 1) value ψ. This yields the statement of Theorem 2.2.
For the sake of completeness we now recall Hopf-Lax formula.

Theorem 2.3 The viscosity solution Φ(t, x) of Hamilton-Jacobi pde (2.4)
satisfying Φ(1, x) = f(x) admits the representation

ϕ(t, x) = sup
{
f(ξ1) −

∫ 1

t
L(ξ(s))ds

}
(2.5)

over the set of C1-trajectories s ∈ [t, 1] �→ ξ(s) starting from x at time t:
ξ(t) = x.

The statement of Theorem 2.2 uses only the case t = 0.

Remark 2.1 When L is strictly convex, the minimizing trajectory for

inf
∫ 1

0
L(ξ̇(s))ds (2.6)

over the set of C1-trajectories connecting x to y (such that ξ(0) = x and
ξ(1) = y is the straight line ξ(t) = x+ t(y−x) and so this infimum is simply
L(y − x).

2.2 The stochastic control problem.

The idea for considering the minimization of Vε that we introduce below (cf.
[12], [11]) comes first from the identity (1.6) which we already mentioned in
the introduction and also from the property that Hamilton-Jacobi-Bellman
pde with viscosity ε > 0 is uniformly parabolic and therefore existence and
uniqueness of very regular solutions can be satisfied, instead of simply vis-
cosity solutions.
Let us consider, for ε > 0,

Vε(P0, P1) := inf
{
E

[∫ 1

0
L(βX(t, X))dt

]∣∣∣∣
PX(t)−1 = Pt(t = 0, 1), X ∈ Aε

}
. (2.7)
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The set Aε is the set of all Rd-valued, continuous semimartingales {X(t)}0≤t≤1

on a probability space (ΩX ,BX , PX) such that there exists a Borel measur-
able βX : [0, 1] × C([0, 1]) �→ Rd for which
(i) ω �→ βX(t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1], where B(C([0, t]))
denotes the Borel σ-field of C([0, t]),
(ii) {X(t)−X(0)− ∫ t

0 βX(s, X)ds :=
√

εWX(t)}0≤t≤1 where WX is a σ[X(s) :
0 ≤ s ≤ t]-Brownian motion.
Results about existence and uniqueness of a minimizer for Vε are gathered in
the following statement.

Theorem 2.4 Let ε > 0. Let us assume that Vε(P0, P1) < +∞ and that
assumption (A.2) holds. Then
(i) Vε(P0, P1) admits a minimizer.
(ii) If assumption (A.1) holds with δ = 2, Vε(P0, P1) admits a Markovian
minimizer
(iii) If L is strictly convex and assumption (A.1) holds with δ = 2, then
Vε(P0, P1) admits a unique minimizer (which is Markovian from (ii)).

Remark 2.2 Actually the statements (ii) and (iii) will be of no use in the
present paper. They were important in [12] in order to characterize the min-
imizer of (2.7) as the solution of a forward-backward system (which consists
in the coupling of a usual sde with a backward one, cf. for instance [2]).

2.3 Stochastic duality.

In [12] we proved the following duality theorem for the minimization problem
(2.7).

Theorem 2.5 Let ε > 0 be fixed and Vε(P0, P1) defined in (2.7). Let us
assume that assumption (A.1), (A.2) are satisfied and

Vε(P0, P1) < +∞. (2.8)

Then, the following identity holds

νε(P0, P1) = Vε(P0, P1) (2.9)

with νε(P0, P1) defined by

νε(P0, P1) := sup
{∫

Rd
ϕ(1, y)P1(dy) −

∫
Rd

ϕ(0, x)P0(dx)
}
, (2.10)
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where the supremum is taken over all classical solutions ϕ, to the following
Hamilton-Jacobi-Bellman equation for which ϕ(1, ·) ∈ C∞

b (Rd):

∂ϕ(t, x)

∂t
+

ε

2

ϕ(t, x) + H(Dxϕ(t, x)) = 0 ((t, x) ∈ (0, 1) × Rd) (2.11)

where 
 :=
∑d

i=1 ∂2/∂x2
i and for (t, x, z) ∈ (0, 1) × Rd × Rd.

Remark 2.3 Let us notice that our theorem exactly parallels the duality re-
sult (2.3) proved by Evans.

