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[1] Rapid and accurate assessment of global forest cover change is needed to focus
conservation efforts and to better understand how deforestation is contributing to the
buildup of atmospheric CO2. Here we examined different ways to use land surface
temperature (LST) to detect changes in tropical forest cover. In our analysis we used
monthly 0.05° × 0.05° Terra Moderate Resolution Imaging Spectroradiometer (MODIS)
observations of LST and Program for the Estimation of Deforestation in the Brazilian
Amazon (PRODES) estimates of forest cover change. We also compared MODIS LST
observations with an independent estimate of forest cover loss derived from MODIS
and Landsat observations. Our study domain of approximately 10° × 10° included the
Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical
forest cover in our study area, we found that using data sampled during the end of the dry
season (∼1–2 months after minimum monthly precipitation) had the greatest predictive
skill. During this part of the year, precipitation was low, surface humidity was at a
minimum, and the difference between day and night LST was the largest. We used this
information to develop a simple temporal sampling algorithm appropriate for use in
pantropical deforestation classifiers. Combined with the normalized difference vegetation
index, a logistic regression model using day‐night LST did moderately well at predicting
forest cover change. Annual changes in day‐night LST decreased during 2006–2009
relative to 2001–2005 in many regions within the Amazon, providing independent
confirmation of lower deforestation levels during the latter part of this decade as reported
by PRODES.
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1. Introduction

[2] The clearing of humid tropical forest has important
consequences for ecosystem function [DeFries et al., 2004;
Foley et al., 2005], regulation of regional [Nobre et al.,
1991] and global climate [Shukla et al., 1990; Bala et al.,
2007], water resources [Hamilton and King, 1983], bio-
geochemical cycles [Houghton, 1991], biological diversity
[Sala et al., 2000], and the maintenance of soil fertility
[Andreux and Cerri, 1989; Davidson et al., 2007]. Sub-
stantial improvements in the quantification of tropical forest
cover losses have beenmade during the last decade [Houghton

et al., 2000; Achard et al., 2002; Instituto Nacional de
Pesquisas Espaciais (INPE), 2002; DeFries et al., 2002;
Food and Agriculture Organization, 2006; Hansen et al.,
2008], and with the likelihood of new climate agreements
including Reducing Emissions from Deforestation and Deg-
radation (REDD) [United Nations Framework Convention
for Climate Change, 2005] there will be an even greater
need for accurate forest monitoring methods, particularly for
approaches that enable monitoring in near real time [e.g.,
Morton et al., 2005]. This information is required to better
understand land use change effects on the global carbon cycle
[Canadell et al., 2007], and to gauge the success of mitigation
activities involving forests [Nabuurs et al., 2007]. A primary
challenge in estimating contemporary rates of forest cover
loss is to efficiently extract information from different satel-
lite products at multiple spatial and temporal resolutions and
then to combine this information in an effective way with
ground‐based observations [Achard et al., 2007; Goetz et al.,
2009; DeFries et al., 2007].
[3] To map changes in tropical forest cover, often a first

step is to classify land cover types, including different types
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of forest, savanna, and agriculture. Surface reflectances in
the visible and near infrared, and vegetation indices (VI),
which are linear or nonlinear combinations of the reflec-
tance in two or more bands, are frequently used as metrics
in land cover classification algorithms [e.g., DeFries and
Townshend, 1994; Los et al., 1994]. Annual time series of
the normalized difference vegetation index (NDVI), based
on AVHRR data, were used by DeFries and Townshend
[1994] to develop global land cover maps with a 1° spa-
tial resolution. As global AVHHR data became available at
higher resolution [Eidenshink and Faundeen, 1994], land
cover maps with a finer spatial resolution (8 km and 1 km)
were created [DeFries et al., 2000; Hansen and DeFries,
2004]. The accuracy of land cover change estimates has
been further enhanced by the development and application
of more sophisticated classification algorithms, including
decision trees [Hansen et al., 2000; Friedl and Brodley,
1997], neural networks [Gopal and Woodcock, 1996], and
mixture models [DeFries et al., 1995; Anderson et al.,
2005]. In several different studies fractional cover images
derived from mixture models have been used successfully
for monitoring deforestation [Shimabukuro et al., 1998] and
land cover change [Carreiras et al., 2002].
[4] Although surface reflectance observations and VIs

