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Optimal Two-Dimensional Lattices for
Precoding of Linear Channels

Dževdan Kapetanović, Hei Victor Cheng, Wai Ho Mow, and Fredrik Rusek

Abstract—Consider the communication system model y =
HFx+n, where H and F are the channel and precoder matrices,
x is a vector of data symbols drawn from some lattice-type
constellation, such as M-QAM, n is an additive white Gaussian
noise vector and y is the received vector. It is assumed that
both the transmitter and the receiver have perfect knowledge
of the channel matrix H and that the transmitted signal Fx is
subject to an average energy constraint. The columns of the
matrix HF can be viewed as the basis vectors that span a
lattice, and we are interested in the precoder F that maximizes
the minimum distance of this lattice. This particular problem
remains open within the theory of lattices and the communication
theory. This paper provides the complete solution for any non-
singular M × 2 channel matrix H. For real-valued matrices and
vectors, the solution is that HF spans the hexagonal lattice. For
complex-valued matrices and vectors, the solution is that HF,
when viewed in four-dimensional real-valued space, spans the
Schläfli lattice D4.

Index Terms—

I. INTRODUCTION

WE consider a complex baseband linear transmission
system with 2 inputs and ≥ 2 outputs corrupted by

additive white Gaussian noise. The mathematical model of
the system under investigation is

y = HFx+ n (1)

where H represents an M × 2 channel gain matrix, F is a
2 × 2 precoding matrix adopted at the transmitter side, x is
a 2-dimensional column vector comprising data symbols, and
n is a vector of independent white Gaussian noise variables.
Throughout the paper, we assume that both the transmitter
and the receiver are provided with perfect channel state
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information, and we consider the problem of constructing the
precoding matrix F to improve system performance according
to a properly chosen metric. As pointed out in [7], the model
in (1) also encompasses the case when transmitting two data
streams over an M × Nt MIMO channel with M,Nt ≥ 2.
Telatar showed in [1] that the capacity-achieving approach
is to access the eigenmodes of the channel matrix through a
singular value decomposition (SVD) and transmit independent
complex Gaussian symbols over each eigenmode with appro-
priate power allocation. The optimal power allocation can be
obtained by applying the classical waterfilling technique. Note
that power allocation can be viewed as a precoder of the
specific form F = VP, where the SVD of H is H = USV∗,
with (·)∗ denoting the Hermitian transpose, and the diagonal
matrix P has its diagonal consisting of the power allocation
factors.

However, Gaussian data symbols are impractical, and usu-
ally discrete QAM-like constellations are used. In this case,
the power allocation as a result of the classical waterfilling
is no longer optimal in the sense of maximizing the mutual
information. With discrete constellations, the best power allo-
cation strategy is known under the name Mercury/Waterfilling
and is due to Lozano, Tulino, and Verdu [2]. However,
unlike the situation with Gaussian inputs, the best power
allocation does not result in the optimal precoder F for an
arbitrarily given discrete constellation. It merely gives the
optimal precoder under the constraint that the data symbols
in x can be independently detected without performance loss
at the receiver side [2].

To find the precoder F that maximizes the mutual informa-
tion between the input and output of the channel, i.e., solve

Fopt = argmax
F

I(y;x), (2)

where I(·; ·) is the mutual information operator, is a chal-
lenging problem. Recently, Perez-Cruz, Rodrigues and Verdu
[3] derived the necessary conditions for the first-order op-
timality, and also proposed a fixed-point iterative algorithm
to find efficient precoders F. Continuing in this direction, it
was shown in [4] that the information rate is concave with
respect to a certain precoder-dependent matrix. This allows
the development of more effective numerical algorithms for
finding the optimal mutual information precoder. However,
it still involves heavy computations, such as computing the
non-linear MMSE matrix. It is known that the optimal mutual
information precoder converges to the Mercury/Waterfilling
policy [3] at low SNR, while it converges to the precoder
that maximizes the minimum Euclidean distance1 between all

1It will be simply referred to as the minimum distance in the sequel.
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possible received constellation points (i.e. noiseless received
vectors) HFx’s at high SNR. This observation and further
bounds that link the minimum distance to mutual information
were also pointed out by Palomar and Payaro in [5]. The
problem of maximizing the minimum distance can be formally
stated as

Fopt = argmax
F

min
x,x′ �=x

‖HF(x−x∗)‖2 such that ‖F‖2 ≤ P0,

(3)
where P0 represents the allowable maximum average power
and is an arbitrary positive constant that is necessary to make
the optimization problem meaningful, and ‖.‖2 denotes the
sum of square magnitudes of all elements in the vector/matrix
argument. The problem (3) was shown to be NP-hard in [5].

In general, the problem of constructing precoders, not
limited to a MIMO context, such that the minimum distance
is maximized is a classical problem in communication theory
and has received much attention during the past decades, see
for example [6] for an overview. In the field of wireless
communications, H typically represents a MIMO or an OFDM
channel, and there has been significant progress towards
determining the optimal (or near-optimal) minimum distance
constructions of F. In [7], the problem is completely solved
for M × 2 channels with BPSK or QPSK constellations. An
extension to 16-QAM was made in [8]. Suboptimal designs
based on Toeplitz matrices for any dimensions of the channel
matrices and constellations were given in [9]. The work in
[10] proposes real-valued precoders with low ML-decoding
complexity. [11] considers real-valued precoders that are ap-
proximately optimal among real-valued ones with respect to
the minimum distance for M × 2 systems, and are easy to
calculate for large QAM constellations. In [12] and [13], it
is proposed to design F based on dense lattice packings. A
lattice-based construction implicitly assumes that the signal
constellation is a finite but sufficiently “large” set of lattice
points, and the idea is that if the received constellation points
HFx’s are arranged as a dense lattice packing, the minimum
distance is expected to be “good”. However, no exact results
on optimality have been presented in either of these papers.

