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We investigate the properties of the Hybrid Monte Carlo algorithm (HMC) in high dimensions.
HMC develops a Markov chain reversible w.r.t. a given target distribution Π by using separable
Hamiltonian dynamics with potential − log Π. The additional momentum variables are chosen
at random from the Boltzmann distribution and the continuous-time Hamiltonian dynamics
are then discretised using the leapfrog scheme. The induced bias is removed via a Metropolis-
Hastings accept/reject rule. In the simplified scenario of independent, identically distributed
components, we prove that, to obtain an O(1) acceptance probability as the dimension d of the
state space tends to ∞, the leapfrog step-size h should be scaled as h = l × d

−1/4. Therefore,
in high dimensions, HMC requires O(d1/4) steps to traverse the state space. We also identify
analytically the asymptotically optimal acceptance probability, which turns out to be 0.651
(to three decimal places). This is the choice which optimally balances the cost of generating a
proposal, which decreases as l increases (because fewer steps are required to reach the desired
final integration time), against the cost related to the average number of proposals required to
obtain acceptance, which increases as l increases.

Keywords: Hamiltonian dynamics, high dimensions, optimal acceptance probability, leapfrog
scheme, squared jumping distance.

1. Introduction

The Hybrid Monte Carlo (HMC) algorithm originates from the physics literature [15]
where it was introduced as a fast method for simulating molecular dynamics. It has since
become popular in a number of application areas including statistical physics [17, 18, 43,
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2 Beskos et al.

23, 1], computational chemistry [22, 24, 30, 42, 45], data assimilation [2], geophysics [30]
and neural networks [32, 46]. The algorithm has also been proposed as a generic tool for
Bayesian statistical inference [31, 12, 16].

Many practitioners believe that HMC improves on traditional Markov Chain Monte
Carlo (MCMC) algorithms. There are heuristic arguments to suggest why HMC might
perform better, in particular based on the idea that it breaks down random walk-like
behaviour intrinsic to many MCMC algorithms such as the Random-Walk Metropolis
(RWM) algorithm. However there is very little theoretical understanding of this phe-
nomenon (though see [14]). This lack of theoretical guidance concerning the choice of the
free parameters for the algorithm partly accounts for its relative obscurity in statistical
applications. The aim of this paper is to provide insight into the behavior of HMC in high
dimensions and develop theoretical tools for improving the efficiency of the algorithm.

HMC uses the derivative of the target probability log-density to guide the Monte-
Carlo trajectory towards areas of high probability. The standard RWM algorithm [29]
proposes local, symmetric moves around the current position. In many cases (especially
in high dimensions) the variance of the proposal must be small for the corresponding ac-
ceptance probability to be satisfactory. However smaller proposal variance leads to higher
autocorrelations, and large computing time to explore the state space. In contrast, and
as discussed in the following sections, HMC exploits the information on the derivative
of the log density to deliver guided, global moves, with higher acceptance probability.
Thus HMC has the potential to effectively decorrelate by exploiting Hamiltonian evolu-
tion, conferring a potential advantage over random walk based methods whose effective
decorrelation time is determined by random walk behaviour.

HMC is closely related to the so-called Metropolis-adjusted Langevin algorithm (ab-
brev. MALA) [39] which uses the derivative of the log-density to propose steepest-ascent
moves in the state space. MALA employs Langevin dynamics; the proposal is derived
from an Euler discretisation of a Langevin stochastic differential equation that leaves the
target density invariant. We note here that the statisticians’ use of the term ‘Langevin
dynamics’ refers to the dynamics of a first order equation which physicists normally term
‘Brownian dynamics’; this model is derived from the second order Langevin equation in
the over-damped limit. Indeed the idea of using such dynamics as a proposal for Monte
Carlo predates its appearance in the statistical literature [33, 40]. On the other hand,
HMC uses Hamiltonian dynamics. The original variable q is seen as a ‘location’ variable
and an auxiliary ‘momentum’ variable p is introduced; Hamilton’s ordinary differential
equations are used to generate moves in the enlarged (q, p) phase space. These moves
preserve the total energy, a fact that implies, in probability terms, that they preserve the
target density Π of the original q variable, provided that the initial momentum is cho-
sen randomly from an appropriate Gaussian distribution. Although seemingly of different
origin, MALA can be thought of as a ‘localised’ version of HMC in the case where Hamil-
ton’s equations are integrated for only one time-step before the accept/reject mechanism
is applied [28]. We will return to this point below.

In practice, continuous-time Hamiltonian dynamics are discretised by means of a nu-
merical scheme; the popular Störmer-Verlet or leapfrog scheme [19, 25, 41, 44] is currently
the scheme of choice. This integrator does not conserve energy exactly and the induced
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bias is corrected via a Metropolis-Hastings accept/reject rule. In this way, HMC develops
a Markov chain reversible w.r.t. Π, whose transitions incorporate information on Π in a
natural way.

In this paper we will investigate the properties of HMC in high dimensions and, in
such a context, offer some guidance over the optimal specification of the free parameters
of the algorithm. We assume that we wish to sample from a density Π on R

N with

Π(Q) = exp
(
−V(Q)

)
, (1.1)

for V : R
N → R. We study the simplified scenario where Π(Q) consists of d ≫ 1

independent identically distributed (iid) vector components,

Π(Q) = exp
(
−

d∑

i=1

V (qi)
)
, V : R

m → R ; N = m× d . (1.2)

For the leapfrog integrator, we show analytically that, under suitable hypotheses on V
and as d→ ∞, HMC requires O(d1/4) steps to traverse the state space, and furthermore,
we identify the associated optimal acceptance probability.

To be more precise, if h is the step-size employed in the leapfrog integrator, then we
show that the choice

HMC : h = l · d−1/4 (1.3)

leads to an average acceptance probability which is of O(1) as d → ∞ : Theorem 3.6.
This implies that O(d1/4) steps are required for HMC to make O(1) moves in state space.
Furthermore we provide a result of perhaps greater practical relevance. We prove that, for
the leapfrog integrator and as d→ ∞, the asymptotically optimal algorithm corresponds
to a well-defined value of the acceptance probability, independent of the particular target
Π in (1.2). This value is (to three decimal places) 0.651: Theorems 4.1 and 4.2. Thus,
when applying HMC in high dimensions, one should try to tune the free algorithmic
parameters to obtain an acceptance probability close to that value. We give the precise
definition of optimality when stating the theorems but, roughly, it is determined by the
choice of l which balances the cost of generating a proposal, which decreases as l increases
(because fewer steps are required to reach the desired final integration time), against the
cost related to the average number of proposals required to obtain acceptance, which
increases as l increases.

The scaling O(d1/4) to make O(1) moves in state space contrasts favorably with the
corresponding scalings O(d) and O(d1/3) required in a similar context by RWM and
MALA respectively (see the discussion below). Furthermore, the full analysis provided
in this paper for the leapfrog scheme may be easily extended to high-order, volume-
preserving, reversible integrators. For such an integrator the corresponding scaling would
be O(d1/(2ν)), where ν (an integer) represents the order of the method. For the standard
HMC algorithm, previous works have already established the relevance of the choice
h = O(d−1/4) (by heuristic arguments, see [18]) and an optimal acceptance probability
of around 0.7 (by numerical experiments, see [12]). Our analytic study of the scaling
issues in HMC was prompted by these two papers.
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4 Beskos et al.

We end this discussion with a transparent disclaimer about the range of validity of
our optimal scaling results. Our work contains two central assumptions: (i) we work in
the setting of an iid target measure; (ii) this iid target is defined via a single potential V
which (see below) is assumed to grow no faster than quadratically at infinity so that the
tails of the distribution are no lighter than Gaussian. Regarding (i), we expect that our
results will extend to some problems with a non-product structure, provided that the
resulting measure is ‘close’ to iid. Examples of such problems are contained in the work
of Bédard [4, 6, 5], and the papers [9, 27, 35]. These last three papers show that optimal
scaling results for RWM and MALA type algorithms extend directly to target measures
which have a density with respect to a Gaussian, uniformly as dimension d → ∞. Since
a Gaussian measure is iid when represented in appropriate coordinates such measures
are indeed close to the iid case as almost sure properties of the Gaussian measure are
inherited by the target measure. However, for all optimal scaling analyses of RWM,
MALA and HMC, the extent and manner in which the ‘close to iid’ assumption can be
violated, and yet the same optimality criteria apply, remains an open and interesting
research question. Regarding (ii) we note that integration of Hamiltonian systems with
super-quadratic potentials (more precisely superlinear forces) typically requires adaptive
time-step integration [41] and that an open and interesting research direction concerns
the generalization of HMC algorithms to this situation. We discuss these issues related
to possible relaxation of our key assumptions also in the conclusions section.

The paper is organized as follows. Section 2 presents the HMC method and reviews
the literature concerning scaling issues for the RWM and MALA algorithms. Section 3
studies the asymptotic behaviour of HMC as the dimensionality grows, d→ ∞, including
the key Theorem 3.6. The optimal tuning of HMC is discussed in Section 4, including
the key Theorems 4.1 and 4.2. Sections 5 and 6 are technical. The first of them contains
the derivation of the required numerical analysis estimates on the leapfrog integrator,
with careful attention paid to the dependence of constants in error estimates on the
initial condition; estimates of this kind are not available in the literature and may be
of independent interest. Section 6 gathers the probabilistic proofs. We finish with some
conclusions and discussion in Section 7.

