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Abstract

As wind farms become larger, the asymptotic limit of the “fully developed”, or “infinite”,

wind farm has been receiving increased interest. This limit is relevant for wind farms on flat

terrain whose length exceeds the height of the atmospheric boundary layer by over an order of

magnitude. Recent computational studies based on Large Eddy Simulation have identified vari-

ous mean velocity equilibrium layers, and have led to parameterizations of the effective roughness

height that allow predicting the wind velocity at hub-height as function of parameters such as wind

turbine spacing and loading factors. In the current paper, we employ this as a tool to make predic-

tions of optimal wind turbine spacing as function of these parameters, as well as in terms of the

ratio of turbine costs to land-surface costs. For realistic cost ratios, we find that the optimal av-

erage turbine spacing may be considerably higher than conventionally used in current wind-farm

implementations.
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1. INTRODUCTION

Recently, wind energy has received renewed interest. This originates in part from large funding pro-

grams by American and European governments, and comes from the realization that wind energy will

be an important contributor in the production of affordable and clean energy in the next decades. In

various scenarios,1, 2 a contribution of wind energy to the overall electricity production up to 20%

is aimed at by 2030. To realize these targets, larger wind farms (both on- and off-shore), cover-

ing increasingly larger surface areas are required. When large-scale wind-farm implementations are

considered, the total drag induced by all turbines in the farm may change the equilibrium in the atmo-

spheric surface layer. In particular, with a characteristic height of the ABL of about 1 km, wind farms

with horizontal extents exceeding 10–20 km may therefore approach the asymptotic limit of “infi-

nite” wind farms, and the boundary layer flow may approach a new fully developed regime, which

depends on the additional surface drag induced by the wind farm. In the current study, we focus
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on this asymptotic “infinite” wind-farm regime, and investigate the optimal wind-turbine spacing in

these wind farms to either optimize the ratio of total power output per land surface, or the ratio of

total power output per unit of total cost that also includes cost of turbines. Depending on the ratio

between total costs per turbine and total costs per land surface, in the case of “infinite” wind farms,

we find that the optimal average turbine spacing may be considerably higher then conventionally used

in current wind-farm implementations.

Design and optimization of single wind turbines is well explored nowadays, often using blade-

element–momentum theory, and Glauert’s theory for rotor aerodynamics.3, 4 Also effects of turbine

wake aerodynamics have received much attention.5 Studies of the interaction of large wind farms and

the atmospheric boundary layer (ABL) are far less prevalent. In this area, pioneering work was per-

formed by Frandsen,6 who formulated a model for the surface roughness induced by “infinite” wind

turbine arrays. More recently, the subject gained renewed interest in the context of off-shore wind-

farm under performance.7 Very recently, studies employed large-eddy simulations to study wind-

farm–ABL interactions,8, 9 focusing on the ‘infinite’ wind-farm limit. Moreover, in Ref. 8, Frandsen’s

model for the induced wind-farm surface roughness was refined, to include effects of turbine-wake

mixing.

When turbine spacing is considered in a more conventional approach, minimum wind-turbine

spacing in wind farms is mainly governed by the desire to limit wake-induced fatigue loads in turbines

located downstream of a prior row of turbines.5 However, large wind farms increase the effective sur-

face roughness experienced by the ABL,6, 8 such that the effective wind velocity at turbine-hub height

decreases compared to an unloaded ABL. Hence, increasing the installed power per land surface area

(i.e. decreasing the average wind-turbine spacing) has an inverse effect on the total extracted power

per turbine. Depending on the cost per turbine, and the cost of land used for wind farms, this leads to

an optimization problem for wind-turbine spacing in wind farms, where the optimal spacing is given

by economical constraints. In the current work the refined effective roughness model of Ref. 8 is used

as the basis to elaborate a model for overall wind-farm power output per land surface, taking fully

developed wind-farm–ABL interactions into account. A detailed discussion is presented on optimal

turbine spacing, and its dependence on economical parameter, and operating regimes.

Wind-turbine operation is often classified into three regions: region I–III.4, 10 The first region is

at very low wind speeds where aerodynamic forces cannot overcome the turbine’s internal friction

losses. At very high wind speeds (Region III), the power output of turbines is restricted by load-

ing constraints on its mechanical structures and by economical constraints on the size of the power

generator. In this region, turbine power is controlled at a constant level, independent of wind speed,

either by stalling the turbine blades, or by feathering the turbine.4 In region II, power output is not

restricted, and wind turbines work close to their aerodynamical optimal operating conditions. In the

current work, we focus in large part on optimization of turbine-spacing in region II, where turbine

thrust and power coefficients are close to optimal. At the end of Section 3, region III operation and

its influence on optimal turbine spacing in wind farms, is discussed. It will be argued that feathering

may have an impact on the optimal turbine spacing in the equilibrium wind-farm ABL, while stalling

the turbine keeps the optimal spacing at the region-II optimum.

The paper is further organized as follows. First, in Section 2, the model for wind-farm optimiza-

tion is elaborated. In Section 3, optimization results are presented and discussed. Finally, conclusions

are presented in Section 4.