To gain some insight into the problem, let us examine some
simple special cases. In real-valued precoding, some specific
instances of the problem in (3) can be viewed geometrically.
Assume that tr(FF∗) = 4, with tr(·) being the trace operator,
and the elements of the input x are identically and indepen-
dently distributed (i.i.d.) random variables. Consider the spe-
cial case of a diagonal channel matrix H, i.e., h1,2 = h2,1 = 0,
and further normalize H to have h2,2 = 1 so that we only need
to focus on the effect of varying the value of h1,1. (This is
less restrictive than it appears because a diagonal matrix can
be used to represent a general channel matrix in the SVD
representation. Refer to the definition of S in Section II-B for
details.) Since there are only four real-valued elements in F,
and they are bounded by the energy constraint, it is possible
to determine the optimal F to (3) for some carefully chosen
value of h1,1, say, by empirical means. When H = I (i.e.,
h1,1 = 1), one optimal solution to (3) is F = I, while another
one is

F =

(
1 0.5

0
√
3/4

)
,

which spans a hexagonal lattice. However, as soon as H devi-
ates from I (even with a very small change, say, h1,1 = 1.01),
the optimal F is unique (up to sign changes in the columns)
and it gives rise to an HF that spans a hexagonal lattice.
Varying h1,1 further, the optimal F changes in a continuous
way, while the received lattice HF remains the same (up
to scaling). This behavior continues until h1,1 reaches a
certain value, for which the optimal F suddenly changes in a
discontinuous way, resulting in a discontinuous change in HF.
However, surprisingly, HF still spans a hexagonal lattice, in
spite of its subtle changes!

Figure 1 depicts such a behavior by plotting as vectors
the columns of the optimal F and the corresponding HF for
three different H’s with h1,1 = 1.5, 2.7 and 2.8, respectively.
Assuming the constellation points are integers, the received
constellation points HFx are shown as discrete points. The
optimal F changes continuously as h1,1 increases from 1.5
to 2.7, and the columns of HF are simply being scaled and
always span the same hexagonal lattice (up to scaling). When
h1,1 further increases from 2.7 to 2.8, there is a discontinuous
change in the elements of the optimal F. The columns of HF
also change discontinuously, but they still span the hexagonal
lattice (up to scaling and rotation). This intriguing behavior
of the optimal precoder poses a challenging puzzle, and this
paper is a consequence of our effort to offer a satisfactory
solution to settle this puzzle.

The main contribution of this paper is to derive the exact
solution to the minimum distance precoding problem for the
case of an M × 2 channel matrix H and an infinite signal
constellation. Although our results are derived for infinite
constellations, the results are applicable to “large” QAM con-
stellations. In our numerical result section, we shall investigate
how “large” a QAM constellation is sufficient for the presented
results to be fruitfully applied. With the solution at hand, we
are able to answer questions, such as the following.

• Is there a general underlying structure of the precoding
optimization problem (3)?

• Under what conditions, does the solution to (3) vary
with the channel matrix H in a continuous (respectively,
discrete) manner?

• Is it possible to offline construct a codebook of optimal
precoders so that there is no need to perform any online
optimization?

The answers to these questions are that there is indeed a
profound structure in the solution of (3). Remarkably, there is
a single precoder structure which is optimal, and it organizes
the received constellation points as a hexagonal lattice for real-
valued F’s, and as a Schläfli lattice for complex-valued F’s.
However, the basis through which the lattice HF is observed
changes (up to scaling) in a discrete fashion when H changes.
This implies that (3) is actually a discrete optimization prob-
lem and not a continuous one.

As a remark, we mention that the above precoder con-
struction is optimized under the assumption that a maximum-
likelihood detector is used. Much other work on precoders that
use less complex receivers exist, see for example [14] for a
comprehensive treatment of precoding with MMSE or DFE
detectors.

The rest of this paper is organized as follows. Section II
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Fig. 1. Visualization of the solution to the precoding optimization problem in
(3) in the special case that elements of the input x are i.i.d., tr(FF∗) = 4, and
a diagonal channel matrix H = diag([h1,1 1]). (a) Columns of the optimal
real-valued precoding matrix F are plotted. Three different H are considered:
h1,1 = 1.5 (solid line arrow); h1,1 = 2.7 (dashed line arrow); h1,1 = 2.8
(dotted line arrow). Columns of the same matrix are plotted as arrows with
the same line style. (b) Columns of the matrices HF and their corresponding
received constellation points HFx’s for h1,1 = 1.5 (solid line arrows, filled
circles) and for h1,1 = 2.7 (dashed line arrows, crosses) are plotted. (c)
Columns of the matrices HF and their corresponding received constellation
points HFx’s for h1,1 = 2.8 (dotted line arrows, filled triangles) are plotted.

presents the necessary theoretical background and formulates
the problem. Section III presents the main results of the
work, both for real-valued and complex-valued precoding,
along with a description on how to find the optimal minimum
distance precoder. All proofs are defered to the Appendices.
Section V applies our derived results to MIMO and OFDM
communications. Conclusions are presented in Section VI.

II. PROBLEM STATEMENT

This section formally formulates the problem outlined in
Section I. We start by briefly introducing lattice theoretic
concepts that we shall subsequently make use of. Throughout
the paper, let E denote the expectation operator, I the 2 × 2
identity matrix, 0 the 2 × 2 zero matrix and (·)T matrix
transpose.

A. Lattices

Let L be a 2 × 2 matrix and u = [u1 u2]
T

a 2 × 1 vector.
A lattice ΛL is the set of points

ΛL = {Lu | u1, u2 ∈ Z[i]}, (4)

where Z[i] is the set of Gaussian integers. L is called a
generator matrix for the lattice ΛL. The minimum distance
of ΛL is defined as:

d2min(ΛL) = min
u �=v

‖L(u− v)‖2 = min
e�=[0 0]T

‖Le‖2,

where u,v and e = u− v are Gaussian integer vectors.
As can be seen from the definition of ΛL, the column

vectors l1 and l2 form a basis for the lattice. There are
infinitely many different bases in a lattice, and they all span
the same lattice ΛL. Assume that L′ is another basis for ΛL.
It holds that L′ = LZ, where Z is a unimodular matrix, i.e.,
Z has Gaussian integer entries and det(Z) ∈ {±1,±i} [15].

