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Abstract
We investigate the quantum photovoltaic effect in double quantum dots by
applying the nonequilibrium quantum master equation. A drastic suppression of
the photovoltaic current is observed near the open circuit voltage, which leads to
a large filling factor. We find that there always exists an optimal inter-dot
tunneling that significantly enhances the photovoltaic current. Maximal output
power will also be obtained around the optimal inter-dot tunneling. Moreover,
the open circuit voltage behaves approximately as the product of the eigen-level
gap and the Carnot efficiency. These results suggest a great potential for double
quantum dots as efficient photovoltaic devices.

Keywords: electronic transport in mesoscopic systems, photoconduction and
photovoltaic effect, quantum dots, quantum description of interaction of light
and matter

1. Introduction

As fossil-fuels, currently the main energy suppliers in our modern society, get scarcer and more
expensive, renewable energies are becoming increasingly important and desirable. To meet this
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demand, solar energy, a significant green energy source, attracts a broad spectrum of attention
both from industrial applications and fundamental research [1]. In particular, the photovoltaic
effect, first discovered by E Becquerel in 1839, is a potentially promising technology for light
harvesting that converts our inexhaustible supply of sunlight to electricity for performing useful
work.

Great efforts have been made to design efficient semiconductor-based solar cells [2].
However, the energy efficiency obtained is still too low to meet daily human needs. The main
reason for this is that the excess excitation energy of the electron-hole pair above the energy gap
is wasted through thermal phonon emission. By adding multiple impurity levels, M Wolf
expected photovoltaic enhancement for the low energy spectrum collection [3]. Meanwhile,
Shockley and Queisser suggested that the included impurity would also have a corresponding
strengthening effect on the recombination process [4], resulting in no improvement of the
photovoltaic current. Moreover, there have been various other proposals to enhance solar
conversion efficiency [5–9]. Recently, quantum dots (QDs) have emerged as alternative
candidates to fabricate solar cells, due to their ability to enhance photon harvesting via a multi-
level structure [10, 11]. The novel feature of QD is that by adjusting the dot size, the energy
scale of the excitation gap can be tuned across a wide regime, which extends the absorption
spectrum down to the infrared range [12] and makes QD competitive in designing multi-
junction solar cells.

In particular, the influence of quantum coherence in improving photovoltaic efficiency has
been addressed by M O Scully et al [13, 14]. They studied photovoltaic cells as quantum heat
engines modeled by electronic level systems resonantly coupled to multi-reservoirs with biased
temperatures, which convert incoherent photons to electricity. Based on the full quantum master
equation, which includes quantum coherence represented as off-diagonal density matrix
elements, the photovoltaic current shows astonishing enhancement compared to its counterpart
from population dynamics in the classical limit. This concept has also been extended to
photosynthetic heat engines, which convert solar energy into chemical energy [15–20]. From a
theoretical point of view, these generalized engines share the same underlying mechanism.

Considering the importance of quantum coherence in energy conversion for quantum
photovoltaic systems, we apply the quantum master equation to study the quantum photovoltaic
effect in a double quantum dot (DQD) system, which can also be regarded as a donor-acceptor
system. In particular, the parallel sandwiching of many DQDs between electronic leads may
have benefits such as flexible scalability and tunability for this kind of nanoscale photovoltaic
device. We pay special attention to the three crucial ingredients of photovoltaic applications:
short circuit current, open circuit voltage and extractable output power, and analyze the ability
of the dots to convert photons into electricity. Our results show that there exists an optimal
inter-dot tunneling that significantly enhances the quantum photovoltaic current and output
power. Moreover, the open circuit voltage behaves approximately as the product of the eigen-
level gap and the Carnot efficiency. As a result, maximal output power will be obtained around
the optimal inter-dot tunneling. The work is organized as follows: in section 2, we describe the
model of DQDs and obtain the solution of the quantum master equation. In section 3, we
present results and corresponding discussions regarding the quantum photovoltaic effect and
current enhancement at optimal tunneling. A concise summary is given in the final section.
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2. Model and method

In this section, the model of DQD coupled both to electron reservoirs and solar environment is
first introduced in part 2.1. Then the quantum master equation is derived in part 2.2 by
assuming that the system-reservoir couplings are much weaker than the energy gap of DQD.
Finally, in part 2.3 the analytical expressions of steady state electron and photon currents are
exhibited.