are widely used in assessments of forest cover, additional
information can be extracted from thermal infrared bands.
Land surface temperature (LST) during the day, derived
from thermal infrared bands, has been shown to be closely
related with the density of the canopy across different
vegetation types [Price, 1984; Smith and Choudhury, 1991;
Nemani and Running, 1997] and therefore helpful in classi-
fying land cover types [Lambin and Ehrlich, 1995; Nemani
and Running, 1997; Roy et al., 1997]. Borak et al. [2000]
confirmed the importance of LST data as a complementary
source of information to the NDVI data. In more recent
studies the daytime land LST product of the MODIS Terra
satellite has been included in algorithms for detecting forest
cover change in the humid tropics [e.g., Hansen et al., 2008].
The information content of LST, however, has not been
systematically evaluated [Mildrexler et al., 2007]. Key
uncertainties remain with respect to how the effectiveness
of LST information varies seasonally and how it compares
with information derived from visible and near infrared
wavelengths.
[5] Changes in land cover influence LST by means of

several different pathways [e.g., Carlson and Gillies, 1994;
Friedl, 2002; Pongratz et al., 2006]. LST is regulated by the
amount of shortwave radiation absorbed by the surface (i.e.,
surface albedo), surface conductance, the amount of water
available for evaporative cooling, wind speed, and surface
roughness which regulates the strength of both sensible
and latent heat fluxes. During the dry season, daytime LST
has been shown to be linearly related to the density of the
canopy across different vegetation types [Nemani et al.,
1993]. Areas of tree cover, which often have deeper roots
and thus may access greater water resources, tend to have
higher rates of evapotranspiration (and thus lower LSTs)
during the dry season than grasses and other herbaceous
cover that may senesce. Increases in LST in deforested areas
may be further amplified by reductions in roughness length
that reduce the dissipation of energy by means of either
sensible or latent heat fluxes. Different model experiments

in the state of Mato Grosso, Brazil, conducted by Pongratz
et al. [2006] confirm that day LST increases in areas with
lower forest cover, particularly during the dry season for
pastures, compared with dense forest.
[6] Night LSTs are also sensitive to forest cover. Noc-

turnal drainage of air from upper canopy layers and pooling
of cold air at the forest floor keeps upper levels of the
canopy relatively warm [Goulden et al., 2006]. This process
of nocturnal cold air drainage and pooling cannot take place
in short stature vegetation; net loss of thermal radiation
cools the land surface during the night, but the colder air
that is created from interaction with the canopy remains at
the surface and in contact with the canopy elements that
are emitting thermal radiation. Satellite sensors only mea-
sure the temperature of the top of forest canopies, so intact
forest shows a higher night LST than comparable areas with
short‐stature vegetation [Goulden et al., 2006]. Considering
both day and night LSTs, differences in the diurnal tem-
perature range are expected to be smaller for forests and
larger for grasslands and shrublands, given the biophysical
processes described above [Collatz et al., 2000]. Within
Mato Grosso, Pongratz et al. [2006] found, for example,
that the diurnal temperature range increases by over 7°C
when forests are converted to bare ground.
[7] Here we explored the use of LST data from the

MODIS land surface climate modeling grid (CMG) product
for quantifying forest cover and its change, and compared
our findings to PRODES estimates of deforestation losses
in the state of Mato Grosso, Brazil. We assessed how the
information content of LST as a predictor of forest cover
changed seasonally and also as a function of day, night,
and day‐night LST differences. Based on this analysis, we
developed a metric to monitor forest cover change in the
humid tropics. Several experiments were performed to fur-
ther test the ability of day LST, night LST, and day‐night
LST differences during different seasonal periods for forest
cover mapping by ingesting them one by one in a logistic
regression model. We found that effective use of the LST
data required identifying the optimal seasonal period within
each region when water vapor in the atmosphere was minimal
and drought stress was greatest. Our study demonstrated the
usefulness of MODIS LST data at a coarse spatial resolution
for the rapid identification of deforestation hot spots and for
assessing regional trends.