2. Hybrid Monte Carlo (HMC)

The Hybrid Monte Carlo method is described from a statisticians perspective in [26]. Here
we provide a precise definition of the algorithm, recalling several important concepts from
the theory of Hamiltonian dynamics, such as volume-preservation, Liouville equation and
reversible integration;1 rather than repeat these classical definitions here, we refer the
reader to the text [41].

1‘reversible’ here has a different meaning from that employed in the study of Markov chains.
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2.1. Hamiltonian Dynamics

Consider the Hamiltonian function:

H(Q,P ) = 1
2 〈P,M−1P 〉 + V(Q) ,

on R
2N , where M is a symmetric positive definite matrix (the ‘mass’ matrix). One should

think of Q as the location argument and V(Q) as the potential energy of the system; P
as the momenta, and (1/2)〈P,M−1P 〉 as the kinetic energy. Thus H(Q,P ) gives the
total energy: the sum of the potential and the kinetic energy. The Hamiltonian dynamics
associated with H are governed by

dQ

dt
= M−1P,

dP

dt
= −∇V(Q) , (2.1)

a system of ordinary differential equations whose solution flow Φt defined by

(Q(t), P (t)) = Φt(Q(0), P (0))

possesses some key properties relevant to HMC:

• 1. Conservation of Energy: The change in the potential becomes kinetic energy;
i.e., H ◦ Φt = H, for all t > 0, that is H(Φt(Q(0), P (0))) = H(Q(0), P (0)), for all
t > 0 and all initial conditions (Q(0), P (0)).

• 2. Conservation of Volume: The volume element dP dQ of the phase space is
conserved under the mapping Φt.

• 3. Time Reversibility: If S denotes the symmetry operator:

S(Q,P ) = (Q,−P )

then H ◦ S = H and

S ◦ (Φt)
−1 ◦ S = Φt . (2.2)

Thus, changing the sign of the initial velocity, evolving backwards in time, and
changing the sign of the final velocity reproduces the forward evolution.

From the Liouville equation for (2.1) it follows that, if the initial conditions are dis-
tributed according to a probability measure with Lebesgue density depending only on
H(Q,P ), then this probability measure is preserved by the Hamiltonian flow Φt. In
particular, if the initial conditions (Q(0), P (0)) of (2.1) are distributed with a density
(proportional to, since we omit the normalising constant for the Gaussian part)

exp(−H(Q,P )) = exp(−(1/2)〈P,M−1P 〉) exp(−V(Q)) ,

then, for all t > 0, the marginal density of Q(t) will also be exp(−V(Q)). This suggests
that integration of equations (2.1) might form the basis for an exploration of the target
density exp(−V(Q)).
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2.2. The HMC Algorithm

To formulate a practical algorithm, the continuous-time dynamics (2.1) must be discre-
tised. The most popular explicit method is the Störmer-Verlet or leapfrog scheme (see
[19, 25, 41] and the references therein) defined as follows. Assume a current state (Q0, P0);
then, after one step of length h > 0 the system (2.1) will be at a state (Qh, Ph) defined
by the three-stage procedure:

Ph/2 = P0 − h
2 ∇V(Q0) ; (2.3a)

Qh = Q0 + hM−1Ph/2 ; (2.3b)

Ph = Ph/2 − h
2 ∇V(Qh) . (2.3c)

The scheme gives rise to a map:

Ψh : (Q0, P0) 7→ (Qh, Ph)

which approximates the flow Φh. The solution at time T is approximated by taking ⌊Th ⌋
leapfrog steps:

(Q(T ), P (T )) = ΦT ((Q(0), P (0)) ≈ Ψ
⌊T

h ⌋
h ((Q(0), P (0)) .

Note that this is a deterministic computation. The map

Ψ
(T )
h := Ψ

⌊T
h ⌋

h

may be shown to be volume preserving and time reversible (see [19, 25, 41]) but it does
not exactly conserve energy. As a consequence the leapfrog algorithm does not share
the property of equations (2.1) following from the Liouville equation, namely that the
probability density function proportional to exp

(
−H(Q,P )

)
is preserved. In order to

restore this property an accept/reject step must be added. The work in [31] provides a
clear derivation of the required acceptance criterion.

We can now describe the complete HMC algorithm. Let the current state be Q. The
next state for the HMC Markov chain is determined by the dynamics described in Table 1.

Due to the time reversibility and volume conservation properties of the integrator map

Ψ
(T )
h , the algorithm in Table 1 defines (see [15, 31]) a Markov chain reversible w.r.t Π(Q);

sampling this chain up to equilibrium will provide correlated samples Qn from Π(Q). We
note that the momentum P is merely an auxiliary variable and that the user of the
algorithm is free to choose h, T and the mass matrix M. In this paper we concentrate
on the optimal choice of h, for high dimensional targets.

2.3. Connection with other Metropolis-Hastings Algorithms

Earlier research has studied the optimal tuning of other Metropolis-Hastings algorithms,
namely the Random-Walk Metropolis (RWM) and the Metropolis-adjusted Langevin
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HMC(Q):

(i) Sample a momentum P ∼ N(0,M).

(ii) Accept the proposed update Q′ defined via (Q′, P ′) = Ψ
(T )
h

(Q, P ) w.p.:

a((Q, P ), (Q′, P ′)) := 1 ∧ exp{H(Q, P ) −H(Q′, P ′)} .

Table 1. The Markov transition for the Hybrid Monte-Carlo algorithm. Iterative application for a
given starting location Q0, will yield a Markov chain Q0, Q1, . . .

algorithm (MALA). In contrast with HMC, whose proposals involve a deterministic el-
ement, those algorithms use updates that are purely stochastic. For the target density
Π(Q) in (1.1), RWM is specified through the proposed update

Q′ = Q+
√
hZ ,

with Z ∼ N(0, I) (this simple case suffices for our exposition, but note that Z may be
allowed to have an arbitrary mean zero distribution), while MALA is determined through
the proposal

Q′ = Q+
h

2
∇ log Π(Q) +

√
hZ .

The density Π is invariant for both algorithms when the proposals are accepted with
probability

a(Q,Q′) = 1 ∧ Π(Q′)T (Q′, Q)

Π(Q)T (Q,Q′)
,

where
T (x, y) = P [Q′ ∈ dy | Q = x ] / dy

is the transition density of the proposed update (note that for RWM the symmetry of
the proposal implies T (Q,Q′) = T (Q′, Q)).

The proposal distribution for MALA corresponds to the Euler discretization of the
stochastic differential equation (SDE)

dQ =
1

2
∇ log Π(Q) dt+ dW ,

for which Π is an invariant density (here W denotes a standard multivariate Brownian
motion with covariance I). One can easily check that HMC and MALA are connected
because HMC reduces to MALA when T ≡ h, i.e., when the algorithm makes only a
single leapfrog step at each transition of the chain.
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Assume now that RWM and MALA are applied with the scalings

RWM : h = l · d−1 , MALA : h = l · d−1/3 , (2.4)

for some constant l > 0, in the simplified scenario where the target Π has the iid structure
(1.2) with m = 1. The papers [36], [37] prove that, as d → ∞ and under regularity
conditions on V (the function V must be seven times differentiable2, with all derivatives
having polynomial growth bounds, and all moments of exp(−V ) must be finite), the
acceptance probability approaches a nontrivial value:

E [ a(Q,Q′) ] → a(l) ∈ (0, 1)

(the limit a(l) is different for each of the two algorithms). Furthermore, if q01 , q
1
1 , . . . de-

notes the projection of the trajectory Q0, Q1, . . . onto its first coordinate, in the above
scenario it is possible to show ([36], [37]) the convergence of the continuous-time inter-
polation

RWM : t 7→ q
[ t·d ]
1 , MALA : t 7→ q

[ t·d1/3 ]
1 (2.5)

([x ] denoting the integer part of x ∈ R) to the diffusion process governed by the SDE

dq = −1

2
l a(l)V

′

(q) dt +
√

l a(l) dw , (2.6)

(w represents a standard Brownian motion). In view of (2.4), (2.5) and (2.6) we deduce
that the RWM and MALA algorithms cost O(d2) and O(d4/3) respectively to explore
the invariant measure in stationarity, for product measures where the cost of each step of
the algorithm is O(d) (since, recall, m is fixed and d→ ∞). Furthermore, as the product
l a(l) determines the speed of the limiting diffusion the state space will be explored faster
for the choice lopt of l that maximises l a(l). While lopt depends on the target distribution,
it turns out that the optimal acceptance probability a(lopt) is independent of V . In fact,
with three decimal places, one finds:

RWM : a(lopt) = 0.234, MALA : a(lopt) = 0.574 .

Asymptotically as d → ∞, this analysis identifies algorithms that may be regarded as
uniformly optimal, because, as discussed in [38], ergodic averages of trajectories corre-
sponding to l = lopt provide optimal estimation of expectations E [ f(q) ], q ∼ exp(−V ),
irrespectively of the choice of the (regular) function f . These investigations of the op-
timal tuning of RWM and MALA have been subsequently extended in [9] and [10] to
non-product target distributions.