2.1. Hamiltonian

The photovoltaic system is described by a DQD coupled to two separate electronic reservoirs

(see figure 1(a)), with the total Hamiltonian: ˆ = ˆ + ∑ ˆ + ˆ + ˆ + ˆ
= −( )H H V H V HD v L R v v D ph ph,

. ĤD

denotes the central DQD by

ϵ ϵ Ωˆ = ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ† † † †( )H d d d d d d d d , (1)D L L L R R R L R R L

where ˆ†
d ( )L R creates one electron on the L(R) QD with energy ϵ ( )L R , and Ω denotes the inter-dot

tunneling between L and R, which both can be flexibly tuned via gate voltages applied on the
dots [21]. Without loss of generality, we consider the strong Coulomb repulsion limit so that the
system has three states: the left dot occupied state L , the corresponding right one R , and the

ground state G with both dots empty. Ĥ ( )L R depicts the L(R) electronic lead through

ϵˆ = ∑ ˆ ˆ†H c cv k k v k v k v, , , , with ˆ†ck v, creating one electron with energy ϵk v, and momentum k in the lead v.
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Figure 1. (a) Schematic illustration of the DQD device and its photovoltaic dynamics in
real space: the electron hops between the left (right) dot and the left (right) lead, and
between the left and right dots; the photon field interacts with the electron population
difference of two dots. (b) Scheme of the DQD dynamics in eigen-space: the photon
absorption (emission) assists the excitation (relaxation) between the eigen-state − and
+ ; the excitation (relaxation) between the ground state G and the superposition state
+ or − are accompanied by the electron hopping from (to) two electronic leads to
(from) the DQD.



∑ˆ = ˆ ˆ +
†

V t d c H.c. (2)v
k

k v v k v, ,

gives the coupling between the dot v and the lead v, which conserves the total electron number,
and tkv is the system-lead tunneling strength. When the sun sheds light on the system, the DQD
interacts with the photons in diagonal coupling form, described by

∑ˆ = ˆ + ˆ ˆ ˆ − ˆ ˆ
−

† † †( )( )V g a a d d d d , (3)D ph
q

q q q L L R R

where ˆ†aq generates one photon with frequency ωq in the solar environment, modeled as

ωˆ = ∑ ˆ ˆ†H a aph q q q q, and g
q
is the coupling strength.

Here, we consider that the coupling between the photon environment and the polarization
of electron populations on the DQD (instead of the off-diagonal interaction between dots) is the
dominant mechanism. This type of electronelectron–photonphoton coupling has been found in
DQDs [22, 23], and has already been extensively studied for similar electron-phonon coupling
in such systems [24–28]. Distinct from the off-diagonal electronelectron–photonphoton

coupling ∑ ˆ + ˆ ˆ ˆ + ˆ ˆ† † †( )( )g a a d d d d
q q q q L R R L , it does not seem obvious that equation (3) is able to

produce the photovoltaic effect in the local basis. However, as we will show soon, by
transforming the system into eigen-space (see also figure 1(b)), it is clear that the photon-
assisted tunneling emerges with the help of inter-dot tunneling Ω in equation (1). This inter-dot
tunneling, on the one hand assists the photovoltaic current, and on the other hand diminishes the
photovoltaic current. Thus, an optimal inter-dot tunneling will be obtained to enhance the
photovoltaic effect.

Such an optimal-tunneling-enhanced photovoltaic effect will not occur in the off-diagonal

type of electron–photon interaction case ∑ ˆ + ˆ ˆ ˆ + ˆ ˆ† † †( )( )g a a d d d d
q q q q L R R L , which actually has a

different physical behavior from the diagonal form at equation (3). The reason is that in the
absence of inter-dot electron tunneling, there is no additional current leakage between two dots
so that each electron hopping is fully accompanied by single photon emission or absorption.
Therefore, the performance of the thermodynamic efficiency and the flux is high, as similarly
described in the maser model [13]. While it is under finite and strong inter-dot electron
tunneling, the electron transport is mainly controlled by downstream inter-dot tunneling, which
severely offsets the photon-assisted photovoltaic current. Consequently, increasing the inter-dot
electron tunneling will monotonically suppress the photovoltaic current and photon flux, and we
do not have the same optimal performance as that which will be uncovered in the following.

