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ABSTRACT 

We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-

micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, 

a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each 

end of a flat mirror. The developed technique allows optimal tuning of these systems using 

surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due 

to the near linearity of the problem, the minimal set of data necessary for the tuning of each 

bender, consists of only three slope traces measured before and after a single adjustment of each 

bending couple. The data are analyzed with software realizing a method of regression analysis 

with experimentally found characteristic functions of the benders. The resulting approximation to 

the functional dependence of the desired shape provides nearly final settings. Moreover, the 

characteristic functions of the benders found in the course of tuning, can be used for retuning to a 

new desired shape without removal from the beamline and re-measuring. We perform a ray trace, 

using profiler data for the finally tuned optics, predicting the performance to be expected during 

use of the optics on the beamline.  

1. Introduction 

A primary goal of 3rd generation synchrotron light sources has been to achieve small spot 

sizes, preserving the brightness of the source all the way along the beam line to the sample. Zone 

plates,
1
 special x-ray lenses,

2
 and mirrors

3
 have been used successfully. At the Advanced Light 

Source (ALS) the focusing is divided in the tangential and sagittal directions into two elliptically 

cylindrical reflecting elements, the so-called Kirkpatrick-Baez (KB) pair.
4
 Because fabrication of 

elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is 

often prohibitive. This is in contrast to flat optics, that are simpler to manufacture and easier to 
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measure by conventional interferometry. The figure of a flat substrate can be changed by placing 

torques (couples) at each end. Equal couples form a tangential cylinder, and unequal couples can 

approximate a tangential ellipse or parabola.  

In Sec. 2, we review the nature of the bending, and propose a new technique for optimal 

tuning of bendable mirrors before installation in the beamline. The technique adapts a method 

previously used to adjust mirrors on synchrotron radiation beamlines.
5
 However, in our case, 

optimal tuning of a bendable mirror is based on surface slope trace data obtained with a slope 

measuring instrument, in our case, the long trace profiler (LTP). We show (Sec. 2) that due to the 

near linearity of the bending problem, the minimal set of data necessary for tuning of two 

benders, consists of only three slope traces measured before and after a single adjustment of each 

bending couple. We provide an algorithm that was used in dedicated software for finding optimal 

settings for the mirror benders. The algorithm is based on a method of regression analysis with 

experimentally found characteristic functions of the benders. The resulting approximation to the 

functional dependence of the desired slope shape provides nearly final settings for the benders. 

Moreover, the characteristic functions of the benders found in the course of tuning, can be used 

for retuning of the optics to a new desired shape without removing from the beamline and re-

measuring with the LTP. In Sec. 3 we provide a reduced form, but more intuitive implementation 

of our method. In this case, we subdivide the mirror into three regions, fit a circle to each sub-

region, and also fit a circle to the entire surface. The near linear dependences of the found 

curvatures on settings of the mirror benders allow rapid finding of the optimal settings via a 

simple linear extrapolation that can be done just graphically. Even the reduced method allows 

rapid iterative adjustment of both bending couples, and is typically much faster and more 

accurate than a random walk accomplished by fitting the surface heights to an evolving elliptical 
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shape. The result of practical use of the developed technique to precisely tune a KB mirror used 

at the ALS for micro-focusing is presented In Sec. 4. In Sec. 4, we also describe a simple ray 

trace using the profiler data which shows expected performance in the beamline. This ray trace 

allows us to monitor the adjustment at each step of the process, if necessary; and provides 

confirmation of proper adjustment at the end of the procedure. In summary (Sec. 5) we discuss 

the next steps in the systematic improvement of optical performance for the application of KB 

pairs in synchrotron beamlines. 

2. Basis of the proposed technique to tune bendable mirrors 

Bendable mirrors have been well described in the literature.
6,

 
7
 The curvature,  

2

2

)(

1
)(

dx

yd

xR
xCur ≡≡ ,     (1) 

as a function of position along a loaded beam is governed by the differential equation:
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where x  is the coordinate along the beam, the tangential direction; y  is in the direction of the 

deflection of the beam; E  is Young’s modulus of the mirror material;  )(xI  is the moment of 

inertia as a function of position along the beam, or mirror; )(xM  is the bending moment; and 

)(xR  is the radius of surface curvature. 