For HMC we show that the scaling (1.3) leads to an average acceptance probability
of O(1) and hence to a cost of O(d5/4) to make the O(1) moves necessary to explore
the (product) invariant measure. However, in contrast to RWM and MALA, we are not
able to provide a simple description of the limiting dynamics of a single coordinate of
the Markov chain. Consequently optimality is harder to define.

2this is mostly a technical requirement which may be relaxed.
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3. Hybrid Monte Carlo in the Limit d → ∞.

The primary aim of this section is to prove Theorem 3.6 concerning the scaling of the
step-size h in HMC. We also provide some insight into the limiting behaviour of the
resulting Markov chain, under this scaling, in Propositions 3.8 and 3.9.

3.1. HMC in the iid Scenario

We now study the asymptotic behaviour of the HMC algorithm in the iid scenario (1.2),
when the number d of ‘particles’ goes to infinity. Due to such a scenario for our target, a
global m × d-dimensional implementation of the Hamiltonian dynamics (2.1) or indeed
of the practical leapfrog scheme (2.3), can now be decomposed into d independent imple-
mentations along each of the identical m-dimensional constituent components (assuming
that the auxiliary variable P is also chosen to have a similar iid structure). We will exploit
this simplified structure in our analysis.

We write Q = (qi)
d
i=1 and P = (pi)

d
i=1 to distinguish the individual components, and

use the following notation for the combination location/momentum:

X = (xi)
d
i=1; xi := (qi, pi) ∈ R

2m.

We denote by Pq and Pp the projections onto the position and momentum components
of x, i.e. Pq(q, p) = q, Pp(q, p) = p. We have:

H(Q,P ) =
d∑

i=1

H(qi, pi) ; H(q, p) := 1
2 〈p,M

−1p〉 + V (q) − log(c) ,

where M is a m×m symmetric, positive definite matrix. Also, c > 0 is the normalising
constant for the Gaussian part, i.e. c−1 =

∫
e−

1
2 〈p,M

−1p〉dp. We have only included it
here to avoid repeatedly using a normalising constant in the mathematical expressions
for expectations used below. Of course, HMC only uses differences in the energyH(q, p) or
it’s derivatives, so normalising constants under the distribution of p or q are not required
by the algorithm. The Hamiltonian differential equations for a single (m-dimensional)
particle are

dq

dt
= M−1p ,

dp

dt
= −∇V (q) , (3.1)

where V : R
m → R. We denote the corresponding flow by ϕt and the leapfrog solution

operator over one h-step by ψh. Thus the acceptance probability for the evolution of the
d particles is given by (see Table 1):

a(X,Y ) = 1 ∧ exp
( d∑

i=1

[
H(xi) −H(ψ

(T )
h (xi))

])

(3.2)

with Y = (yi)
d
i=1 = Ψ

(T )
h (X) denoting the HMC proposal.

As mentioned above, due to the iid scenario, the leapfrog scheme (2.3) disentangles
into independent implementations for each of the d particles (qi, pi), with the different
particles being only connected through the accept/reject decision (3.2).
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3.2. Energy Increments

Our first aim is to estimate (in an analytical sense) the exponent in the right-hand side
of (3.2). Since the d particles play the same role, it is sufficient to study a single term

H(xi) −H(ψ
(T )
h (xi)). We set

∆(x, h) := H(ψ
(T )
h (x)) −H(ϕT (x)) = H(ψ

(T )
h (x)) −H(x) . (3.3)

This is the energy change, due to the leapfrog scheme, over 0 ≤ t ≤ T , with step-size
h and initial condition x, which by conservation of energy under the true dynamics, is
simply the energy error at time T . We will study the first and second moments:

µ(h) := E [ ∆(x, h) ] =

∫

R2m

∆(x, h) e−H(x)dx ,

s2(h) := E [ ∆(x, h)2 ] ,

and the corresponding variance

σ2(h) = s2(h) − µ2(h) .

If the integrator were exactly energy-preserving, one would have ∆ ≡ 0 and all pro-
posals would be accepted. However it is well known that the size of ∆(x, h) is in general

no better than the size of the integration error ψ
(T )
h (x)−ϕT (x), i.e. O(h2). In fact, under

natural smoothness assumptions on V the following condition holds (see Section 5 for a
proof):

Condition 3.1. There exist functions α(x), ρ(x, h) such that

∆(x, h) = h2α(x) + h2ρ(x, h) (3.4)

with limh→0 ρ(x, h) = 0.

Furthermore in the proofs of the theorems below we shall use an additional condition
to control the variation of ∆ as a function of x. This condition will be shown in Section
5 to hold under suitable assumptions on the growth of V and its derivatives.

Condition 3.2. There exists a function D : R
2m → R such that

sup
0≤h≤1

|∆(x, h)|2
h4

≤ D(x) ,

with ∫

R2m

D(x) e−H(x)dx <∞ .
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Key to the proof of Theorem 3.6 is the fact that the average energy increment scales
as O(h4). We show this in Proposition 3.4 using the following simple lemma that holds
for general volume preserving, time reversible integrators:

Lemma 3.3. Let ψ
(T )
h be any volume preserving, time reversible numerical integrator of

the Hamiltonian equations (3.1) and ∆(x, h) : R
2m×R+ → R be as in (3.3). If g : R → R

is an odd function then:
∫

R2m

g(∆(x, h)) e−H(x) dx = −
∫

R2m

g(∆(x, h)) e−H(ψ
(T )

h
(x)) dx

provided at least one of the integrals above exist. If g is an even function, then:
∫

R2m

g(∆(x, h)) e−H(x) dx =

∫

R2m

g(∆(x, h)) e−H(ψ
(T )

h
(x)) dx ,

provided at least one of the integrals above exist.

Proof. See Section 6.

Applying this lemma with g(u) = u, we obtain

µ(h) = −
∫

R2m

∆(x, h) e−H(ψ
(T )

h
(x)) dx ,

which implies that

2µ(h) =

∫

R2m

∆(x, h)
[
1 − exp(−∆(x, h))

]
e−H(x) dx . (3.5)

We now use first the inequality |eu − 1| ≤ |u|(eu + 1) and then Lemma 3.3 with
g(u) = u2 to conclude that

|2µ(h)| ≤
∫

R2m

|∆(x, h)|2 e−H(ψ
(T )

h
(x))dx+

∫

R2m

|∆(x, h)|2 e−H(x)dx

≤ 2

∫

R2m

|∆(x, h)|2e−H(x)dx = 2 s2(h) . (3.6)

The bound in (3.6) is important: it shows that the average of ∆(x, h) is actually of the
order of (the average of) ∆(x, h)2. Since for the second-order leapfrog scheme ∆(x, h) =
O(h2), we see from (3.6) that we may expect the average µ(h) to actually behave as
O(h4). This is made precise in the following theorem.

Proposition 3.4. If the potential V is such that Conditions 3.1 and 3.2 hold for the

leapfrog integrator ψ
(T )
h , then

lim
h→0

µ(h)

h4
= µ , lim

h→0

σ2(h)

h4
= Σ ,
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12 Beskos et al.

for the constants:

Σ =

∫

R2m

α2(x) e−H(x) dx ; µ = Σ/2 .

Proof. See Section 6.

Next, we perform explicit calculations for the example of the harmonic oscillator and
verify (for this case) the conclusions of Proposition 3.4.

Example 3.5 (Harmonic Oscillator). Consider the Hamiltonian

H(q, p) =
1

2
p2 +

1

2
q2

that gives rise to the system (
dq/dt
dp/dt

)

=

(
p
−q

)

,

with solutions (
q(t)
p(t)

)

=

(
cos(t) sin(t)
− sin(t) cos(t)

)(
q(0)
p(0)

)

.

In this case, the leapfrog integration can be written as:

ψh = ψh(q, p) =

(
1 − h2/2 h
−h+ h3/4 1 − h2/2

)(
q
p

)

= Ξ

(
q
p

)

,

and, accordingly, the numerical solution after ⌊ 1
h⌋ steps is given by:

ψ
(1)
h (q, p) = Ξ⌊ 1

h ⌋
(
q
p

)

.

Diagonalizing Ξ and exponentiating yields:

Ξn =

(
cos(θn) 1√

1−h2/4
sin(θn)

−
√

1 − h2/4 sin(θn) cos(θn)

)

where θ = cos−1(1 − h2/2). Using, for instance, MATHEMATICA, one can now obtain
the Taylor expansion:

∆(x, h) = H(ψ
(1)
h (x)) −H(x) = h2α(x) + h4β(x) + O(h6)

where:

α(q, p) =
(
(p2 − q2) sin2(1) + pq sin(2)

)
/8 ;

β(q, p) =
(

− q2 sin(2) + pq
(
2 cos(2) + 3 sin(2)

)
+ p2

(
3 − 3 cos(2) + sin(2)

))

/192 .

Notice that, in the stationary regime, q, p are standard normal variables. Therefore, the
expectation of α(x) is 0. Tedious calculations give:

Var [α(x) ] =
1

16
sin2(1) , E [β(x) ] =

1

32
sin2(1) ,

in agreement with Proposition 3.4.
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3.3. Expected Acceptance Probability

We are now in a position to identify the scaling for h that gives non-trivial acceptance
probability as d→ ∞.