To investigate the quantum evolution of the system density matrix, it is more convenient to
work in the eigen-space of the DQD by diagonalizing equation (1):

θ θ

θ θ

+ = | 〉 + | 〉

− = − | 〉 + | 〉

L R

L R

cos
2

sin
2

,

sin
2

cos
2

, (4)

are superpositions of the left and right occupied states, with θ Ω Δ=tan 2 and Δ ϵ ϵ= −L R the
inter-dot energy gap. The corresponding eigen-levels are

New J. Phys. 16 (2014) 045019 C Wang et al

4



ϵ ϵ Δ Ω=
+

± +
±E

2
4

2
. (5)L R

2 2

The ground state G remains intact. This pre-diagonalization before applying the quantum
master equation is important to make the treatment consistent with the second law of
thermodynamics [29].

2.2. Quantum master equation

When the interactions of the DQD with the leads and the photon environment are weak [13–15],
system-reservoir coupling terms in equation (2) and equation (3) can be safely treated
perturbatively to the second order. Furthermore, under the Born–Markov approximation, the
quantum master equation is given by

ρ ρ ρ ρ∂
∂

ˆ = − ˆ ˆ + ˆ ˆ + ˆ ˆ⎡⎣ ⎤⎦ [ ] [ ]
t

i H , , (6)D e p 
where ρ̂ denotes the reduced density matrix for the central DQD. The first term on the right side
shows the unitary evolution of the DQD without the actions from two electronic leads and
photons. The second term exhibits decoherence from the dot-lead coupling, given by (see
appendix A)

∑ρ
γ

ρ

ρ

ˆ ˆ = − | 〉〈 | ˆ ˆ

+ | 〉〈 | ˆ ˆ +

=±

†

⎪

⎧⎨
⎩

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦


}

( )[ ] ( )

( )

d
f E G a d

f E a G d

2
1 ,

, H.c. (7)

e
v a

v
a

v
a

v a v

v a v

;



γ π δ ϵ= ∑ −( )t E2
v
a

k k v k v a,
2

, denotes the coupling energy between the superposition state a

( + or − ) and the lead v. In the following, we assume γ γ γ= =+ −
v v v

and set γ
v
as constant in

the wide band limit. The hopping matrix element = ˆd G d av
a

v , originating from

τˆ − = ∑ +ω
ωτ

= ±

d e d G a( ) H.c.v E
i

v
a , describes the electron transfer from the superposition

state on DQD to the lead v. β μ= − +⎡⎣ ⎤⎦( )( )( )f E E1 exp 1
v a v a v

is the Fermi–Dirac distribution

in the v lead with μ
v
the corresponding chemical potential and β = ( )k T1

v B v the inverse
temperature. It should be clarified that the expression of equation (7) is based on >−E 0, which
is equivalent to ϵ ϵ Ω>L R

2. On the contrary, when <−E 0 (ϵ ϵ Ω<L R
2), it only needs exchange

−( )f E
v

with − −( )f E1
v

in equation (7). When including the external voltage bias, we

conventionally set μ μ= ± eV 2( )L R e0
with μ ϵ ϵ= +( ) 2L R0

. This enables us to study the

current-voltage characteristic of the DQDs, which is a crucial ingredient in the design of
photovoltaic devices [30].

The third term depicts the effect of the photon environment on the DQD, shown as (see
appendix A)

ρ
γ

Λ σ ρ Λ σ ρˆ ˆ = + ˆ ˆ ˆ + ˆ ˆ ˆ +
+−

− +
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ { }( )[ ] ( ) ( )

Q
n Q n Q c

2
1 , , H. ., (8)p

p
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where 〈 〉= + | ˆ| −+−Q Q , | |σ̂ = ± 〉〈 ∓± and ˆ = ˆ ˆ − ˆ ˆ† †
Q d d d dL L R R describes the population

polarization on the DQD. Λ Δ Ω= − = ++ −E E 42 2 denotes the energy gap of two eigen-

levels, γ π δ ω ω= ∑ −( )g2
p k k k

2 is the coupling energy strength of the photon environment, and

Λ β Λ= −⎡⎣ ⎤⎦( )( )n 1 exp 1
p

is the Bose–Einstein distribution of the photon environment with β
p

the inverse temperature of the sun. Clearly, only the photons with energy resonant with the
eigen-level gap Λ will be absorbed. Although the current derivation of the quantum master
equation is based on the eigen-state basis, it shares the same physics as in the local basis if we
fully conserve the inter-dot state transitions.