2.4 Zero noise limit.

We will rely on Theorem 2.5 to prove Kantorovich duality (cf. Theorem 2.1)
by a zero noise limit argument. We will use the notation

T (P0, P1) = sup
{∫

Rd
ψ(y)P1(dy) −

∫
Rd

ϕ(x)P0(dx)
}
, (2.12)

as in Theorem 2.1.
The first part of the following statement is our key tool to compare the

case ε > 0 with the case ε = 0.

Theorem 2.6 Let us assume that TMK(P0, P1) < +∞ and that assumptions
(A.1)-(A.2) hold. Let us recall that Vε (resp. νε) has been defined in (2.7)
(resp. (2.10)). We denote by gε �P1 the convolution of P1 with the Gaussian

kernel gε(x) = (2πε)−
d
2 exp(− |x|2

2ε
). Then

(1) The following sequence of inequalities holds true:

νε(P0, gε � P1) ≤ T (P0, P1) ≤ TMK(P0, P1) ≤ lim infε→0Vε(P0, gε � P1) (2.13)

(2) As a consequence we recover duality for Monge-Kantorovich problem:

TMK(P0, P1) = T (P0, P1) (2.14)

Proof of Theorem 2.6 Let us begin with T (P0, P1) ≤ TMK(P0, P1) which
is the easiest. Let us take (ϕ, ψ) such that ψ(y) − ϕ(x) ≤ L(y − x) and µ
with marginals P0 and P1. Then∫

Rd
ψ(y)P1(dy) −

∫
Rd

ϕ(x)P0(dx) =
∫
Rd×Rd

(ψ(y) − ϕ(x))µ(dxdy)

≤
∫
Rd×Rd

L(y − x)µ(dxdy).
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The desired inequality follows. We then prove that νε(P0, gε�P1) ≤ T (P0, P1).
Let ϕ(t, x) denote a solution to HJB pde (2.11) with ϕ(1, ·) ∈ C∞

b (Rd). Let
us define

ϕ(t, x) := Eϕ(t, x +
√

εWt)

Xx,y
t := x + t(y − x) +

√
εWt

By definition of ϕ it holds
∫
Rd

ϕ(1, y)gε � P1(dy) −
∫
Rd

ϕ(0, x)P0(dx)

=
∫
Rd

ϕ(1, y)P1(dy) −
∫
Rd

ϕ(0, x)P0(dx)

and also ϕ(1, y) − ϕ(0, x) = E(ϕ(1, Xx,y
1 ) − ϕ(0, Xx,y

0 )). Using Ito formula
and the fact that ϕ solves (2.11), we obtain

E(ϕ(1, Xx,y
1 ) − ϕ(0, Xx,y

0 )) = E
∫ 1

0
(< y − x,∇ϕ > −H(∇ϕ))(s, Xx,y

s )ds

(2.15)
which implies E(ϕ(1, Xx,y

1 ) − ϕ(0, Xx,y
0 )) ≤ L(y − x). Therefore

∫
Rd

ϕ(1, y)gε � P1(dy) −
∫
Rd

ϕ(0, x)P0(dx) ≤ T (P0, P1) (2.16)

and the desired inequality follows.
We finally prove that TMK(P0, P1) ≤ lim infε→0Vε(P0, gε � P1). Let us first
notice that

0 ≤ lim infε→0Vε(P0, gε � P1) < +∞ (2.17)

Indeed positivity comes from definition of Vε; from what we have just proved,
νε(P0, gε � P1) ≤ TMK(P, P1) and the duality theorem 2.5 implies that

νε(P0, gε � P1) = Vε(P0, gε � P1) (2.18)

There exists a sequence (εn) which converges to 0 such that Vεn(P0, gεn � P1)
converges to lim infε→0Vε(P0, gε �P1). Since for each ε, Vε admits a minimizer
(cf. Theorem 2.4), there exists a sequence of processes Xn such that Xn ∈
Aεn for all n and

lim
n→+∞

E
∫ 1

0
L(bn(Xn

s ))ds = lim infε→0Vε(P0, gε � P1) (2.19)
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The superlinearity of L (L(u) ≥ |u|δ with δ > 1) implies that the sequence
(Xn) is tight and the limit of any converging subsequence is an absolutely
continuous process (cf. [16]). Let Xt = X0 +

∫ t
0 bX(s)ds be such a limit. By

the convexity property of L

E
∫ 1

0
L(bX(s))ds ≥ E(L(X1 − X0)) (2.20)

We conclude using Fatou’s Lemma and the fact that the law of X1 is equal
to P1 since it is the weak limit of a subsequence of gε � P1. Q.E.D.