Theorem 3.6. Assume that the potential V is such that the leapfrog integrator ψ
(T )
h

satisfies Conditions 3.1 and 3.2 and that

h = l · d−1/4 , (3.7)

for a constant l > 0. Then in stationarity, i.e. for X ∼ exp(−H) and Y = Ψ
(T )
h (X),

lim
d→∞

E [ a(X,Y ) ] = 2 Φ(−l2
√

Σ/2) =: a(l)

where the constant Σ is as defined in Proposition 3.4.

Proof. To grasp the main idea, note that the acceptance probability (3.2) is given by

a(X,Y ) = 1 ∧ eRd ; Rd = −
d∑

i=1

∆(xi, h) . (3.8)

Due to the simple structure of the target density and stationarity, the terms ∆(xi, h)
being added in (3.8) are iid random variables. Since the expectation and variance of
∆(x, h) are both O(h4) and we have d terms, the natural scaling to obtain a distributional
limit is given by (3.7). Then Rd ≈ N(− 1

2 l
4Σ, l4Σ) and the desired result follows. See

Section 6 for a detailed proof.

In Theorem 3.6 the limit acceptance probability arises from the use of the Central
Limit Theorem. If Condition 3.2 is not satisfied and σ2(h) = ∞, then a Gaussian limit is
not guaranteed and it may be necessary to consider a different scaling to obtain a heavy
tailed limiting distribution such as, say, a stable law.

The scaling (3.7) is a direct consequence of the fact that the leapfrog integrator pos-
sesses second order accuracy. Arguments similar to those used above prove that the
use of a volume-preserving, symmetric ν-th order integrator would result in a scaling
h = O(d−1/(2ν)) (ν is an even integer) to obtain an acceptance probability of O(1).

3.4. Displacement of one Particle in a Transition

We now turn our attention to the displacement qn+1
1 −qn1 of a single particle in a transition

n→ n+ 1 of the chain. Note that clearly

qn+1
1 = In · Pq ψ(T )

h (qn1 , p
n
1 ) +

(
1 − In)qn1 ; In = IUn≤a(Xn,Y n) . (3.9)

with Un having a uniform distribution in [0, 1]. While Conditions 3.1 and 3.2 above refer
to the error in energy, the proof of the next results requires a condition on the leapfrog
integration error in the dynamic variables q and p. In Section 5 we describe conditions
on V that guarantee the fulfillment of this condition.
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14 Beskos et al.

Condition 3.7. There exists a function E : R
2m → R such that

sup
0≤h≤1

|ψ(T )
h (x) − ϕT (x)|

h2
≤ E(x) ,

with ∫

R2m

E(x)4 e−H(x)dx <∞ .

Under the scaling (3.7) and at stationarity, the second moment E [ (qn+1
1 − qn1 )2 ] will

also approach a nontrivial limit:

Proposition 3.8. Assume that the hypotheses of Theorem 3.6 and Condition 3.7 hold
and, furthermore, that the density exp(−V (q)) possesses finite fourth moments. Then, in
stationarity,

lim
d→∞

E [ (qn+1
1 − qn1 )2 ] = CJ · a(l)

where the value of the constant CJ is given by

CJ = E [ (PqϕT (q, p) − q)2 ] ; (q, p) ∼ exp
(
−H(q, p)

)
.

Proof. See Section 6.

Notice that the computational work required to integrate up to a fixed time T is
inversely proportional to the parameter l. Thus Proposition 3.8 suggests that it is rea-
sonable to choose a value for l that maximizes the quantity a(l) l. This choice of l is
optimal in the sense that it seeks a middle ground between smaller values of l, which
lead to a higher acceptance probability (and hence larger mean square jumps) but need
more computational work, and large values of l which have a smaller acceptance proba-
bility (and hence smaller mean square jumps) but need less computational resources. In
Section 4 we expand this idea, define a precise notion of optimality which encodes this
trade-off, and derive the resulting optimal acceptance probability.

3.5. The Limit Dynamics

We now discuss the limiting dynamics of the Markov chain, under the same assumptions
as in Proposition 3.8. For HMC (as for RWM or MALA) the marginal process {qn1 }n≥0 is
not Markovian w.r.t. its own filtration since its dynamics depend on the current position
of all d particles via the acceptance probability a(Xn, Y n) (see (3.9)). In the case of
MALA and RWM, {qn1 }n≥0 is asymptotically Markovian: as d → ∞ the effect of the
rest of the particles gets averaged to a constant via the Strong Law of Large Numbers.
This allows for the interpolants of (2.5) to converge to solutions of the SDE (2.6), which
defines a Markov process. We will now argue that for HMC {qn1 }n≥0 cannot be expected
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Optimal Tuning of HMC 15

to be asymptotically Markovian. In order to simplify the exposition we will not present
all the technicalities of the argument that follows.

It is well known (see for instance [44]) that, due to time reversibility and under suitable
smoothness assumptions on V , the energy increments of the leapfrog integrator may be
expanded in even powers of h as follows (cf. (3.4)):

∆(x, h) = h2α(x) + h4β(x) + O(h6) .

Necessarily E [α(x) ] = 0 since from Proposition 3.4 we know that E [ ∆(x, h) ] = O(h4).
Ignoring O(h6)-terms, we can write:

a(Xn, Y n) = 1 ∧ eRn
1,d+Rn

2,d

with

Rn1,d = −h2
d∑

i=1

{
α(xni ) − E [α(xni ) | qni ]

}
− h4

d∑

i=1

β(xni ) ,

Rn2,d = −h2
d∑

i=1

E [α(xni ) | qni ] .

Under appropriate conditions, Rn1,d converges, as d → ∞, to a Gaussian limit indepen-
dent of the σ-algebra σ(qn1 , q

n
2 , . . .). To see that, note that, due to the Strong Law of

Large Numbers and since h4 = l4/d, the second sum in Rn1,d converges a.s. to a constant.
Conditionally on σ(qn1 , q

n
2 , . . .), the distributional limit of the first term in Rn1,d is Gaus-

sian with zero mean and a variance determined by the almost surely constant limit of

h4
∑d
i=1

{
α(xni ) − E [α(xni ) | qni ]

}2
; this follows from the Martingale Central Limit The-

orem (see e.g. Theorem 3.2 of [21]). On the other hand, the limit distribution of Rn2,d
is Gaussian with zero mean but, in general, cannot be asymptotically independent of
σ(qn1 , q

n
2 , . . .). Instead, it seems that Rn2,d will result to a quantity appearing in the ac-

ceptance probability that is non-trivial as d → ∞ and makes it impossible for having a
Markovian limit for the trajectory of q1. In the case of RWM or MALA, the conditional
expectations that play the role played here by E [α(xni ) | qni ] are identically zero (see the
expansions for the acceptance probability in [36] and [37]) and this implies that the cor-
responding acceptance probabilities are asymptotically independent from σ(qn1 , q

n
2 , . . .)

and that the marginal processes {qn1 }n≥0 are asymptotically Markovian.
The last result in this section provides insight into the limit dynamics of {qn1 }n≥0:

Proposition 3.9. Let Qn ∼ Π(Q), define

qn+1
1 = In · PqϕT (qn1 , p

n
1 ) +

(
1 − In)qn1 ; In = IUn≤a(l) ,

and consider qn+1
1 in (3.9). Then, under the hypotheses of Proposition 3.8, as d→ ∞:

(qn1 , q
n+1
1 )

L−→ (qn1 , q
n+1
1 ) .
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16 Beskos et al.

Proof. See Section 6.

This proposition provides a simple description of the asymptotic behaviour of the one-
transition dynamics of the marginal trajectories of HMC. As d → ∞, with probability
a(l), the HMC particle moves under the correct Hamiltonian dynamics. However, the
deviation from the true Hamiltonian dynamics, due to the energy errors accumulated
from the leapfrog integration of all d particles, gives rise to the alternative event of
staying at the current position qn, with probability 1 − a(l).

4. Optimal Tuning of HMC

In the previous section we addressed the question of how to scale the step-size in the
leapfrog integration in terms of the dimension d, leading to Theorem 3.6. In this section
we refine this analysis and study the choice of constant l in (3.7). Regardless of the
metrics used to measure the efficiency of the algorithm, a good choice of l in (3.7) has
to balance the amount of work needed to simulate a full T -leg (interval of length T )
of the Hamiltonian dynamics and the probability of accepting the resulting proposal.
Increasing l decreases the acceptance probability but also decreases the computational
cost of each T -leg integration; decreasing l will yield the opposite effects, suggesting
an optimal value of l. In this section we present an analysis that avoids the complex
calculations typically associated with the estimation of mixing times of Markov chains,
but still provides useful guidance regarding the choice of l. We provide two alternative
ways of doing this, summarized in Theorems 4.1 and Theorem 4.2.