2. MODEL FOR WIND-FARM OPTIMIZATION

First, some definitions and conventions for wind-turbine thrust and power, which will be further used

in the current study, are introduced in §2.1. Next, in §2.2, standard relations for the atmospheric
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boundary layer are briefly reviewed. Subsequently, the induced surface-roughness model for wind

farms8 is discussed in §2.3. Finally, in §2.4 the wind-farm optimization problem is defined in terms

of normalized farm power.

2.1. Definitions and conventions

In conventional wind-turbine momentum theory, the thrust of a single wind-turbine on the surrounding

flow is expressed as

FT = −
1

2
CTρU

2
∞A, (1)

with CT the thrust coefficient, U∞ the upstream undisturbed flow velocity at hub height, and A =

πD2/4 the turbine-rotor area (with D the rotor diameter). However, for large wind-turbine arrays

with significant interactions among wind turbines and wakes, this reference velocity U∞ is not readily

known and would require arbitrary decisions about what upstream distance to use when specifying the

velocity. Moreover, such a reference velocity would depend on farm parameters such as the average

turbine spacing, and turbine loading. Instead, for wind farms, it is useful to base the relations for

thrust on the prevailing axial velocity at the rotor-disk position, Ud, such that

FT = −
1

2
C′TρU

2
d A. (2)

Note that the value of C′
T

is straightforwardly related to the lift and drag coefficients of the turbine

blades (see e.g. Ref. 9 for an elaboration), and much less sensitive to farm parameters such as average

turbine spacing. Moreover, in large-eddy simulations of wind farms,8 Ud is readily available during

the simulation, such that Eq. (2) can be directly employed as a force model.

For a lone-standing turbine, it is possible to relate C′
T

to CT by using classic actuator disk theory.

This allows us to express

Ud = U∞(1 − a), C′T =
CT

(1 − a)2
, (3)

with a the axial induction factor.9 For the Betz limit4 (i.e., CT = 8/9, and a = 1/3), we obtain

C′T = 2. Using typical values CT = 0.75, and a = 1/4 (which have been used before for modeling

wind turbines)11 leads to C′
T
= 4/3. Obviously, for wind farms, Eq. (3) is not valid, though the typical

values for C′
T

remain applicable.

For wind-turbine farms, it is further useful to express the thrust in relation to the average land

surface area S per turbine (S = ℓxℓy, with ℓx, ℓy the average turbine-spacing in stream-wise and

span-wise directions), leading to

FT =
1

2
c′ftρU

2
dS , (4)

with a friction coefficient c′
ft

based on the horizontal surface rather than frontal area. Further,

c′ft =
πC′

T

4sxsy

=
πC′

T

4s2
, (5)

with sx = ℓx/D, sy = ℓy/D, and s =
√

sxsy.

The power extracted on average by wind turbines from the atmospheric boundary layer corre-

sponds to

P =
1

2
C′TρU

3
d A =

1

2
c′ftρU

3
dS . (6)

This is not equivalent to the power Pax on the turbine axis. The latter relates to the torque and rotational

velocity of the turbine. The drag forces on the turbine blades increase thrust, but reduce torque. From
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an energetic point of view, the drag forces lead to losses, corresponding to a conversion of mean-flow

energy in the atmospheric boundary layer into turbulent motion and heat. Using the power coefficient

CP, and C′
P

(respectively with respect to U∞, and Ud), the power on the turbine axis corresponds to

Pax = P
C′

P

C′
T

= P
CP

CT (1 − a)
(7)

Using actuator disk theory, it is straightforward to find that CP = C′
P
(1 − a)3. For the Betz limit (i.e.,

CP = 16/27, and a = 1/3), C′P = 2.0.

For wind turbines, typical optimal values may be CP ≈ 0.34 and a ≈ 1/4, such that C′
P
≈ 0.8, and

Pax ≈ 0.6P. In reality, the ratio C′P/C
′
T depends on the turbine working region. In region II, C′P/C

′
T is

close to optimal, with high values for C′
T
, and C′

P
. Consequently, in this operating region, optimization

to P or Pax is roughly equivalent. In region III, the turbine’s power output is controlled to be constant.

Depending on the control mechanism, this may lead to a large decrease in C′P/C
′
T . Consequences of

region III operation on the optimization results in the current work are addressed, separately, at the

end of Section 3. Until then, we assume P ∼ Pax , and formulate the wind-farm–ABL optimization

problem in terms of P.

2.2. Geostrophic wind and ABL relations

In the current subsection, we briefly review classical relations for the atmospheric boundary layer, as,

e.g., well documented in Ref. 12.

