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ABSTRACT
Optimization of truss-structures for find-

ing optimal cross-sectional size, topology,
and configuration of 2-D and 3-D trusses to
achieve minimum weight is carried out us-
ing real-coded genetic algorithms (GAs). All
the above three optimization techniques have
been made possible by using a novel rep-
resentation scheme. Although the proposed
GA uses a fixed-length vector of design vari-
ables representing member areas and change
in nodal coordinates, a simple member exclu-
sion principle is introduced to obtain differ-
ing topologies. Moreover, practical consider-
ations, such as inclusion of important nodes
in the optimized structure is taken care of
by using a concept of basic and non-basic
nodes. Stress, deflection, and kinematic sta-
bility considerations are also handled using
constraints. In a number of 2-D and 3-D
trusses, the proposed technique finds intu-
itively optimal or near-optimal trusses, which
are also found to have smaller weight than
those that are reported in the literature.

1 Introduction
Optimal design of truss-structures has always been an ac-
tive area of research in the field of search and optimization.
Various techniques based on classical optimization methods
have been developed to find optimal truss-structures (Dorn,
Gomory, and Greenberg, 1964; Haug and Arora, 1989; Kr-
ish, 1989; Ringertz, 1985; Topping, 1983; Vanderplaat and
Moses, 1972). However, most of these techniques can be clas-
sified into three main categories: (i) Sizing, (ii) Configuration,
and (iii) Topology optimization.

In the sizing optimization of trusses, cross-sectional areas
of members are considered as design variables and the coordi-
nates of the nodes and connectivity among various members
are considered to be fixed (Goldberg and Samtani, 1986). The
resulting optimization problem is a nonlinear programming
(NLP) problem. The sizing optimization problem is extended
and made practically useful by restricting the member cross-
sectional areas to take only certain pre-specified discrete val-
ues (Rajeev and Krishnamoorthy, 1992).

In the configuration optimization of trusses, the change
in nodal coordinates are kept as design variables (Imai and
Schmit, 1981). In most studies, simultaneous optimization of
sizing and configuration has been used. The resulting prob-
lem is also a NLP problem with member area and change in
nodal coordinates as variables.

In the topology optimization, the connectivity of mem-
bers in a truss is to be determined (Krish, 1989; Ringertz,
1985). Classical optimization methods have not been used ad-
equately in topology optimization, simply because they lack
efficient ways to represent connectivity of members.

Although the above three optimization problems are dis-
cussed separately, the most efficient way to design truss-
structures optimally is to consider all three optimization
methods simultaneously. In most attempts, multi-level opti-
mization methods have been used (Dobbs and Felton, 1969;
Ringertz, 1985). In such a method, when topology optimiza-
tion is performed, member areas and the truss configuration
are assumed to be fixed. Once an optimized topology is
found, the member areas and/or configuration of the obtained
topology are optimized. It is obvious that such a multi-level
optimization technique may not always provide the globally
best design, since both these problems are not linearly sepa-
rable.

Genetic algorithms (GAs) have also been in all the above
three optimization problems. Goldberg and Samtani (1986)
and Rajeev and Krishnamoorthy (1992) have used only size
optimization, whereas Hejela, Lee, and Lin (1993) have used



a two-level optimization scheme of first finding multiple opti-
mal topologies and then finding the optimal member areas for
each of the truss topologies. Rajan (1995) has used all three
optimization methods to only two 2-D truss design problems.
Member connectivity is coded by using boolean variables (1
for presence and0 for absence). Member areas and change in
nodal displacements are used separately as variables. Since a
separate binary string is used to denote presence and absence
of all members, the representation scheme is highly sensitive
to this binary string, thereby introducing artificial nonlinearity
in the optimization problem.

In this paper, we have used a representation scheme which
naturally allows all three optimizations to be used simulta-
neously. Moreover, the representation scheme also allows a
canonical real-coded genetic algorithm (GA) to be used di-
rectly. In order to make the solutions practically useful, a
concept of basic and non-basic nodes is introduced, which
emphasizes important nodes to be present in the optimized
solution. Stress, deflection, and kinematic stability consider-
ations are also added as constraints to find functionally useful
trusses. The proposed technique is applied to a number of
truss-structure design problems. The optimized trusses are
compared with that reported in the literature.