Equations (7) and (8) show that eigen-states ± of DQD are mainly responsible
for the quantum transport, which is also similarly illustrated in [31]. To expose explicitly
the physical picture of the photon-assisted transport, we re-express the electron–photon

coupling equation (3) in the eigen-state basis as θτ θτˆ = ∑ ˆ + ˆ ˆ − ˆ−
†( )( )V g a a cos sinD ph q q q q z x , with

τ̂ = | + 〉〈 + | − | − 〉〈 − |z and τ τ τˆ = ˆ + ˆ = | + 〉〈 − | + | − 〉〈 ++ −x . The first term on the

right side of ˆ
−VD ph is trivial, since it is commutative with the ĤD. However, for the second term,

it appears as θ τ τ−∑ ˆ ˆ + ˆ ˆ†
− +( )g a asin

q q q q under the rotating-wave approximation. This clearly

suggests that the electron hopping between | ± 〉 is assisted by the photon absorption and
emission (see figure 1(b)), which makes an indispensable contribution to the appearance of the
quantum photovoltaic effect in the DQD system. Moreover, it should be noted that the
evolution equation of the DQD density matrix at equation (6) has no classical correspondence.
This means that no electron or photon current will exhibit by studying the corresponding
population dynamics under a local basis.

2.3. Electron and photon current

In the Liouville space, the density matrix of DQDs is expressed in the vector form

 ρ ρ ρ ρ ρ= ( ), , , ,
GG LL RR LR RL

T
, with ρ ρ= ˆi j

ij
. Then the evolution equation is re-expressed as

(see appendix A):

  
∂
∂

| 〉 = | 〉
t

, (9)

where  is the matrix form of the Liouville superoperator. The steady state solution is obtained
through   = 0ss , with ss the steady state density vector. Define the direction from right to
left as positive, and the photovoltaic current is obtained (see appendix B) as

Γ ρ Γ ρ Θ ρ= − + ⎡⎣ ⎤⎦I e 2 Re , (10)e L LL

ss
GL GG

ss
GL LR

ss

where Γ = − + −γ θ θ
+ −

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )( ) ( )f E f Ecos 1 sin 1L L L
2

2
2

2
L denotes the electron hopping rate from

the left dot to the left lead; Γ = +γ θ θ
+ − ( )( ) ( )f E f Ecos sinGL L L

2
2

2
2

L is the reverse-process rate from

the left lead to the left dot; Θ = −γ θ
− + ( )( )( )f E f EGL L L

sin

4
L depicts the relaxation rate from the

quantum coherent state between the left and right dots to the ground state by emitting an
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electron into the left lead. This process is a pure quantum effect and gives the positive
contribution to the right-to-left current. Similarly, the photon current absorbed from the solar
environment can also be obtained as (see appendix B)

γ θ
θ ρ ρ Λ ρ= − + + +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )( ) ( )I n

sin

2
sin 2 1 2 Re . (11)p

p

LL

ss

RR

ss

LR

ss

Equations (10) and (11) imply that quantum coherence, manifested by ρ
LR
ss , is crucial to

correctly describe the current. Moreover, the factor of θsin in Ip shows that the photon current

vanishes at θ = 0, i.e., at Ω = 0. Accordingly, in the absence of inter-dot electron tunneling, the
| 〉L R( ) state keeps equilibrium with its own reservoir under the relation
ρ ρ β Δ= −exp( 2)( ) ( )LL RR

ss
GG
ss

L R
, which readily leads to =I 0e since the last contribution from

the quantum coherence vanishes when Ω = 0. On the opposite limit, when the inter-dot
coupling Ω becomes large, the electron population polarization of the DQD will be small so that
the electron–photon coupling becomes rather weak (see equation (3)). Moreover, increasing Ω
will enhance the back-tunneling current from left to right. As a result, the photovoltaic current
will be severely suppressed at large Ω. Thus, it is natural to expect maximal photovoltaic
behavior in the intermediate tunneling regime.