In the atmospheric boundary layer (ABL), the driving force is the geostrophic wind, of velocity

magnitude G, on top of the ABL, which is given by geostrophic balance condition without the effects

of friction. Inside the boundary layer, a balance exists between pressure forces, Reynolds stresses,

and Coriolis forces induced by the Earth’s rotation. Since the velocity in the ABL decreases towards

the surface, Coriolis forces also decrease, which causes the velocity to turn away from the geostrophic

wind direction at lower altitudes, often referred to as the Ekman spiral. Conventionally, a reference

frame is selected which is aligned with the wind speed near the surface (in the inner layer of the

boundary layer). In this case, the geostrophic wind G is defined with two components, i.e. UG in

stream-wise, and VG in span-wise direction, such that G = (U2
G + V2

G)1/2, and γ = arctan(−VG/UG)

the angle between the geostrophic wind direction, and the wind direction near the surface. Classical

similarity theory then leads to12

UG

u∗
=

1

κ
ln

(

u∗

f z0

)

−C, (8)

VG

u∗
= −A (9)

with κ = 0.4 the Von Kármán constant, and where C ≈ 4.5, and A ≈ 11.25 are found to be good

values.6 Further, z0 is the surface roughness. In the context of wind-farms, this is related to total

roughness induced by the ground surface and the wind turbines on the ABL. Likewise, u∗ is the

friction velocity, which is related to the total friction exerted by the ground and wind turbines on the

boundary layer. Further details on z0, and u∗, and their relation to the wind-farm parametrization, etc.,

are provided in §2.3. Finally,

f = 2Ω sin ϕ (10)

is the Coriolis parameter. For Ω = 2π/(24× 3600 s) = 7.27× 10−5 1/s, and, e.g., at 40 degree latitude,

we get f = 9.34 × 10−5 1/s.
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Figure 1: Relation between geostrophic wind and wind speed at turbine hub height as function of the

surface roughness in the ABL (cf. Eqs.(8,9,11) with f = 9.34× 10−51/s, and zh = 100m). (—): uh/G;

(−−): UG/G; and (−·): VG/G. (N): Roh = 1000; (•): Roh = 2000; and (H): Roh = 3000;

Combining Eq. (8), and (9), leads to

G

u∗
=

√

A2 +

[

1

κ
ln

(

u∗

G
Ro

)

−C

]2

, (11)

where the dimensionless group Ro = G/( f z0) has the form of a Rossby number, expressing a ratio

between inertia and Coriolis forces. In the current work, we are mainly interested in the reaction of

the ABL to changes in the surface roughness induced by wind turbines. Therefore, we introduce an

alternative Rossby number, using the turbine hub-height as reference length scale, such that

Roh =
G

f zh

= Ro
z0

zh

, (12)

and we will evaluate the effect of variations in z0/zh, while keeping Roh constant. A representative

reference value for Roh may, e.g., be estimated using f = 9.34× 10−5 1/s, G = 20m/s, and zh = 100m,

leading to Roh ≈ 2140.

Using expression (11), it is useful to investigate the relation between the geostrophic velocity G,

and uh, the mean streamwise velocity at turbine hub-height, which we estimate here using Monin-

Obukhov similarity under neutral stratification conditions (the log-law for rough walls). One can

write uh ≈ u∗/κ ln(zh/z0), with zh the turbine-hub height. To this end, G/u∗ is solved numerically from

Eq. (11), using MATLAB’s fsolve function. Alternatively, fits to the inverse function may be em-

ployed, as, e.g., proposed in Ref. 7 and further explored in the Appendix, where such an approximate

expression is given explicitly (since it involves errors on the order of 7% for G/u∗, here we continue

to use the numerical solution). In Figure 1, uh/G is displayed, together with the separate geostrophic

components UG/G, and VG/G as function of the surface roughness z0 (with z0 covering a range be-

tween 0.1m and 10m – as may be encountered in large wind farms8 – normalized by zh = 100). In

the figure, three different values of Roh are displayed, i.e. Roh = 1000, Roh = 2000, and Roh = 3000.
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It is appreciated that uh/G drops significantly when the surface roughness z0 increases, reducing the

available wind speed at hub height. Figure 1 also illustrates that the angle between the geostrophic

wind direction, and the surface wind direction increases when z0 increases, as is apparent from the

changes in UG/G, and VG/G. The induced roughness z0 in a wind farms strongly depends on the

average turbine spacing s, and the thrust coefficient C′
T
. Hence, since the geostrophic wind G is the

driving force in the ABL, the strong dependence of uh/G on z0 should be taken into account when

wind-farm lay-out for optimal power output is considered. This is addressed in the next section. For

this analysis to follow, we will keep the Rossby number Roh constant at 2000.

2.3. Wind-farm induced surface roughness from LES

Depending on atmospheric conditions, the magnitude of the geostrophic wind, and surface roughness,

the height H of the atmospheric boundary layer typically is of the order of 1–2km. Consequently,

wind turbines, with a typical hub height of 100m are situated within the ABL’s inner region (≤ 0.1H).

In the classical view on boundary layers, ‘outer-layer’ and ‘inner-layer’ dynamics are presumed to

be independent (see, e.g., Ref. 13), and the inner layer dynamics are characterized by the surface

roughness z0, and the friction velocity (characterizing the overall wall friction). In the context of wind

farms, Fransden6 formulated a model for the surface roughness induced by the farm.

Based on a suite of large-eddy simulation cases, this model was recently refined, including effects

of turbine-wake mixing in the formulation.8 Specifically, the simulations used periodic boundary

conditions in horizontal planes to represent fully developed conditions relevant to wind farms that

are 10-20 times longer than the ABL height. For illustration, figure 2 shows contours of streamwise

velocity on three perpendicular planes across a snapshot of the flow. Domains containing, e.g. 6 × 8

wind turbines were used. The wind turbines were represented using the ‘drag-disk’ model. In a

recent detailed validation study14 it was demonstrated that, except for near-wake effects close to the

turbines with x ≤ 3D, these models allow an accurate representation of the overall wake structures

behind turbines. Moreover, also Reynolds stresses, which are responsible for the main vertical fluxes

of energy towards the wind turbines,8, 15 were found to be accurately predicted,14 thus allowing an

accurate representation of the interaction of the wind farms with the atmospheric boundary layer.