4.1. Asymptotically Optimal Acceptance Probability

Clearly, the number of leapfrog steps of length h needed to compute a proposal is ⌈T/h⌉.
Furthermore, at each step of the chain, it is necessary to evaluate a(X,Y ) and sample
P . Thus the computing time for a single proposal will be

Cl,d :=
⌈T d1/4

l

⌉
· d · CLF + d · CO , (4.1)

for some constants CLF , CO that measure, for one particle, the leapfrog costs and the
overheads. Let El,d denote the expected computing time until the first accepted T -leg, in
stationarity. Recall that Q denotes the vector of positions within the Hamiltonian model
so that X = (Q,P ). If N denotes the number of proposals until (and including) the first
to be accepted, then

El,d = Cl,d E [ N ] = Cl,d E [ E [ N |Q ] ] = Cl,d E
[ 1

E [ a(X,Y ) |Q ]

]
.

Here we have used the fact that, given the locations Q, the number of proposed T -
legs follows a geometric distribution with probability of success E [ a(X,Y ) |Q ]. Jensen’s
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Optimal Tuning of HMC 17

inequality yields

El,d ≥
Cl,d

E [ a(X,Y ) ]
=: E∗

l,d , (4.2)

and, from (4.1) and Theorem 3.6, we conclude that:

lim
d→∞

d−5/4 × E∗
l,d =

T CLF
a(l) l

.

A sensible choice for l is that which minimizes the asymptotic cost E∗
l,d, that is:

lopt = arg max
l>0

eff(l) ; eff(l) := a(l) l .

The value of lopt will in general depend on the specific target distribution under consid-
eration. However, by expressing eff as a function of a = a(l), we may write

eff =
(√

2

Σ
1
4

)
· a ·

(
Φ−1

(
1 − a

2

)) 1
2 (4.3)

and this equality makes it apparent that a(lopt) does not vary with the selected target.
Fig.1 illustrates the mapping a 7→ eff(a); different choices of target distribution only
change the vertical scale. In summary, we have:

Theorem 4.1. Under the hypotheses of Theorem 3.6 and as d → ∞, the measure of
cost E∗

l,d defined in (4.2) is minimised for the choice lopt of l that leads to the value of
a = a(l) that maximises (4.3). Rounded to 3 decimal places the (target independent)
optimal value of the limit probability a is

a(lopt) = 0.651 .

The optimal value identified in the preceding theorem is based on the quantity E∗
l,d that

underestimates the expected number of proposals. It may be assumed that the practical
optimal average acceptance probability is in fact greater than or equal to 0.651. In the
next subsection we use an alternative measure of efficiency: the expected squared jumping
distance. Consideration of this alternative metric will also lead to the same asymptotically
optimal acceptance probability of precisely 0.651 as did the minimisation of E∗

l,d. This
suggests that, as d → ∞, the consequences of the fact that E∗

l,d underestimates El,d
become negligible; proving analytically such a conjecture seems hard given our current
understanding of the limiting HMC dynamics.

4.2. Squared Jumping Distance

We now consider the chain Q0, Q1, . . . in stationarity (i.e. Q0 ∼ Π(Q)) and account
for the computing cost Cl,d in (4.1) by introducing the continuous-time process QN(t),
where {N(t); t ≥ 0} denotes a Poisson process, independent of the HMC Markov chain,
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1.00.80.60.40.20.0

0.
0

0.
1

0.
2

0.
3

0.
4

ef
f

a

0.651

Figure 1. The efficiency function eff = eff(a).

of intensity λd = 1/Cl,d. If qd(t) := q
N(t)
1 denotes the projection of QN(t) onto the first

particle and δ > 0 is a time increment, we measure the efficiency of HMC algorithms by
using the expected squared jump distance:

SJDd(δ) = E [ (qd(t+ δ) − qd(t))
2 ] .

This measure of efficiency is a fairly standard one: see [34, 9] for example.
In the HMC algorithm the computational time (cost) expended between successive

steps of the Markov chain is essentially fixed and equal to Cl,d. Using an auxiliary Poisson
process instead with mean interarrival time equal to Cl,d is merely a device that allows
for the definition of processes (over the different choices of l) that take the computational
time per step (that changes with l) under consideration in a reasonable manner and can
be meaningfully compared via an easy to calculate measure such as SJDd(δ).

The following result shows that SJDd(δ) is indeed asymptotically maximized by max-
imizing a(l) l:

Theorem 4.2. Under the hypotheses of Proposition 3.8:

lim
d→∞

d5/4 × SJDd =
CJ δ

T CLF
× a(l) l .

Proof. See Section 6.

imsart-bj ver. 2009/08/13 file: hmc.tex date: October 13, 2011



Optimal Tuning of HMC 19

0.
35

7
0.

50
1

0.
60

3
0.

67
9

0.
74

0.
84

5
0.

96
3

0.0000.0050.0100.0150.0200.0250.030

0.
35

7
0.

50
1

0.
60

3
0.

67
9

0.
74

0.
84

5
0.

96
3

0.000.050.100.15

0.
35

7
0.

50
1

0.
60

3
0.

67
9

0.
74

0.
84

5
0.

96
3

0.000.050.100.15

0.
35

7
0.

50
1

0.
60

3
0.

67
9

0.
74

0.
84

5
0.

96
3

0.00.51.01.5

f
(q

)
=

|q
|

f
(q

)
=

q
3

f
(q

)
=

q
2

f
(q

)
=

q

Figure 2. Boxplots of Squared Errors (SEs) from Monte-Carlo averages of HMC with T = 1 for 7
different selections of number of leapfrog steps or step-sizes h (corresponding to the different boxplots in
each panel); the number of leapfrog steps used in the 7 scenaria were (6, 7, 8, 9, 10, 13, 27). We ran HMC
120 times; every run was allowed a computing time of 30s. Each boxplot corresponds to the 120 SEs in
estimating E [ f(q) ], for a particular h and f(·). Written at the bottom of each boxplots is the median of
the 120 empirical average acceptance probabilities for the corresponding h. (Notice that these medians
change in a non-linear fashion from one boxplot to the next.)
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4.3. Optimal Acceptance Probability in Practice

As d → ∞, the computing time required for a proposal scales as 1/l (see (4.1)) and
the number of proposals that may be performed in a given amount of time scales as l.
Inspection of (4.1) reveals however that selecting a big value of l gives the full benefit
of a proportional increase of the number of proposals only asymptotically, and at the
slow rate of O(d−1/4). On the other hand, the average acceptance probability converges
at the faster rate O(d−1/2) (this is an application of Stein’s method, see e.g. [3]). These
considerations suggest that unless d−1/4 is very small the algorithm will tend to benefit
from average acceptance probabilities higher than 0.651.

Fig.2 shows the results of a numerical study on HMC. The target distribution is a
product of d = 105 standard Gaussian densities N(0, 1). We have applied HMC with
different choices of the step-size h but the same length of time horizon T = 1 and, in all
cases, allowed the algorithm to run during a computational time tcomp of 30 seconds. We
used Monte-Carlo averages of the output

f̂ =
1

Ntcomp

Ntcomp∑

n=1

f(qn1 )

to estimate, for different choices of f , the expectation E [ f ] = E [ f(q) ], q ∼ N(0, 1); here
Ntcomp denotes the number of T -legs carried out within the allowed time tcomp. For each
choice of h we ran the HMC algorithm 120 times.

Each of the four panels in Fig.2 corresponds to a different choice of f(·). In each
of the panels, the various boxplots correspond to choices of h; at the bottom of each
boxplot we have written the median of the 120 empirical average acceptance probabilities.
The boxplots themselves use the 120 realizations of the squared distances: (f̂ − E [ f ])2.
The shape of the boxplots endorses the point made above, that the optimal acceptance
probability for large (but finite) d is larger than the asymptotically optimal value of 0.651.

5. Estimates for the Leapfrog Algorithm

In this section we identify analytical hypotheses on V under which Conditions 3.1, 3.2
and 3.7 in Section 3 hold.

We set f := −∇V (the ‘force’) and denote by f ′(q) := f (1)(q), f (2)(q), . . . the succes-
sive Fréchet derivatives of f at q. Thus, at a fixed q, f (k)(q) is a multilinear operator
from (Rm)k+1 to R. For the rest of this section we will use the following assumptions
on V :

Assumptions 5.1. The function V : R
m → R satisfies:

• (i) V ∈ C4(Rm → R+).
• (ii) f

′

, f (2), f (3) are uniformly bounded by a constant B.
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These assumptions imply that the potential V (q) can grow at most quadratically at
infinity as |q| → ∞. (If the growth of V is more than quadratic, then the leapfrog algo-
rithm as applied with a constant value of h throughout the phase space is in fact unstable
whenever the initial condition is large.) The case where V takes negative values but is
bounded from below can be reduced to the case V ≥ 0 by adding a suitable constant to
V . In terms of the target measure this just involves changing the normalization constant
and hence is irrelevant in the HMC algorithm.

5.1. Preliminaries

Differentiating (3.1) with respect to t, we find successively:

p̈(t) = f ′(q(t)
)
M−1p(t) ,

q̈(t) = M−1f
(
q(t)

)
,

...
p (t) = f (2)

(
q(t)

)(
M−1p(t),M−1p(t)

)
+ f ′(q(t)

)
M−1f

(
q(t)

)
,

...
q (t) = M−1f ′(q(t)

)
M−1p(t) ,

....
p (t) = f (3)

(
q(t)

)(
M−1p(t),M−1p(t),M−1p(t)

)
+

3f (2)
(
q(t)

)(
M−1f

(
q(t)

)
,M−1p(t)

)
+ f ′(q(t)

)
M−1f ′(q(t)

)
M−1f

(
q(t)

)
,

....
q (t) = M−1f (2)

(
q(t)

)(
M−1p(t),M−1p(t)

)
+M−1f ′(q(t)

)
M−1f

(
q(t)

)
.

