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Abstract

An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment-for-prevention’

may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initia-

tion rapidly decreases virus burden, which reduces the number of transmittable viruses and

thereby the probability of infection. However, HIV inevitably develops drug resistance,

which leads to virus rebound and nullifies the effect of `treatment-for-prevention’ for the time

it remains unrecognized. While timely conducted treatment changes may avert periods of

viral rebound, necessary treatment options and diagnostics may be lacking in resource-

constrained settings. Within this work, we provide a mathematical platform for comparing

different treatment paradigms that can be applied to many medical phenomena. We use

this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-

guided treatment strategy, based on infrequent and patient-specific diagnostic schedules

and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertain-

ment. Both strategies are compared to current clinical protocols (standard of care and the

HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 on-

ward transmission exemplarily for South Africa. All therapeutic strategies are assessed

using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for

solving the respective optimal control problems are provided. Our mathematical model sug-

gests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and

no treatment in terms of economic means, life prolongation and reduction of HIV-transmis-

sion. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar

to the optimal pro-active strategy. Our results suggest that ‘treatment-for-prevention’may

be further improved using either of the two analyzed treatment paradigms.
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Author Summary

HIV-1 continues to spread globally. Antiviral treatment cannot cure patients, but it slows

disease progression and may prevent HIV transmission by decreasing the amount of

transmittable viruses in treated individuals. ‘Treatment-for-prevention’ argues for imme-

diate treatment initiation and may reduce transmission by 96% (CI: 73–99%), according

to the results of a large clinical study (HPTN052). In order to ensure long-lasting treat-

ment success, early therapy initiation demands more sophisticated treatment strategies &

exceeding funds. However, countries facing the highest HIV burden are among the poor-

est. Within this work, we provide a mathematical framework that allows assessing differ-

ent treatment paradigms using optimal control theory together with stochastic modelling

of within-host viral dynamics and drug resistance development. We use this framework to

compute and evaluate two distinct optimal long-term treatment strategies for resource-

constrained settings: (i) a diagnostic-guided and (ii) a pro-active treatment strategy. The

cost of a strategy is evaluated from a national economic perspective, valuating a severe pa-

tient health status in terms of an economic loss. The optimal strategies are compared with

current clinical treatment protocols and no treatment in terms of costs, life expectation

and reduction of secondary cases. Our simulations indicate that the pro-active treatment

strategy performs comparably to the diagnostic-guided treatment strategy. Both strate-

gies perform better than current clinical protocols, suggesting directions for improvement.

Introduction

HIV-1 infection remains one of the major global health challenges with an estimated 33 million

infected and a continuing spread [1]. Currently, an efficient vaccine remains to be developed,

while at the same time the complete elimination of replication-competent virus within the host

can not be achieved due to the persistence of the virus in inducible, latent cellular reservoirs [2,

3], as well as insufficient pharmacological suppression of actively replicating virus in some ana-

tomical/cellular reservoirs [4, 5]. However, the current situation urges for methods that could

bring the epidemic to a halt, or possibly end it. Currently, the most promising strategies are

based on the use of antiviral drugs:

i. Pre-exposure prophylaxis (PrEP) [6–9] aims to protect uninfected individuals ‘at risk’ by de-

creasing the probability of infection upon virus exposure, e.g. [10]. PrEP may however be

too costly to be broadly implemented in resource-poor countries [11].

ii. Currently, the decision to initiate treatment against HIV is largely guided by CD4+ cell lev-

els [12, 13]. However, the viral load, which is the primary determinant of infectiousness [14,

15], may be very high within the time-window between HIV infection and initiation of

treatment. ‘Treatment for prevention’ [16] aims to put infected individuals on therapy as

early as possible. This can reduce the infectiousness of a patient by decreasing within-host

virus levels, which reduces the amount of transmitted viruses per contact and the probabili-

ty of infection upon exposure. Analysis of the only completed clinical study to date,

HPTN052 [16], estimated that ‘treatment for prevention’may reduce the number of linked

HIV-1 transmissions by 96% and the number of totalHIV-1 transmissions by 89% relative

to delayed treatment initiation and subsequently it was nominated as the “breakthrough of

the year 2011” by the Sciencemagazine [17].
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In the aftermath of the HPTN052 trial, the cost-efficacy of ‘treatment for prevention’ was

analyzed by many mathematical modeling approaches (reviewed in [18]). One problem is that

most of these approaches focused solely on the epidemic level and did not model drug resis-

tance development within the hosts, which indirectly assumes that the efficacy of ‘treatment

for prevention’ is constant over time. However, because viral transmission is strongly correlat-

ed with viral levels in the transmitting individual [14, 15, 19–21], it is reasonable to assume

that also the efficacy of ‘treatment for prevention’ is intimately connected with viral suppres-

sion. One major challenge during HIV treatment lies in the virus’ tendency to develop drug re-

sistance [22], which in turn can lead to virus rebound and promote HIV transmission for the

time it remains unrecognized. An earlier treatment initiation may thus demand an improved

therapeutic strategy, that allows long-term control of virus replication (beyond the typical du-

ration of a clinical trial). While sophisticated patient monitoring and timely treatment changes

may allow to minimize windows of unrecognized viral breakthrough, they require significant

monetary funds, good infrastructure, diagnostic facilities and the availability of alternative

treatment options. Only few of these may be available in resource-constrained countries, where

the requirement of resources may strongly dominate the possibility to implement a reasonable

‘treatment for prevention’ strategy. Obviously, scaling ‘treatment for prevention’ requires care-

ful examination of various aspects and a policy maker should strike a proper balance between

societal and individual perspectives [23].

This work addresses the scaling of ‘treatment for prevention’ by suggesting optimal treat-

ment strategies for the long-term control of HIV within its host (as recommended by [24]). Op-

timality will be defined from a national economic perspective, taking into account that a

diseased individual implies an economic loss. By considering the national economic perspec-

tive, we do not evaluate what should be done, but rather what is already worthwhile. However,

we also evaluate the derived optimal strategies from an individual perspective and in terms of

their utility in prevention, i.e. whether a strategy prolongs the life of an infected person and

whether the risk of HIV onward transmission is reduced.

We hereby focus on two distinct approaches to handle treatment decisions: The first as-

sumes that treatment decisions (i.e. when to change therapy) are made on an individual basis,

guided by infrequent diagnostics (referred to as diagnostic-guided strategy). This represents a

medical scenario in which a treating physician decides based on the diagnosed status of the pa-

tient that he encounters. The second approach suggests pro-active treatment decisions (re-

ferred to as pro-active strategy), i.e. does not require diagnostic ascertainment of the patients’

disease status. The two approaches are modeled and solved by two distinct mathematical

frameworks. The former is addressed using the recently developed framework of ‘Markov De-

cision Processes with Rare State Observations’ [25]: For each disease state, it computes the opti-

mal treatment and the next time of medical diagnostics, minimizing viral burden as well as

treatment- and diagnostic costs. The latter approach (the pro-active strategy) is modeled as an

open-loop switched system, where the decision to change the treatment depends on the initial

disease state of the patient and the anticipated, (treatment-)induced stochastic dynamics up to

some time t. The later strategy allows to switch treatment before drug resistance is detectable in

the individual (pro-active) and may be easier to implement in resource-constrained settings,

where poor infrastructure and the costs of diagnostics limit their applicability. By assessing

these two distinct frameworks side-by-side, we can rigorously evaluate the different treatment

paradigms in terms of their optimality. Algorithms to solve these problems were developed

and are stated in the supplementary materials.

Several other groups have suggested optimal [26–28] or sub-optimal [29, 30] treatment

strategies to mitigate drug resistance in HIV-1. All authors treated the underlying system deter-

ministically, which fails to capture the intrinsic stochastic nature of HIV drug resistance
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development [31] and the time-scales on which drug resistance develops. None of the previous

work focused on HIV prevention, and neither work questioned the analyzed treatment philos-

ophy, either focusing on pro-active treatment switching strategies [26–28, 30], or diagnostic-

driven strategies [29]. In contrast, we used a stochastic model of HIV long-term dynamics after

drug application [25] to more realistically capture the underlying dynamics. Also, we evaluate

different assumptions for the controllability of the disease dynamics, by evaluating the two dif-

ferent optimal control frameworks, which allows for an objective assessment of alternative

treatment philosophies.

The manuscript will be organized as follows: We will extend- and parameterize the model

introduced in [25] for our needs. After recapitulating essential theory for the diagnostic-guid-

ed strategy, we introduce the mathematical concepts behind the pro-active strategy, solve

both optimal control problems and evaluate them with respect to monetary costs, patient sur-

vival and reduction of onward transmission. All algorithms that we developed to solve the opti-

mal control problems will be provided in the S1 and S2 Text for the interested reader.

Materials and Methods

Within this work, we investigate optimal treatment strategies in silico by formulating- and solv-

ing two optimal control problems referred to as the optimal diagnostic-guided strategy and

the optimal pro-active strategy. In general, an optimal control problem requires a mathemati-

cal model of the controlled process and a performance- or cost criterion. Likewise, our problem

will be broken down into these ingredients.