The flow was forced using a streamwise pressure gradient (instead of Coriolis forcing) with the

understanding that the ‘outer forcing’ method should not significantly affect the ‘inner-layer’ structure

of the flow, i.e. the relationship between the resulting roughness and, e.g. the hub-height zh. As can

be seen in Fig. 2, the wakes meander back and forth before interacting with the next wind turbine row.

Also, in the vertical direction, large-scale structures mix the fluid momentum thus entraining kinetic

energy into the region where the wind turbines are located. As discussed in detail in Refs. 8, 15, such

vertical entrainment is a crucial mechanism in the limit of infinite wind farms.

The suite of LES were processed to obtain horizontally averaged streamwise velocity profiles.

As a confirmation of an important assumption made in the original Frandsen (1992)6 model, the

simulations showed that in the inner layer of a fully developed wind-turbine atmospheric boundary

layer, two equilibrium (log) layers exist. The first equilibrium layer, the ‘high’ layer, is situated above

the wind turbine canopy, with a friction velocity u∗hi (“high” denoted by subscript ‘hi’). This friction

velocity is associated with the total friction induced by the ground surface and the wind turbines,

balancing the driving forces in the ABL. At very high Reynolds number, it can also be expected that

u∗hi ≈ (−⟨u′w′⟩z)1/2 (with −⟨u′w′⟩z the Reynolds stresses at a height z, with H ≫ z & zh). A second

“low” layer exists below the wind turbine array (“low” denoted by subscript ‘lo’), where the friction

velocity is reduced due to the momentum lost to the wind-turbines, and equals u∗lo =
√

τw/ρ, where

τw is the stress at the ground. A new observation was made based on the LES results, namely of a

third layer separating the two log-layers, namely a wake-mixing region at turbine hub height.8
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Figure 2: Contours of streamwise velocity (in units of u∗hi) on three orthogonal planes across the

domain, obtained from LES.8 The horizontal plane cuts the wind turbine rotor planes at hub-height.

The model for effective roughness height associated to large wind farms was developed using a suite

of such LES under various geometric and loading conditions.8

Using the insights from the LES, in Ref. 8, a new model was proposed for the ratio u∗lo/u∗hi, by

modifying Frandsen’s original model6 to include effects of the wake making in the third layer. The

ratio between the friction velocities corresponds to8

u∗lo

u∗hi

=

ln



















zh

z0,hi

(

1 +
D

2zh

)

ν∗w
1+ν∗w



















ln



















zh

z0,lo

(

1 − D

2zh

)

ν∗w
1+ν∗w



















, (13)

where z0,hi is the surface roughness induced by the wind farm, and ν∗w is a normalized “augmented

wake eddy viscosity", estimated as8

ν∗w ≈ 28
√

cft/2, (14)

with cft = πCT/4s2. This normalized eddy viscosity corresponds to the extra eddy viscosity introduced

by the turbine wakes in the ABL, normalized with the boundary layer eddy-viscosity κu∗z, in absence

of turbines.8 In the surface-roughness model introduced in Ref. 8, it follows from an eddy viscosity

formulation which is used to estimate the logarithmic slope of the mean velocity profile at turbine

hub height, connecting the “low” and “high” equilibrium layers. Typical values for ν∗w obtained from

large-eddy simulations in Ref. 8 range from 0.5 to 3.5.

Similar to the friction velocities, a high surface roughness z0,hi, and a low surface roughness z0,lo

are respectively associated to the upper and lower equilibrium layer. The ‘low’ surface roughness z0,lo

is the standard roughness associated with the land surface length-scales on which the wind farm is

build. The high surface roughness, is the surface roughness felt by the equilibrium layer above the
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turbines. In the new model, it is given by8

z0,hi

zh

=

(

1 +
D

2zh

)

ν∗w
1+ν∗w

exp

























−























cft

2κ2
+



















ln



















zh

z0,lo

(

1 −
D

2zh

)

ν∗w
1+ν∗w





































−2




















−1/2






















. (15)

Using the wind-farm induced surface roughness z0,hi, and the relations presented in §2.2 (and

replacing z0 with z0,hi) we are able to evaluate the effect of wind farms on the ABL. To this end, we

rely in the current study on formulations using c′
ft

(cf. §2.1, and next subsection), while in the model

proposed by Calaf et al., cft is used. In the context of wind farms, the relation between both is not

necessarily straightforward, as discussed in §2.1. Here, we will use the strong approximation that

cft ≈ 9/16c′
ft
, i.e. using Eq. (3), with a = 1/4.

In terms of the geostrophic wind and ABL relations introduced in §2.2, it is z0,hi, and u∗hi, which

are important. These are respectively the roughness height and friction velocity experienced by the

ABL above the wind farm. Hence, u∗, and z0 in Eqs. (8)–(9), and (11)–(12) should be replaced by

z0,hi, and u∗hi in the context of wind farms.