3 Main result of transport theory using op-

timal stochastic control.

3.1 Main result of transport theoy.

We first need to recall the definition of L-concave functions.

Definition 3.1 γ : Rd → R ∪ {−∞} is L- concave if there exists β : Rd →
R ∪ {−∞}with β 
≡ −∞ such that

∀x ∈ Rd γ(x) = inf
y∈Rd

(L(y − x) − β(y)) (3.1)

Moreover for r > 0, θ ∈]0, π[ and p ∈ Rd, let K(p, z, θ, r) be the truncated
cone defined by

K(p, z, θ, r) := {x ∈ Rd; |x − p||z| cos(
θ

2
) ≤< z, x − p >≤ r|z|} (3.2)

L is said to satisfy Condition (K) if, when |p| is large enough, there exists
z ∈ Rd such that L restricted to K(p, z, θ, r) admits its maximum at p.

Theorem 3.1 Let L be superlinear (L satisfies assumption (A.1)), strictly
convex and satisfying condition (K). Let us assume that TMK(P0, P1) < +∞
and that P0 is absolutely continuous w.r.t. Lebesgue measure on Rd. Let H
denote the Legendre transform of L. Then there exists a unique µ minimizing
(1.4). The support of µ is the graph of the mapping

g(x) = x −∇H(∇φ(x)) (3.3)

where φ is L-concave.
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This theorem is sometimes called the ”main result” of optimal transporta-
tion (cf. [7]).

3.2 Main result via stochastic control.

We will not be working under condition (K) but rather under the assumption

(A.3) ∃ C > 0, D2
uL ≤ C

because of its connection to semiconvexity. The other important tool is the
representation of a classical solution of Hamilton -Jacobi-Bellman pde as a
value function (cf. [6] ). We recall below these properties.

Definition 3.2 Let f be a function defined on a convex subset of Rd with
values in R ∪ {+∞}. The function f is semi-convex if there exists C > 0

such that x �→ f(x) + C |x|2
2

is convex. When this is true, we say that f is
semi-convex with constant C.

Remark 3.1 This definition is equivalent to the requirement

∀(x, z) f(x + z) + f(x − z) − 2f(x) ≥ −C|z|2 (3.4)

Proposition 3.1 Let us assume that assumptions (A.1) and (A.2) hold and
let f ∈ C∞

b (Rd). Then the unique solution ϕ of the HJB pde (2.11) satisfying
ϕ(1, ·) = f admits the following representation:

ϕ(t, x) = sup
X∈Aε

{
E[f(X1)|Xt = x] (3.5)

−E
[∫ 1

t
L(βX(s, X))ds

∣∣∣∣Xt = x
]}

,

where Aε was defined in section 2.2. Moreover the optimal control is marko-
vian and given by the function ∇H(∇ϕ(s, ·)).

This formula obviously provides a direct stochastic analog of Hopf-Lax
formula (2.5). It has played a fundamental role in the derivation of Theorem
2.5 and will also be crucial in the sequel through the following corollary. For
extensions of this corollary we refer the reader to [6].
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Corollary 3.1 Let us denote by ϕ(t, x) the value function defined by (3.5).
Under assumption (A.3), ϕ(0, ·) is semi-convex with constant C.

Proof Let (Xx
t ; t ∈ [0, 1]) be optimal for (3.5) in Aε; namely, Xx

t = x +∫ t
0 ∇H(∇ϕ(s, Xx

s ))ds +
√

εWt and

ϕ(0, x) = E[ϕ(1, Xx
1 ) −

∫ 1

0
L(∇H(∇ϕ(s, Xx

s )))ds] (3.6)

Let us set X1
t := Xx

t + (1 − t)z as well as X2
t := Xx

t − (1 − t)z; these
processes both belong to Aε and satisfy X1

0 = x + z and X2
0 = x − z as well

as X1
1 = X2

1 = Xx
1 . For simplicity let us set βx

t := ∇H(∇ϕ(t, Xx
t )). From

the definition of ϕ in (3.5) it follows that

ϕ(0, x + z) + ϕ(0, x − z) − 2ϕ(0, x) ≥

E
∫ 1

0
(2L(βx

t ) − L(βx
t + z) − L(βx

t − z))dt (3.7)

The conclusion follows from assumption (A.3). Q.E.D.