Model of Controlled HIV Dynamics

The two addressed optimal control approaches share an identical model (Fig 1) that reflects

the short-term dynamics of viral decay- and rebound (Fig 2), as well as the stochastic HIV

long-term dynamics after drug application, see Fig 3. Within this work, we put a focus on viral

kinetics and will only indirectly relate to the patient’s health. This is because we are interested

in ‘treatment for prevention’ and particularly its efficacy in decreasing onward transmission,

which is correlated with the viral load [19–21] and not necessarily with the immune status of

the HIV infected patient.

State space. HIV can be successfully suppressed if drug resistance does not develop. Thus,

any model that aims to represent the long-term HIV dynamics upon treatment should include

drug resistance development. The process of drug resistance development denotes an intrinsi-

cally stochastic process, which is determined by random mutation events (point mutations, re-

combinations). Long term HIV-dynamics in the context of drug treatment may therefore be

dominated by these intrinsically stochastic events [31], necessitating stochastic modeling ap-

proaches [32–34]. The fundamental evolution equation for intrinsically stochastic kinetics is

the chemical master equation (CME). Each state described by the CME comprises a combina-

tion of discrete numbers of individuals of the respective species (e.g. viral strains), resulting in

state space dimensions N0×N0×. . .×N0, i.e. [35, 36]. A major mathematical drawback is the fact

that the CME cannot be solved directly due to this complexity. Therefore, a modeler can either

approximate the solution of the CME by Monte-Carlo schemes [37], aim at hybrid approaches

[38–40], which can yield particular characteristics of the CME, or perform a state space reduc-

tion (lumping). In this manuscript, we adapt a model [25] that relates to the latter approach.

For this model we can solve the coarse-grained CME directly when computing optimal

control strategies.

In brief, the HIV model contains four lumped viral copy number states for each of the four

virus strains. The set of states S thus has dimension 44 = 256 states + 1 [patient death]: If the
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respective virus type is absent, we denote the respective state by 0, if it is present in low copy

numbers, i.e., for< 50 virus copies/mL blood (detection limit of assays used in the clinic), the

respective state is denoted by ℓ, for medium copy numbers between 50 and 4000 virus copies/

mL blood we denote the lumped states bym and for high copy numbers with more than 4000

virus copies/mL blood, it is h. This coarse graining is in line with the levels of virus produced in

the distinct cellular reservoirs of HIV, see e.g. [34]. The following four viral strainsM are con-

sidered: a strain WT (wild type) that is susceptible to all treatment lines, a strain R1 which is

susceptible to a second treatment line, but unaffected by (resistant to) the first treatment line, a

strain R2 that is susceptible to the first treatment line, but unaffected by the second, and a high-

ly resistant strain HR, which is resistant to all treatments. In order to describe a virologic state

x we choose a compact vector notation of the form

x ¼ ½nCðWTÞ; nCðR1Þ; nCðR2Þ; nCðHRÞ�;

where nC 2 {0, ℓ ,m, h} denotes the viral copy number of each viral strain WT, R1, R2 or HR.

For example, the state x ¼ ‘; m; 0; ‘½ � describes the situation of a ℓow number of wild type

strains, amedium number of R1-mutants, the absence of R2-mutants, and a ℓow number of

Fig 1. Simplified HIV Model. A: Transitions between copy number states nC. B: Transitions in between viral strainsM.

doi:10.1371/journal.pcbi.1004200.g001
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Fig 2. (Short-term) viral dynamics. Left panels (A-C): Viral decay. Right panels (D-F): Viral growth.A: Data used for estimating viral decay parameters δh,
δm. Blue circles indicate viral decay profiles from [41], green upward pointing triangles denote data from [42], black squares denote data from [43] and red
downward pointing triangles denote data from [4]. Horizontal dashed lines and background shading indicates the assignment of the depicted data to the sets
H (> 4000 viral RNA/mL)),M and L (� 50 viral RNA/mL) of our model. B:When assuming 100% effective treatment (η = 1), the model shown in panel B is
derived. This model is used to identify decay parameters δh and δm (circled parameters in panel B). C: Data-derived (error bars, dashed lines) and predicted
(solid lines) probabilities of statesH and L using the model in panel B with estimated parameters δh and δm. D:Data from treatment interruption trials [43–45]
used for estimating viral growth parameters kℓ,;, km,;. Magenta diamonds indicate viral rebound profiles from [44], cyan pentagrams indicate data from [45]
and black left-pointing triangles indicate data from [43]. Horizontal dashed lines and background shading indicates the assignment of the depicted viral
growth data to the setsH,M and L. E:We assumed the absence of treatment (η = 0), such that the model shown in panel E is sufficient to decribe the data
and allows identifying growth parameters kℓ,; and km,; (circled parameters in panel E). F:Data-derived (error bars, dashed lines) and predicted (solid lines)
probabilities of statesH and L using the model in panel E with δh and δm and estimated parameters kℓ,; and km,;. The parameter estimation procedure is
exemplified in theMaterial and Methods section.

doi:10.1371/journal.pcbi.1004200.g002
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highly resistant viruses. Mutations from one strain to another can give rise to novel viral popu-

lations, as shown in Fig 1.

Control actions. The actions describe ‘what the controller can do to influence the system’.

In terms of HIV therapy, a physician can e.g. choose what treatment(-line) to apply and when

to change it. In resource-constrained settings, only few treatment lines are available. In the case

of South Africa these may include a first- and a second-line therapy [13]. Taking these consid-

erations in account, we consider two distinct treatment lines (actions) a1,a2 2A. Each action a

Fig 3. Long-term viral suppression. Long-term data was used to estimate clinical drug efficacy η(a1, {WT, R2}), η(a2, {WT, R1}) and rates of drug
resistance emergence μR1,;, μR2,;, using the model depicted in Fig 1, after parameters for viral growth and decay were estimated from data in Fig 2. A:
Predicted (solid black line) and clinically observed probability of viral suppression (states L;� 50 viral RNA/mL) after treatment with efavirenz (EFV) based
HAART (first line therapy). Clinical data was derived from [46] (red dots), [47] (orange squares), [48] (green diamonds), [49] (magenta upward pointing
triangles) and [50] (blue downward pointing triangles). In all studies, the NRTI backbone consisted of 3TC + AZT. B:Goodness-of-fit plot for first line therapy.
C: Predicted (solid black line) and clinically observed probability of viral suppression (states L;� 50 viral RNA/mL) after treatment with ritonavir boosted
lopinavir (LPV/r) based HAART (second line therapy). Clinical data was derived from [51] (brown right-pointing triangles), [52] (cyan pentagrams) and [52]
(grey left-pointing triangles). In all studies, the NRTI backbone consisted of a deoxycytidine analog + abacavir or tenofovir or stavudine, reflecting clinical
practice (the exact choice of the backbonemay depend on prior exposure [13]). D:Goodness-of-fit plot for second line therapy.

doi:10.1371/journal.pcbi.1004200.g003
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2A induces unique disease dynamics, related to a uniqueMarkov Jump Process that is entirely

determined by its infinitesimal generator La. The entry La[x,y]� 0 represents the rate of transi-

tion from state y 2 S to state x 2 S, y 6¼ x, given an action a and it holds that La[y,y] = −∑x 6¼ y

La[x,y]. We define a probability space O and let p 2 O denote a probability distribution vector

on the state space S with the entry p[x](t) referring to the probability of being in the state x 2 S

at time t, i.e.

p½x�ðtÞ :¼ PðXt ¼ xÞ; ð1Þ

where P is the probability measure. Obviously, the number of components of a probability vec-

tor p is equal to jSj. For a given action a 2A, the dynamics of the probability vector are given

by

dpðtÞ

dt
¼ La � pðtÞ ð2Þ

The above equation is known as theMaster Equation. We introduce the transpose of the

transition matrix on S for some time lag τ and action a

Ta;t : R
jSj 7!R

jSj; Ta;tp :¼ e
La �tp; ð3Þ

where e denotes the matrix exponential. The component Ta,τ[x,y] refers to the transition prob-

ability from state y to state x for a time lapse τ under the application of action a and will be

used later in the cost functionals of the closed-loop optimal control problem (diagnostic-guid-

ed strategy) and the open-loop optimal control problem (pro-active strategy).

Generator entries. The distinct treatments a 2A are related to distinct generators La of

our HIV-model. The basic transitions between copy number states for each viral strainM,

nC(M), are shown in Fig 1 and exemplified for the highly resistant strain HR below.