As an example, we consider a mirror, bent in the tangential direction to form part of an 

elliptical cylinder, Fig. 1. It remains flat (neglecting anticlastic effects
9
) in the sagittal direction 

which is into/out of the paper. Such a mirror is used for the imaging of an object placed in the 
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first (object) focus of the ellipse at the distance r  from the mirror center to the second (image) 

focus at distance r′  from the mirror center. As drawn in Fig. 1, the downstream (right) end of the 

mirror is more curved than the upstream (left) end. This is reversed when r r′ > , but most 

beamline applications involve de-magnification. The parameters r , r′  and θ , the grazing angle 

of the incident ray at the center (pole) of the optic, uniquely specify the ellipse.  

With two end bending couples, 1C  and 2C  (Fig. 2), a precise elliptical shape may be 

obtained by varying the moment of inertia of the substrate, ),(xI  e.g., by varying its cross 

section.
7
 In this case, the bending moment )(xM  in (1) will change linearly from 1C  at one 

mirror edge to the 2C  at another edge:
6, 7
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where L  is the length of the mirror. As we have mentioned above, equal couples make a 

cylindrical mirror. Other schemes can approximate a parabola, as an extremum of the elliptical 

mirror.  

With straightforward transformations, the basic relation can be written: 
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Integrating (4) to get the slope from the curvature, 

)()()ˆ,( 22110 xfCxfCC
dx

dy
Cx ++=≡α ,    (6) 

where 

dxxgxf ∫= )()( 11    and   dxxgxf ∫= )()( 22 .    (7) 

0C  is the necessary constant of integration that is the overall tilt of the mirror.  

According to Eq. (6), the slope of a bendable mirror is a linear combination of two 

functions, )(1 xf  and )(2 xf , characteristic of the particular mirror design. Due to the linearity, 

the error function in the mirror slope distribution, which appears at mis-tuned couples, with 

respect to the ideal (desired) surface is linear in these to be determined characteristic functions. 

The mirror shape optimization consists in finding the optimal values of parameters 1C  and 2C  

that correspond to the minimum of the errors evaluated as a root mean square (rms) deviation of 

the mirror slope trace measured with the LTP from the desired slope distribution.  

The functions )(1 xf  and )(2 xf  are a priori unknown functions, which we determine by 

approximation based on a set of preliminary LTP measurements with the mirror. This approach 

is similar to one used in Ref. 5 for the tuning of KB mirrors already installed in a beamline. 

Below, we provide the mathematical scope of the approach. 

Consider the slope of an ideal elliptical surface in the same notation: 
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Deviations from the ideal surface slope may be expressed: 

)()()ˆ,( 22110 xfCxfCCCx �+�+�=�α ,     (9) 

where 0

000 CCC −=� , 0

111 CCC −=� , and 0

222 CCC −=� . 

The LTP measurements of the optic provide us with slope traces over a discrete set of 

positions { }
i

x  in the tangential direction. Each slope point i  is measured with a final error iε . 

Therefore,   the result of a slope trace measurement for a given set of adjustments of the mirror 

Ci can be expressed with a trace of slope deviations from an ideal (desired) shape: 

   iiii xfCxfCCx 0221100 )()()( εδα +�+�+�= .    (10) 

In Eq. (10) we use the lower index that is 0 for slope deviation )(0 ixδα  and for the error term i0ε   

to denote an index number of a measurement. The next measurement (with the index number 1) 

is assumed to be performed  when one of the mirror adjustments was changed, say the left 

bending moment, represented by 1C ,  by 1Cδ : 

   iiii xfCxfCCCx 12211101 )()()()( εδδα +�++�+�= .    (11) 

We may subtract these two measurements, Eq. (10) from Eq (11), and neglecting measurement 

error )( 01 ii εε − , we may solve for an approximation )(*

1 ixf  to )(1 ixf , 

[ ] 101

*
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With the asterisk we separate the estimate from the true value of the function. We repeat the 

approximation procedure for )(2 ixf  by taking one measurement (with index number 2 )  when 
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the other mirror adjustment was changed, in this case the right bending moment, represented by 

2C ,  by 2Cδ : 

[ ] 202

*

2 )()()( Cxxxf iii δδαδα −≈ .    (13) 

Functions )(*

1 ixf  and )(*

2 ixf  are approximations of the bender characteristic  functions 

experimentally measured over the set of discrete positions. Using these functions )(*

1 ixf  and 

)(*

2 ixf , linear regression analysis can be applied to the set of equations  
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to find the best approximation to the optimal adjustment parameters that correspond to the 

minimum of the mean square variation of )(0 ixδα .
10-14

 First, the regression matrix may be 

formulated:  
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where m  is total number of points measured in a slope trace. 