2. Methods

2.1. Study Area

[8] Our study area encompassed the state of Mato Grosso,
Brazil (7.0°–19.0°S, 62.0°–50.0°W) (Figure 1a). Evergreen
broadleaf forest was the dominant plant functional type (pft)
in the northern part of the state. Woodland savanna (cerrado),
savanna, and agriculture pfts were more abundant in the
southern and eastern part of the domain (Figure 1b). One of
the largest contiguous tracts of forest in Mato Grosso occurs
within the Xingu Indigenous Reserve, located in the north-
eastern part of the state (red line in Figure 1b). One of the
world’s largest wetlands, the Pantanal, is located in the south
central part of the domain (gray line in Figure 1b).
[9] Located within the “arc of deforestation,” the state of

Mato Grosso has experienced rapid changes in land cover
because of agricultural expansion and intensification [Morton
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et al., 2006]. The two most dominant forms of land cover
change in Mato Grosso during 2001–2004 were forest con-
version to pasture and forest conversion to cropland,
accounting for approximately 65% and 20%, respectively,
of all observed land cover transitions [Morton et al., 2006].
Areas previously cleared for cattle ranching were also
observed to undergo subsequent conversion to soybean
agriculture (agricultural intensification), and to a lesser
extent, to corn, cotton and sugarcane agriculture. Remaining

forest and woodland savanna in central, eastern, and southern
Mato Grosso may be vulnerable to further change as a result
of continued expansion of mechanized agriculture [Jasinski
et al., 2005]. The large mechanized clearings that are used
for the creation of pastures and croplands in the study area
are more easily detected by the coarse resolution products
presented in this study.

2.2. Data

2.2.1. MODIS LST and NDVI
[10] We obtained LST and NDVI products from the

Moderate Resolution Imaging Spectroradiometer (MODIS
[Salomonson et al., 1989]), on board NASA’s Terra satellite
(nominal 10.30 A.M. descending and 10:30 P.M. ascending
equatorial crossing times). We used data from MODIS Terra
(instead of Aqua) because our initial focus was on the 2000–
2005 period; this allowed us to make direct comparisons
with theHansen et al. [2008] deforestation estimates described
below.
[11] For LST we used the collection 5 monthly level‐3

MOD11C3 product described by Z. Wan (MODIS Land
Surface Temperature Products Users’ Guide, http://www.
crseo.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_
Users_guide_march06.pdf, 2006). This product provides
monthly composited and averaged temperature and emissiv-
ity values at a 0.05° geographic climate modeling grid (CMG),
as well as the averaged observation times and viewing zenith
angles for daytime and nighttime LSTs. The product is derived
from the daily MOD11C1 product that has a 0.05° × 0.05°
spatial resolution, which is, in turn, based on a reprojection and
average of the MOD11B1 product.
[12] Validation of the MOD11C3 product has occurred

through a series of field campaigns conducted in 2000–2006
and over more locations and time periods through radiance‐
based validation studies [Wan et al., 2002]. Clouds prevent
surface thermal infrared radiation from reaching the satellite,
and therefore the MODIS LST data are only available for
clear‐sky conditions. We created a spatial subset over the
12° × 12° region (240 × 240 grid cells) of our study domain
using all available data from March 2000 through December
2005. We also compared changes in LST during two sep-
arate periods: 2001–2005 and 2006–2009 to test whether
recent decreases in deforestation reported by PRODES are
consistent with the LST observations.
[13] For NDVI we used the monthly Level‐3 MOD13C2

product that was reprojected on a 0.05° geographic CMG
[Huete et al., 2002]. The data are spatial and temporal
composites of the cloud‐free gridded MODIS NDVI data
that are provided every 16 days at a 1 km resolution
(MOD13A2). The historical MODIS NDVI climatology
record is used to fill those pixels without any cloud‐free
observations to achieve cloud‐free global coverage.
[14] The MODIS NDVI algorithm operates on a per‐pixel

basis and ingests multiple level‐2 daily atmospherically
corrected surface reflectances to generate a composited
NDVI (A. Huete et al., MODIS Vegetation Index (MOD13):
Algorithm Theoretical Basis Document, http://modis.gsfc.
nasa.gov/data/atbd/atbd_mod13.pdf, 1999). It first filters
the data based on quality, cloud and viewing geometry.
Observations that are contaminated by residual atmospheric
effect and extreme off‐nadir views are considered as low
quality data. Only the higher quality and cloud‐free filtered