½�; �; �; ‘� �
dm

�!
k‘;a

½�; �; �; m�; ½�; �; �; m� �
dh

�!
km;a

½�; �; �; h� ð4Þ

½�; �; �; h��!
dh

✠; ½�; �; �; m��!
dm

✠; ½�; �; �; ‘��!
d‘

✠; ð5Þ

where � indicates an arbitrary number of the respective virus strain (WT, R1 and R2 in the ex-

ample above). The parameters kℓ,a and km,a denote the reaction propensities of going from

copy number ℓ to copy numberm and from copy numberm to copy number h respectively

(viral growth), which are decreased depending on the treatment a 2 {a1, a2} because treatment

essentially suppresses viral growth. The parameters δm and δh denote the reaction propensities

for going from copy numberm to copy number ℓ and from copy number h to copy numberm

respectively (virus elimination). The parameters dh > dm > dℓ denote the propensity for the

death of the patient. We assume that high viral burden (states h andm respectively) increases

the risk of death, whereas dℓ equals the propensity for “natural death”. The propensity for

death was computed according to d = 1/(residual life expectancy), and is exemplified in [25].

The considered transitions between viral strainsM are depicted in Fig 1. Specifically, transi-

tions between viral strains generate a ℓow number of viral particles from either amedium or

high number of viruses belonging to a distinct strain. Note, that transitions between viral

strains may involve several distinct point mutations (indicated by blue and red bars in Fig 1B).
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Exemplified for the wild type strain WT those are:

½ h; 0; �; � ��!
mR1; a

½ h; ‘; �; � �; ½m; 0; �; � ��!
mR1; a
½m; ‘; �; � � ð6Þ

½ h; �; 0; � ��!
mR2; a
½ h; �; ‘; � �; ½m; �; 0; � ��!

mR2; a
½m; �; ‘; � � ð7Þ

½ 0; h; �; � ��!
mR1; a
½ ‘; h; �; � �; ½ 0; m; �; � ��!

mR1; a
½ ‘; m; �; � � ð8Þ

½ 0; �; h; � ��!
mR2; a
½ ‘; �; h; � �; ½ 0; �; m; � ��!

mR2; a
½ ‘; �; m; � � ð9Þ

where the first two lines indicate drug resistance arising from the wild type strain and the re-

maining two lines indicate transitions from resistant strains yielding the wild type strain. The

parameters μR1,a and μR2,a denote the propensity for the emergence- and disappearance of drug

resistance to treatment 1 or 2 (a1,a2), respectively, emanating from copy number state h orm.

Note, that we consider only the following transitions: WT$ R1, WT$ R2, R1$HR and R2

$HR, which is motivated by the fact that a direct transition fromWT$HR is very unlikely,

because the genetic distance between the two viral strains is too large to be overcome at once.

The effect of treatments a1 and a2 on the viral growth & transition rates is considered in the

following way:

k‘;a ¼ ð1� Zða;MÞÞk‘;; ð10Þ

km;a ¼ ð1� Zða;MÞÞkm;; ð11Þ

m ~M ;a ¼ ð1� Zða;MÞÞm ~M ;; ð12Þ

whereM 2 {WT, R1, R2, HR} denotes the strain of the reactant virus. ~M 2

fWT;R1;R2;HRg denotes the event related to a particular drug resistance emergence/disap-

pearance, see Fig 1B. The parameter η(a,M) denotes the efficacy of treatment a on the reactant

viral strainM; i.e. if strainM is susceptible to treatment a 2 {a1, a2}, then 0< η(a,M)� 1, and

if the viral strainM is insusceptible to treatment a 2 {a1, a2} then η(a,M) = 0. In the absence of

medical intervention a = a;, η(a,M) = 0. Therefore, the parameters kℓ,;, km,; and m ~M ;; denote

the growth rates and respective transition rates in copy number statesm and h in the absence

of intervention, as shown in Table 1.

Parameter estimation. In order to estimate model parameters, we proceeded in a step-

wise approach: We first estimated parameters related to viral decay (δh, δm) and then used

these estimates in order to estimate parameters related to viral growth in the absence of treat-

ment (kℓ,;, km,;), using data from [4, 41–45]. Finally, we used the estimated decay- and growth

parameters along with data on the long-term (> 2 years) suppression of HIV-1 in order to esti-

mate parameters related to the drug efficacy (η(a1, {WT, R2}), η(a2, {WT, R1})) and to drug re-

sistance development (μR1,;, μR2,;) [46–52].

Parameters were estimated in MATLAB using lsqcurvefit by minimizing the following

weighted least squares criteria, with θ denoting the set of estimable parameters.

y
� ¼ argmin

y

X

i

p½x�ðtiÞ � p½x�ðti; yÞ

oi

� �2

ð13Þ

where π[x](ti) denotes the data-derived probability distribution on the model-defined state-
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space (computed using the ecdf function in MATLAB), p[x](ti,θ) defines the solution of Eq (2)

for time ti with parameter set θ and ωi denotes the weight parameter. Parameter estimation was

performed 50 times respectively with random start parameters to verify the convergence to

globally optimal parameter estimates θ
�
.

Viral decay. A total of 311 data points from 31 patients and 4 independent clinical studies

were available from [4, 41–43], which accurately assess the dynamics of viral decay after initia-

tion of treatment (see Fig 2A). For the data analyzed, we assumed 100% effective treatment (η

= 1), as proposed by others who estimated viral decay parameters [41, 53]. The lumped viral

model (see Fig 1) then further reduces to the model shown in Fig 2B, which allows to identify

decay parameters δh and δm. The data-derived probabilities π[x](ti) were computed as 1− the

cumulative probability to leave setH (> 4000 viral RNA/mL) and the cumulative probability

to enter set L (� 50 viral RNA/mL). Error bars were computed using Green’s formula. In line

with the data, we assumed that the initial HIV virologic status is represented by high copy

numbers of susceptible virus.

Viral growth. A total of 89 data points from 17 patients and 3 treatment interruption trials

[43–45], was used to estimate viral growth parameters kℓ,; and km,;. In line with the data, we as-

sumed the absence of treatment (η = 0), such that the model shown in Fig 2E is sufficient to de-

scribe the data. Data-derived probabilities were computed as 1− the cumulative probability to

leave set L and the cumulative probability to enter setH, respectively, and error bars were

computed using Green’s formula.

Drug efficacy and -resistance. Using the full model (Fig 1), we estimated parameters re-

lating to the clinical drug efficacy of both treatment lines η(a1, {WT, R2}) & η(a2, {WT, R1})

and rates of drug resistance emergence μR1,; and μR2,;.

In analogy with the South African treatment guidelines, we assumed that the first-line thera-

py consists of efavirenz (EFV) + zidovudine (AZT) + lamivudine (3TC). Long-term studies

usually evaluate the probability of viral suppression, which is defined in terms of undetectable

virus loads (� 50 viral RNA/mL). Translated to our model, this refers to the condition in

which all viral mutants are in state ℓ or absent; i.e. � ‘; � ‘; � ‘; � ‘½ �, which we denote by

the set of states by L. Probabilities of viral suppression from 5 clinical studies [46–50] were

used for parameter estimation. As a second-line treatment we assumed a ritonavir-boosted

lopinavir (LPV/r) based HAART, see [13]. Since the exact choice of the NRTI backbone may

Table 1. Parameters of the HIV-model.

parameter value parameter value

kℓ,; 0.2027 km,; 0.1308

δm 1.13�10−2 δh 6.62�10−2

dℓ 9.4�10−5 IR(nC = ℓ) 0.2

dm 2.7�10−4 IR(nC = m) 1.85

dh 5.5�10−4 IR(nC = h) 13.18

μR1,; 1.739�10−1 μR2,; 2.54�10−2

η(a1, {WT, R2}) 0.9894 η(a1, {R1, HR}) 0

η(a2, {WT, R1}) 0.9825 η(a2, {R2, HR}) 0

Infection risks IR were derived from data, as explained in S5 Text. Parameters dℓ, dm and dh were estimated from life-expectation data as explained in

[25]. All other parameters were estimated from data shown in Figs 2 and 3 and exemplified in the Material & Methods section. All values are given in units

[1/day] except η [unit less] and IR [per 100 person-years].

doi:10.1371/journal.pcbi.1004200.t001

Optimal Strategies for ‘Treatment for Prevention’ against HIV-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004200 April 30, 2015 10 / 30



depend on the prior exposure of the individual patient, we used data evaluating the long-term

efficacy of LPV/r + an NRTI backbone consisting of a deoxycytidine analog + stavudine [51] or

abacavir [52] or tenofovir [52].

All model parameters are shown in the Table 1. The original data and model predicted dy-

namics of viral decay and -rebound are shown in Fig 2 (A: raw viral decay data; B: model to

evaluate viral decay; C: model-predicted vs. clinical decay profiles; D: raw viral growth data; E:

model to evaluate viral growth; F: model-predicted vs. clinical growth profiles). Data for the

long-term control of HIV-1, predicted dynamics and goodness-of-fit are shown in Fig 3A–3D

for the two treatment lines (a1 and a2). As can be seen in Figs 2 and 3, the model appropriately

captures both the short-term viral dynamics, as well as long-term dynamics of

viral suppression.

Cost assignment. Public health initiatives are often constrained by available funds. The

countries with the highest HIV burdened are also among the poorest and financial commit-

ments from donors have stagnated or decreased [54] in recent years. Thus, the requirement of

resources may strongly dominate the policy making process in a resource-constrained context.