3. Result and discussion

3.1. I–V curves

The current-voltage characteristic (I–V curve) is crucial for analyzing the quantum photovoltaic
effect, in which the short circuit current, open circuit voltage and photovoltaic power can be
explicitly identified [32–35]. We first investigate the photovoltaic current and the output power
in figure 2. The temperatures of both the left and right leads are set to room temperature. For
solar photons, the temperature is chosen by =T 6000p K, as traditionally described [36]. As

shown in figure 2(a), when the voltage bias is turned on but small, the electron current keeps
nearly the same strength as the short circuit current Ie

sc. However, when the voltage approaches
the open circuit voltage Voc, the electron current is sharply suppressed down to zero. Hence, the
DQD has a high filling factor, which is crucial for high efficiency [37–39]. A similar feature has
been described in other photovoltaic realizations [14, 15, 36], and is considered as a key
element in the design of efficient photovoltaic devices. In recent studies regarding the cavity
quantum electrodynamics system [31] and organic heterojunction [36], the photovoltaic current
is exhibited as ∼I 1e pA and ∼I 10e pA, respectively. This implies that the DQD is also a
promising candidate serving as the basis of the photovoltaic application.

The behavior of the photon current with the variation of voltage is similar to that of the
electron current, which also exhibits large suppression near the terminal voltage. However, the
terminal voltage is larger than that (Voc) for the electron current (see figure 2(a)). This can be
explained as follows: with finite Ω, the dot system has electron current from left to right under
positive voltage in the absence of electron–photon interaction. After the electron–photon
coupling is included, the photon absorption by QDs generates the electron current against the
voltage bias, originating from the quantum photovoltaic effect. Therefore, the electron current is
composed by two competing sources: (i) intrinsic tunneling between QDs generates downhill
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current under positive voltage, which gives negative contribution to the electron current, and (ii)
photon-generated uphill current makes a crucial positive contribution. Before the vanishing of
the photon current, the photon-generated electron current will be completely eliminated by that
from intrinsic inter-dot tunneling at Voc, which gives the discrepancy between the two terminal
voltages.

The photovoltaic (output) and solar (input) powers are studied in figure 2(b). In the small
voltage bias regime, the photovoltaic power = ·P I Ve e e is proportional to Ve, until reaching
maximal power, since the electron current Ie remains almost constant. As the voltage reachesVoc,
the power suddenly drops to zero, due to the drastic diminishing of the current at Voc. For the
solar power Λ= ·P Ip p , it is steady at the beginning, and then decays fast near the terminal

voltage, which is consistent with the behavior of Ip. The maximum quantum efficiency

η = P Pe p of the DQD engine is then obtained nearVoc, as plotted on the inset in figure 2(b). This

behavior is similar to photovoltaic power, and the maximal value is nearly 80%.

3.2. Effects of inter-dot quantum tunneling

Figure 3(a) shows the effect of the tunneling on the short circuit current Ie
sc at =V 0e in a large

scale. In the weak tunneling regime, the photovoltaic current rises quickly with the increasing
tunneling ( Ω∼Ie

sc 2), which is also observed in figure 2. As the tunneling strength reaches the
moderate regime, the electron current peaks at Ω ≈ 0.55 eV. After the peak, the current shows
monotonic decay. The behavior of the photon current is similar to the electron current, except
for the magnitude difference. As we discussed above, in the absence of inter-dot tunneling, two
DQs are decoupled and no photon will be pumped into the dots to generate uphill current,
which is clearly exhibited in equation (11). Therefore, to obtain the photovoltaic effect, finite Ω
is necessary. In the opposite direction of strong tunneling, the population polarization is very
small, and photons can hardly be pumped into the system due to the suppressed electron–
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Figure 2. (a) Currents (photovoltaic current Ie and photon flow Ip) and (b) energy power
(photovoltaic power Ps and solar power Pp) as functions of external voltage bias Ve.
Other parameters are ϵ = 3L eV, ϵ = 1R eV, γ γ γ= = = 0.1

L R p
eV, = =T T 300L R K and

=T 6000p K.



photon interaction shown in equation (3). Moreover, the strong tunneling also causes the
generation of the photovoltaic current to deteriorate. Hence, it is expected that optimal tunneling
will maximize the photovoltaic current, which is explicitly shown in figure 3(a).