We now consider µ optimal for the Monge-Kantorovich problem: µ has
marginals P0 and P1 and satisfies

TMK(P0, P1) =
∫
Rd×Rd

L(y − x)µ(dxdy) (3.8)

For ε > 0 and ϕε a solution of (2.11) let us set, as in the previous section,

Ψε(t, x) := E(ϕ(t, x +
√

εWt)) (3.9)

We obtain a first description for the support of µ.

Proposition 3.2 Let us assume that assumptions (A.1-(A.2) hold true. There
exists a sequence (εn) converging to 0 and a sequence (ϕεn) of solutions of
(2.11) such that µ(S) = 1 with S given by

S := {(x, y); lim
n→+∞

Ψεn(1, y) − Ψεn(0, x) = L(y − x)} (3.10)

Proof For each ε > 0, the definition of νε(P0, gε � P1) as in (2.10) and that
of Ψε in (3.9), we can choose ϕε(t, x), solution of (2.11), such that

νε(P0, gε � P1) − ε ≤
∫
Rd

ϕε(1, y)gε � P1(dy) −
∫
Rd

ϕε(0, x)P0(dx). (3.11)
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We have seen in the previous section that ψε satisfies

Ψε(1, y) − Ψε(0, x) ≤ L(y − x) (3.12)

as well as
∫
Rd

ϕε(1, y)gε � P1(dy) −
∫
Rd

ϕε(0, x)P0(dx)

=
∫
Rd

Ψε(1, y)P1(dy) −
∫
Rd

Ψε(0, x)P0(dx)

Therefore the two inequalities below hold

νε(P0, gε � P1) − ε ≤
∫
Rd×Rd

(Ψε(1, y) − Ψε(0, x))µ(dxdy) ≤ TMK(P0, P1)

(3.13)
Moreover from inequality (3.12) it follows that L(y−x)−(Ψε(1, y)−Ψε(0, x))
is non negative. By letting ε go to 0 in Theorem 2.6 we conclude that

lim
ε→0

∫
Rd×Rd

|Ψε(1, y) − Ψε(0, x) − L(y − x)|µ(dxdy) = 0. (3.14)

This convergence in L1(µ) implies a. s. convergence w.r.t. µ for a subse-
quence (εn). Q.E.D.

In the sequel we keep the notations of Proposition 3.2. As preparation for
our proof of the main result let us introduce the following function:

Definition 3.3 Let a ∈ Rd. We denote by ψa the function defined by

ψa(x) := lim supn→+∞(Ψεn(0, x) − Ψεn(0, a)) (3.15)

Proposition 3.3 Under assumption (A.3)
(1) ψa is a semi-convex function on its domain Da := {x ∈ Rd; ψa(x) <
+∞}.
(2) the set Da is convex and independent of a ∈ π1(S) := {x ∈ Rd;∃y ∈
Rd (x, y) ∈ S}.

Proof Proof of (1) 1st step: it is not difficult to check first that the lim supfn

of a sequence (fn) of semi-convex functions with the same constant C is itself
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semi-convex with this same constant. Indeed, from inequality (3.4) for all
(x, z) and n it holds

2fn(x) − C|z|2 ≤ fn(x + z) + fn(x − z). (3.16)

The conclusion is straightforward since lim supfn = infk supn≥k fn.
2nd step: By definition (3.9) Ψεn(0, ·) ≡ ϕεn(0, ·). It suffices to apply Corol-
lary 3.1.
Proof of (2) Let us first prove two facts about ψa: let (a, b) ∈ S. For all
points u, c in Rd

ψa(u) ≥ L(b − a) − L(b − u) (3.17)

ψa(u) ≥ ψc(u) + L(b − a) − L(b − c) (3.18)

It is sufficient to prove the second inequality which implies the first one. Let
(a, b) ∈ S. The obvious identity

Ψεn(0, u) − Ψεn(0, a) =

Ψεn(0, u) − Ψεn(0, c) + Ψεn(0, c) − Ψεn(1, b) + Ψεn(1, b) − Ψεn(0, a)

together with (3.12) imply

Ψεn(0, u) − Ψεn(0, a) ≥
Ψεn(0, u) − Ψεn(0, c) + Ψεn(1, b) − Ψεn(0, a) − L(b − c)

It remains to let n go to +∞ to conclude using the definition of ψa and ψc

and Proposition 3.2. The first inequality is a consequence when u is taken
equal to c. The domain of ψa is a convex set since it coincides with the
domain of the convex function ψa + C

2
| · |2. Moreover let a and a′ in π1(S).