Because of these conditions, we designed the performance criterion from a national

economic perspective.

The performance criterion valuates the induced system dynamics and controls, i.e. the viral

status of the patient and the costs of treatment. We will consider both the direct costs due to

the applied treatments cA and indirect costs due to the virologic/health status of a patient cS.

Our analysis will be conducted from a country’s public health-care/monetary perspective.

Therefore, the costs related to the different states cS will be computed based on the average pro-

ductivity loss pL(nC) times the average daily monetary contribution of one individual (assessed

in terms of the daily per capita GDP), i.e. cS(x) = pL(x)�GDP, with pLðxÞ ¼ maxnC pLðnCÞ,

which implies that the total virus load reflects the cost of the individual infection status at any

point in time. Death is interpreted in terms of a complete loss in productivity. Furthermore, we

take diagnostic costs into account, which applies only in the diagnostic-guided strategy, the

standard of care and theHPTN052 protocol (the latter two are modeled for comparison).

The cost of diagnostics will be set to a fixed value and closely reflect the cost of a drug resistance

test for the diagnostic-guided strategy and the cost of a virus load determination in the case of

the standard of care and theHPTN052 protocol.

The integration of momentary/running costs yields the objective function (performance cri-

terion) for the optimal control problem. While performance criteria generally depend on the

particular application at hand, we decided to consider expected discounted costs on an infinite

time horizon. We chose an infinite time horizon, because HIV treatment does not have a previ-

ously known endpoint (i.e. time of death). At the same time, a differentiated weighting of im-

mediate and later costs is reasonable due to an upper limitation of life expectancy and aspects

of inflation. Costs arising at time t> 0 are thus weighted by a discount factor 0< e−λt < 1. In

this regard, the concrete choice of a discount factor λ will depend on the presumed annual in-

flation in the considered setting. For all calculations, we consider the inflation rate in South Af-

rica as a representative of a resource-constrained country with a large HIV burden, see Table 2.

The discount factor also guarantees convergence of the cost functional and therefore allows the

numerical solution of the optimal control problem.

The costs per unit time comprise both the direct costs due to the applied treatments and in-

direct costs due to the virologic/health status of a patient. Thus, we can write

cðx; aÞ ¼ c
S
ðxÞ þ c

A
ðaÞ ð14Þ
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where cA:A 7! [0,1) is the direct cost of action per unit time and cS:S 7! [0,1) is the indirect

cost produced by the state per unit time with parameters given in Table 2.

We define a cost function

Cðx; a; tÞ :¼E
a
x

Z t

0

e�lscðXs; aÞ ds

� �

; ð15Þ

which denotes the expected discounted costs for the time interval (0,τ] when starting in state

x and choosing an action a 2A for propagation of the stochastic process for the entire interval

τ. Further, we define the cost vectorKa 2 R
jSj, where its xth component denotes the direct and

indirect cost per unit time for the state x 2 S as shown below

Ka½x� :¼ cðx; aÞ; ð16Þ

so that it holds that

Cðx; a; tÞ :¼K
0
a

Z t

0

e�ls � eLa �s ds

� �

φx; ð17Þ

where the vector φx denotes a point-distribution, i.e. a single realization Xt of the Markov Jump

Process. If the initial state is described by an arbitrary distribution p on the state space S, we get

Cðp; a; tÞ ¼
X

x2S

Cðx; a; tÞ � p½x�; ð18Þ

where p[x] denotes the probability of the xth state.

Performance Criterion and Bellman Equation

The two optimal control problems that we solve, i.e. the diagnostic-guided strategy and the

pro-active strategy, differ slightly in the underlying assumption on the controllability of the

disease dynamics. Both control strategies will be described in the following, defining in each

case a control policy, a performance criterion and an optimality equation.

Diagnostic-guided strategy (closed-loop optimal control). In the diagnostic-guided

strategy, treatment can only be changed after a (costly) diagnostic test has been made to

Table 2. Cost parameters for South Africa.

parameter value unit reference

cA(a1) 0.3 US$/d [65]

cA(a2) 1.08 US$/d [65]

kdia 200 US$ [57, 59]

GDP 6,620 US$/p.p./y [75]

pL(nC = ℓ) 0 - [76]

pL(nC = m) 0.1 - [76]

pL(nC = h) 0.4 - [76]

pL(✠) 1 - -

λ 1.47�10−4 1/d a

kdia refers to the price for a drug resistance test. The GDP refers to the estimation for the year 2013 by the

International Monetary Fund [75]. The state costs are defined by c
S
ðxÞ ¼ max

nC
pLðnCÞ � GDP.

a Assuming an annual inflation of 5.4% for South Africa [75].

doi:10.1371/journal.pcbi.1004200.t002
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determine the virologic state of the patient (i.e. the drug resistance profile). This would corre-

spond to the typical scenario in which a treating physician makes a patient-specific decision.

However, instead of considering regular diagnostic intervals, we consider patient-specific diag-

nostic intervals. That is, upon assessing the virologic status of the patient, the physician decides

both on a treatment a and on a time-lag τ until the next diagnosis. This implies that patients,

whose viral status is “critical”may be monitored more closely than those whose status is “un-

critical”. More precisely, a policy for the diagnostic-guided strategy is a function

u : S ! A� ½0;1Þ; x 7!uðxÞ ¼ ðaðxÞ; tðxÞÞ ð19Þ

which prescribes for each disease state x 2 S both a treatment/action a(x) 2A and an examina-

tion lag time τ(x)> 0 that denotes the time until the next diagnostic. Each determination of the

patient’s virologic status incurs a diagnostic cost kdia.

Within this framework, controlling the disease process proceeds as follows: Assuming the

patient is in state X0 = x 2 S at the initial time t0 = 0, a treatment/action a(X0) 2A and an ex-

amination lag time τ(X0)> 0 are recommended. The stochastic process proceeds unobserved

until time t1 = t0+τ(X0) when the next diagnostics are performed, revealing disease state Xt1

and incurring a diagnostic cost kdia. Based on the state Xt1
, a (possibly) new treatment/action a

(Xt1
) and a time lapse for next examination τ(Xt1

) are recommended, etc. . . The resulting exam-

ination times (t0,t1,t2,. . .) depend on the stochastic dynamics of the process and the applied

policy. A switch of actions can only happen at examination times tj, when the physician

changes treatment due to the diagnosed disease status Xtj
.

The performance criterion for the corresponding control problem is given by:

Jðx; uÞ ¼ E
u
x

X

1

j¼0

e�ltj C Xtj
; aðXtj

Þ; tðXtj
Þ

� �

þ e
�ltðXtj Þkdia

� �

 !

; ð20Þ

see [25], where Eu
x stands for the expectation value with respect to the measure determined by

the initial state x and the control u. The value function for this problem is given by

VðxÞ :¼ inf
u2U

Jðx; uÞ ð21Þ

with corresponding Bellman Equation:

VðxÞ ¼ min
a2A;t2½0;1Þ

�

Cðx; a; tÞ þ e�lt ðkdia þ ðV
tr � Ta;tÞðxÞÞ

�

; ð22Þ

see [25] for the proof. The Bellman Equation can be used in order to numerically solve this op-

timal control problem, which requires to find an optimal treatment and an optimal examina-

tion lag time for each possible disease state, see S1 Text for a detailed description of

the algorithm.

Pro-active strategy (open-loop optimal control). In the pro-active strategy, no diagnos-

tics are taken. Instead, all possible disease trajectories are anticipated in a probabilistic sense

and decisions depend on the actual probability state p 2 O of a patient; –i.e. the probabilities of

being in either of each possible disease states x 2 S. Given a treatment, this probability state of a

patient evolves in a deterministic way, see Eq (2). By omitting diagnostics, the pro-active strat-

egymay have the advantage of being more easily implementable in settings where resources

and infrastructure would not allow for patient-specific diagnosis and treatment.

Optimal Strategies for ‘Treatment for Prevention’ against HIV-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004200 April 30, 2015 13 / 30



In this context, an optimal policy prescribes an action to each possible probability measure

p 2 O on the (infection) state space S:

u : O! A; p 7!uðpÞ ¼ ðaðpÞÞ

with p[x]: = P(X = x).

We discretize the considered time index and allow treatment changes only for certain times

tj ¼ j � �t, j 2 N, where �t is a fixed time lag. Within such a time interval of length �t the action re-

mains fixed, i.e. switching a treatment is possible only after a minimum time interval �t. We de-

note by pj ¼ pðj � �tÞ the probability state at these time points and set Ta :¼ Ta;�t for simplicity.

The state equation is then given by

pjþ1 ¼ Ta � pj; ð23Þ

where a 2A is the action applied in the jth interval and p0 is a fixed initial state probability vec-

tor. The transition matrix Ta;�t related to the action a and time lag �t is defined in Eq (3). Unlike

the diagnostic-guided strategy where the switching times are also the observation times, for

the pro-active strategy, the disease process is unobserved.