2.4. Normalized farm power and optimization problem

We now turn to the optimization problem. We focus on the normalized farm power, which serves as

a basis for the definition of the cost function in the optimization. The power output normalized using

the geostrophic wind G, and per unit land surface corresponds to

P+(s,C′T ) =
P

S ρG3/2
=

1
2
C′

T
ρU3

d
A

S ρG3/2
=
πC′

T

4s2

(

u∗hi

G

)3
(

Ud

u∗hi

)3

= c′ft

(

u∗hi

G

)3
(

Ud

u∗hi

)3

(16)

where G/u∗hi is given by Eq. (11), and an expression for the ratio of turbine disk velocity to friction

velocity, Ud/u∗hi, will be further addressed below.

When optimizing wind-farm power output, it may be relevant to normalize power with total cost

instead of total surface area per turbine in the farm. The total cost can be divided into two parts. A

first part, consists of costs which are proportionally related to the area of land used, which we will

denote here with costL, expressed in units of $/m2. Elements contributing, may be the lease price of

land, cost of connectivity to the power net, electric lines and civil works (e.g. in off-shore farms this

is a large cost),16 etc. A second part of the total cost, consists of costs which are proportional to the

number of turbines employed, and we denote the cost per turbine with costT [$]. The ratio of both

costs is now defined as

α =
costT/A

costL

, (17)

where the turbine-rotor-disk area A is used to ensure that α is a non-dimensional constant.

Using these elements, the normalized power per unit cost is now straightforwardly defined as

P∗(s,C′T , α) = P+
costL

costT/S + costL

= P+
4s2/π

α + 4s2/π
=

C′
T

α + 4s2/π

(

u∗hi

G

)3
(

Ud

u∗hi

)3

, (18)

where in a first step costT is related to the surface area per turbine S to allow a dimensional meaningful

addition of costs, and the ratio α is subsequently introduced by rearranging the equation. It is obvious

that, by construction, P∗(s,C′T , 0) = P+(s,C′T ).

To proceed, we will eliminate Ud/u∗hi from the equations by using a stream-wise momentum

balance of the ABL, horizontally averaged per turbine, and integrated over its full height. The balance

corresponds to
∫ H

0

fρ(V(z) − VG)ℓxℓy dz = τwℓxℓy +
1

2
c′ftρU

3
dS , (19)
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Figure 3: Normalized Power per unit cost for different values of α as function of the average turbine

spacing s (and C′T = 4/3). Lines: obtained from model (Eqs. 18,13,15). Symbols: from large-eddy

simulations in Ref. 8, with (◦): α = 0; (▹): α = 1; (�): α = 10; (♢): α = 30; and (◃): α = 100

where f (V(z) − VG) corresponds to the driving Coriolis force in an Ekman layer,12 and V(z) is the

averaged span-wise velocity as function of the height. The left-hand side of Eq. (19) corresponds to

u∗
2
hi
ρℓxℓy, and also τw = ρu∗

2
lo

(cf. previous subsection), such that

u∗
2
hi = u∗

2
lo +

1

2
c′ftU

2
d . (20)

Hence,

Ud

u∗hi

=













1 − u∗
2
lo
/u∗

2
hi

c′
ft
/2













1/2

. (21)

This equation, in combination with Eqs. (13), and (15), are now used to express Ud/u∗hi in Eq. (18).

A combined easy-to-use analytical expression, directly expressing Ud/G (cf. Eq. 18), is provided in

the Appendix, relying on an approximate solution to Eq.(11).

3. Optimal turbine spacing

Based on the formulation for the normalized power P∗, we now make an evaluation of average wind-

farm power output as function of C′T , α, and s. Moreover, the optimal average turbine spacing sopt is

also investigated. As discussed in §2.2, we take Roh = 2000. Further, for the ‘low’ surface roughness

we select z0,lo/zh = 10−3 (cf. §2.3). We first focus on situations where turbines are working in

optimal operating conditions, with relative high values of C′
T
. This operation mode is encountered

mainly in region II of a wind turbine’s operation range. The effect of stalling or feathering turbines

for constant power output at high wind velocities (region III of a wind turbine’s operation range) on

optimal turbine spacing will be briefly addressed at the end of the current section.

We first turn to the evaluation of the normalized power P∗. In Figure 3, P∗ (Eq. 18) is displayed

as function of s for different values of α, and C′
T
= 4/3. The normalized power is evaluated using the
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model proposed in the previous section, but next to that, results from the LES simulations of Calaf

et al.8 are also displayed. Large-eddy simulations were performed for different values of s, and C′T :

the average turbine power output P, and the induced surface roughness z0,hi are directly obtained from

the simulations (cf. Refs. 8, 9 for details on the simulation procedure, and set-up), and the respective

values for P∗ are obtained using Eq. (16) and (11). It is clear from Figure 3 that the model for P∗

presented in the previous section, provides a reasonable fit of LES results at various average turbine

spacings. Results in Figure 3 for α = 0 show that the turbine spacing which achieves maximum power

output per acre is relatively small (sopt ≈ 3). These low values (related to s < 5) should be interpreted

with care, as the LES simulations used to construct P∗ are not covering this region (cf. discussion at

the beginning of Section 2.3). Moreover, when turbines are very closely spaced, turbulent fluctuations

induced by the preceding row of turbines may start to reduce the effective power coefficient C′
P

of the

turbines, reducing the power converted to electricity (cf. Eq. 7). Further, at small distances other

costs such as increased wake-turbulence induced fatigue damage and failures should be incorporated

into the analysis. At higher values for α, we find that the optimum shifts to higher values of s, for

which our model for P∗ is better suited.