From the definition of d2min(ΛL), it follows that

d2min(ΛQLZ) = d2min(ΛL) (5)

where Q is a unitary matrix.
Note that the above introduced concepts transfer naturally

to real-valued matrices and vectors. From the isomorphism
between a 2× 2 complex-valued matrix A and its real-valued
4× 4 counterpart Ar

Ar =

[ R{A} I{A}
−I{A} R{A}

]
, (6)

where R, I denote the real and imaginary part of a matrix,
respectively, it follows that 2-dimensional complex-valued
lattices can be expressed as 4-dimensional real-valued lattices.
This transformation will be used later on to convert complex-
valued lattices into real-valued ones, since well known lattices
are presented in their real-valued forms in the literature.

B. Problem Formulation

We consider model (1) under a bounded energy constraint
of the transmitted signal Fx. The average energy of Fx is

E{x∗F∗Fx} = E{tr(x∗F∗Fx)} = tr(F∗FE{xx∗}).
Let A = E{xx∗} be a positive definite covariance matrix of
x. The optimization problem studied in this paper is

max
F

d2min(ΛHF) subject to tr(F∗FA) ≤ P0. (7)

It is tempting to connect (7) with the problem of sphere
packing, which is perhaps the most classic problem within
lattice theory. These two problems are not equivalent, which
can be shown in a straightforward, but lengthy, fashion.

Consider next the following optimization

min
F

tr(F∗FA) subject to d2min(ΛHF) ≥ d, (8)

for some arbitrary d > 0. Since both the constraint func-
tion and the objective function are homogeneous of degree
two, it holds that the solution Fopt to (8) is such that

Fopt

√
P0/tr(F∗

optFoptA) solves (7). That is, the optimal
solution to (7) can be obtained from the optimal solution to
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(8) with an appropriate scaling constant. Clearly, the optimal
solution to (8) satisfies equality in the constraint, and we can
therefore without loss of generality assume d2min(ΛHF) = 1.

We find the problem (8) to be more easily analyzed than
the equivalent problem (7), and thus we focus on solving (8).
Before presenting the solution, we reformulate the problem
into a more analytically tractable form. Let H = USV∗

denote the SVD of H. The M×M matrix U has no impact on
the minimum distance and can be removed from the problem
formulation. Furthermore, the 2×2 matrix V∗ can be absorbed
into the precoder F. After removing these two matrices, it is
observed that the case M > 2 becomes equivalent to the case
M = 2, so that we can assume M = 2 in the rest of the paper.
These observations leave us with the simplified model

y = SFx+ n. (9)

Let G = SF be the lattice generator matrix at the receiver. G
can be factorized as G = QBZ, where Q is a unitary matrix,
B is a 2× 2 matrix and Z is a unimodular matrix. The lattice
structure of G is determined by the matrix B, while Z is the
basis through which the lattice is represented. The matrix Q
is merely a rotation of the lattice, but plays an important role
in the optimization to follow. The reason for introducing this
factorization of G becomes evident in Appendix A, where it
is shown that it is possible to obtain an analytical expression
for the minimum distance constraint in (8), expressed solely
in the elements of the matrix B. With this factorization of G,
it follows that F can be written as

F = S−1G = S−1QBZ. (10)

Since A in (8) is positive definite, it has a Cholesky decom-
position A = TT∗ where T is a lower-triangular matrix with
non-negative diagonal elements. Inserting (10) and A = TT∗

into (8) yields

min
Q,B,Z

tr(T∗Z∗B∗Q∗S−2QBZT)

subject to d2min(ΛQBZ) = 1.
(11)

For completeness, we shall separately consider two cases:
(i) Real-valued precoding, where all quantities in (9)-(11)
are real-valued, and (ii) Complex-valued precoding, where all
quantities, except S, are complex-valued.

In our proofs, we shall first determine the optimal Q when
BZT is fixed. Once the optimal matrices B and Z are known,
the optimal precoder is easily constructed. In the Appendices,
the optimization over Q will be treated directly over the
elements of Q. The optimization of B and Z is treated
separately, and we shall start with B in Section III, while
optimization over Z is treated in Section IV.

III. OPTIMAL PRECODING LATTICES

In this section we derive the optimal lattice B for the real-
valued and the complex-valued cases.

For the real-valued case, our main result is:
Theorem 1: For any non-singular channel matrix S, the

optimal lattice B in (11) is the hexagonal lattice, i.e.,

B =

[
1 1

2

0
√
3
2

]
.

Proof: See Appendix A.
While the real-valued case is interesting for theoretical pur-

poses, the complex-valued case is more important for practical
MIMO or OFDM applications. Nevertheless, the real-valued
result has immediate applications to precoding for mitigation
of I/Q imbalance in scalar complex-valued channels.

For the complex-valued case, our main result is:
Theorem 2: For any non-singular channel matrix S, the

optimal lattice B in (11) is the complex representation of the
Schläfli lattice, i.e.,

B =

[
1 ±1±i

2
0 ± 1√

2

]
.

Proof: See Appendix B.
By “complex representation” we mean that if the transforma-
tion (6) is performed on B in Theorem 2, the Schläfli lattice
in four real-valued dimensions results.

To summarize, the minimum distance optimal precoder
for “large” input constellations is always an instance of the
hexagonal or the Schläfli lattice for real-valued and complex-
valued precoding, respectively.