This provides a solution
10-14

 for the best approximation to the optimal adjustment parameters: 

)(ˆ)ˆˆ(ˆ
0

1*

ixAAAC δα′′=� − ,      (16) 

with an estimation for the dispersion of these parameters:  

12* )ˆˆ()ˆ( −′=� AACD σ .      (17) 



 11

The dispersion parameter 2σ  can be estimated from: 

( ) * * * * *[ ( ) ( ) ( )]
12 2

0 0 1 1 2 2σ δα−
≈ − − � − � − �∑ i i i

i

m p x C C f x C f x .  (18) 

Where p  is the number of parameters plus 1. In our case 4=p . 

Without the offset term 0C , our presentation above is exactly that which has been very 

briefly outlined in the literature.
5
 Note, that without this term, one cannot get the right parameters 

for bender settings while using the method
5
 for  tuning optics at a beamline.  Although this term 

is important to the accuracy of the application of the method, the most important difference from 

previous work is that the method is extended to be applicable to the in-lab tuning based on slope 

data generated by the LTP before the optic is placed in the beamline.
15

 

3. Reduction to an empirical and intuitive tuning method 

Previously in our lab, in order to find the optimal settings of bending couples of a mirror, 

we compared (using the LTP-II software) a height distribution obtained by the integration of 

slope data measured with the LTP with an ideal shape desired for the mirror. A difference trace 

obtained by subtracting the ideal (desired) trace from the measured one and a root mean square 

variation of the difference trace were used as criteria for a decision about quality of tuning and 

value of change of the settings to be made by an operator. Because two settings should be found, 

this was a procedure that was mostly based on intuition and experience of the operator. 

Sometimes, there were 50-60 changes of the bender settings with followed slope measurements 

before we got an acceptable mirror shape. At first glance, it seems to be possible to simply 

improve the tuning procedure by incorporating directly a least square fitting of the measured 

trace data to an ellipse after each adjustment of the bender at the LTP. With the known 
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parameters (there are three instead of one parameter of the rms variation of the difference trace) 

of the best fit ellipse, operator would have a better clue for faster tuning of a mirror.  However, 

the minimal total number of parameters of the fit is 5 not 3, including overall tilt of the measured 

mirror surface and position of the effective center of the mirror elliptical segment. As a result, in 

a general case of the LTP measurement with a precision of ~0.5 µrad (rms), achieving a reliable 

fit for grazing incidence geometry is difficult even with a method which is designed to give a 

unique elliptical fit.
16

 Moreover, the fitting methods, to best our knowledge, do not provide the 

standard errors of the best fit ellipse parameters
17

 and, therefore, it is impossible to clarify the 

appropriateness of the fit. 

Below we consider a reduction of the technique described in Sec. 2 to a more empirical 

tuning method that allows to an operator to less intuitively and more rapidly tune and 

characterize bendable optics. In some sense, the reduced method is essentially an average over 

the detailed procedure described above. Indeed, in order to find only three parameters 0C , 1C  

and 2C  our analysis in Sec. 2 uses an over-determined set of equations (14) by considering each 

point in the slope data. Of course, use of the over-determined set of equations has a strong sense, 

because with regression analysis we significantly decrease errors for the found parameters by 

effective averaging over whole number of the trace points, each measured with a relatively low 

accuracy. Another approach that could provide a comparable accuracy would be based on a 

lesser number of equations that are built for significantly averaged measurables. As the averaged 

measurables in the reduced method, we use a smaller number of surface curvatures evaluated on 

large subsets of the surface slope data.  
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Recalling equation (4) we see that surface curvature is a linear function of two setting 

parameters, 1C  and 2C . Therefore, a value of curvature averaged over a tangential segment of 

the mirror length also satisfies a linear relation, similar to (4): 

AiAi

A
A

xgCxgC
dx

yd
Cur )()( 22112

2

+=≡ ,   (19) 

where averaging denoted with the angle brackets is performed over a segment A  of the total 

mirror length. The values of the averaged functions 
AiA xgg )(1,1 ≡  and 

AiA xgg )(2,2 ≡  are the 

constants characteristic for the segment A of a particular bendable mirror, and do not depend on 

the values of the bender settings, 1C  and 2C .   