For the pro-active strategy the performance criterion entails only state and action costs but

no diagnostic costs. In analogy to (20), the performance criterion is given by

Jðp0; uÞ ¼ E
u
p0

X

1

j¼0

e�ltjCðpj; uj; �tÞ

 !

ð24Þ

with uj = u(pj). The minimization of the performance criterion J(p0,u) for a given initial distri-

bution p0 requires to find a control u of infinite length (an infinite switching signal). In order to

allow for a numerical solution of the above stated equation, we assume that the process is con-

trolled for a large, but finite time horizon ð0;N
I
� �t� after which a constant control u1 2A is

applied. In the current work, we used �t ¼ 2 days and N
I
� �t ¼ 5000 days for a numerical solu-

tion. Thus, for the pro-active strategy we seek a sequence of NI+1 actions (u0,u1,. . .uNI−1
,u1)

for a given initial probability distribution p0. We denote the set of all admissible controls by U.

Obviously, the size of control space is jUj = jAjNI+1.

Assuming that actions can only be changed for the finite time horizon ½0;N
I
� �t� and an ac-

tion is maintained afterwards, we derive a Bolza Type of performance criterion from the general

formulation in Eq (24):

Jðp0; uÞ ¼ E
u
p0

X

NI�1

j¼0

e�ltjCðpj; uj; �tÞ þ e�ltNI CðpNI
; u1;1Þ

 !

ð25Þ

denoting the expected costs for the infinite time horizon, given an initial distribution p0 2 O

and a control u. The performance criterion Eq (25) for the pro-active strategy contains a ter-

minal cost and a running cost, see S2 Text. Given an initial state vector p0, a control u 2 U and

fixed action u1 after the interval NI, the expression can be simplified to

Jðp0; uÞ ¼
X

NI�1

j¼0

q0uj ;j � pj þ q0u1 � pNI
ð26Þ

where qu1 2 R
jSj
þ and quj ;j 2 R

jSj
þ are the terminal and the running cost vectors respectively.
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Now, the optimal control problem can be defined as:

J�ðp0; u
�Þ ¼ min

u2U

X

NI�1

j¼0

q0uj ;j � pj þ q0u1 � pNI

w:r:t pjþ1 ¼ Tuj
� pj

p0 ¼ pð0Þ�

ð27Þ

The Hamiltonian function for the jth interval is given by the following equation

Hj ¼ x
0
jþ1 � Tuj

� pj þ q0uj;j � pj ð28Þ

where ξ is the adjoint vector. The adjoint equation and transversal condition are given by

x
0
j ¼ x

0
jþ1 � Tuj

þ q0uj ;j

x
0
NI
¼ q0u1 �

ð29Þ

The Bellman Equation for the discrete-case [27, 55] is given by

Vðpj; jÞ ¼ min
a2A

q0a;j � pj þ Vðpjþ1; jþ 1Þ
� �

¼ min
a2A

e�l�tjCðpj; a; �tÞ þ Vðpjþ1; jþ 1Þ
� �

�
ð30Þ

Eq (29) allows to redefine the optimal control problem Eq (27) for anym 2 {0� � �NI} as

shown below

J�ðp0; u
�Þ ¼ min

u2U
x
0
m � pm þ

X

m�1

j¼0

q0uj ;j � pj

 !

w:r:t piþ1 ¼ Tui
� pi ; p0 ¼ pð0Þ

x
0
l ¼ x

0
lþ1 � Tul

þ q0ul ;l ; x
0
NI
¼ q0u1

ð31Þ

where i = 0. . .(m−1) and l = (NI − 1). . .m. This formulation shows the similarity of the optimal

control problem to a two point boundary value problem for a continuous case. The boundary

conditions are p0 = p(0) and ξNI
= qu1. Note that the optimal control problem needs to be

solved for all possible boundary conditions for the adjoint vectors, i.e. by iterating over all pos-

sible actions for u1.

Numerical Solution

Solving optimal control problems is generally computation intense and may not always be

achievable. Our two optimal control scenarios require different algorithms for their solution.

For computing the optimal diagnostic-guided strategy, we used an adapted policy iteration

algorithm, see S1 Text for details.

In order to numerically compute the optimal pro-active strategy, we introduce a dynamic

programming technique in S2 Text, which was developed for the considered performance cri-

terion (expected discounted costs over an infinite time horizon). It has some similarity with the

algorithm introduced by Hernandez-Vargas [27], which, however, considers a different perfor-

mance criterion (only terminal cost).
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Both algorithms were implemented in MATLAB Version 8 and parallelized, where applica-

ble. For the dynamic programming technique in S2 Text we used the state of art solver cplex

from the IBM ILOG CPLEX [56] Optimization Studio to solve embedded linear programs.

Results

Optimal Treatment Strategy

The optimal diagnostic-guided strategy is given in S1 Table. In brief, for the considered pa-

rameters (Tables 1 and 2), it is suggested to use the first-line treatment a1 in all states, except

those where the virus is resistant against treatment a1, but susceptible to a2. In the later case

treatment line a2 is suggested. In line with this treatment recommendation, patient monitoring

is only suggested as long as the patient is infected with drug-susceptible (“wild-type”) virus. If

the patient has a high ormedium virus load, the next diagnostic test should be within 25 days,

if the patient has a ℓow/non-detectable virus load, after 152 days.

These results may indicate that the cost for diagnostics is too high in relation to the econom-

ic benefit resulting from more close monitoring and informed treatment adaptation (this will

be discussed later in the Discussion). An exemplary trajectory that highlights the treatment

strategy is shown in Fig 4A. The blue line indicates a patient-specific trajectory. The filled black

marks indicate the times when a diagnostic test is performed and the background shading indi-

cates the applied treatment (white: a1, gray shading: a2). In the example, the patient initially

has a high copy number h of wild type (WT) virus, while none of the drug resistant viruses are

present. This state is represented by the vector notation Xt0
¼ h; 0; 0; 0½ �. For this state, the

optimal treatment policy (see S1 Table) suggests to use treatment a1 and to perform the next

Fig 4. Disease progression for the diagnostic-guided strategy (individual trajectory, panel A) and pro-active strategy (probabilistic measure, panel
B). The white region denotes application of treatment a1 and the gray region denotes the application of treatment a2. We assumed that the initial HIV virologic
status is represented by a treatment-naive patient with high copy number of wild type virus [nC(WT) = h,nC(R1) = 0,nC(R2) = 0,nC(HR) = 0]. In panel A, the
blue line represents a stochastic realization of HIV dynamics in a single individual treated with the diagnostic-guided strategy and black dots indicate
diagnostic assessments. In the y-axis, all states belonging to the set of viral statesH,M and L are indicated. L denotes an undetectable total viral load, i.e.
this is the set of states for which condition nC(M)� ℓ for all possible virus mutantsM holds (½� ‘; � ‘; � ‘; � ‘�). Likewise,H denotes a high total viral load,
i.e. refers to all states for which for at least one viral strainM, nC(M) >m. The remaining viral states belong toM. Only the initial part of the trajectory is
presented (day 0–800 after treatment initiation) and details of transitions to each state are labeled for clarity. In panel B, the black, red, magenta and blue
lines represent the probabilities of states✠ (patient death),H,M and L after application of the pro-active strategy. Note, that for the pro-active strategy, the
x-axis is logarithmically scaled.

doi:10.1371/journal.pcbi.1004200.g004
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diagnostic test in 25 days (the second black marking in panel Fig 4A). At the next diagnostic

test, the patient is in state m; 0; 0; 0½ � for which continuation of treatment a1 is recommended

and the next diagnostic test is scheduled after 25 days (the 3rd–9th black marking in panel Fig

4A). In the following, the virus remains suppressed, with a small detected ‘blip’ after about 500

days. After about 600 days of treatment, during the time lapse between diagnostic tests, the a1
resistant strain R1 emerges. Notice transitions from the state

m; 0; 0; 0½ � ! m; ‘; 0; 0½ � ! m; m; 0; 0½ �, then ‘; m; 0; 0½ � and finally ‘; h; 0; 0½ � in the Fig

4A, where the copy number of a1 resistant strain R1 increases from a ℓow copy number to a

high copy number (virus rebound after resistance development). At the time point of the next

diagnostic (at around 700 days), the emergence of resistance is identified ‘; h; 0; 0½ � and a

switch to treatment a2 is suggested (marked by gray region in Fig 4A). After the initiation of

treatment a2, a transition to state ‘; ‘; 0; 0½ � can be observed in the trajectory, which implies a

decrease in the a1 resistant strain (viral suppression).

The optimal pro-active strategy depends on the initial probability state of the patient p0.