2 Proposed Methodology
In a truss-structure design, certain nodes are important and
must exist in any feasible design. And certain nodes are added
for load sharing and are optional. The important nodes are
usually the ones which carry a load (a force) or which support
the truss. These information are usually specified by the user
(or designer) and must be honored in the design process of a
truss-structure. These important nodes are named as thebasic
nodes, in this paper. On the other hand, the optional nodes are
sometimes used in a truss to help distribute the stresses bet-
ter on individual members. These nodes are named asnon-
basic nodes. Thus, the objective in a truss-structure design,
(with all three design optimization methods) is to find which
optional nodes are necessary in a truss, what coordinates of
these optional nodes and which members must be present so
that a goal (often, the weight of the truss) is optimized by sat-
isfying certain constraints (often, the stresses in members and
displacements of nodes).

The proposed algorithm assumes aground structure,
which is a complete truss with all possible member connec-
tions among all nodes (basic or non-basic) in the structure.
Thus, in a truss havingn nodes, there are a total ofm = �n2�
different members possible. A ground structure1 is a collec-
tion of all these members.

A truss in the proposed GA is represented by specifying
a cross-sectional area for each member in the ground struc-
ture. Thus, a solution represented in the GA population is
a vector ofm real numbers within two specified limits. Al-
though every solution in a GA population will havem cross-

sectional areas, its phenotype (the truss itself) may not have
all m members. The presence or absence of a member in
the ground structure is determined by comparing the cross-
sectional area of the member with a user-defined small crit-
ical cross-sectional area,�. If an area is smaller than�, that
member is assumed to be absent in the realized truss. This
is how trusses with differing topologies can be obtained with
a fixed-length representation of the truss member areas. This
representation scheme has another advantage. Since member
areas are directly used, the values higher than� specify the ac-
tual member cross-sectional area. It is interesting to note that
the critical area� and lower and upper bounds on the cross-
sectional areas must be so selected that, although working in
the range(Amin;Amax), there is an adequate probability of
making a unwanted member absent in a solution. We have
chosenAmin = �Amax and a small positive value for�, so
that there is equal probability of any member being present
or absent in a truss. If a member is absolutely essential in a
truss, the genetic operators quickly make the corresponding
member area in all solutions in a population positive. This
reduces the chance of making the member absent in children
trusses.

In subsequent discussions, we denotem as the number of
members present in a realized truss and not the total number
of members in the ground structure, for clarity.

With the above discussion, we now present the formula-
tion of the truss-structure optimization problem as a nonlinear
programming (NLP) problem:

Minimize f(A) =Pmj=1 �j`jAj
Subject to G1 � Truss is acceptable to the userG2 � Truss is kinematically stableG3 � Sj � �j(A; �) � 0 j = 1; 2; : : : ;mG4 � �maxk � �k(A; �) � 0 k = 1; 2; : : : ; nG5 � Amini � Ai � Amaxi i = 1; 2; : : : ;mG6 � �mini � �i � �maxi i = 1; 2; : : : ; n0

(1)
In the above NLP problem, the design variables are the

cross-sectional areas of members present in a truss (denoted
asA) and the coordinates of alln0 non-basic nodes (denoted
as�). The parametersSj and�maxk are the allowable strength
of the j-th member and the allowable deflection of thek-th
node, respectively. We describe each of the above terms in
the following:

Objective function: In this paper, we have considered the
weight of the overall truss as the objective function, whereas
other criteria such as reliability and dynamic characteristics
can also be considered. The parameter�j and `j are the
material density and length ofj-th member, respectively.