The open circuit voltage with varying tunneling strength is also investigated in the inset of
figure 3(a) (solid line), whereVoc shows monotonic behavior with increasing Ω that qualitatively

coincides with the behavior of the eigen-level gap Λ Δ Ω= + 42 2 . This can be understood as
follows: When the inter-dot tunneling Ω is weak, it is known that θ θ≈ ≈( )sin 0 cos 1 so that

+ only effectively connects to the left lead and − effectively couples with the right lead (see
A.6, A.7, A.8, A.9)). Besides, the eigen-levels + and − are nearly uncoupled since they
become orthogonal to each other. The tunneling between them is mainly assisted by the photon-
induced excitation and relaxation. Hence at the open circuit voltage, considering electron pump
from the right ( − ) to the left ( + ) is balanced by the reverse action, we have the detailed
balance relation:

Λ
Λ−

×
+

×
−

=+

+

−

−

( )
( )

( )
( )

( )
( )

f E

f E

n

n

f E

f E1

1 1
1, (12)L

L

p

p

R

R

where the rate from the left lead to the right one is proportional to

Λ+ −+ −
⎡⎣ ⎤⎦⎡⎣ ⎤⎦( ) ( ) ( )f E n f E1 1

L p R
, while the reverse rate from right to left is proportional to

Λ− + −
⎡⎣ ⎤⎦( ) ( ) ( )f E n f E1

L p R
. This detailed balance relation finally gives us
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Figure 3. (a) Short circuit electron current and photon current at =V 0e ; the inset shows
the comparison of numerically exact Voc from equation (10) and the approximation

estimated from equation (13). (b) Optimal output power = · }{P I Vmaxe e
opt ,

corresponding input power Λ= ·P Ip p
opt , and the efficiency η = P Pe p

opt opt, as functions
of electron tunneling strength Ω. Other parameters are the same as those in figure 2.



Λ= −
⎛
⎝
⎜

⎞
⎠
⎟V

e

T

T
1 , (13)oc

p

0

where T ( )p0 denotes the electronic reservoirs (solar environment) temperature and − T T1 p0 is

the ideal Carnot efficiency. This rough estimation qualitatively agrees with the numerical exact
result in the inset of figure 3(a), and the slight deviation comes from the weak inter-dot
tunneling, which reducesVoc compared to the ideal one at equation (13). From these results, it is
interesting to find that below the optimal tunneling (Ω ≈ 0.55 eV in our case), both the
photovoltaic current and voltage are enhanced by the tunneling strength. Thus, the best
operation regime is around the optimal tunneling, where the maximum output power will be
obtained. This feature is explicitly shown in figure 3(b). However, the photovoltaic efficiency
corresponding to the maximal extractable output power is not the largest, which shows
monotonic decay. This provides useful guidance to optimize the quantum photovoltaic effect.

3.3. Global optimal performance

Next, we study the effect of the inter-dot energy gap Δ on the photovoltaic current in figure 4(a).
For arbitrary tunneling strength, there always exists an optimal gap to maximize the current.
Moreover, the overall profiles are similar: the current firstly arises with increasing Δ, and then it
decays monotonically after reaching the maximum. However, the differences are also apparent.
For weak tunneling, i.e., Ω = 0.01 eV, the value of the peak is small at around μ1.5 A. As the
tunneling is strengthened, this value becomes large, i.e., μ≈I 3 Ae

max . When the tunneling is
further increased, the current again becomes weak. Besides, the peak is broadened with
increasing Ω. Based on the results of figure 4(a), we extract the maximum values of the current
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Figure 4. (a) Short circuit current as a function of Δ with different Ω. (b) Maximum of
the photovoltaic current, the corresponding open circuit voltage and output power,
under various Ω. Other parameters are the same as those in figure 2.



(Ie
max) and investigate their dependence on the tunneling strength, shown in figure 4(b). The

global summit appears at Ω ≈ 0.08 eV, which corresponds to the gap of two excited states
Λ ≈ 0.3 eV. Hence the central frequency of the absorption photons is in the infrared regime
[11], and the maximum value of the current can be as large as 3 μ A. It shows competitive
improvement by comparison with photovoltaic current in other photocell units, i.e., ∼I 1sc pA
in [31] and ∼I 10sc pA in [36].