We assumed that the patient is treatment naive and has high virus copy numbers, i.e.

p h; 0; 0; 0½ �ðt0Þ ¼ 1 and p x½ �ðt0Þ ¼ 0 for x 2 Sn½h; 0; 0; 0�. For this scenario, it is suggested to

start with treatment line a1 and to switch to a2 after 14 days, which is then maintained. The tra-

jectories of the patient probability states are depicted in Fig 4B. For the ease of interpretation,

we illustrate only the sets of viral states L,M,H and patient death✠. L denotes an undetect-

able total viral load. Translated to our model, this is the set of states for which condition nC(M)

� ℓ for all possible virus mutantsM holds, i.e. the current state has to fulfill

� ‘; � ‘; � ‘; � ‘½ � to belong to this set. LikewiseH denotes a high total viral load, i.e. refers

to all states for which for at least one viral strainM, nC(M)>m is fulfilled. The remaining viral

states belong toM. One can nicely see that after approximately 260 days, maximum viral sup-

pression may be achieved in the sense that the probability to have undetectable virus load (L)

is maximal (64.19%), while the patient may have intermediate viral loadsM with 15.57% prob-

ability and high viral loadsH with only 14.40% probability (the probability of death is 5.84%).

After this time, it becomes more likely to fail treatment, as indicated by an increase in statesM

andH relative to L. We also assessed the sensitivity of the optimal pro-active strategy to varia-

tions in parameter values and found it to be fairly insensitive to parameter perturbations, see

S3 Text. For comparison, we also show the dynamics for the case when no treatment switches

were conducted in S4 Text in relation to the optimal pro-active strategy.

Cost of Strategy

In our model, the cost incurred by a treatment strategy can be divided into two types: The di-

rect costs, which include treatment- and diagnostic costs, and indirect costs incurred by the vi-

rologic/health status of a patient (state costs). The pro-active strategy does not comprise

diagnostic tests, whereas the protocol for the current standard of care (S.O.C.), as well as the

protocol used in theHPTN052 [16], which we simulate for comparison, require viral load

measurements. Currently, the expensive resistance tests are not part of the protocol for the

standard of care, nor were they used for treatment decisions inHPTN052. The protocol for S.

O.C. recommends changing treatment, if viral load (which is measured at month 6 and then

every 12 months) is detectable and confirmed in a follow up testing after 2 months. The proto-

col for theHPTN052 trial recommends changing treatment, if two consecutive viral load mea-

surements were greater than 1000 copies/mL, 16 weeks after treatment initiation. Viral load

was measured at week 2, at month 1, 2, 3 after treatment initiation and then every 3 month.

The cost of virologic testing is roughly 30 US$ per test [57, 58]. In contrast to S.O.C. and

HPTN052, the diagnostic-guided strategy requires drug resistance testing. We set the cost of
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the diagnostics for the diagnostic-guided strategy to 200 US$ per test, in line with the recent

literature [57, 59].

Table 3 displays the expected discounted costs for an infinite time horizon for different

strategies and highlights the direct- and indirect costs of each strategy, respectively. This com-

parison shows that the pro-active strategy performs best (83,819 US$), followed closely by the

diagnostic-guided strategy (83,858 US$), theHPTN052 protocol (84,600 US$) and then by

the standard of care (85,641 US$). The total expected discounted costs for the pro-active- and

the diagnostic-guided strategy are 2% less than that of the standard of care. The state costs

(indirect cost related to patient-well being) are the major determinant of the total cost, making

up roughly 98%, 97%, 97% and 93% of total cost for the S.O.C., theHPTN052 protocol, the

pro-active—and the diagnostic-guided strategy respectively. In terms of state costs, the diag-

nostic-guided strategy performs best.

The direct costs (treatment and diagnostic costs) are highest for the diagnostic-guided

strategy (5,539 US$) followed by the pro-active strategy (2,772 US$), theHPTN052 protocol

(2,390 US$) and the standard of care (1,871 US$). The direct costs make up only 2%, 3%, 3%

and 7% of the total costs for S.O.C., theHPTN052 protocol, the pro-active and the diagnos-

tic-guided strategy respectively. The direct costs of the pro-active and the diagnostic-guided

strategy are roughly 48% and 196% more than that of S.O.C.

Patient Survival

Clearly, the primary goal of any treatment strategy is to improve and prolong the life expectan-

cy of the treated individual. We therefore compare the distinct treatment strategies in terms of

patient survival. For that purpose, we define the following term:

PðXs ¼ ✠jstgÞ

which denotes the probability of death✠ at time s given that the patient was treated according

to treatment strategy stg. Given two distinct strategies; stg and a reference treatment strategy

stgref, the term Tþ
0!tðstg; stgrefÞ refers to the expected years of life gained (life prolongation)

when the treatment strategy stg is used, relative to the reference treatment stgref at time t after

initiation of treatment:

Tþ
0!tðstg; stgref Þ ¼

Z t

s¼0

PðXs ¼ ✠jstgref Þ � PðXs ¼ ✠jstgÞ ds � ð32Þ

Table 3. Expected discounted costs for an infinite time horizon.

Type of cost Standard of care protocol [US$] HPTN052 protocol [US$] Pro-active strategy [US$] Diagnostic-guided strategy [US$]

Treatment costs 1,725 1,974 2,772 1,307

Diagnostic costs 146 416 – 4,232

Total handling cost 1,871 2,390 2,772 5,539

State costs 83,770 82,210 81,047 78,319

Total cost 85,641 84,600 83,819 83,858

For each treatment strategy, the total expected discounted cost for an infinite time horizon are shown. Further, the total cost is splitted into direct cost

(treatment cost and diagnostic cost) and indirect cost (state costs).

doi:10.1371/journal.pcbi.1004200.t003
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In other words, given a patient is treated with stg and another patient is treated with stgref
for time t, the terms Tþ

0!tðstg; stgrefÞ refers to the expected time that a patient treated with stg

will live longer than the patient treated with stgref.

We compared all strategies with the following reference strategies stgref: i) no medical inter-

vention, ii) the standard of care treatment, iii) treatment according to theHPTN052 protocol

and iv) the diagnostic-guided strategy. Fig 5A and 5D show the trajectories of expected life

prolongation by different strategies in relation to i)-iv). Table 4 displays the expected life-years

gained after 1 -, 2 -, 5 -, 8 -, 12—and 13.7 years of treatment respectively, where we additionally

show the expected life prolongation in relation to the uninfected state.

The first five rows of Table 4 show the expected loss-of-life-time of an HIV infected person

treated with distinct strategies in relation to an HIV uninfected person. After 13.7 years, an

Fig 5. Relative expected life prolongation [years] for different treatment strategies. The purple solid lines, green dashed lines, blue dash-dotted lines
and black dots represent the pro-active strategy-, the diagnostic-guided strategy, the current standard of care and theHPTN052 protocol respectively.
The thin black line denotes the line of unity (no improvement/worsening). Panels A-D show the expected life-time prolongation for the distinct treatment
strategies in relation to the no treatment, standard of care, theHPTN052 protocol and the optimal diagnostic-guided strategy respectively.

doi:10.1371/journal.pcbi.1004200.g005
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HIV patient receiving no treatment lives on average 6.2 years less than a healthy person. An

HIV patient receiving treatment according to S.O.C., the pro-active strategy, the diagnostic-

guided strategy or according to theHPTN052 protocol lives on average 3, 2.66, 2.3 and 2.82

years less than a healthy person. Fig 5A shows that all treatment strategies are better than re-

ceiving no treatment at all and prolong the life of an HIV patient by at least 3.2 years in rela-

tion. Fig 5B shows that the diagnostic-guided, pro-active strategy and theHPTN052

protocol are better at increasing patient survival than the standard of care. Further, Fig 5C

shows that the optimal strategies are slightly better than theHPTN052 protocol and Fig 5D

shows that the pro-active strategy and theHPTN052 protocol are slightly worse than the di-

agnostic-guided strategy. Table 4 shows that during the initial 2–3 years of treatment, there is

almost no difference between the diagnostic-guided and the pro-active strategy with regard

to patient survival. After 13.7 years of treatment, the difference between the two optimal strate-

gies is less than 5 month (0.358 years).

Expected Reduction in Secondary Cases

Besides the primary goal of improving the life of the HIV patient, ‘treatment for prevention’

has gained interest in recent years. ‘Treatment for prevention’ strategies reduce onward trans-

mission of the virus by reducing the infectiousness of HIV positive individuals. In order to

measure the efficacy of the treatment strategies in preventing HIV-1 transmission, we estimat-

ed the incidence rate per 100 person-years associated with each HIV lumped state (ℓ,m, h)

from a meta-analysis by Attia et al [14] (see S5 Text). The meta-analysis summarizes the out-

come of 11 clinical studies on HIV-1 transmission in heterosexual sero-discordant couples, pri-

marily from Africa.

Table 4. Expected relative life-time gained using different strategies.