In this section letter K will denote a generic constant which may vary from one appear-
ance to the next, but will depend only on B, T , ‖M‖, ‖M−1‖. From the above equations
for the derivatives and using the assumptions on V , we obtain the following bounds:

|ṗ(t)| ≤ |f(q(t))| , |q̇(t)| ≤ K |p(t)| ,
|p̈(t)| ≤ K |p(t)| , |q̈(t)| ≤ K |f(q(t))| , (5.1)

|...p (t)| ≤ K
(
|p(t)|2 + |f(q(t))|

)
, |...q (t)| ≤ K |p(t)| ,

|....p (t)| ≤ K
(
|p(t)|3 + |p(t)||f(q(t))| + |f(q(t))|

)
, |....q (t)| ≤ K

(
|p(t)|2 + |f(q(t))|

)
.

5.2. Asymptotic Expansion for the Leapfrog Solution

In previous sections we have used a subscript to denote the different particles comprising
our state space. Here we consider leapfrog integration of a single particle and use the
subscript to denote the time-level in this integration. The leapfrog scheme can then be
compactly written as

qn+1 = qn + hM−1pn + h2

2 M
−1f(qn) , (5.2)

pn+1 = pn + h
2 f(qn) + h

2 f
(
qn + hM−1pn + h2

2 M
−1f(qn)

)
. (5.3)
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We define the truncation error in the usual way:

−τ (q)
n := q(tn+1) −

(
q(tn) + hM−1p(tn) + h2

2 M
−1f(q(tn))

)
,

−τ (p)
n := p(tn+1) −

(
p(tn) + h

2 f(qn) + h
2 f
(
q(tn) + hM−1p(tn) + h2

2 M
−1f(q(tn)

) )
,

where we have set tn = nh ∈ [0, T ]. Expanding and using standard truncation error
analysis (see [19], for example) we obtain:

τ (q)
n = 1

6 h
3 ...
q (tn) + h4 O(‖....q (·)‖∞) ,

τ (p)
n = − 1

12 h
3 ...
p (tn) + h4 O(‖....p (·)‖∞) + hO(τ (q)

n ) ,

where, for arbitrary function g:

‖g(·)‖∞ := sup
0≤t≤T

|g(t)| .

In view of these estimates, 1
6 h

3...q (tn) and − 1
12 h

3 ...
p (tn) are the leading terms in the

asymptotic expansion of the truncation error. Standard results (see, for instance, [20],
Section II.8) show that the numerical solution possesses an asymptotic expansion:

qn = q(tn) + h2v(tn) + O(h3) ,

pn = p(tn) + h2u(tn) + O(h3) ,
(5.4)

where functions u(·) and v(·) are the solutions, with initial condition u(0) = v(0) = 0, of
the variational system

(
u̇(t)
v̇(t)

)

=

(
0 M−1f ′(q(t))
I 0

)(
u(t)
v(t)

)

+

(
1
12

...
p (t)

− 1
6

...
q (t)

)

. (5.5)

Remark 5.2. Notice here that u(·), v(·) depend on the initial conditions (q(0), p(0)) via
(q(·), p(·)) but this dependence is not reflected in the notation. One should keep in mind
that most of the norms appearing in the sequel are functions of (q(0), p(0)).

Applying Gronwall’s lemma and using the estimates (5.1), we obtain the bound:

‖u(·)‖∞ + ‖v(·)‖∞ ≤ K ( ‖p(·)‖2
∞ + ‖f(q(·))‖∞ ) (5.6)

and, by differentiating (5.5) with respect to t, expressing u̇, v̇ in terms of u, v, and using
(5.1) again, we obtain in turn:

‖ü(·)‖∞ ≤ K
(
‖p(·)‖3

∞ + ‖p(·)‖∞‖f(q(·))‖∞ + ‖f(q(·))‖∞
)
, (5.7)

‖v̈(·)‖∞ ≤ K
(
‖p(·)‖2

∞ + ‖f(q(·))‖∞
)
. (5.8)
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5.3. Estimates for the Global Error

With the leading coefficients u, v of the global errors qn − q(tn), pn − p(tn) estimated in
(5.6), our task now is to obtain an explicit bound for the constants implied in the O(h3)
remainder in (5.4). To this end, we define the quantities

zn := q(tn) + h2v(tn) ,

wn := p(tn) + h2u(tn) ,

and denote by τ
(q)∗
n , τ

(p)∗
n the residuals they generate when substituted in (5.2), (5.3)

respectively, i.e.,

−τ (q)∗
n = zn+1 − zn − hM−1wn − h2

2 M−1f(zn) ,

−τ (p)∗
n = wn+1 − wn − h

2 f(zn) − h
2 f
(
zn + hM−1wn + h2

2 M−1f(zn)
)
.

Since the leapfrog scheme is stable, standard numerical analysis techniques [20] show
that it is possible to estimate the global errors in terms of the local residuals (truncation
errors). This gives

max
0≤tn≤T

(|qn − zn| + |pn − wn|) ≤ C
h max

0≤tn≤T
(|τ (q)∗

n | + |τ (p)∗
n |) (5.9)

with the constant C depending only on T and Lipschitz constant of the map (qn, pn) 7→
(qn+1, pn+1), which in turn depends on ‖M−1‖ and the bound for f ′. The stability bound
(5.9) is the basis of the proof of the following estimation of the global error:

Proposition 5.3. If the potential V satisfies Assumptions 5.1, then for 0 ≤ tn ≤ T ,

|pn −
(
p(tn) + h2u(tn)

)
| ≤ K h3

(
‖p(·)‖4

∞ + ‖f(q(·))‖2
∞ + 1

)
,

|qn −
(
q(tn) + h2v(tn)

)
| ≤ K h3

(
‖p(·)‖4

∞ + ‖f(q(·))‖2
∞ + 1

)
.

Proof. Our task is reduced to estimating τ
(q)∗
n , τ

(p)∗
n . We only present the estimation for

τ
(p)∗
n , since the computations for τ

(q)∗
n are similar but simpler.
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After regrouping the terms in τ
(p)∗
n we find that

−τ (p)∗
n = p(tn+1) − p(tn) − h

2 f(q(tn)) − h
2 f(q(tn+1)) + h3

12

....
p (t)

︸ ︷︷ ︸

I1

+ h2
(
u(tn+1) − u(tn) − hf ′(q(tn))v(tn) − h

12

...
p (t)

)

︸ ︷︷ ︸

I2

+ h
2

(
f(q(tn)) − f(zn) + h2f ′(q(tn))v(tn)

)

︸ ︷︷ ︸

I3

− h
2

(
f
(
zn + hM−1wn + h2

2 M
−1f(q(tn))

)
− f(q(tn+1) − h2f ′(q(tn))v(tn)

)

︸ ︷︷ ︸

I4

+ h
2

(
f
(
zn + hM−1wn + h2

2 M
−1f(q(tn)) − f

(
zn + hM−1wn + h2

2 M
−1f(zn)

) )

︸ ︷︷ ︸

I5

Now we estimate the above five terms separately.
I1: We note that

p(tn+1) − p(tn) − h
2 f(q(tn)) − h

2f(q(tn+1)) = p(tn+1) − p(tn) − h
2 ṗ(tn+1) − h

2 ṗ(tn) .

and by using the estimates in (5.1) it follows that

|I1| ≤ K h4 ( ‖p(·)‖∞ + ‖p(·)‖∞‖f(q(·))‖∞ + ‖f(q(·))‖∞ ) .

I2: Here we write I2 = h2(u(tn+1) − u(tn) − h u̇(tn)) so that by (5.7)

|I2| ≤ K h4 ( ‖p(·)‖3
∞ + ‖p(·)‖∞‖f(q(·))‖∞ + ‖f(q(·))‖∞ ) .

I3 : This term is estimated, after Taylor expanding f(zn) near f(q(tn)), by

|I3| ≤ K h5 ( ‖p(·)‖∞ + ‖f(q(·))‖∞ )2.

I4 : We rewrite this as

h
2

(

f
(
q(tn+1) + τ (q)

n + h2v(tn) + h3M−1v(tn)
)
− f(q(tn+1)) − h2f ′(q(tn))v(tn)

)

and Taylor expand around f(q(tn)) to derive the bound:

|I4| ≤ K h4 ( ‖p(·)‖4
∞ + ‖f(q(·))‖2

∞ ).

I5 : This term is easily estimated as:

|I5| ≤ K h5 ‖v(·)‖∞ ≤ K h5 ( ‖p(·)‖2
∞ + ‖f(q(·))‖∞ ) .

Combining all the above estimates, we have the bound

|τ (p)∗
n | ≤ K h4 ( ‖p(·)‖4

∞ + ‖f(q(·))‖2
∞ ) .
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A similar analysis for τ
(q)∗
n yields the bound

|τ (q)∗
n | ≤ K h4 ( ‖p(·)‖4

∞ + ‖f(q(·))‖2
∞ ) .

The proof is completed by substituting the above estimates in (5.9).