IV. OPTIMAL MATRIX Z

Since B is now known, it remains to find the optimal basis
matrix Z in order to solve (11). This section describes the
core idea of the algorithms that find the optimal real-valued
and complex-valued Z, respectively, for the case when A = I.
Extension to an arbitrary A is straightforward and is described
briefly at the end of this section. A complete Matlab code for
the algorithms can be found at www.eit.lth.se/goto/Zalgorithm.

Let c
�
= (1 + s2)/2 and denote by zij the row-i column-j

element of the matrix Z. By optimizing (11) over real-valued
Q and B, we have2

Z = argmin
Z
μr
±(Z),

where

μr
±(Z)

�
= c[z211+z

2
12+z

2
21+z

2
22±(z11z21+z12z22)]

+ (c−1)[(z211+z
2
12)

2+(z221+z
2
22)

2+4(z11z21+z12z22)
2

−(z211+z
2
12)(z

2
21+z

2
22)

±2(z11z21+z12z22)(z
2
11+z

2
12+z

2
21+z

2
22)]

1/2. (12)

Similarly, in the complex-valued case, after optimizing over
Q and Z, we have

Z = argmin
Z
μc
±(Z),

where

μc
±(Z)

�
= c(|z11|2+|z12|2+|z21|2+|z22|2
+ R{(±1± i)(z11z

∗
21+z12z

∗
22)})

+ (c−1)[(|z11|2+|z12|2+|z21|2+|z22|2
+ R{(±1± i)(z11z

∗
21+z12z

∗
22)})2−2]1/2. (13)

The ± signs in both (12) and (13) can be absorbed into
the elements of Z, without changing the unimodularity of Z.
Define βr � z211+z

2
12+z

2
21+z

2
22−(z11z21+z12z22) and βc �

2The optimization of (11) over Q and B is treated in the proofs of theorems
1 and 2 provided in the Appendices.
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Fig. 2. Change in Z with respect to the ratio s1/s2. The solution to (11)
is constant for all S with a ratio between any two consecutive markers. The
scale on the x-axis is logarithmic.

|z11|2+ |z12|2+ |z21|2+ |z22|2+R{(1 + i)(z11z
∗
21+z12z

∗
22)},

where we do not expliticly denote the dependency of βr and
βc on Z. Since | det(Z)| = 1, (12) and (13) become

μr(βr) = cβr + (c− 1)
√
β2
r − 3 (14)

and
μc(βc) = cβc + (c− 1)

√
β2
c − 2, (15)

respectively. If we for the moment drop the constraint that βr
has to be integer-valued, the function μr(Z) in (14) will be
minimized over βr. It can be verified that μr(Z) is a convex
function. Differentiating μ(βr) with respect to β and setting

the derivative to 0 gives that βr,opt =
√

3c2

2c−1 is the optimal
point. Since μr(Z) is convex, the minimum of μ(βr) over
unimodular matrices can only occur at two specific matrices.
Either it is the Z that produces the largest βr smaller than
βr,opt, or it is the Z that produces the smallest βr larger than
βr,opt. A similar analysis can be applied to the complex-valued
(15), and it follows that the largest βc smaller, or smallest
βc larger, than βc,opt =

√
2c/

√
2c− 1 is optimal. Hence,

in the real-valued case, an algorithm can be developed that
traverses unimodular Z’s and stops when two matrices Z1

and Z2 are found, such that Z1 gives the βr that equals the
largest integer smaller than βr,opt, and Z2 gives the βr that
equals the smallest integer larger than βr,opt. An algorithm for
the complex-valued case works in the same way. Due to lack
of space and the fact that our algorithms are ad-hoc, we omit
the implementation details and refer to the above mentioned
homepage where the Matlab code for both algorithms can
be found. In the case when T �= I, same conclusions as
above are reached for the matrix W = ZT, where βr and
βc are dependent on W instead. An algorithm that traverses
unimodular Z’s can then be formulated until the new βr and
βc satisfy the same conditions as above. It is straightforward
to include this in the code found at the above homepage.

Since we now know that solving (11) is a discrete optimiza-
tion problem, it is of interest to see how often the solution
changes with varying S. Figure 2 shows the ratio s1/s2 on
the x-axis, and the markers show the ratios where Z changes.
As seen, the same solution can be used for a wide interval.

V. APPLICATIONS

In this section we consider a number of practical applica-
tions of the optimal minimum distance lattice based precoder
and make comparisons to other schemes. As discussed in

Section I, minimum distance based precoders are asymptot-
ically optimal in the high SNR regime, but minimum distance
plays little role at low SNR so that we can not expect any
performance gains there.

We consider first the 2× 2 channel studied in [3],

S =

[√
3 0
0 1

]
. (16)

In [3], this channel was studied at asymptotically high SNR for
BPSK alphabets with real-valued precoding. The objective was
to find the real-valued precoder F that maximizes the mutual
information I(SFx+n;x). For high SNR, it is known that the
optimal mutual information precoder converges to the optimal
minimum distance precoder, and the numerical optimization
framework in [3] thus produced the optimal minimum distance
precoder. The precoder is of the following simple form

F =

[ √
2

√
2

−√
2
√
2

]
. (17)

It can be verified by standard techniques that the combined
channel-precoder matrix SF is an instance of the hexagonal
lattice - which is precisly the result if an infinite lattice
constellation was used. For such a lattice constellation, the
strength of our analysis is that no numerical optimization of
the precoder is necessary since it is known a-priori that the
hexagonal lattice must be the solution, and it only remains
to find the optimal basis matrix Z according to the algorithm
mentioned in Section IV. By doing so, we find that the optimal
Z for asymptotically large constellations coincides with the
basis matrix that is built into (17). Altogether, for the particular
channel (16) studied in [3], a “large” constellation means
BPSK and it is known beforehand what structure the solution
must have.