Constraint G1: The user specifies the location and the num-
ber of basic nodes for supports and loads. Thus, a feasi-

1It is absolutely not necessary to have all
�n2� members in a ground structure. Problem knowledge can be usedto discard some members in the ground

structure. We shall show later how a good choice of a ground structure aids in finding better trusses using a GA.



ble truss must have all the basic nodes. This constraint is
checked first. If any one of the basic nodes is absent in the
truss, a large constant penalty is assigned to the solution and
no further calculation of objective function or constraints is
done.

Constraints G2: Since trusses with different topologies are
created by genetic operators, trusses which are not kinemat-
ically stable can also be generated. Trusses must be kine-
matically stable so that it does not generate into a mecha-
nism. One of the ways to check the kinematic stability of a
truss is to check the positive-definiteness of the stiffness ma-
trix created from the member connectivities. If the matrix is
positive-definite, the truss is kinematically stable. However,
the computation of the positive-definiteness of a matrix of
a reasonable size is enormous. We reduce the frequency of
such computations by first checking the Grubler’s criterion
(Ghosh and Mallik, 1988):

Degree-of-freedom (D-O-F)= 2n�m� nl; (2)

wherenl is the number of degrees-of-freedom lost at the
support nodes. If the D-O-F is non-positive, the correspond-
ing truss is a not a mechanism. Since a truss has to be a non-
mechanism, we first check the above simple criterion. If the
truss is a mechanism, we penalize the solution by assigning
a large value which is proportional to the D-O-F obtained
by the above equation. Thereafter, the corresponding truss
is not sent to FEM routine for further calculations such as
stiffness matrix, stresses and displacements. If the truss is
not a mechanism, we then sent the truss to the FEM routine
and check the positive-definiteness of the stiffness matrix.
If the matrix is not positive-definite, a large penalty propor-
tional to the violation of positive-definiteness is assigned to
the solution and no further calculation of stress or deflection
is made.

Constraints G3: In a feasible truss, all members must have
stresses within the allowable strength of the material. Since,
usually a truss is subjected to a number of different load-
ing conditions applied separately, these constraints must be
used for each loading condition. Since the trusses of vari-
ous topologies are created on the fly, some of them may be
statically determinate and some of them may be statically
indeterminate. Thus, we have used a finite element method
(FEM) to calculate the stresses and deflection in a truss. It
is also noteworthy that since each truss is different in its
topology, the members and nodes of the truss is needed to
be automatically numbered before calling a FEM routine.
FEM procedure is developed for 2D as well as 3D trusses.
A suitable automatic node numbering scheme is also devel-
oped.

In order to have significant effect of all constraints, we nor-
malize all constraints shown above in the following manner
so that all constraint violations get equal importance:G1 � Sj�j(A; �) � 1 � 0: (3)

In the case of any constraint violation (that is, ifSj ��j(A; �)), a bracket-operatorpenalty term (Deb, 1995; Rao,
1984) is added to the objective function.

Constraints G4: Like in Constraints G1, all nodes (basic or
non-basic) in the truss must not deflect more than the allow-
able limit due to the application of loads. Like Constraints
G1, these constraints are also normalized and the constraint
violation (if any) is added to the objective function by using
a bracket-operator penalty term.

Constraints G5 and G6: Since real-coded GA allows the
variables to be bounded within specified limits, these con-
straints will be automatically satisfied.

The fitness of a solution is dependent on the constraint viola-
tions and thus calculated as follows:

F (A; �) =
8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

109, if G1 is violated,108(constraint violation),

if G2 is violated with D-O-F constraint,107(constraint violation),

if G2 is violated with

positive-definiteness constraint,f(A; �) + 105Pmj=1 jhG3jij+105Pnk=1 jhG4kij
otherwise.

(4)
In the above expression, the operatorh i is the bracket-

operator penalty term.
In the real-coded GA, the binary tournament selection

without replacement is used. Since a truss is represented with
the cross-sectional values directly, we use the simulated bi-
nary crossover (SBX) operator (Deb and Agrawal, 1995) and
a real-valued mutation operator (Deb, 1997), both of which
work on floating-point values. We terminate a GA simulation
when a pre-specified number of generations is elapsed.