Similar to the characteristic functions )(1 xf  and )(2 xf  used in the generalized technique 

described in Sec. 2, the values of the constants Ag ,1  and Ag ,2  that are a priori unknown can be 

determined based on a sequence of three measurements with sequential change of the bender 

settings by 1Cδ  and 2Cδ : 

AAA
gCgCCur ,22,11,0

+= , 

AAA
gCgCCCur ,22,111,1
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( ) 1,0,1,1 / CCurCurg
AAA δ−=    and       
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( ) 2,0,2,2 / CCurCurg
AAA δ−= .         (21) 

If the constants in Eq. (19) are known, in order to uniquely find two bender settings 0

1C  and 0

2C  

corresponding to the desired mirror shape, one need only two equations, like Eq. (19), for two 

uncrossed (uncorrelated) segments A  and B  of the mirror: 

      
AiAiA

xgCxgCCur )()( 2

0

21

0

1

0
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BiBiB
xgCxgCCur )()( 2

0

21

0

1
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In Eqs. (22), 
0

A
Cur  and 

0

B
Cur   are the averaged curvatures evaluated for the same sets of 

points of the segments A  and B  of the ideal (desired) surface. In order to find the constants Bg ,1  

and Bg ,2 , the same set of three LTP slope measurements over the entire surface can be used. 

Practically, for each measured slope trace (as well for the ideal trace), we calculate four 

curvatures (radii
 -1

) for three different segments of the surface and for the entire clear aperture of 

the mirror - Fig. 3. In order to minimize errors the measured mirror slopes are fitted to a 5th 

order polynomial with removal of piston and tilt. Numerical experiments have shown that this is 

the proper balance between accuracy in the succeeding analysis, and adding non-existent features 

to the surface that can be due to the noise in the LTP. This polynomial is next integrated into the 

height of the surface, to 6th order. Proceeding this way, rather than a straightforward integration 

of the discrete slope traces gives a less error prone estimation of the surface height. Next, the set 

of heights is divided into 3 roughly equal segments. We fit, using a matrix-based least squares 

method analogous to that described above, a radius to the entire surface, and to each of the three 

segments. By standard propagation of error methods a standard error is assigned to each radius. 
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The magnitudes of the parameters jg ,1  and jg ,2 , where indexes j  denote the left-hand, 

Lj ≡ , the  central, Cj ≡ , the right-hand, Rj ≡ , one-third parts of the clear aperture, and the 

total clear aperture of the mirror, Tj ≡ , can be found experimentally from a few measurements 

at different settings 1C  and 2C  (Figs. 4 and 5) as the slopes of the corresponding linear 

dependences. Then the optimal settings are found by directly solving a set of two equations (22) 

corresponding to two different surface segments, say, left-hand and the right hand segments in 

Fig. 3. For a cross check and comparison to the ideal shape we fit the exact same four regions 

using the ideal ellipse based on the desired parameters of r , r′  and θ – see Fig. 1. In order to 

treat the ideal shape just like the data, we use the exact derivative of the ellipse equation, fit a 5th 

order polynomial to it, and integrate the slope to 6th order. Applying this approximation to the 

ideal slope in exactly the same manner as to the measured trace provides the same errors and 

therefore does not perturb the adjustment. At each step the operator can double check whether 

the left or right bender mechanism should be tightened or loosened to achieve the proper figure. 

The center radius and the total radius allow the adjuster to keep the overall radius in perspective 

while adjusting the left and right parts of the bender mechanism.   

4. Application to tune a KB mirror  

In the metrology lab we find for properly designed bendable mirrors
7
 the two adjustments 

are to 0th  order independent of one another, see also Ref. 7. Thus the left adjustment mainly 

affects the left curvature, and the right adjustment the right curvature. Therefore, extrapolation of 

the calibration graphs (Figs. 4, 5) provides a good approximation of the optimal settings. Such 

graphs are typically provided with the metrology report showing the dependence of all four of 

the radii on the encoder readouts from the left and right adjustments. If there are any unintended 
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mechanical constraints from design or assembly they typically show up at this point as 

inconsistencies in the calibration data. Backlash or changes over the time seen in the metrology 

lab allow repairs to be made before the mirror is moved to the beamline. Typically, the 

adjustments are made in both forward and reverse directions to highlight any hysteresis effects. 