In Figure 3 we continue to study the channel (16) but
we now evaluate the mutual information achieved by 4QAM
inputs when the complex-valued minimum distance optimal
precoder for large constellations is used. As comparisons, we
also plot the achieved mutual information by 1) no precoding
at all, i.e., F = I, 2) Mercury/Waterfilling from [2], and
3) capacity achieved by Gaussian inputs and waterfilling.
The performance of the optimal mutual information precoder
coincides with that of Mercury/Waterfilling in the low SNR
regime, while it coincides with that of the minimum distance
precoder in the high SNR regime. As can be seen, there
is a 2 dB gain offered by the minimum distance precoder
over uncoded systems and Mercury/Waterfilling at high SNR.
At low SNR, the Mercury/Waterfilling policy is optimal and
outperforms the minimum distance precoder.

For the channel (16), we observed that the large constella-
tion assumption made in this paper was not very critical as it
produced the same result as a BPSK input constellation does.
This is, however, not true in general, and we next investigate
the impact of the cardinality of the input constellation. We
consider diagonal channel matrices H where each diagonal
element is a zero-mean, unit-variance, circulary symmetric
complex Gaussian random variable (CN (0, 1)). We consider
4QAM and 16QAM input constellations and plot the resulting
average mutual information against SNR for 1) the minimum
distance optimal precoder for large constellations, 2) minimum
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Fig. 3. Mutual information for the channel (16) studied in [3] with 4QAM
inputs under different settings. The solid heavy line shows the capacity
with waterfilling, the curve marked with asterixes shows the ensuing mutual
information from the precoder proposed in this paper and the curve marked
with circles show the Mercury/Waterfilling mutual information. The bottom
line is the no precoding case.

distance optimal precoders for the particular constellations
used, and 3) no precoder. The average is evaluated over 106

channel realizations by straightforward Monte Carlo simula-
tion. For 4QAM and 16QAM, the minimum distance optimal
precoders have been reported in [7], [8], while the optimal pre-
coder for 64QAM has so far not been reported in the literature
which is the reason why we do not go beyond 16QAM. The
results are shown in Figure 4. The uppermost heavy solid line
corresponds to the average capacity of the channel achieved by
Gaussian inputs with waterfilling. The lower set of curves cor-
responds to 4QAM while the upper corresponds to 16QAM.
Within each set of curves, the lower curve (without markers)
shows the no precoder case, the middle curve (marked with
asterixes) is the performance of the precoder constructed from
a large constellation assumptions, and the upper curve (marked
with circles) is the performance of the precoder explicitly
constructed for the input constellation used. For 4QAM inputs,
a small loss of the large constellation construction can be
seen, while for 16QAM the ensuing mutual information from
a large constellation assumption is virtually indistinguishable
from that of a construction expliticitly made for 16QAM.
Hence, we can conclude from this example that an 16QAM
input constellation can be replaced by an infinite lattice
constellation without appreciatly affecting the results. It can
also be numerically verified, in accordance with the results in
[7], [8], [11], that when the constellation size increases, the
value of s1/s2 for which the precoder changes gets higher
and higher. Thus, above a certain cardinality of the alphabet,
the same precoder is optimal for all channels S for which
s1/s2 is below some large threshold. Therefore our precoder
approaches the optimal one for M-QAM as the constellation
size increases beyond a certain alphabet, and simulations show
that 16-QAM is large enough. This greatly simplifies the
precoder optimization problem since lattice theoretic tools can
be applied.

In Figure 5 we turn our attention towards the error proba-
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Fig. 4. Average mutual information for random diagonal channels with
4QAM (bottom set) and 16QAM (upper set). The heavy solid line is the
capacity with waterfilling. Within each set, the line marked with circles shows
the performance of a precoder constructed expliticly for the input constellation
used, and the curve marked with asterixes shows the performance of the
precoder constructed from an infinite lattice constellation assumption. These
two curves are virtually identical for 16QAM. The bottom line within each
set corresponds to the no precoding case.

bility of 2× 2 MIMO systems with 1) the minimum distance
optimal precoder for large constellations, 2) minimum distance
optimal precoders for the particular constellations used, and
3) no precoding. We consider 4QAM, 16QAM, and 64QAM
input constellations, and a maximum likelihood detector. The
lines marked with circles correspond to the minimum distance
optimal precoder for large constellations, the lines marked
with asterixes correspond to the optimal precoder designed
for the particular input constellations used, and the unmarked
lines correspond to the no-precoder case. As can be seen, there
is a large gain of explicitly taking the input constellation into
account for 4QAM. However, for 16QAM inputs, this gain
reduces significantly, so that the precoder designed for large
constellations performs close to optimal. For 64QAM, the gap
to the optimal precoder designed expliticly for 64QAM can
not be determined. However, given the large reduction of the
gap between the 4QAM and 16QAM cases, we expect that
the gap for 64QAM is minor, so that the precoder designed
for large constellations is virtually optimal.

As a final example we consider an OFDM system with N
sub-carriers having their channel gains {hk}Nk=1. For simplic-
ity, all sub-carrier channel gains are assumed to be independent
zero-mean, unit-variance, circulary symmetric complex Gaus-
sian random variables (CN (0, 1)). In practice, adjacent carriers
are strongly correlated but for the transceiver system to be
considered, N is large and such correlations are immaterial.
We follow the approach taken in [16] and use the 2 × 2
minimum distance optimal precoder constructed from the large
constellation assumption as a building block to construct much
larger precoder structures. The N sub-carriers are first grouped
into N/2 pairs. The particular pairing used in [16] is to
combine the strongest sub-carrier with the weakest sub-carrier,
the second strongest with the second weakest etc. Let {h̃k}Nk=1

denote the set of sub-carrier channel gains {hk}Nk=1, but sorted
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Fig. 5. Maximum likelihood receiver tests of various precoders with
4QAM, 16QAM, and 64QAM. Within each set, the rightmost curve is the no
precoding case, the middle curve is the precoder constructed from an infinite
lattice constellation assumption, and the leftmost curve is the performance of
a precoder constructed expliticly for the input constellation used (not present
for 64QAM).

according to their strengths so that |h̃1| ≥ |h̃1| ≥ . . . ≥ |h̃N |.
We have N/2 independent transmissions

yk =

[
h̃k 0

0 h̃N−k+1

]
Fkxk+nk = H̃kFkxk+nk, 1 ≤ k ≤ N/2

and we need to construct N/2 precoders {Fk}N/2
k=1. A total

energy of N P/2 is assumed, and we allocate a fraction
γk to Fk under the constraint that

∑
γk = N P/2. Our

power allocation policy is that all channel-precoder pairs
H̃kFk should have equal minimum distances. We can find
the precoders according to this policy as follows:

• Design {Fk}N/2
k=1 according to the constraint Tr(F†

kFk) =
1.