In the case of open circuit voltage corresponding to maximum short circuit current, it
changes almost linearly with Ω (we also find an excellent linear relation of Voc with Λ) [40, 41],
which is quite different from that in figure 3(b). The difference mainly comes from the different
flexibility of the energy bias Δ. For the formal case in figure 3(b), the energy bias is fixed with
Δ = 2 eV, and does not change with the variation of Ω. However, for the present case, the
maximum electron current shows the global picture in the parameter space of Δ and Ω, where Δ
is adjusted with varying Ω. We also investigate the maximum power, defined as

= ·P I Ve e oc
max max . This also shows the peak effect with optimal tunneling, but the optimal

point deviates from that for the photovoltaic current. As is well-known, over 50% of solar
energy is below the visible light spectrum [42]. Therefore, our results suggest that it is
meaningful to use the DQD as one basis for the design of efficient solar energy harvesters.

4. Conclusion

In summary, we have studied the quantum photovoltaic effect in a DQD system weakly coupled
to electronic leads and a solar environment by applying the quantum master equation. Three
main ingredients of photovoltaic effect—short circuit current, open circuit voltage and output
power—have been analyzed in detail. As the voltage bias approaches open circuit voltage (Voc),
the electron current is strongly suppressed to zero, implying the high fill factor. In comparison,
the photon current is eliminated at a larger terminal voltage. This discrepancy mainly originates
from the fact that the photovoltaic current is composed by two competing sources: one from the
photon-generated uphill electron current against the potential bias, and the other from the
voltage bias driving the electron current along the potential gradient. When the photovoltaic
current disappears, these currents induced from two sources are equal, resulting in the finite
photon current. Moreover, the photovoltaic current and power are much larger than other
recently studied nano-junction photovoltaic systems, which is crucial for designing photovoltaic
devices.

The influence of the inter-dot tunneling strength on the photovoltaic current is investigated.
The optimal tunneling to maximize the photovoltaic current has been found in the intermediate
regime, whose character should be intrinsic in this kind of system. However, the open circuit
voltage increases monotonically with increasing tunneling, which can be qualitatively described

by Λ∼ −( )V T T1oc p0 , based on the detailed balance condition. The global optimal tunneling to

achieve maximal photovoltaic current and power has also been exhibited, with the central
frequency of absorption photons in the infrared regime. We believe that these results provide a
theoretical basis for promising photovoltaic applications of DQDs.
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Appendix A. The quantum master equation under the counting field

To derive the electron current and the photon flow, we usually include the counting field as in
the method of full counting statistics [43–46]. Here, we count the electron number
ˆ = ∑ ˆ ˆ†N c cL k k L k L, , on the left fermion reservoir and the photon number ˆ = ∑ ˆ ˆ†N a ap k k k in the solar

environment. The Hamiltonian of the whole system is modified to [28]

∑
ˆ = ˆ

= ˆ + ˆ + ˆ + ˆ + ˆ
χ

χ χ χ χ

χ χ

ˆ + ˆ − ˆ + ˆ

=
−( )

( ) ( )H e He

H V H V H , (A.1)

i N N i N N

D
v L R

v v D ph ph

2 2

,

L e p p L e p p

e p

where χ χ χ= ( ),
e p

count the currents transferring into the corresponding reservoirs, and the

system-bath interactions are modified to

∑

∑

ˆ = ˆ ˆ +

ˆ = ˆ + ˆ ˆ ˆ − ˆ ˆ

χ χ δ

χ χ χ

− †

−
− † † †( )( )

V t e d c

V g a e a e d d d d

H. c .,

,

v
k v

k v
i

v k v

D ph
q

q q
i

q
i

L L R R

,
,

2
,

2 2

e e v L

p p p

,

with δ =α β 1, if α β= , otherwise δ =α β 0, . Following the standard procedure treated in the

quantum master equation, including the counting the field up to the second order [28, 46, 47],
the dissipator from the QD-electron reservoir is derived as