Trials in the metrology lab have shown this to be a rapid, productive means of adjusting elliptical 

bendable substrates. We estimate the new procedure provides a reduction in effort of a factor of 

approximately 10 with respect to the older method of sequentially fitting ellipses.  Significantly, 

we have readjusted mirrors to another desired elliptical shape in the beamline without 

dis-assembly, in order to change the focal imaging distance based on previous measurements at 

the metrology lab. 

As an illustration of the application of the developed technique, we take the case of a 

bendable mirror from Beamline 8.0.1.1 at the ALS. At one geometry of use it is designed to have 

conjugate distances of 8.26=r m and 0.3=′r m. The grazing angle of incidence is 

05236.0=θ  rad (3 degrees). The four best fitted radii of the segments as they are shown in Fig. 

3 and corresponding to the desired tangential shape of the mirror surface are presented in Table 

1. We start tuning process with the mirror adjusted to a slightly pre-bended shape that was 

measured with the LTP in the 1st scan - Table 1. In the course of the 1st scan, the settings of the 

upstream and downstream bender encoders were 105.825 counts, and 126.294 counts, 

respectively. Note that for the application of the described tuning technique, it is does not matter 

what are the absolute values or units of the coupling moment applied to the sides of the mirror 

substrate. The only requirement for the encoder is that it provide a linear response to the 

coupling.   
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In order to get a prediction for the mirror bender settings to be applied in the first step of 

the tuning process, we performed two additional scans with a sequential change of each setting. 

The magnitudes of the corresponding settings as they are monitored with the upstream, USC , and 

downstream bender encoders, DSC , are presented in Table 2 together with new encoder settings 

calculated using the algorithm discussed in Sec. 2. An LTP measurement (that is the 4th  scan) 

with the mirror adjusted to the calculated settings completes the first tuning cycle.  After the 1st  

tuning, the radii of the mirror segments were measured to be significantly closer to the desired 

values than it was originally – Table 1; however, there is a noticeable difference that is larger 

than the fitting errors listed in Table 2. The most probable reason for the difference is a 

nonlinearity of the mirror bender mechanism that has rather complicated mechanical design with 

a number of joints and strongly stressed elements.  

In order to get a mirror surface shape closer to the desired ellipse, we repeat the tuning 

cycle. In the second tuning in order to find new approximations for the mirror characteristic 

functions (12) and (13), we use the 4th scan (that was already performed) and two additional 

scans, the 5th  and 6th  scans,  with bender settings appropriately changed with respect to the 

settings for the 4th  scan – Table 2.  A control measurement (the 7th  scan in Table 2) was 

performed with the mirror adjusted to the calculated settings completes after the second tuning 

cycle. The radii best fitted to the resulting surface are very close to the desired values - Table 2. 

The tiny difference that is also larger than the fitting errors is probably due to a small error of 

sagittal shaping of the mirror substrate that makes it impossible in principle to exactly tune  the 

mirror.  



 18

As a check for fast convergence of the tuning procedure with the particular mirror under 

investigation, we did a third iteration which gave values USδC = 1.04  counts and DSδC = -1.15  

counts for the third tuning of the settings USC  and DSC . These numbers are only about 5% of that 

of the second tuning and about 1% of setting changes made in the course of the 1
st
 tuning cycle. 

The best fitted radii corresponding to the 3rd  tuning (Table 1) confirm that we have reached the 

limit to the adjustment with this bendable mirror and the current accuracy of the LTP 

measurements.  