• From lattice theory, it is guaranteed that the minimum
distance for each channel-precoder pair equals the length
of the shortest vector of the lattice spanned by H̃kFk.
Let D2

k denote the minimum distance.
• The power allocation that equalizes all minimum distance

is proportional to

γk ∝ 1

D2
k

and the overall power constraint
∑
γk = N P/2 finally

yields the set of precoders.

We shall compare the ensuing average mutual information of
this strategy with the no-precoder case, Mercury/Waterfilling,
and the capacity of the channel. The input constellation is
16QAM in all cases (except for the capacity case). The
results are shown in Figure 6. Note that we have plotted
the average mutual information per channel-precoder pair.
The top heavy solid curve is the average capacity of the
channel, the curve marked by circles is the system based
on the minimum distance optimal precoder described above,
the curve marked with asterixes is the Mercury/Waterfilling
system, and the bottom curve shows the performance of the
no-precoder case. As in the previous examples, there are no
gains at low-moderate SNR by the minimum distance optimal
precoder, while the gains are significant at high SNR. Note
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Fig. 6. Average mutual information per sub-carrier pair with 16QAM
inputs under different settings. The solid heavy line shows the capacity
with waterfilling, the curve marked with circles shows the ensuing mutual
information from the precoder proposed in this paper and the curve marked
with asterixes shows the mercury/waterfilling mutual information. The bottom
line is the no precoding case.

that the Mercury/Waterfilling is close to optimal at low SNR
while it suffers from large penalties at high SNR.

VI. CONCLUSIONS

This work has provided the optimal minimum distance
precoder for M × 2, M ≥ 2, real-valued and complex-
valued channel matrices under the assumption that the input
constellation is an infinite lattice. The importance of the mini-
mum distance optimal precoder is that the mutual information
precoder converges to the optimal minimum distance precoder
as the SNR grows. We have found a profound structure for
the minimum distance optimal precoders, namely that for
real-valued precoding, the optimal precoder corresponds to
the hexagonal lattice at the receiver for every non-singular
channel matrix. For complex-valued precoding, the precoder
corresponds to a complex lattice that is equivalent to the
Schläfli lattice in four-dimensional real-valued space. Efficient
algorithms to construct the optimal basis for the lattices
are given. By numerical studies, we have found that the
infinite lattice input constellations can be approximated by
conventional 16QAM constellations.

APPENDIX A: PROOF OF THEOREM 1

First, the constraint in (11) is made more manageable. It
follows from (5) that d2min(ΛQBZ) = d2min(ΛB). Let b1,b2 ∈
R

2 be the columns of B and assume that ‖b1‖ ≤ ‖b2‖. In
1801, C.F. Gauss noted [17] that if b1 and b2 fulfill |b2 ·b1| ≤
‖b1‖2/2, where ”·” is the scalar product between vectors, then
d2min(ΛB) = ‖b1‖2. This basis is said to be Gaussian reduced.
Given b1, the set of all b2 satisfying the inequality is the
minimum distance region of b1. Figure 7 depicts this region
geometrically. b1 and b2 are actually the shortest basis for
the lattice, since ‖b1‖ is the length of the shortest vector in
the lattice, and it can be shown that ‖b2‖ is the length of the
next shortest vector in the lattice. Every lattice has a Gaussian
reduced basis, and Gaussian reduction [17] is an algorithm
that finds a Gaussian reduced basis from a starting basis of
the lattice. Hence, by putting ‖b1‖ = 1 and letting b2 be any
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b1

b2

−1 1

Fig. 7. The minimum distance region of b1 is shaded. All b2 inside the
shaded region generate a lattice, spanned by b1 and b2, with a minimum
distance equal to the length of b1.

vector in the minimum distance region of b1, the matrix B
will be a generator matrix for any lattice in the plane with
unit minimum distance.

Let r = ‖b2‖. The constraint dmin(ΛQBZ) = 1 can be
written as r ≥ 1 and | cos(φ)| ≤ 1/2r where φ is the angle
between b1 and b2. Hence, QB can be written as

QB=

(
sin(α) − cos(α)
cos(α) sin(α)

)
︸ ︷︷ ︸

Q

(
1 r cos(φ)
0 r sin(φ)

)
︸ ︷︷ ︸

B

=

(
sin(α) r sin(α− φ)
cos(α) r cos(α− φ)

)
. (18)

Let W = ZT in (11). The optimization (11) can now be
formulated over α, φ and r:

min
α,φ,r

tr(W∗B∗Q∗S−2QBW)

subject to r ≥ 1, | cos(φ)| ≤ 1/2r.
(19)

It follows that the intervals for α and φ are 0 ≤ α ≤ 2π,
cos−1(1/2r) ≤ φ ≤ cos−1(−1/2r), − cos−1(−1/2r) ≤ φ ≤
− cos−1(1/2r).

Let s1, s2 be the diagonal elements of S and assume s1 ≥
s2. Define s

�
= s2/s1 and

a =
w2

11 + w2
12

‖W‖2 b =
w11w21 + w12w22

‖W‖2 c =
1 + s2

2
.