Figure 1. (a) The spatial domain of our analysis included
the state of Mato Grosso, Brazil. (b) Evergreen broadleaf
forests were the dominant land cover type in the northern
part of the domain. Toward the south and east, woodland
savannas, savannas, and agriculture land cover classes were
increasingly abundant. The perimeters of the Pantanal and
Xingu Indigenous Reserve are indicated by the gray and
red lines, respectively. These observations are from the
MODIS Land Cover Product MOD12C1 [Friedl et al.,
2002] for the year 2004 and with a spatial resolution of
0.05° × 0.05°.
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data are retained for temporal compositing. The two highest
NDVI values during each 16 days are then compared and
the one closest to nadir view is selected. This constrained
view‐angle composite method reduces the spatial and
temporal inconsistency due to angular variations encoun-
tered in the traditional maximum value composite (MVC)
[Holben, 1986].
2.2.2. PRODES Forest Cover
[15] The Program for the Estimation of Deforestation in

the Brazilian Amazon (PRODES) is one of the largest forest
monitoring projects in the world [INPE, 2002]. The PRODES
deforestation product is generated from the analysis of high‐
resolution Landsat Thematic Mapper (TM) images by the
Brazilian Instituto Nacional de Pesquisas Espaciais (National
Institute for Space Research, INPE). Areas of deforestation of
more than 6.5 ha can be detected. The first digital mapped
version was created in 1997, and since 2000 the product has
been produced annually with a time delay of approximately
5 months after the end of each calendar year. The PRODES
data set covers the Brazilian Amazon.
[16] PRODES data that we used in this study were

downloaded at 90 m resolution in GeoTiff format from the
INPE website (http://www.obt.inpe.br/prodes/). To reproject
the PRODES observations onto the same geographic grid as
the MODIS observations, we first converted the PRODES
GeoTiff image to a vector (polygon) format using ArcGIS
software. We then reprojected these polygons from Datum
SAD69 to WGS84 using the SAD_1969_To_WGS_1984_1
geographic transformation method that yielded a registration
error that was less than 10m. The final reprojected and
regridded PRODES forest cover product for 2000 is shown
in Figure 2a. Forest cover loss between the years 2000 and
2005 is shown in Figure 2b. With the base map of forest
cover in 2000 and the increments of annual deforestation,
we also calculated the forest cover for each year during
2000–2005.
2.2.3. Hansen et al. [2008] Forest Cover Loss
[17] Besides the PRODES data set, we included a com-

parison between LST derived forest cover and forest cover
change with the forest cover loss data set of Hansen et al.
[2008]. This data set represents gross forest cover loss for
the humid tropical forest biome between the year 2000 and
2005. MODIS and Landsat data were combined to estimate
areas where forest clearing occurred. Moderate resolution
MODIS data were used to identify areas of likely forest
cover loss and to stratify the humid tropics into regions of
low, medium, and high probability of forest clearing. Various
samples sized 18.5 km × 18.5 km were taken within these
areas, and interpreted for forest cover and forest clearing by
using high spatial resolution Landsat imagery from 2000 and
2005. A more detailed description of the data set is given by
Hansen et al. [2008].
[18] The humid tropical forest cover loss data that we used

in this study were downloaded in a sinusoidal GeoTiff
format at 18.5 km × 18.5 km spatial resolution from the
Global Forest Monitoring website of South Dakota State
University (http://globalmonitoring.sdstate.edu). To reproject
theHansen et al. [2008] data set onto the same geographic grid
as the MODIS observations, we followed the procedure as
with converting PRODES data, as described in section 2.2.2.
Hansen et al. [2008] forest cover loss for our study area
between the years 2000 and 2005 is shown in Figure 2c.

Figure 2. (a) Forest cover in Mato Grosso for the year
2000 from the Program for the Estimation of Deforestation
in the Brazilian Amazon (PRODES [INPE, 2002]). The
original PRODES data were resampled to a geographic
0.05° × 0.05° grid and are shown here as a fraction of total
forest cover between 0 and 1. White pixels correspond to the
area outside the PRODES domain. (b) Forest cover loss
between the years 2000 and 2005 from PRODES. (c) Forest
cover loss between the years 2000 and 2005 in Mato Grosso
from Hansen et al. [2008]. White pixels correspond to the
area outside the Hansen et al. humid tropical forest cover
change domain.
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2.2.4. Precipitation and Relative Humidity
[19] In this study we used the Tropical Rainfall Measuring