∑ρ
γ

ρ

ρ

ρ ρ

ˆ ˆ = ˆ ˆ| 〉〈 | +

+ − ˆ ˆ| 〉〈 | +

− − ˆ | 〉〈 | ˆ + ˆ | 〉〈 | ˆ +

χ
χ δ

χ δ

− †

†

⎪
⎡⎣ ⎤⎦

⎧⎨
⎩

⎡⎣ ⎤⎦



}( )

( )
( )( )

( )

( )

( )

( ) ( )

d
f E e d G a

f E e d a G

f E d G a f E d a G

2
H. c.

1 H. c.

1 H. c. , (A.2)

e
v a

v
a

v Ga

v a
i

v

v a
i

v

v a v v a v

,

,
e v L

e v L

,

,



with =v L R, and = ±a . It will naturally reduce to equation (7) when χ = 0
e

. The Liouville
operator from the dot-photon coupling is shown as
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ρ
γ

Λ ρ

Λ ρ

Λ ρ Λ ρ

ˆ ˆ = ˆ ˆ| − 〉〈 + | +

+ + ˆ ˆ| + 〉〈 − | +

− + ˆ| − 〉〈 + | ˆ + ˆ| + 〉〈 − | ˆ +

χ
χ

χ

+− −⎡⎣ ⎤⎦
⎧⎨⎩

⎡⎣ ⎤⎦



}( )

( )

( )( )
( )

( )

( )

( ) ( )

Q
n e Q

n e Q

n Q n Q

2
H. c.
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p
p i

i

p

p



When χ = 0
p

, it returns back to equation (8) consistently. Then the quantum master equation

under the counting field is described by

ρ ρ ρ ρ∂
∂

ˆ = − ˆ ˆ + ˆ ˆ + ˆ ˆ
χ χ χ χ

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦t
i H , . (A.4)D e p 

Furthermore, in the Liouville space the reduced density matrix of the DQD system is expressed

as vector form  ρ ρ ρ ρ ρ| 〉 =χ ( ), , , ,
GG LL RR LR RL

T
, with ρ ρ= χ̂i j

ij
. Hence, the corresponding

evolution equation of the DQD density matrix is given by

  
∂
∂

| 〉 = | 〉χ χ χt
, (A.5)

with   = +χ χ χ
e p

e p
. When χ χ= = 0

e p
, equation (A.5) is just simplified back to equation (9)

with χ reducing to  and χ reducing to . Here  χ
e

e
describes the superoperator for the

electron leads induced decoherence as
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where Δ ϵ ϵ= −L R, and the other renormalized parameters are explicitly given by
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While  χ
p

p
accounts for the electron–photon interaction, shown as
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Appendix B. Derivation of the currents

From the evolution equation   | 〉 = | 〉χ χ χ
∂
∂t

, we can define the characteristic function

 χ = 〈 | 〉 = 〈 | | 〉χ χ
χ( ) ( )t t e, 1 ( ) 1 0 , (B.1)t

where = ( )1 1, 1, 1, 0, 0 considering ρ ρ ρ+ + = 1
GG LL RR

. In the long time limit, the
cumulant generating function can then be expressed as [48, 49]

χ χ λ χ= =
→∞ t

t( ) lim
1

( , ) ( ), (B.2)
t

0 
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where λ χ( )0 is the eigen-value of the operator χ, which has the largest real part and thus

dominates the dynamics in the steady state. The current is just the first order cumulant that is
then obtained by the first order derivative




χ
χ

λ χ
χ χ

=
∂
∂

=
∂
∂

=
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∂
χ χ

χ
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( ) ( )i i i

: 1 . (B.3)ss
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0
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For the specific current calculation, χ χ=
e
gives the electron current, and χ χ=

p
gives the

photon flow.
Therefore, the electron current is obtained as


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where ss is the vector of the density matrix in a steady state. Similarly, the photon flow out of
the environment can also be obtained as




χ

γ
θ ρ ρ θ Λ ρ

= −
∂

∂

= − + + +

χ

χ =

⎡⎣ ⎤⎦

( )

( )( ) ( )( )

I
i

n

1

2
sin 2sin 1 2 Re . (B.5)

p

p

p

ss

p

LL

ss

RR

ss

LR

ss

0

2

p

p

Since the counting field counts the photon current into the reservoir, there is a minus sign for
calculating the photon current out of the reservoir.
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