(20)
In order to obtain easier expressions, we scale the objective

function (19) with 1/s2‖W‖2 which has no impact on the
solution, and by doing so we get the following objective
function

f(α, φ, r)
�
= tr(W∗B∗Q∗S−2QBW)/s2‖W‖2
= c(a+ r2(1− a) + 2br cos(φ))

+ (1− c)(a cos(2α) + (1− a)r2 cos(2α+ 2φ)

+ 2br cos(2α+ φ)). (21)

Since 0 ≤ s ≤ 1, it follows that 1/2 ≤ c ≤ 1.
First, we minimize f(α, φ, r) over α by making use of the

following lemma
Lemma 1: Let g(x) =

∑n
j=1 aj cos(x+ θj) for some real-

valued constants {aj} and {θj}. It holds that

min
x
g(x) = −

√√√√ n∑
j=1,k=1

ajak cos(θj − θk). (22)

Proof: Rewrite g(x) as g(x) = R{∑n
j=1 aje

i(x+θj)} =

R{eix(∑n
j=1 aje

iθj )} = R{eixz}, where z �
∑

j aje
iθj =

|z|eiβ . The minimum occurs when z is rotated to the negative
part of the real axis, i.e., x = π − β, and the minimum value
is then equal to −|z|. This gives expression (22).

Applying Lemma 1 to (21) in order to minimize over α,
we get

h(φ, r)
�
= min

α
f(α, φ, r) = c(a+ r2(1−a) + 2rb cos(φ))

+(c−1)[a2+r4(1−a)2+4r2b2

+ 2r2a(1−a) cos(2φ)+4rb(a+r2(1−a)) cos(φ)]1/2.

Using the identity cos(2φ) = 2 cos2(φ) − 1 and defining

t
�
= cos(φ), we get

q(t, r)
�
= h(cos−1(t), r) = c(a+r2(1−a)+2rbt)

+ (c−1)[a2+r4(1−a)2+4r2b2

−2r2a(1−a)+4r2a(1−a)t2+4rb(a+r2(1−a))t]1/2.
(23)

From the definition of t, it follows that −1/2r ≤ t ≤ 1/2r.
It can be verified that q(t, r) is a concave function in t. This
implies that the minimum of h(t, r) over t is attained at one
of the two end points t = ±1/2r. For these values, and with
the variable substitution ρ = r2, we get

l±(ρ)
�
= q(±1/2r, r)

= c(a+ρ(1−a)±b)+(c−1)[a2+ρ2(1−a)2+4b2ρ

−2ρa(1−a)+a(1−a)±2b(a+ρ(1−a))]1/2, (24)

where ρ ≥ 1. l+(ρ) has ”+” instead of ± and l−(ρ) has
”−”. The functions l±(ρ) are both concave in ρ, since they
geometrically correspond to a hyperbola opening downward.
Now, since l±(ρ) is the objective function of (19), which is
always positive, it follows that l±(ρ) is positive. The minimum
of a positive, concave one-dimensional function is always at
the leftmost point of the interval of definition. Hence, the
minimum of l±(ρ) must be at ρ = 1, which implies that r = 1
in (23). This implies that the minimum over t in (23) occurs at
t = ±1/2, which corresponds to φ ∈ {±π/3,±2π/3} in (21).
This shows that the minimum of f(α, φ, r) in (21) occurs at
r = 1 and φ ∈ {±π/3,±2π/3}. Inserting these values in the
generator matrix B, one obtains the generator matrix for the
hexagonal lattice as stated in the theorem. This completes the
proof.

APPENDIX B: PROOF OF THEOREM 2

As in the Proof of Theorem 1, we define W � ZT. It
turns out that there is a similar minimum distance preserving
condition for complex-valued B as for real-valued ones. In
[18], the authors prove that if ‖b1‖ ≤ ‖b2‖ and

|R{b∗
1b2}| ≤ 1

2
‖b1‖2 and |I{b∗

1b2}| ≤ 1

2
‖b1‖2, (25)
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then d2min(ΛB) = ‖b1‖2. The matrix QB now has the general
form

QB=

(
ei(φ1−γ1) 0

0 ei(φ3−γ1)

)
×
(
sin(α)e−iφ1 cos(α)e−iφ2

cos(α)e−iφ3 − sin(α)e−iφ4

)
︸ ︷︷ ︸

Q

×
(
reiγ1 sin(ω)eiγ2

0 cos(ω)eiγ3

)
︸ ︷︷ ︸

B

=

(
r sin(α) sin(α) sin(ω)eiθ1 + cos(α) cos(ω)eiθ2

r cos(α) cos(α) sin(ω)eiθ1 − sin(α) cos(ω)eiθ2

)
(26)

where φ1 − φ2 ≡ φ3 − φ4 (mod 2π), θ1 = γ2 − γ1 and
θ2 = γ3 − γ1 +φ1 −φ2. Note that QB can be factorized into
the product of a rotation matrix (Q) and a basis matrix (B)
with one basis vector having a coordinate of 0. Furthermore,
the angles γ1 and γ3 can be set to 0, since φ1 and φ2 can be
used to change θ2. The conditions (25) become

|R{sin(ω)e−iθ1}| ≤ 1

2r
and |I{sin(ω)e−iθ1}| ≤ 1

2r
, (27)

where r ≥ 1. Define f(α, ω, θ1, θ2, r) �
tr(W∗B∗Q∗S−2QBW)/s2. We have

f(α, ω, θ1, θ2, r) = c
[
r2(|w11|2+|w12|2)

+ |w21|2+|w22|2+2R{(rw11w
∗
21+rw12w

∗
22) sin(ω)e

−iθ1}]
+(1−c) [r2(|w11|2+|w12|2)−(|w21|2+|w22|2) cos(2ω)
+2R{(rw11w

∗
21+rw12w

∗
22) sin(ω)e

−iθ1}] cos(2α)
−(1−c) [(|w21|2+|w22|2) sin(2ω) cos(θ1−θ2 )
+2R((rw11w

∗
21+rw12w

∗
22) cos(ω)e

−iθ2)
]
sin(2α), (28)

where c = (1 + (s2/s1)
2)/2. First, we minimize over α. It

is seen that f depends on α as

f(α, ω, θ1, θ2, r) = a1 + a2 cos(2α) + a3 sin(2α)