Mission (TRMM) 3B43 product to estimate precipitation
within our study domain. The TRMM 3B43 algorithm uses
four different independent data streams to produce the best
estimate precipitation rate (mm/h) and root‐mean‐square
(RMS) precipitation error estimates [Kummerow et al.,
1998]. These data have a spatial resolution of 0.25° × 0.25°
and a monthly time step. We resampled the TRMM product
during 2000–2005 at a spatial resolution of 0.05° × 0.05° to
overlay on the LST and NDVI CMG grid.
[20] To estimate the relative humidity level at the surface

(1000 hPa) in our study area, we used data from the AIRS
instrument, on board of NASA’s Aqua satellite. In our study
we used the level 3 V5 monthly AIRX3STM product, with a
spatial resolution of 1° × 1°. The product contains standard
relative humidity (in %) for different pressure levels that is
derived from observations from the Atmospheric Infrared
Sounder (AIRS) and the Advanced Microwave Sounding
Unit (AMSU) [Aumann et al., 2003]. For this study we used
the relative humidity data at 1000 hPa from the ascending
orbit. These observations represent relative humidity during
the day at a ∼1:30 P.M. overpass time.
[21] The PRODES forest cover map for 2000, reprojected

to the CMG (section 2.2.2), was used to separate forest and
nonforest areas using a threshold of 0.5 fractional cover.
Due to the coarse resolution of the AIRS product (1° × 1°)
compared to the PRODES forest cover, only AIRS pixels
that fell in the forest domain (forest cover greater than 0.5)
were used to estimate mean surface humidity in the forest
part of the domain. Relative humidity of the nonforest was
calculated by using pixels that fell completely in the non-
forest domain (forest cover less than or equal to 0.5). The
AIRS product was available from August 2002 through the
present, and for our analysis we constructed a mean annual
cycle for years 2003–2005.

2.3. Logistic Regression

[22] We used a logistic regression model [Hosmer and
Lemeshow, 2004] to relate MODIS LST and NDVI observa-
tions to per‐pixel proportional forest cover. More precisely,
we defined the model as

ln
pit

1� pit

� �

¼ �T
Xit ð1Þ

where pit is the fraction of forest cover for pixel i in year t
according to PRODES (see section 2.2.2), Xit is a vector of
MODIS observations for pixel i in year t, and b is a vector of
model parameters (which are estimated from a set of training
data). In the most general case we consider, the vectorsXit and
b each have three components: the first corresponding to a
constant intercept term, the second to a NDVI measurement,
and the third to a LST measurement. The index i ranges over
spatial pixels and the index t ranges over years. Each pixel i
and year t provided one training data point, i.e., a Xit and pit
pair. To define a NDVI or LST Xit, we computed the mean
values of the corresponding product either over a 12 month
period from February to January, or for a locally defined
3 month period during the dry season or wet season (see
section 3.3 for details). Given an estimated parameter vectorb

the model made predictions about proportional forest cover
(e.g., at a future time t) according to:

pit ¼
1

1þ e��TXit
ð2Þ

To estimate the parameters we used the traditional iteratively
reweighted least squares (IRLS) algorithm for logistic
regression [Nelder and Wedderburn, 1972]. This algorithm
corresponds to a Newton‐Raphson optimization of the like-
lihood function. The vector b is computed such that the
likelihood of the training data is maximized and then used in
equation (2) to make predictions of forest cover in the test
data. Since we were interested in the forest cover change (i.e.,
deforestation and forest regrowth), we made predictions both
at the beginning and end of a period of interest and estimated
changes in forest cover as the difference between the two
predicted forest cover maps. We also evaluated an alternative
approachwhere a logisticmodel was trained using differences
in MODIS signals to predict differences in forest proportions
more directly, but we found that this produced no significant
difference in prediction accuracy compared to computing the
difference of two predictions at different times.
[23] By evaluating the model’s performance given several

different sets of input features, we assessed the value of day
LST, night LST, and day‐night LST differences as metrics
for detecting forest cover change. In each of our model
experiments, we trained the model using data from years
2000 through 2004. We made predictions both for year 2000
and year 2005 to estimate the difference in forest cover
between the two years. To evaluate model performance, we
compared the estimated difference with the deforestation
rates reported by PRODES. Note that PRODES does not
include forest regrowth (an increase in forest cover between
2000 and 2005) whereas in the model these transitions were
allowed.
[24] We ran a series of experiments varying the input fea-