3 Results
In all simulations presented in this section, we have used a
crossover probability of 0.9 and a mutation probability of 0.1.
The population size used in a simulation is dependent on the
number of members in the ground structure. Since an ini-
tial random population is always used, it is expected that the
required population size would depend on the problem com-
plexity. It is intuitive that in truss-structure design problems,
as the number of members in the ground structure increases
there exist many different topologies with almost equal over-
all weight. This suggests that with the increase in members
in the ground structure, the resulting NLP problem becomes
multi-modal and hence a large population size is necessary to
find optimal or near-optimal solutions.



In the following, we discuss the performance of GAs in
solving various 2-D and 3-D truss structures and compare the
obtained solutions with the best solutions available in the lit-
erature.

3.1 11-Member, Six-Node Truss
The 11-member, six-node ground structure is shown in Fig-
ure 1. In all figures showing trusses, the dimensions are in
inches. Topology and size optimization are carried out for
this truss using 11 variables corresponding to members areas.
Following design parameters are used in the problem:

Young’s modulus = 104 ksi

Density (�) = 0.1 lb/in3
Allowable compressive strength = 25 ksi

Allowable tensile strength = 25 ksi

Allowable displacement = 2 inAmin;Amax = �35:0; 35:0 in2
Critical area (�) = 0.09 in2
After 225 generations, the best truss-structure obtained

using GAs with a population size of 220 has an overall weight
of 4,899.15 lbs. The optimized truss satisfies all constraints
and is shown in Figure 2. Although there were 11 members
and 6 nodes in the ground structure, the GA is able to find a
structure with only 6 members and 5 nodes. For the optimized
truss, the deflection of the node furthest away from the sup-
ports (intersection of members 2 and 5) inx andy directions
are�.562 and 2.000 inches, respectively. Since the deflection
in y direction is equal to the maximum allowable deflection,
it can be argued that the obtained truss is either optimal or
near-optimal. This is because any further reduction in cross-
sectional area in any member will make the truss weak and
will result in a deflection at the critical node more than the
allowable limit.

Figure 3 shows that the best solution in the initial popula-
tion had a weight over 9,000 lbs and was feasible. The figure
also shows how the GA with a population size of 110 finds a
truss of weight 4,950.75 lbs, which is a little higher than that

obtained using a population size of 220.
The member areas obtained using the proposed GA is

compared with the best-known solution available (Ringertz,
1985), which used a multi-level linear and nonlinear program-
ming method, where the same topology with 6 members and 5
nodes was obtained. Table 1 shows that our GA is able to ob-
tain a truss with slightly smaller weight than that reported in
Ringertz (1985). It is also interesting to note that although
both weights are very similar, the combination of member
areas in both trusses is a little different. Comparing to an-
other GA implementation on the same problem (but with dis-
crete member areas) (Rajan, 1995) which found a truss with
a weight of 4,962.1 lbs, our solution is much better.

Next, we make the member areas to take only discrete val-
ues (in the step of 1 in2). In this case, we use the discrete ver-
sion of the SBX and mutation operators (Deb, 1997), thereby
allowing only discrete values to be created using crossover
and mutation operators. The optimized truss obtained using
GA has the same topology as in Figure 2, but now has an
overall weight of 4,912.85 lbs. The best known solution in the
literature for the discrete case has the same topology and has
a weight of 4,942.70 lbs (Hajela, Lee, and Lin, 1993), which
is about 30 lbs more than that obtained by our algorithm. The
corresponding member areas are presented in Table 1. Since
our GAs have found a truss which requires 1 in2 less area in
both members 4 and 5 (which are the largest members in the
truss) compared to that in Hajela, Lee, and Lin (1993), the
overall weight is smaller. However, to make the truss safer
from stress considerations, the cross-sectional area in mem-
ber 0 had to be increased by 2 in2.
3.2 Two-Tier Truss
Two-tier, 39-member, 12-node ground structure (Figure 4) is
used for the following optimization studies:

1. Sizing and topology optimization

2. Sizing, shape and topology optimization

The overlapping members are shown with a small gap in the
figure for clarity. Symmetry about middle vertical member is

Figure 1 The 11-member, six-node ground structure. Figure 2 Optimized truss obtained from 11-member,
six-node ground structure.
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Figure 3 The improvement in the best solution versus generation number.