= a1 +
√
a22 + a23

(
a2√
a22 + a23

cos(2α)

+
a3√
a32 + a23

sin(2α)

)

= a1 +
√
a22 + a23(sin(ψ) cos(2α)

+ cos(ψ) sin(2α))

= a1 +
√
a22 + a23 sin(2α+ ψ), (29)

where the constants a1, a2 and a3 are easily read of from (28)
and ψ is such that sin(ψ) = a2/

√
a22 + a23. The minimum of

(29) over α occurs at α = −π/4−ψ/2, which gives f(−π/4−
ψ/2, ω, θ1, θ2, r) = a1−

√
a22 + a23. Since only a3 depends on

θ2, minimizing f over θ2 implies maximizing a23 over θ2. We
have

a3 =−(1− c)
[
(|w21|2+|w22|2) sin(2ω) cos(θ1−θ2)

+ 2R((rw11w
∗
21+rw12w

∗
22) cos(ω)e

−iθ2)
]

=−(1−c)R{e−iθ2((|w21|2+|w22|2) sin(2ω)eiθ1
+2 cos(ω)(rw11w

∗
21+rw12w

∗
22))}.

It follows that the maximizing θ2 is such that eiθ2 rotates the
expression it multiplies to the real axis. We get

min
θ2

f(−π/4− ψ/2, θ1, θ2, ω, r) = l(θ1, ω, r)

= c
[
r2(|w11|2+|w12|2)+|w21|2+|w22|2

+ 2R{sin(ω)e−iθ1(rw11w
∗
21+rw12w

∗
22)}

]
+ (c− 1)[

(
r2(|w11|2+|w12|2)+|w21|2+|w22|2

+ 2R{sin(ω)e−iθ1(rw11w
∗
21+rw12w

∗
22)}

)2
− 4 cos2(ω)(det(W))2]1/2. (30)

As in the real-valued case, it can easily be shown that the
expression in (30) is concave in sin(ω), since it is a hyperbola
opening downward. Thus, the minimum is attained at the
endpoints of sin(ω). The constraints in (27) can be written
as | sin(ω) cos(θ1)| ≤ 1/2r and | sin(ω) sin(θ1)| ≤ 1/2r.
Assume | sin(θ1)| ≤ | cos(θ1)|. It follows that the interval for
sin(ω) is −1/(2r cos(θ1)) ≤ sin(ω) ≤ 1/(2r cos(θ1)), while
the interval for θ1 is −π/4 ≤ θ1 ≤ π/4. Inserting either one of
these endpoints for sin(ω) in (30) and using the trigonometric
identity 1/ cos2(x) = 1 + tan2(x), we get that l takes on the
following form

l(θ1, r) = c(b1+b2 tan(θ1))

+ (c−1)

[
(b1+b2 tan(θ1))

2+
| det(W)|2

r2
tan2(θ1)

+ | det(W)|2(4 − 1/r2)
]1/2

, (31)

where b1 and b2 are constants with respect to θ1. Again, it is
clear that (31) is concave in tan(θ1), and thus the minimum
is attained at one of the endpoints of θ1, which are −π/4 and
π/4. If we instead assumed that | sin(θ1)| ≥ | cos(θ1)|, the
only difference is that tan(θ1) becomes cot(θ1) and π/4 ≤
θ1 ≤ 3π/4. This gives rise to the same behavior of l(θ1, r)
and thus same results are obtained.

To recap, we showed that the minimum for l(θ1, ω, r) in
(30) over θ1, ω occurs when θ1 = ±π/4 and at the endpoints
for sin(ω), which are then sin(ω) = ±1/(2r cos(θ1)) =
±1/

√
2r. We now continue by inserting this expression for

sin(ω)e−iθ1 in (30) and obtain a one-dimensional function in
ρ = r2 of the form

l1(ρ) = k1 + k2ρ+ (c− 1)[k3ρ
2 + k4ρ+ k5

+ | det(W)|2(2/ρ− 4)]1/2, (32)

where the kj are constants with regard to ρ and with k3
positive. If we instead study the function l2(ρ) = k1 + k2ρ+
(c− 1)

√
k3ρ2 + k4ρ+ k5 − 2| det(W)|2, it follows from the

same concavity arguments as before that l2(ρ) is a concave
function and thus the minimum is attained at the endpoints,
which are ρ = 1 and ρ = ∞. From the concavity of l2(ρ)
it follows that if the minimum is attained at ∞, then the
minimum value is −∞, which is impossible since our trace
function is always positive; thus the minimum of l2(ρ) must
be attained at ρ = 1. Now comparing l2(ρ) with l(ρ), the only
difference is the term | det(W)|2(2/ρ− 4) in the square root,
with maximum value of 2| det(W)|2 attained at ρ = 1; hence
l2(1) = l1(1). Since c − 1 is always non-positive, it follows
that l2(ρ) ≤ l1(ρ) for ρ ≥ 1, which gives that the minimum
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of l1(ρ) occurs when ρ = r = 1 (because the minimum of
l2(ρ) occurs for ρ = 1).

We have now showed that the minimum of l(θ1, ω, r) in (30)
occurs for θ1 = ±π/4, sin(ω) = ±1/

√
2r, r = 1. Inserting

these values into the lattice generator MR in (26), we arrive
at the following optimal lattice generator B = MR

B =

(
1 ±1±i

2
0 ± 1√

2

)
. (33)

Extending B to its real-valued representation by means of (6),
it holds that for each realization of ± as + or −, that Br is
a generator matrix for the Schläfli lattice D4.
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