ture data source (LST alone, NDVI alone, or both together),
the time of day at which the LST data were collected (day,
night, or day‐night difference), and the sampling period for
constructing the feature space (dry season, wet season, or
12 month mean). In our first experiment we restricted our-
selves to dry season LST data and evaluated model perfor-
mance for each of day, night, and day‐night difference
measurements. In our second experiment we used day‐night
difference LST data and examined the effect varying the
sampling period. Next we trained the model using only the
NDVI data, again for all three of the different sampling
periods. Finally, we evaluated the model using day‐night
difference LST data together with NDVI, once again com-
paring all three sampling periods.
[25] For each experiment we computed several perfor-

mance metrics to help compare the relative quality of the
predictions. First, we considered the linear correlation
between the predicted and actual forest cover change values
over the entire region of study. We then considered the ratio
of the predicted area versus actual change values: a value
of 1 would be ideal, and values above or below 1 indicate
that the model is either too sensitive or unresponsive,
respectively, to changes in the input features. We also esti-
mated the linear correlation between predicted and actual
change values over the active deforestation domain: the
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subset of pixels for which PRODES indicates there was
forest cover loss between 2000 and 2005. Finally, we com-
puted the ratio of predicted to actual deforested area for the
active deforestation domain.

3. Results

3.1. Spatial and Temporal Patterns of LST

[26] Mean daytime LST within the domain was substan-
tially lower in forest areas than in nonforest areas through-
out the year (Figure 3a). The monthly daytime temperature
was at a maximum in August for forest areas (300.7K ± 1.2K
(1s)) and in September for nonforest areas (306.2K ± 2.2K).
The largest forest‐nonforest day LST differences occurred
near the end of the dry season in August (4.4K), September
(6.0K), and October (5.5K) (Figure 3a). The spatial distri-
bution of LST was inversely related to forest area, as shown
in Figure 4a. In August, the highest day LSTs, averaged
during 2000–2005, occurred in nonforest areas in the south-
eastern part of the study area. The lowest LSTs occurred in
forests in the northwest (Figure 4a).
[27] During night, forest areas in the north showed higher

temperatures than those in the southern part of the study
area, except for the wetlands of the Pantanal (Figure 4c). The
annual cycle indicated that nonforest areas had more cooling
at night than forest areas from May to September, with the
greatest difference observed during July. The nighttime
LST minimum within the domain occurred during the same
months as the precipitation minimum, with a mean of 292.8 ±
0.5K for forest areas and 290.2K ± 1.4K for nonforest areas in
July (Figure 3a). From October to April, when precipitation
and surface humidity levels were high, nighttime tempera-
tures were almost the same (around 294K) for forest and
nonforest areas. This pattern may have been caused by
decreased losses of longwave radiation (and thus decreased
surface cooling) from high levels of column water vapor.
In addition to the trapping of outgoing longwave radiation,
higher soil moistures during the wet season may increase the
heat capacity of the soils, further reducing the day‐night
surface temperature differences observed in grasslands and
croplands [e.g., Smith and Choudhury, 1991; Bruno et al.,
2006]. The seasonal amplitude of LST was smaller in forest
areas than that in nonforest areas for both day and night
periods.
[28] Day‐night LST differences were the largest toward

the end of the dry season, with maxima during August of
7.6K ± 1.4K for forest areas and 14.2K ± 2.8K for nonforest
areas (Figure 3b). A spatial map of the maximum day‐night
LST difference for August is shown in Figure 4e. In the
southeastern part of our study area the largest day‐night
differences were observed. Smaller differences occurred in
the northern forests and in the Pantanal region.
[29] Precipitation within the domain was at a minimum

during June and July. In forest areas the minimum precipi-
tation was in July with a mean of 18.9 mm/month (Figure 3c).
The precipitation minimum in nonforest areas occurred a
month earlier and had a lower mean (12.4 mm/month).
Annually, forest areas received on average 24% more pre-
cipitation than nonforest areas. The 1–2 month time delay
observed between minimum monthly precipitation and min-
imum monthly humidity may partly reflect increasing water
stress throughout the dry season that caused decreases in