Before continuing an evaluation of the optimal turbine spacing as function of α, the effect of

turbine spacing on the power output per individual turbine is highlighted in Figure 4 for three values

of C′
T
. In this figure, P/P∞ is displayed as function of s, where P∞ is the reference power output of a

lone-standing turbine. It is appreciated that low values of s (< 10) significantly reduce the available

power per turbine. This is a result of a lower available wind speed at hub height corresponding to a

higher wind-farm induced surface roughness z0,hi, and a slow-down of the ABL at constant geostrophic

wind G. For instance, even at a relative large average spacing of s ≈ 10, power output decreases by

more then 20% compared to the power output of a lone-standing turbine. Obviously, the total farm

power is also related to the number of turbines per acre (which is inversely proportional to s2), such

that optimal turbine spacings may be found at much lower values for s, as demonstrated in Figure 3.

In figure 4, we also added actual wind-farm data. To this end, we compared wind-speeds at the last

row of turbines to those at the first row of turbines as obtained by the SCADA system for the Nysted

and Horns Rev wind farms (reported in Frandsen et al 2007).17 In case of the Horns Rev wind-farm,

sx = xy = 7, and measurements were obtained at the 10th row of turbines, ± 5 km downstream of the

first row. For the Nysted wind farms, sx = 10.5, and sy = 5.8. Measurements were obtained at the

8th row of turbines, ± 6 km downstream of the first row. Precise CT (or C′T ) values are not reported.

For both cases, the atmospheric boundary layer may not have reached the fully developed wind-

turbine array limit, which we expect for wind-farms with horizontal extents exceeding 10–20 km.

The measured data fall somewhat above the modeled normalized power in figure 4 but the agreement

is reasonable given the various uncertainties involved in the analyses, measurements, and the lack of

complete convergence towards a ‘fully developed’ limit.

The optimal turbine spacing sopt is now investigated as function of α, and C′
T
. In the current

work, it is not our intention to provide a detailed estimation of α based on current technical and

economical parameters. Instead, we will investigate a broad range of possible values for this ratio.

Nevertheless, it is useful to provide at least a rough idea of what a typical value of the parame-

ter could be. Some representative numbers that can be used are motivated as follows. For lease

of land, the average yearly payout per wind turbine nowadays is around $5,000 for present typi-

cal spacings of 500m by 500m (see e.g., http://www.windustry.org/how-much-do-farmers-get-paid-

to-host-wind-turbines). So over a 20 year lease, this would be around pL ≈ 0.4$/m2. In some

regions, the purchase of the land may be an option. For instance in Texas one may estimate a cost

of $1,000 per acre (see e.g. http://recenter.tamu.edu/data/agp), or approximately 0.25 $/m2, i.e., of

similar order of magnitude to the cost of leasing. Representative cost of a wind-turbine can be found

at http://www.windustry.org/how-much-do-wind-turbines-cost. The average cost is listed as $3.5×106

10
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Figure 4: Power output per turbine as function of turbine spacing s, normalized with power output of

a lone-standing turbine. (−−) C′T = 1.0; (—) C′T = 4/3; (−·) C′T = 5/3. Symbols represent wind-farm

measurements. (△,N): Horns Rev wind farm (s = 7), last row compared to front row (west–east) at

measured respectively 8.5 and 12.5 m/s of wind speed (cf. Ref. 17, 18 ); (�): Nysted wind farm

(s2 = 10.5 × 5.8), last row compared to front row (west–east) measured with 8.5 m/s of wind speed

(cf. Ref. 17).

for a 2MW rated wind turbine. Using a representative turbine diameter of 70m one arrives at a cost

factor per square diameter of costT ≈ 700$/m2. The corresponding parameter α is then roughly in

the range of 1.5 − 3 × 103. In the current work, we will cover a range of values for α from α = 0

(corresponding to no costs per turbine) to α = 104.

In Figure 5 the optimal turbine spacing sopt is displayed as function of α. By investigating various

values of α and C′
T
, we found that only one global optimum exist for a given value of α, and C′

T

(see, e.g., Figure 3). The farm-power model provided in the previous section was implemented in

MATLAB, and for the optimization, we employ the fminbnd function with bounds 0 ≤ s ≤ 40.

This method combines standard optimization algorithms, such as parabolic interpolation, and golden

section search (cf., e.g, Ref. 19).

In Figure 5(a), the optimal spacing is given for three values of C′
T
. It is clear that α has a strong

influence on sopt, with optimal values ranging from s ≈ 4 for α = 1 to s ≈ 25 for α = 104. An analysis

of the trends at large α suggests a scaling behavior of sopt ∼ α1/4, in the limit α → ∞. Obviously,

for low values of α and low values of sopt, other factors may play a decisive role in the selection of

the average turbine spacing in wind farms (such as, e.g., constraints imposed by fatigue loading in

closely placed turbines). For large values of α (e.g. 103 < α < 104, which may be economically more

relevant), it is appreciated that optimal turbine spacing is larger than sopt ≈ 15. This is considerably

larger than typical average spacings currently used in large wind farms both on and off shore (e.g., the

well known Horns Rev wind farm off the coast of Denmark, has an average farm spacing of s = 7).