By applying (3.18) twice, once to (a, a′) and afterwards to (a′, a), we deduce
immediately that Da = Da′ . Q.E.D.

Corollary 3.2 Let us assume that L ∈ C1(Rd). Let (x, y) ∈ S and i ∈
{1, ..., d}.
(1) If for some h 
= 0 and z ∈ Rd, (x + hei, z) ∈ S, then

L(y−x)−L(y−(x+hei)) ≤ ψx(x+hei) ≤ L(z−x)−L(z−(x+hei)) (3.19)

(2) Let us assume that ∀i ∈ {1, ..., d} there exist sequences (h(i)
n ) and (y(i)

n )
such that h(i)

n → 0, y(i)
n → y and ∀n, (x + h(i)

n ei, y
(i)
n ) ∈ S. Then

∀i ∈ {1, ..., d} lim
n→+∞

1

h
(i)
n

ψx(x + h(i)
n ei) = ∂iL(y − x) (3.20)

14



Proof Apply now the inequality (3.18) twice: the first time with (a, b) =
(x, y) and u = c = x + hei, the second time with (a, b) = (x + hei, z) and
u = x+hei, c = x. Remember that by definition ψx(x) = ψx+hei

(x+hei) = 0.
This proves (1).
(2) Apply inequality (1) just proved; let n → +∞. The conclusion follows
since L is assumed to be continuously differentiable. Q.E.D.

Theorem 3.2 Let P0(dx) � dx and TMK(P0, P1) < +∞. Under assump-
tion (A.3), there exists a function Φ such that S is the graph of Id+∇H◦∇Φ.

Proof Take a ∈ π1(S). Suppose that for i ∈ {1, · · · , d}, there exists bi for
which (a, bi) ∈ S and such that

Ui,j, 1
n
(a, bi) ∩ S 
= ∅ (j = +1,−1, n ≥ 1),

where

Ui,+1, 1
n
(a, bi) := {(x, y) ∈ Rd×Rd|x−a = hxei, 0 < hx, |x−a|2+|y−bi|2 < n−2},

Ui,−1, 1
n
(a, bi) := {(x, y) ∈ Rd×Rd|x−a = hxei, 0 > hx, |x−a|2+|y−bi|2 < n−2}.

Then ∂iψa(a) exists from Corollary 3.2. Moreover from inequality (3.17), for
any b ∈ π2(S) for which (a, b) ∈ S, it holds

f(x) := ψa(x) + L(b − x) ≥ L(b − a),

where equality hods if x = a. If ∇ψa(a) exists, then ∇f(a) exists and is
equal to 0. Hence

∇f(a) = ∇ψa(a) −∇L(b − a) = 0.

We have just proved that if ∇ψa(a) exists and (a, b) ∈ S, then b = a +
∇H(∇ψa(a)).
Suppose now that ∂1ψa(a) does not exist. Then for any b1 for which (a, b1) ∈
S, there exist j = +1 or −1 and n ≥ 1 such that
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U1,j, 1
n
(a, b1) ∩ S = ∅.

If (a, b1) ∈ S, U1,j, 1
n
(a, b1) ∩ S = ∅ and a − a = he1 (h ∈ R), then

|a − a|2 + |b1 − b1|2 ≥ n−2.

Therefore such points can be at most countably many.
Hence for any (x2, · · · , xd) ∈ Rd−1, the following set contains at most count-
ably many points:

{x ∈ R|∂1ψx(x) does not exist for x := (x, x2, · · · , xd)}.
By Fubini’s theorem, the proof is over. Q.E.D.
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[13] Rachev, S.T., Rüschendorf, L., 1998. Mass transportation problems, Vol.
I: Theory, Vol. II: Application, Springer-Verlag, Berlin, Heidelberg, New
York, Tokyo.
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