Expected life prolongation [years] after

Ref. Strategy Test Strategy 1 yr 2 yrs 5 yrs 8 yrs 12 yrs 13.7 yrs

No disease Diag-guided strategy -0.020 -0.070 -0.360 -0.870 -1.830 -2.300

No disease Pro-active strategy -0.020 -0.070 -0.400 -0.990 -2.110 -2.660

No disease HPTN052 protocol -0.030 -0.080 -0.450 -1.080 -2.250 -2.820

No disease Standard of care -0.030 -0.090 -0.470 -1.150 -2.400 -3.010

No disease No treatment -0.070 -0.280 -1.420 -2.980 -5.260 -6.220

No treatment Diag-guided strategy 0.051 0.206 1.058 2.115 3.427 3.912

No treatment Pro-active strategy 0.051 0.206 1.020 1.993 3.150 3.554

No treatment HPTN052 protocol 0.050 0.200 0.970 1.900 3.000 3.390

No treatment Standard of care 0.050 0.190 0.940 1.830 2.850 3.210

Standard of care Diag-guided strategy 0.003 0.014 0.110 0.284 0.569 0.704

Standard of care Pro-active strategy 0.004 0.014 0.072 0.163 0.292 0.345

Standard of care HPTN052 protocol 0.002 0.007 0.026 0.070 0.149 0.184

HPTN052 protocol Diag-guided strategy 0.002 0.007 0.084 0.214 0.420 0.520

HPTN052 protocol Pro-active strategy 0.002 0.007 0.047 0.092 0.144 0.162

The table shows the relative expected gain in life-time for the distinct treatment strategies in comparison to a reference strategy. The reference strategies

are i) no infection ii) no treatment iii) standard of care and iv) the HPTN052 protocol. Values were computed using Eq (32).

doi:10.1371/journal.pcbi.1004200.t004
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For a strategy stg applied for a time t, the following equation gives a measure of the expected

number of secondary cases/transmissions per survivor

E0!tðtransm:jstg ^ :✠Þ ¼

Z t

s¼0

P

xPðXs ¼ xjstgÞ � IRðxÞ

1� PðXs ¼ ✠Þ
ds ð33Þ

where IR(x) is the incidence rate per 100 person-years for a state x in our virus dynamics

model, as explained in S5 Text and given in Table 1. Given two strategies, stg1 and stgref, the

percentage of potential infections prevented by strategy stg1 in comparison to the reference

strategy stgref is given by the quotient:

%transmissions prevented until t ¼ 100 � 1�
E0!tðtransm � jstg1 ^ :✠Þ

E0!tðtransm � jstgref ^ :✠Þ

� �

ð34Þ

We computed the expected reduction of secondary cases for different strategies taking either

no treatment or the current standard of care as the reference strategy. In comparison to no

treatment, the maximal reduction of secondary cases for the pro-active -, the diagnostic-guid-

ed strategy, theHPTN052 protocol and S.O.C. are achieved roughly 1.5–3 years after treat-

ment initiation with values of 86%, 87%, 82% and 79% respectively, see Fig 6A. The relative

reduction of secondary cases per survivor for the diagnostic-guided and the pro-active strate-

gy are very similar, with an increase for the first 2 years, followed by a slow decline (see Fig 6A

and Table 5). The relative reduction of secondary cases per survivor for theHPTN052 proto-

col is slightly better than that of S.O.C, with a tendency to decline over time, see Table 5. Note,

that the computed relative reduction of secondary cases with theHPTN052 protocol was 82%

(Table 5), which is slightly lower than the reported relative reduction of transmission events in

the actual HPTN052 study [16] (reduction of 96% of linked and 89% of total transmission

events). We have discussed reasons for this apparent under-prediction later in the manuscript.

The difference between the optimal strategies (diagnostic-guided and the pro-active strategy)

and S.O.C. becomes evident, when looking at the relative risk reduction by the optimal treat-

ment strategies in relation to S.O.C. in Fig 6B. The reduction in secondary cases per survivor

Fig 6. Comparison of the relative reduction of secondary cases per survivor. The purple solid, green dashed, blue dash-dotted lines and black dots
represent the expected relative reduction of secondary cases per survivor by the pro-active-, the diagnostic-guided strategy, S.O.C. and in the HPTN052
protocol. In panel A, the reference strategy is no treatment and in panel B it is S.O.C.

doi:10.1371/journal.pcbi.1004200.g006
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by the optimal strategies in comparison to S.O.C. is highest at the beginning and then slowly

decreases over time.

Discussion

The main aim of this work was to develop a rigorous mathematical framework that allows to

compare different treatment paradigms in terms of monetary costs, treatment benefit and effi-

cacy for ‘treatment for prevention’. It was previously stated [60], that the durability of ‘treat-

ment for prevention’ should be assessed. Our simulations over a long time horizon (up to 5000

days/13.7 years) indicate that the effect of ‘treatment for prevention’ is significant and remains

relatively stable beyond the time horizon typically assessed in clinical studies, see Fig 6A and

Table 5, and that it may even be improved. We estimated that a standard of care therapy in

e.g. South Africa can achieve a 66–79% reduction of HIV-1 onward transmission, in compari-

son to delivering no treatment. We also implemented theHPTN052 protocol, as stated in

[16] and predicted that it would achieve up to 82% reduction of HIV-1 transmission, being

more effective than the current standard of care, as shown in Fig 6B.

Statistical assessment of the actual HPTN052 trial [16] yielded estimates for the relative re-

duction of transmission of 96% for linked transmission and 89% for any transmission. Our

simulatedHPTN052 protocol yielded a 82% reduction of onwards transmission, which is

within the confidence range of the reported estimates (CI: 73–99% for linked transmission and

CI: 68–96% for any transmission) [16]. Note, that only one linked transmission event (1/1585

person-years) was observed in the early therapy arm of HPTN052 [16], giving rise to the statis-

tical uncertainty in the reported estimate. Nevertheless, our simulations may under-predict the

efficacy of HPTN052 due to several factors:

i. The reported treatment efficacy in the HPTN052 study was higher than predicted by our

model: Virologic failure was only observed in 5% of participants in the early-therapy group

of HPTN052, possibly explaining the difference between the outcome of the simulation vs.

the clinical trial.

ii. Despite only 5% failing to suppress the virus in the HPTN052 study, 66% initiated a second

line therapy [16], meaning that a significant proportion of patients switched treatment be-

fore/without virologic failure. In our simulations of theHPTN052 protocol, patients only

Table 5. Expected relative reduction of secondary cases per survivor using different treatment strategies after different treatment durations.

relative reduction in secondary cases [%]

Ref. strategy Test strategy 1 yr 2 yrs 3.5 yrs 5 yrs 8 yrs 13.7 yrs

No treatment Diagnostic-guided strategy 85.52 86.76 85.42 83.71 80.33 75.72

No treatment Pro-active strategy 84.72 85.72 84.34 82.41 78.54 72.35

No treatment HPTN052 protocol 81.01 81.32 79.61 77.66 74.29 69.25

No treatment Standard of care 78.77 78.55 76.31 74.08 70.50 65.50

Standard of care Diagnostic-guided strategy 31.79 38.29 37.45 37.15 33.31 29.61

Standard of care Pro-active strategy 28.04 33.45 33.88 32.11 27.25 19.85

Standard of care HPTN052 protocol 10.83 12.94 13.93 13.79 12.83 10.85

The table shows the expected relative reduction in secondary cases for different strategies in comparison to no treatment and S.O.C. after different

treatment durations. Values were computed using Eq (34).

doi:10.1371/journal.pcbi.1004200.t005
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switched treatment when they showed signs of virologic failure. However, one may specu-

late that these treatment switches before/without virologic failure may have an impact on

the long-term viral suppression that could be similar to a pro-active treatment switch.

iii. The primary measurable endpoint of the HPTN052 study was the infection of the sero-dis-

cordant partner. Onward transmissions to other individuals could not be quantified for

obvious reasons.

While a number of trials are now underway to confirm the results of HPTN052, see e.g. [61,

62], our in silico approach specifically addresses the need for an improved treatment strategy,

particularly taking affordability into account, which suggests strategies that are suitable for

scaling up.

Our work may indicate that if ‘treatment for prevention’ is scaled up and implemented

using the current standard of care treatment strategy, its efficacy may not be as high as ex-

pected from HPTN052. Unlike in HPTN052, where monitoring of treatment success (viral

suppression) and timely execution of treatment changes were realized, in resource-constrained

countries close patient monitoring is currently not implemented in a routine setting and may

be difficult to realize due to infrastructural and economic requirements.

Two alternative strategies for the immediate initiation of therapy were assessed in our work

that take into account the mentioned limitations. Both suggested strategies (the diagnostic-

guided strategy and the pro-active strategy) yielded better results in our simulations in terms

of the reduction of onward transmission (see Table 5) at a lower price (Table 3). Both optimal

strategies could yield a 72–87% reduction in HIV onward transmission in comparison to no

treatment, see Fig 6A and Table 5. In comparison to the standard of care, we estimated that

the diagnostic-guided strategy and the pro-active strategy could yield another 33–38% reduc-

tion of onward transmission after 2 years of treatment, but the advantages of the diagnostic-

guided strategy and the pro-active strategy over the standard of care slowly declined over

time, see Fig 6B. This indicates that both optimal strategies have a particular strength in reduc-

ing early transmissions (shortly after treatment initiation) in comparison to the current stan-

dard of care. This may be of particular utility, if transmission occurred primarily during early

infection [63, 64]. In our work, we did not take behavioral factors into account, which would

lead to a time-dependency of the infection rate. Rather, we assumed that the infection rate

IR(x) is constant over time, but dependent on the total virus load as reported earlier [14, 15,

19–21]. If transmission would primarily take place during an early infection, the advantages of

the diagnostic-guided strategy and the pro-active strategy over the standard of care would

be even more pronounced than indicated in Fig 6B.