We now use the estimates in Proposition 5.3 to derive the asymptotic expansion for
the energy increment for the leapfrog scheme (cf. Condition 1).

Proposition 5.4. Let potential V satisfy Assumptions 5.1. Then, for the leapfrog
scheme, we get

∆(x, h) = h2α(x) + h2ρ(x, h) ,

with

α(x) = 〈M−1p(T ), u(T )〉 − 〈f(q(T )), v(T )〉 ,
|α(x)| ≤ K

(
‖p(·)‖3

∞ + ‖f(q(·))‖2
∞ + 1

)
,

|ρ(x, h)| ≤ K h
(
‖p(·)‖8

∞ + ‖f(q(·))‖2
∞ + 1

)
, 0 < h ≤ 1 ,

where (q(·), p(·)) denotes the solution of (3.1) with initial data x ≡ (q(0), p(0)) and
u(·), v(·) are the solutions of the corresponding variational system given in (5.5) with
u(0) = v(0) = 0.

Proof. We only consider the case when T/h is an integer. The general case follows with
minor adjustments. By Proposition 5.3,

∆(x, h) = H(ψ
(T )
h (x)) −H(x) = H(ψ

(T )
h (x)) −H(ϕT (x)) =

= 〈M−1p(T ), h2u(T ) + h3R1〉 + 1
2

〈
M−1(h2u(T ) + h3R1, (h

2u(T ) + h3R1)
〉

+ V
(
q(T ) + h2v(T ) + h3R2

)
− V (q(T )) ,

where R1, R2 are remainders with

|R1| + |R2| ≤ K
(
‖p(·)‖4

∞ + ‖f(q(·))‖2
∞ + 1

)
.

By Taylor expanding V (·) around q(T ) we obtain,

∆(x, h) = h2
(
〈M−1p(T ), u(T )〉 − 〈f(q(T )), v(T )〉

)
+ ρ(x, h) ,

with
|ρ(x, h)| ≤ K h3

(
‖p(·)‖8

∞ + ‖f(q(·))‖2
∞ + 1

)

for 0 ≤ h ≤ 1. From the bound (5.6) it follows that

|α(x)| ≤ K
(
‖p(·)‖∞‖u(·)‖∞ + ‖f(q(·))‖∞‖v(·)‖∞

)

≤ K
(
‖p(·)‖3

∞ + ‖f(·)‖2
∞ + 1

)

and the theorem is proved.
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Our analysis is completed by estimating the quantities ‖p(·)‖∞ and ‖q(·)‖∞, that
feature in the preceding theorems, in terms of the initial data (q(0), p(0)). We obtain
these estimates for two families of potentials which include most of the interesting/useful
target distributions. The corresponding estimates for other potentials may be obtained
using similar methods.

Proposition 5.5. Let potential V satisfy Assumptions 5.1. If V satisfies, in addition,
either of the following conditions:

(1) f is bounded and
∫

Rm

|V (q)|8e−V (q)dq <∞ ; (5.10)

(2) there exist constants C1, C2 > 0 and 0 < γ ≤ 1 such that for all |q| ≥ C2, we have
V (q) ≥ C1|q|γ ;

then Conditions 3.1, 3.2 and 3.7 all hold.

Proof. We only present the treatment of Conditions 3.1 and 3.2. The derivation of
Condition 3.7 is similar and simpler.

From Proposition 5.4 we observe that function D(x) in Condition 3.2 may be taken
to be

D(x) = K
(
‖p(·)‖16

∞ + ‖f(q(·))‖4
∞ + 1

)
.

Thus, to prove integrability of D(·) we need to estimate ‖p(·)‖∞ and ‖f(q(·))‖∞. Esti-
mating ‖p(·)‖∞ is easier. Indeed, by conservation of energy,

1
2 〈p(t),M

−1p(t)〉 ≤ 1
2 〈p(0),M−1p(0)〉 + V (q(0)) ,

which implies
|p(t)|16 ≤ K

(
|p(0)|16 + |V (q(0))|8

)
. (5.11)

Now, we prove integrability of D(·) under each of the two stated hypothesis.
Under hypothesis (1): Suppose f is bounded. In this case we obtain that |D(x)| ≤

K(‖p(·)‖16
∞ + 1), therefore it is enough to estimate ‖p(·)‖∞. Since the Gaussian distribu-

tion has all moments, integrability of D follows from (5.10) and (5.11).
Under hypothesis (2): Using the stated hypothesis on V (q) we obtain

C1|q(t)|γ ≤ V (q(t)) ≤ 1
2 〈p(0),M−1p(0)〉 + V (q(0)) ,

which implies that:

|q(t)| ≤ K
(
|p(0)| 2

γ + |V (q(0))| 1
γ
)
.

By Assumptions 5.1(i), |f(q(t))| ≤ K(1 + |q(t)|) and arguing as above and using the
bound (5.11), integrability of D follows if we show that

∫

Rm

|V (q)|δ e−V (q)dq <∞ , δ = max(8, 4
γ ) .
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Since |V (q)| ≤ K(1 + |q|2),
∫

Rm

|V (q)|δ e−V (q)dq ≤ K

∫

Rm

(1 + |q|2δ) e−B|q|γdq <∞

and we are done.

6. Proofs of Probabilistic Results

Proof of Lemma 3.3. The volume preservation property of ψ
(T )
h (·) implies that the

associated Jacobian is unit. Thus, setting x = (ψ
(T )
h )

−1
(y) we get:

∫

R2m

g(∆(x, h)) e−H(x) dx =

∫

R2m

g
(
H(ψ

(T )
h (x)) −H(x)

)
e−H(x)dx

=

∫

R2m

g
[
H(y) −H((ψ

(T )
h )−1(y))

]
e−H((ψ

(T )

h
)−1(y))dy .

Following the definition of time reversibility in (2.2), we have:

S ◦ ψ(T )
h = (ψ

(T )
h )−1 ◦ S

for the symmetry operator S such that S(q, p) = (q,−p). Using now the volume pre-
senving transformation y = Sz and continuing from above, we get:

∫

R2m

g(∆(x, h)) e−H(x) dx

=

∫

R2m

g
(
H(Sz) −H((ψ

(T )
h )−1(Sz))

)
e−H((ψ

(T )

h
)−1(Sz))dz

=

∫

R2m

g
(
H(Sz) −H(Sψ

(T )
h (z))

)
e−H(S(ψ

(T )

h
(z)))dz

=

∫

R2m

g
(
H(z) −H(ψ

(T )
h (z))

)
e−H(ψ

(T )

h
(z))dz ,

where in the last equation we have used the identity H(Sz) = H(z).

Proof of Proposition 3.4. We will first find the limit of σ2(h)/h4. Conditions 3.1 and
3.2 imply that:

∆2(x, h)

h4
= α2(x) + ρ2(x, h) + 2ρ(x, h)α(x) ≤ D(x)

and since, for fixed x, ∆2(x, h)/h4 → α2(x), the dominated convergence theorem shows:

lim
h→0

s2(h)

h4
=

∫

R2m

α2(x) e−H(x)dx = Σ .
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Now, (3.6) implies that:

lim
h→0

µ2(h)

h4
= 0 , (6.1)

and the required limit for σ2(h)/h4 follows directly. Then, from (3.5) we obtain

2µ(h) − σ2(h)

h4
=

−
∫

R2m

∆(x, h)

h2

[
exp(−∆(x, h)) − 1 + ∆(x, h)

]

h2
e−H(x) dx+

µ2(h)

h4
.

Since for any fixed x, Conditions 3.1 and 3.2 imply that ∆(x, h) → 0 as h → 0 and
∆2(x, h) = O(h4), we have the pointwise limit

lim
h→0

exp(−∆(x, h)) − 1 + ∆(x, h)

h2
= 0 .

Using inequality |u||eu− 1− u| ≤ |u|2(eu + 2), we deduce that for all sufficiently small h,

∫

R2m

|∆(x, h)|
h2

∣
∣ exp

(
−∆(x, h)

)
− 1 + ∆(x, h)

∣
∣

h2
e−H(x) dx

≤
∫

R2m

|∆2(x, h)|
h4

exp(−∆(x, h)) e−H(x) dx+ 2

∫

R2m

|∆2(x, h)|
h4

e−H(x) dx

≤ 3

∫

R2m

D(x) e−H(x)dx <∞,

where the last line follows from applying Lemma 3.3 with ϕ(x) = x2 and Condition 3.2.
So, the dominated convergence theorem yields

lim
h→0

2µ(h) − σ2(h)

h4
= 0 .

This completes the proof of the proposition.

Proof of Theorem 3.6. We continue from (3.8). In view of the scaling h = l · d−1/4

we obtain, after using Proposition 3.4:

E [Rd ] = −d · µ(h) → − l4 σ
2

and
Var [Rd ] = d · σ2(h) → l4 Σ .

The Lindeberg condition is easily seen to hold and therefore:

Rd
L−→ R∞ := N(− l4 Σ

2 , l4 Σ) .
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From the boundedness of u 7→ 1 ∧ eu we may write:

E [ a(X,Y ) ] → E [ 1 ∧ eR∞ ] ,

where the last expectation can be found analytically (see e.g. [36]) to be:

E [ 1 ∧ eR∞ ] = 2Φ(−l2
√

Σ/2) .