Ray traces based on the slope data also show no essential difference when these last small 

adjustments are implemented. Figure 6 depicts a wavefront ray trace based on the last 

adjustments above. Calculations follow the equations for ray deviations based on aberration 

coefficients used by many authors.
15, 18

  Documentation of this code is in progress. We have 

moved the r′ distance to 2896 mm instead of 3000 mm in order to zero out the defocus term, and 

show the best possible performance, as would be adjusted on the beamline by varying r′  a small 

amount. Since the final parameters of use in the beamline are typically not this well controlled, 

final in situ adjustments would be made at the beamline. We feel going to a slightly different r′  

for the ray trace shows more exactly the performance that would be achieved in practice. Clearly 

the symmetry of the pattern shows that the coma term is small, only 10% of the remaining 

aberration. 90% of the aberration is 4th order and higher. These aberrations are not removable 

with a two couple uniform bendable mirror without adding a variation in the cross section of the 

mirror. 
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5. Summary 

We have reviewed the basic theory of tangential elliptical benders and shown two in-lab 

LTP-based methods of adjustment of bending couples, both of which are easier, and faster than 

previous methods. These methods are based on the basic linearity of the bending process. We 

also have developed a simple way of monitoring the bending at each step in the process by ray 

trace calculation. Both of these methods, and the monitoring scheme use only the geometry of 

use, and the slope data from the Long Trace Profiler. The methods provide a complete 

calibration of the bendable mirror which can be used after installation to reset the mirror to 

different conjugate distances. The next step in the systematic improvement of optical 

performance for the application of KB pairs in synchrotron beamlines will be to more tightly 

control r , r′  and θ  for mirror installation so that the metrology/adjustment process may be 

completely integrated. We believe a completely integrated approach, where the metrology and 

beamline alignment are not arbitrarily separated, is the proper approach to systematic 

improvement of beamline performance.
19-21
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Figure captions: 

Figure 1: The geometry of a tangential elliptical mirror. 

Figure 2: 1C , 2C  represent the applied couples. 2C  is typically the downstream adjustment. 

Arrows define positive couples. 

Figure 3: Typical locations of the four radii for fitting. The clear aperture is only measured and 

shown. The total radius uses all the points. Each of the other 3 radii uses only ~1/3 of the points. 

Figure 4: Plot of curvature with respect to the upstream (left) encoder voltage for the upstream 

bending couple for fixed downstream (right) setting, for a typical mirror measurement. The left 

(upstream) curvature shows significant variation, and the right (downstream) curvature shows 

much less, as expected. The observed linearity of curvature with bending validates the model. 

Figure 5: Plot of curvature with respect to encoder voltage for the downstream bending couple 

for a typical mirror measurement. Right (downstream) curvature shows significant variation, and 

left (up) curvature shows much less, as expected. The observed linearity of curvature with 

bending validates the model. 

Figure 6: Wavefront ray trace simulation of beamline performance of the final adjusted mirror 

for the ALS beamline 8.0.1.1. A perfect point source was assumed. 

Table captions 

Table 1:  Radii of the mirror surface segments after 1
st
, 2

nd
, and 3

rd
 tuning cycles.  
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Table 2: Settings of the mirror benders in the 1
st
, 2

nd
, and 3

rd
 tuning cycles. and in row 10 

the settings after the 3
rd

 tuning.  They do not differ significantly from the settings at the end of 

the 2
nd

 tuning in row 7. 
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Figure 4: 
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Figure 6: 

 

 

 

 

Table 1:   

 

 Desired shape 1
st
 scan 1

st
 tuning 2

nd
 tuning 3

rd
 tuning 

RT [m] 102.8 ± 0.05 211.0 ± 0.10 104.6 ± 0.18 102.49 ± 0.06 102.44 ± 0.06 

RL [m] 105.7 ± 0.03 220.9 ± 0.26 117.0 ± 0.19 107.00 ± 0.08 106.86 ± 0.08 

RC [m] 102.9 ± 0.03 209.6 ± 0.05 104.6 ± 0.11 102.28 ± 0.04 102.23 ± 0.04 

RR [m] 100.0 ± 0.03 210.6 ± 0.11 96.6 ± 0.06 100.12 ± 0.01 100.30 ± 0.01 
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Table 2:  

scan 
UPC  [counts] DSC  [counts]  

1 105.83 126.29 1
st
 tuning 

2 115.83 126.29 

3 105.83 136.29 

4 189.27 278.42 2
nd

 tuning 

5 199.27 278.42 

6 189.27 288.42 

7 217.66 257.86 3
rd

 tuning 

8 227.66 257.86 

9 217.66 267.86 

10 218.70 256.71 After 3
rd

 tuning 
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