Table 1 Member areas of the optimized truss for 2-D, 11-member, six-node ground structure.

Area of members (in2)
Continuous Areas Discrete Areas

Member number Proposed Ringertz Proposed Hajela, Lee, and Lin

(refer Figure 2) (1985) (1993)

0 29.68 30.10 30 28

1 22.07 22.00 24 24

2 15.30 15.00 16 16

3 06.09 06.08 6 6

4 21.44 21.30 20 21

5 21.29 21.30 21 22

Weight of Truss (lb) 4899.15 4900.00 4912.85 4942.7

assumed, thereby reducing the number of variables to 21. The
material properties and maximum allowable deflection are the
same as in the previous problem, except allowable strength is
25 ksi. Lower and upper bounds of member areas of�2.25 to
2.25 in2 are used and a critical area of 0.05 in2 is chosen.

3.2.1 Sizing and Topology Optimization

Simultaneous optimization of sizing and topology is carried
out taking 21 continuous variables corresponding to 39 mem-
bers after considering symmetry. Optimized topology corre-
sponding to a simulation run with population size of 630 is
shown in Figure 5 and member areas are listed in Table 2. Of
the 39 members and 12 nodes in the ground structure, only 17
members and 10 nodes are retained by our GA. Starting from
a weight of 570 lbs found in the best solution in the initial
population, the GA has found a truss with a weight of 198 lbs.
Since no study of this 2-tier truss is available in the literature,
we cannot compare our solution with any other method. Nev-
ertheless, Figure 5 shows that optimized truss is intuitively a
much better truss than the ground structure. Moreover, all the

critical members carrying large loads have utilized the mate-
rial maximally so that the stress developed in each of them is
almost equal to the allowable strength of material (20 ksi), as
shown in below:

Member: (2,3) (8,9) (10,11) (12,13) (16)

Stress (ksi): 19.987 19.972 20.000 19.980 19,960

This suggests that the obtained truss is a near-optimal solu-
tion.

3.2.2 Sizing, Topology and Shape Optimization

In simultaneous optimization of sizing, configuration, and
topology, cross-sectional area of each member, number of
members in the truss, and coordinates of the non-basic nodes
(nodes that do not carry a load and nodes that are not support
nodes) are kept as decision variables. Seven extra nodal dis-
placement variables, in addition to 21 member area variables
discussed previously, are considered here. Nodal displace-
ment of 7 non-basic nodes inx andy directions with respect
to their original coordinates in the ground structure are de-



Figure 4 Two-tier, 39-member, 12-node ground structure. Figure 5 Optimized truss for two-tier, 39-member, 12-
node ground structure for sizing and topology considera-
tion.

Table 2 Member areas for the optimized truss structure in the case of sizing and topology optimization.

Member 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16

Area (in2) 0.050 1.501 0.052 0.050 1.416 1.118 1.001 0.050 1.002

noted as variables. Using symmetry about the vertical mem-
ber at the center of the trusses, we reduce the number of these
nodal displacement variables to 7 (the top-most node at the
center is assumed to have a fixedx coordinate). These extra
variables are assumed to vary within(�120; 120) inch.

The optimized nodal configuration and topology corre-
sponding to a GA run with 1,680 population size (up to 300
generations) is shown in Figure 6, and optimized member ar-
eas are listed in Table 3. This truss requiring only 15 mem-
bers and 9 nodes has a weight of 192.19 lbs, which is 3%
smaller than that obtained using only sizing and topology op-
timization. The shape of the truss is also different from that

obtained in the previous subsection.