In order to investigate the sensitivity of the optimal farm power output P∗ to variations of s around

the optimum sopt, we evaluated sub-optimal solutions in Figure 5(b). To this end, we define the

suboptimal spacing sη(α) as the spacing that gives a power output of P∗[s = sη(α)] = ηP∗opt (and

s < sopt). Hence sx(α) provides a spacing which is lower then sopt, and has a power efficiency of

11
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Figure 5: (a) Optimal turbine spacing sopt as function of the ratio α for different values of C′
T
: (−−)

C′
T
= 1.0; (—) C′

T
= 4/3; and (−·) C′

T
= 5/3. (b) Smallest turbine spacing as function of α (and for

C′
T
= 4/3) for which the normalized power output P∗ corresponds with (—) 100%P∗opt; (−−) 99% of

P∗opt; (−·) 95% of P∗opt; and (· · ·) 90% of P∗opt

η compared to the power at optimal spacing. In Figure 5(b), results are shown for s99%, s95%, s90%,

together with sopt. Especially at high values of α, it is appreciated that a reduction in desired overall

farm–ABL efficiency allows to reduce the spacing significantly. For instance, taking α = 104, and

η = 95% allows to reduce the optimal spacing sopt ≈ 25 to a spacing of s ≈ 15.

Finally we turn our attention to region III operation of wind turbines where turbine-power output

is limited to a constant value, independent of wind speed, by pitching the turbine blades, either to

feather or to stall the turbine.4 In the case of pitching to feather, the angle of attack of the turbine

blades is decreased such that the lift forces decrease. In this case the thrust forces decrease, while,

since the flow remains attached in this regime, the ratio C′
P
/C′

T
remains constant. In the case of

pitching to stall, the angle of attack of the turbine blades is increased, such that the turbine starts to

stall. In this case, the ratio C′
P
/C′

T
decreases, but the thrust force and the thrust coefficient C′

T
does

not decrease, and may initially even increase. Obviously, the different behavior of C′
T

in both control

methods, may differently affect the wind-farm ABL interaction.

In practice, wind-farm optimization of P∗ should be performed over the whole operating region

of the turbine, weighted with statistical distribution of geostrophic wind speeds available at a certain

location (e.g. assuming a classical Weibull distribution to characterize the wind-speed probability

density function).10 In case power in region III operation is controlled by stalling the turbine, the

optimal turbine spacing will not differ significantly from the results presented above for region II

operation. In this case, C′
P
/C′

T
is modulated by stalling the turbine blades, but C′

T
remains roughly

constant, close to its region II value. Hence, the control in region III does not affect the wind-farm–

ABL interaction.

Region III operation becomes quite different when turbines are feathered to control the power

output to a constant. In this case, C′
P
/C′

T
is kept constant, and C′

T
decreases by reducing the angle of

attack of the turbine blades. As a result, the ABL partially speeds up. In Figure 6(a), this situation is

demonstrated for different values of α, and starting with a region-II value of C′T = 4/3, and a turbine

spacing sref = sopt which is optimally designed for region II operation. The figure shows the power

output P+ normalized with the power output P+
ref

at C′T = 4/3. Especially for low values of α (for
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Figure 6: (a) Ratio of P+(sref,C
′
T
) to P+

ref
(sref, 4/3) (with sref = sopt(C

′
T
=4/3), the optimal value for

C′
T
= 4/3) as function of the thrust coefficient C′

T
. (b) Dependence of P∗(sref,C

′
T
)/P∗opt(sopt,C

′
T
) on

C′
T
, with sref = sopt(C

′
T
=4/3).

which sopt is low, cf. Figure 5) we find a large influence of the wind-farm–ABL interaction on the

control. For lone-standing turbines, we would expect P+ to decrease linearly with C′
T
. Instead, for

low values of α, a decrease of C′
T

leads to an acceleration of the ABL, such that P+ decreases less

then linearly. For high values of α this effect diminishes, since here sopt is higher, approaching more

and more the situation of lone-standing turbines.

Since feathering turbines in region III affects the ABL, this will also reflect on the optimal

wind-turbine spacing in wind farms, which may differ from the optimal obtained for region-II op-

eration (in contrast to stalling the turbines). To further illustrate this, Figure 6(b) shows the ra-

tio P∗(sref,C
′
T )/P∗opt(sopt,C

′
T ) as function of C′T , where P∗(sref,C

′
T ) is the normalized power output

of a farm with spacing sref designed to be optimal at an operational point with C′
T
= 4/3, while

P∗opt(sopt,C
′
T ) is the normalized power output for a farm designed to be optimal for C′T . When C′T is

decreased (starting from C′
T
= 4/3) it is appreciated that the ratio of P∗ to the optimal value decreases,

as the turbine spacing sref is not optimal for these lower values of C′
T
. Optimizing P∗ for the whole

operation range of the turbines in a wind farm is then equivalent to optimization with on average

lower C′
T

values, leading to lower turbine spacings (cf. also Figure 5).