This completes the proof.

Proof of Proposition 3.8. For simplicity, we will write just qn, qn+1 and pn instead
of qn1 , qn+1

1 , pn1 respectively. Using (3.9), we get:

(qn+1 − qn)2 = In (Pqψ(T )
h (qn, pn) − qn)2 .

We define:

a−(Xn, Y n) := 1 ∧ exp
{
−

d∑

i=2

∆(xni , h)
}

; In− := IUn<a−(Xn,Y n) , (6.2)

and set
ξn = In−(Pq ψ(T )

h (qn, pn) − qn )2 .

Using the Lipschitz continuity of u 7→ IU ≤ 1∧ eu and the Cauchy-Schwartz inequality we
get:

E |(qn+1 − qn)2 − ξn| ≤ |∆(x1, h)|L2 |(Pqψ
(T )
h (qn, pn) − qn)2|L2

Now, Conditions 3.1 and 3.2 imply that

|∆(x1, h)|L2 = O(h2) .

Also, from Condition 3.7 and the stated hypothesis on the density exp(−V ), qn and

Pqψ(T )
h (qn, pn) have bounded fourth moments uniformly in h, so:

|(Pqψ(T )
h (qn, pn) − qn)2|L2 ≤ C ,

for some constant C > 0. The last two statements imply that:

E |(qn+1 − qn)2 − ξn| = O(h2) . (6.3)

Exploiting the independence between In− and the first particle:

E [ ξn ] = E [ a−(X,Y ) ] × E [ (Pqψ(T )
h (qn, pn) − qn)2 ] → a(l) · E [ (PqϕT (qn, pn) − qn)2 ] ,

where, for the first factor we used its limit from Theorem 3.6; for the second factor the
limit is a consequence by Condition 3 and the dominated convergence theorem. Equation
(6.3) completes the proof.
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Proof of Proposition 3.9. Fix some qn1 ∈ R
m. We define a−(Xn, Y n) and In− as in

(6.2). For simplicity, we will write just qn, qn+1, qn+1 and pn instead of qn1 , qn+1
1 , qn+1

1

and pn1 respectively.
We set

gn+1 = In− · PqϕT (qn, pn) +
(
1 − In−) qn .

Adding and subtracting In · Pq(ϕT (qn, pn)) yields:

|qn+1 − gn+1| ≤ |Pq(ψ(T )
h (qn, pn)) − Pq(ϕT (qn, pn))|

+ |In− − In|
(
|Pq(ϕT (qn, pn))| + |qn|

)
. (6.4)

Using the Lipschitz continuity (with constant 1) of u 7→ IU ≤ 1∧ exp(u) :

|In− − In| ≤ |∆(x1, h)| . (6.5)

Now, Condition 3.7 implies that the first term on the right-hand side of (6.4) vanishes
w.p.1 and Condition 3.1 implies (via (6.5)) that also the second term vanishes w.p.1.
Therefore, as d→ ∞:

qn+1 − gn+1 → 0, a.s. .

Theorem 3.6 immediately implies that In−
L−→ In, thus:

gn+1 L−→ qn+1 .

From these two limits, we have qn+1 L−→ qn+1, and this completes the proof.

Proof of Theorem 4.2. To simplify the notation we again drop the subscript 1. Con-
ditionally on the trajectory q0, q1, . . . we get:

(q(t+ δ) − q(t))2 =







0 , w.p. 1 − λdδ + O((λdδ)
2) ,

(qN(t)+1 − qN(t))2 , w.p. λdδ + O((λdδ)
2) ,

(qN(t)+1+j − qN(t))2 , j ≥ 1 , w.p. O((λdδ)
j+1) .

Therefore,

SJDd = E [ (qN(t)+1 − qN(t))2 ] (λdδ + O((λdδ)
2))

+
∑

j≥1

E [ (qN(t)+1+j − qN(t))2 ]O((λdδ)
j+1) . (6.6)

Note now that:

E [ (qN(t)+1+j − qN(t))2 ] ≤
( j+1
∑

k=1

|qN(t)+k − qN(t)+k−1|L2

)2

= (j + 1)2 E [ (qn+1 − qn)2 ] ,
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since we have assumed stationarity. From (4.1):

λd = d−5/4 l
T CLF

+ O(d−6/4) .

and, from Proposition 3.8, E [ (qn+1 − qn)2 ] = O(1). Therefore,

d5/4 ×
∑

j≥1

E [ (qN(t)+1+j − qN(t))2 ]O((λdδ)
j+1)

is of the same order in d as

λ2
d · d5/4 ×

∑

j≥1

(j + 1)2 O(λj−1
d ) ,

thus:
d5/4 ×

∑

j≥1

E [ (qN(t)+1+j − qN(t))2 ]O((λdδ)
j+1) = O(λd) .

Using this result, and continuing from (6.6), Proposition 3.8 provides the required state-
ment.

7. Conclusions

The HMC methodology provides a promising framework for the study of sampling prob-
lems, especially in high dimensions. There are a number of directions in which the research
direction taken in this paper could be developed further, and a number of observations
to be made concerning optimal tuning of MCMC methods in general. We conclude by
listing some of these issues.

• The overall optimization involves tuning three free parameters (h, T,M); since M
is a symmetric matrix, the number of tuning parameters is 2 + m(m + 1)/2. In
this paper, we have fixed M and T and illustrated that the choice h = l d−1/4

provides non-vanishing O(1) acceptance probabilities as d→ ∞. We then focussed
on optimizing the HMC algorithm over choice of l. The natural next step would be
to study the algorithm for various choices of the mass matrix M and the integration
time T .

• There is interesting recent computational work [16] concerning exploration of state
space by means of nonseparable Hamiltonian dynamics; this work opens up several
theoretical research directions.

• The issue of irreducibility for the transition kernel of HMC is subtle, and requires
further investigation, as certain exceptional cases can lead to nonergodic behaviour
(see [11, 42] and the references therein).

• Our analysis of the HMC algorithm is conducted in stationarity. It is possible
that different scaling analyses will be required to study the burn-in phase of the
algorithm, as for the study of random walk type algorithms in [13].
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• There is evidence that the limiting properties of MALA for high-dimensional target
densities do not appear to depend critically on the tail behaviour of the target (see
[37]). However in the present paper for HMC, we have considered densities that are
no lighter than Gaussian at infinity. It would thus be interesting to extend the work
to light-tailed densities. This links naturally to the question of using variable step
size integration [41] for HMC since light tailed densities will lead to superlinear
vector fields at infinity in (2.1). This also links to the work in [16] where non-
separable Hamiltonians arise via introduction of a non-standard metric on phase
space, related to the Fisher information. This metric introduces a rescaling of state
space and this rescaling induces similar algorithmic properties to those induced by
variable time-stepping.

• We have shown how to scale the HMC method to obtain O(1) acceptance proba-
bilities as the dimension of the target product measure grows. We have also shown
how to minimize a reasonable measure of computational cost, defined as the work
needed to make an O(1) move in state space. However, in contrast to similar work
for RWM and MALA ([36, 37]) where a scalar SDE governs, for large d, the evolu-
tion of a single component of the Markov chain, we have not identified a limiting
Markov process which arises in the infinite dimensional limit of HMC. This remains
an interesting and technically demanding challenge.

• The work concerning optimal scaling of RWM and MALA in [36, 37] and the
identification of the optimal acceptance probabilities of 0.234 and 0.574 respectively,
concerns target measures with an iid structure. However, recent work [27, 35] shows
that, for measures which have density with respect to a Gaussian measure (in
the limit d → ∞), hence are not necessarily iid, the same optimal acceptance
probabilities arise. It would be natural to try to extend the work concerning HMC
contained in this paper to non iid target measures in a similar manner. Note also
that for measures with this special structure these results on optimal scaling are
mainly of theoretical interest because they extend known results out of the iid
scenario. For the particular case of measures which have density with respect to
a Gaussian, and from a more practical perspective, the RWM, MALA and HMC
algorithms should all be modified to exploit this underlying Gaussian structure.
This is the subject of the next bullet.

• We have concentrated on explicit integration by the leapfrog method. For measures
which have density with respect to a Gaussian measure (in the limit d → ∞) it
is natural to use semi-implicit integrators which compute the linear dynamics im-
plicitly, leading to exact statistics in the pure Gaussian case. This idea was first
developed for the MALA algorithm [8] and for the RWM algorithm in [10] and
leads to methods which explore state space in O(1) steps for measures with this
special structure. The idea has recently been developed for HMC methods in [7]
and the resulting algorithm shown to outperform the semi-implicit MALA algo-
rithm for some problems arising in conditioned diffusions. Developing a theoretical
understanding of this behaviour would be of interest. Note that the optimal ac-
ceptance probabilities 0.234, 0.574 and 0.651 will not necessarily apply for these
semi-implicit proposals as the optimal proposal variance does not shrink to zero
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as d→ ∞; as a result different mechanisms may come into play when determining
optimality.

• It would be interesting to conduct simulation studies which investigate the robust-
ness of optimal scaling results for RWM, MALA and HMC in scenarios in which
the target is not iid or change of measure from Gaussian. Such simulation studies
could help guide future theoretical results on optimal scaling.
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