The optimal diagnostic-guided strategy suggested patient-specific diagnostics, i.e. depen-

dent on the patient’s virologic status (see S1 Table), unlike fixed intervals as in S.O.C, or the

protocol stated in [16]. In summary, the optimal diagnostic-guided strategy suggests to take

frequent diagnostics (	 every month) if the patient is infected with a high ormedium number

of treatment-susceptible virus and less frequent (	 every 5 month) diagnostics if the patient is

infected with a ℓow/undetectable number of virus. No diagnostics are recommended for the re-

maining virologic states. Altogether, a very sparse diagnostic schedule for individual patients is

suggested. Previous work [25] indicated that price reductions for the diagnostic tests would

yield a better patient-outcome, which indicates that available drugs may not be utilized opti-

mally in resource-poor settings, because diagnostics are currently too expensive. Of note is the

fact that albeit treatment being available at very low expense (due to negotiations by the Clin-

ton Foundation [65]), diagnostics may not be.

Furthermore, we suspected that allowing treatment change only after diagnostic confirma-

tion of treatment failure (i.e. some time after drug resistance has occurred) may limit future
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treatment options [34]. Since the optimal diagnostic-guided strategy suggested rare diagnos-

tics, and because it only allows to change treatment after resistance is detectable, we evaluated

pro-active switching strategies. Note, that pro-active treatment switching strategies tested in

the clinic increased virologic suppression and lowered rates of drug resistance emergence in

HIV-1, when compared to conventional strategies [66, 67]. Similar strategies are also used

against bacterial infections and cancers.

The computed pro-active strategy suggests a single treatment change without prior ascer-

tainment of the viral status within a treated patient. Surprisingly, this strategy could yield com-

parable outcomes in terms of monetary costs, patient health and reduction of onward

transmission, see Tables 3–5 and Figs 5 and 6. Our work thus indicates that pro-active strate-

gies, may be as effective as diagnostically-driven ones, when diagnostics are expensive or inac-

cessible. Note, that unlike other optimal control approaches, i.e. [28] that suggest infinitely fast

switching between regimens to mitigate drug resistance emergence, our predicted pro-active

strategy actually only recommends a single treatment change, which is clinically more realistic.

We also analyzed the sensitivity of the pro-active strategies with respect to the timing of this

switch (see Fig 7). The graphic illustrates, that the switch is optimal after 14 days, however the

difference in the performance measure is marginal, as long as the treatment switch is per-

formed before	 30 days (1 month) after treatment initiation.

Obviously, pragmatic and clinical considerations need to be taken into account to translate

our results into practice. Also, several assumptions have been made, which require careful eval-

uation. For example, we used a very coarse-grained model of HIV within-host dynamics,

which was required to enable the numerical computation of optimal controls, particularly for

Fig 7. Sensitivity of the pro-active strategy with respect to timing of the treatment switch. The purple
solid line represents the total expected discounted costs for the pro-active strategywith respect to the
switching time (shown on the x-axis). The horizontal green dashed, blue dash-dotted lines and black dots
represent the total expected discounted costs for the optimal diagnostic-guided strategy, S.O.C. and in the
HPTN052 protocol. The inset shows a zoom into the first 30 days after treatment initiation.

doi:10.1371/journal.pcbi.1004200.g007
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the closed-loop system employed in the diagnostic-guided strategy. Most models of viral dy-

namics, e.g. [33, 68, 69], were developed to accurately predict short-term viral dynamics after

drug application and are unable to predict virologic failure after long time intervals, in contrast

to our coarse-grained model, which was developed and parameterized in order to predict

short-term viral dynamics as well as virologic failure after very long time-intervals, see e.g. Figs

2 and 3. It is therefore more suitable than existing models in estimating the long-term response

to antiviral treatment. However, in the future we will focus on developing more elaborated

HIV-models and on algorithms to solve the control problem for the chemical master equation

directly, without state-space lumping. Note, that other computationally efficient numerical ap-

proaches, such as model predictive control [30], could be used to approximate the optimal

treatment strategies. However, there is no guarantee that the computed control using these ap-

proaches will be optimal.

In our approach, we modeled treatment change as a switched system, which neglects the

pharmacokinetics of the distinct drugs [10, 70–72] and may only indirectly reflect drug adher-

ence in an average population (drug efficacy η is a constant term in our model). Neglecting

pharmacokinetics may, however, be a justifiable step in this modeling exercise, because of the

considered time-scales (on the order of years), and also because optimizing e.g. drug adherence

was not an objective of this study. However, if the main interest is for example in optimizing

the switch between two treatment lines by optimal dosing in order to prevent time frames of in-

sufficient viral suppression or drug over-exposure, or to include patient-specific or time-depen-

dent drug adherence, we advise to consider a different control system, for example [73].

Within such a framework, monitoring (e.g. viral load assessment) may also be incorporated as

a tool to assess individual drug adherence and to allocate resources to improve it.

We did not explicitly consider costs related to contraindications caused by the treatment.

For example, the second treatment line a2 may be less tolerable. Mathematically, this can be

modeled in terms of increased treatment costs for a2, in comparison to the first treatment line

a1. In order to test the sensitivity of the optimal pro-active strategy to this parameter, we con-

ducted the necessary computations in S3 Text and found that the computed strategy was fairly

insensitive to changes in treatment costs. This may indicate that the benefits of the treatment

switch outweigh these potential shortcomings.

Also, we did not include screening costs or the costs of the initial virologic assessment, thus

our calculations refer to the public health costs that accrue from the start of HIV treatment.

These costs will, however, only enter as a constant to each of the tested strategies and will not

change the results beyond the addition of this constant to the values stated in Table 3. Addi-

tional costs (personnel, infrastructure, transportation) may come along with diagnostic assess-

ments. It is likely that hidden costs for diagnostics are substantial. With a higher cost of

diagnosis, the pro-active strategymay outperform the diagnostic-guided strategy, which may

suggest an even less frequent diagnostic schedule, supporting our claim that current diagnostics

may be too expensive to be appropriately used.

We used the price of a drug resistance test (kdia	 200 US$ [57, 59]) to account for diagnos-

tics in the diagnostic-guided strategy. This had the following reason: Current guidelines rec-

ommend to measure the total virus load [13] and to switch treatment, if, based on this partial

information, virologic failure is anticipated. As reported by others [57], this may lead to unnec-

essary treatment switches. In contrast, a resistance test directly informs the physician about the

necessity of treatment change. Mathematically, partial information, i.e. the total virus load,

would lead to a distinct control framework, namely Partially Observable Markov Decision Pro-

cesses (POMDP) [74], which are extremely challenging to solve, particularly for larger models

like the one used herein (Fig 1). In POMDPs, partial information may be mapped into a ‘be-

lieved’ full virologic status, for example observing a high total virus loadmay be due to some
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resistance development, e.g. the viral state ‘; h; 0; 0½ � with some probability. However, it is

hard for us formalize the physicians intuition (i.e. the relation between observation, belief and

truth) regarding this ‘mapping’ of partial measurements to viral states x.

As a primary outcome of our modeling exercise, we estimated the expected relative number

of secondary infections prevented (Table 5 and Fig 6); -unlike many other approaches (sum-

marized in [18]), which take the absolute number of secondary cases into account. Estimating

absolute numbers of secondary cases would require to model complex behaviors, i.e. sexual re-

lationships, etc. over time, for which we do not have data for validation, nor was it the main

focus of the current work. This also prevents us from predicting the course of the epidemic or

deriving its reproductive number R0 in relation to distinct treatment strategies. However, the

primary aim of this study was to compare the efficacy of different treatment strategies, which is

nicely quantified in terms of the expected relative number of secondary infections prevented.

Note, that this relative estimate requires no assumptions on the underlying transmission dy-

namics, except that it assumes that these dynamics are similar for a tested strategy versus

its comparator.

In addition to insights in HIV ‘treatment for prevention’ strategies, the developed mathe-

matical/control theoretic framework may already be applicable to many medical phenomena.

Further developments may improve its applicability to even more complex processes, which

can be accurately described by intrinsically stochastic dynamics. For example, the open-loop

optimal control approach (used to determine the optimal pro-active strategy) may be turned

into a closed-loop system, if diagnostics are taken from time-to-time to determine the viral

state of a patient, i.e. p[x](tj). Also, the closed-loop system that requires state determination

(the diagnostic-guided strategy) may be combined with the open-loop system in order to

allow for pro-active treatment changes in between diagnostic assessments.
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