4. CONCLUSIONS

Following a recent computational study of very large wind farms, in which a new parametrization of

effective roughness height was proposed,8 we explored in the current work implications on optimal

spacing among wind turbines. The limit of “infinite wind farms”, when the overlaying atmospheric

boundary layer has become “fully developed”, is relevant in practice for wind farms on flat terrain

whose length exceeds the height of the atmospheric boundary layer by over an order of magnitude.

Then the boundary layer has reached a new constant equilibrium height and turbulence levels no

longer change with downstream direction. In this limit the power extraction is dominated by vertical

entrainment of kinetic energy.8, 15 For optimal wind turbine spacing, the figure of merit that has been

used here is the total power extracted for a given geostrophic wind velocity. Depending on the ratio
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of land-surface costs and turbine costs, different optimal spacings have been obtained. For realistic

cost ratios, we find that the optimal average turbine spacing may be considerably higher (∼ 15D) then

conventionally used in current wind-farm implementations (∼ 7D).

Naturally, the conclusions reached here are subject to considerable limitations. The approach is

based on parameterizations of wind-farm–ABL interactions under neutral stratification conditions,

and assumes a flat terrain with no topography. Very often, for land-based wind farms the topography

will locally affect the interactions and thus affect the optimal arrangement. For large offshore wind

farms, the distribution of costs according to ‘per-turbine’ or ‘per surface area’ may be more difficult

to specify and depend greatly on conditions of connectivity, typical sea states, distances to the coast,

etc. It is also important to point out that the current findings are relevant to optimal spacing in the

“fully developed wind turbine array boundary layer” for wind farms that are significantly larger than

the fetch required for a surface disturbance to reach equilibrium with the entire ABL. Normally this

is assumed to take about 10 times the height of the ABL, i.e. we may consider the present analysis

to be relevant for wind farms larger than (say) 10 km. For shorter wind farms, the optimal spacing

may depend on location, as the front wind turbines will be operating under more powerful incoming

winds.

Finally, the parametrization makes no distinction among span-wise and stream-wise spacings of

wind turbines, or effects of staggering their locations (or considering a tilted inflow). As shown (e.g.)

in LES,9 increases on the order of 5% can be expected in the extracted power when one staggers the

turbines. The overall optimization trends as predicted here will vary slightly under such conditions,

but we expect the major trends to be the same. Still, especially in locations with strong prevailing

wind directions in which staggering can be an important part of the optimization, differences with

present predictions may be expected. More accurate optimization and prediction of the optimal power

for large wind farms (in which the detailed couplings with the ABL are crucial) will need to await

more generally valid and accurate parameterizations of wind-turbine–ABL interactions. This should

include effects of thermal stratification, wind turbine arrangements, and complex terrain.
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APPENDIX

In the current work, we rely partially on relations with an implicit formulation (e.g. Eq. 11), which

we solve numerically by means of an iterative solver (cf. §2.2). Here we present an easy-to-use

alternative expression, which allows to evaluate Ud/G (required to obtain the normalized power)

directly, by using an approximation for Eq. (11). We begin by using an approximate fit to the solution

of Eq. (11) similar to that used before:7, 20

G

u∗hi

≈ 1

κ
(ln Ro − A∗) . (22)

The parameter A∗ is a fitting parameter which depends on Ro. For 104 < Ro < 9 × 105, we find A∗ ≈
3.2, with a maximum relative error of 7% on the prediction of G/u∗hi (this range for Ro corresponds

with Roh = 2000, C′
T
= 4/3, and 25 > s > 3 encountered in the current work).
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Using the model expression for z0,hi/zh (Eq. 15) in the approximation yields

G

u∗hi

≈ Vw
√

1 + cftV2
w/2
+

1
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where Vw is a dimensionless velocity given by the expression

Vw =
1

κ
ln


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(24)

(the velocity Vw may be understood as an extrapolation from below the turbine wake of the average

wind-farm velocity at farm hub height).8 The wake viscosity ν∗w is given by Eq. (14) (ν∗w ≈ 28
√

cft/2),

cft = πCT/4s2 and cft/c
′
ft

depends upon the operating region (as described in the main text, for region II

we use cft/c
′
ft
= 9/16). Starting from Eq. (21), the ratio of disk velocity to friction velocity, also needed

in Eq. (18), can be simplified to read

Ud

u∗hi

=

Vw

√

cft/c
′
ft

√

1 + cftV2
w/2
. (25)

Summarizing and further simplifying, the overall ratio Ud/G required in Eq. (16) can be written as
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(26)

Equation (26) provides an estimate of Ud/G with a maximum relative error of 7% due to the approx-

imation in Eq. (22) (using A∗ = 3.2). The expression should be handled with care when evaluating

the normalized farm power (Eqs. 16,18), which depends on (Ud/G)3. Using the approximate fit of

Eq. (26), this yields a maximum relative error of about 20%. This is the reason that in the current

work, we selected not to use the approximation in Eq. (22), as discussed above (see also §2.2). Never-

theless, since relative trends will be reasonably well predicted it is still useful to have such simplified

expressions available for more qualitative parameter explorations.
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