3.3 3-D, 25-member, 10-Node Truss
The ground structure for 10-node, 3-D truss which consists
of 25 members, taken from the literature (Haug and Arora,
1989) is shown in Figure 7. Young’s modulus and density of
the material are the same as before. However, an allowable
tensile and compressive strength of 40 ksi is used. An al-
lowable deflection of 0.35 inch is used. The lower and upper
bounds on the member areas are assumed to be�3 to 3 in2
and a critical area of 0.005 in2 is chosen.

Members are grouped considering the symmetry on oppo-
site sides and cross-members to be symmetric on all the sides,

Figure 6 Optimized truss for two-tier, 39-member, 12-node ground structure for sizing, topology, and configuration
consideration.



Table 3 Member areas for the optimized truss structure in the case of sizing, topology, and configuration optimization.

Member 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14

Area (in2) 0.595 1.615 1.293 1.155 0.051 1.166 0.504 1.358

Figure 7 3-D, 25-member, 10-node ground structure.

thus reducing the number of variables to 7. This grouping is
done in the following way (refer Figure 7):

Group: 0 1 2 3

Member: (0) (1,2,3,4) (5,6,7,8) (9,10,11,12)

Group: 4 5 6

Member: (13,14,15,16) (17,18,19,20) (21,22,23,24)

This truss is optimized for two separate load-
ing conditions. In loading case 1, a force vector(0; 20; 000;�5; 000) lbs is applied on node 1 and a
force vector (0;�20; 000;�5; 000) lbs is applied on
node 2. In loading case 2, four force vectors are applied:(1; 000; 10; 000;�5; 000)on node 1,(0; 10; 000;�5; 000) on
node 2, and(500; 0; 0) on nodes 3 and 6. The same loading
cases were also used in Haug and Arora (1989). However,
they performed only the size optimization on the fixed ground
structure, a much simpler optimization problem than ours.
Since, we have used both size and topology optimization, we
cannot compare our results with that study.

The optimized truss topology obtained using our GA with
a population size 280 has a weight of 544.852 lbs. Out of
seven groups of member areas used in the ground structure,

the optimized truss has only five groups (Groups 0 and 3, to-
talling five members have been deleted). Member areas cor-
responding to this solution are listed in Table 4. This truss
is also optimal or near-optimal, because the deflection of top
two nodes (1 and 2) is equal to the maximum allowable de-
flection (0.35 inch), which suggests that the truss has adjusted
its member areas and member connectivity in such a way
which makes the weight of the truss minimum by allowing
the deflection to reach the allowable limit.

4 Conclusions
In this paper, we have developed a GA-based optimization
procedure for designing 2-D and 3-D truss structures. Nodes
in a truss are classified into two categories: (i) Basic nodes,
which are used to support the truss or to apply a load, (ii)
Non-basic nodes, which do not support the truss nor they bear
any load. The concept of basic and non-basic is introduced
to emphasize creation of user-satisfactory trusses and also to
reduce the computational time by not performing expensive
FEM analysis for unsatisfactory trusses. The trusses of vary-
ing topology (connectivity among members) is obtained with
a fixed-length vector representation of member areas and with
an implicit exclusion of small area members. This way any



Table 4 Member areas for the optimized truss structure.

Group 0 1 2 3 4 5 6

Member area (in2) – 2.037 2.969 – 0.699 1.644 2.658

member having an area smaller than a critical area is con-
sidered to be absent in the corresponding solution. This rep-
resentation scheme allows conventional GA operators to be
used directly. Moreover, since the member areas are used as
variables, simultaneous sizing as well as topology optimiza-
tion are achieved. In the case of simultaneous application of
all three optimization methods with sizing, topology, and con-
figuration considerations, additional variables corresponding
to change in nodal coordinates have been added.

In a number of different truss-structure problems ranging
from 2-D, 6-node trusses to two-tier, 39-member truss to 3-D
25-member trusses, the proposed algorithm has been able to
find trusses which are better than those reported in the litera-
ture and which utilizes material properties or deflection limits
optimally. These results suggest the use of the proposed tech-
nique in other truss-structure design problems, where a com-
plete optimization with optimal sizing, topology, and config-
uration is desired.
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