Figure 3. Surface temperatures, precipitation, and surface
humidity for forest and nonforest parts of the study area.
(a) Mean monthly day and night land surface temperatures
(K) during 2000–2005 from the MODIS MOD3C11 product
(Z. Wan, MODIS Land Surface Temperature Products Users’
Guide, http://www.crseo.ucsb.edu/modis/LstUsrGuide/
MODIS_LST_products_Users_guide_march06.pdf, 2006).
(b) Same as Figure 3a, but for the mean monthly day‐night
temperature differences for forest and nonforest regions
of the study area. The PRODES forest cover map (years
2000–2005) was used to separate forest and nonforest areas,
using a threshold of 0.5 fractional cover. (c) Monthly mean
precipitation (mm/month) during 2000–2005 from the
TRMM 3B43 product [Kummerow et al., 1998], and monthly
relative humidity at 1000 hPa (in %) from the AIRS Level 3 V5
(AIRX3STM) Retrieval product. A mean for the years 2003–
2005 was used.
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Figure 4. (left) Maps of (a) daytime LST (K), (c) nighttime LST, and (e) day‐night LST difference in
August (month of largest day‐night LST difference), averaged during 2000–2005, and (right) their scat-
terplots versus forest cover from PRODES averaged over 2000–2005. Also shown in Figure 4 (right) are
linear regression fits (solid line) of (b) daytime LST, (d) nighttime LST, and (f) day‐night difference as a
function of PRODES forest cover. The regression statistics were: (1) for daytime LST, a slope of −6.8,
intercept of 306.8, and p < 0.01; (2) for nighttime LST, a slope of 2.5, intercept of 290.9, and p < 0.01;
(3) for the day‐night LST difference, a slope of −9.3, intercept of 15.9, and p < 0.01. In total, 30436 pixels
were used for the above regressions.
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transpiration even as precipitation levels began to increase.
The higher humidity levels for forest as compared with
nonforest observed during September and October may
decrease longwave cooling at night (as described above) and
thus contribute to the smaller day‐night LST differences
observed during these months and during the following wet
season.
[30] The correlation coefficients between PRODES forest

cover and day LST, night LST, and day‐night LST differ-
ence for the PRODES forest domain are given in Table 1.
For each pixel we used the monthly means over 2000–2005
for LSTs and the annual means over 2000–2005 for the
PRODES forest cover product. Pixels with missing or poor
quality LST data for all years (2000–2005) were excluded
from the comparison with PRODES, based on the quality
flag in LST product MOD11B1. The highest correlations for
day LST and day‐night LST difference occurred at the end
of the dry season (in August), while the highest correlation
for night LST occurred a month earlier (July). Figures 4b,
4d, and 4f show the relationship between day LST, night
LST, and day‐night LST difference with the PRODES forest
cover in August. For both the day LST and the day‐night LST
difference, a negative correlation of −0.83 was observed.
Night LST had a positive correlation of 0.59 with forest
cover. The relationship between land cover and LST was
weaker during the wet season, with correlations in January,
for example, of −0.69 for day LST, 0.14 for night LST, and
−0.66 for the day‐night LST difference.

3.2. LST and Forest Cover Change

[31] Moderate losses of forest cover were widely distrib-
uted in the north central part of Mato Grosso, to the west of
Xingu Indigenous Reserve (Figures 2b and 2c). Figure 5
shows that some of the largest increases in day LST and
day‐night LST difference occurred in these areas. The map
of change in night LST (Figure 5c) shows a more homo-
geneous pattern, with increases distributed widely in the
southern part of the domain.

[32] Correlation coefficients between the change in forest
cover during this period (forest fraction/yr) and the change
in day LST, night LST, and day‐night LST difference (K/yr)
are shown in Table 1, for both the PRODES and Hansen
et al. [2008] deforestation products. The LST slope was not
calculated for cloud contaminated pixels, because the influ-
ence of these errors on the slope was large in our data set of
only six years (2000–2005). During the 3 month period from
January–March, 25437 out of 57600 pixels in our study area
(44.2%) were contaminated. Contamination during the dry sea-
son, from July to September, was considerably lower (0.1%).
[33] The seasonal pattern of correlation for forest cover

change was similar to that observed for forest cover: the
highest correlations with the change in day LST and day‐
night LST difference occurred at end of the dry season in
July and August for both the PRODES and Hansen et al.
[2008] estimates. The correlation for night LST was high-
est during June and July for PRODES and July and August
for Hansen et al. [2008], when precipitation was at or near
minimum levels. In Figures 5b, 5d, and 5f the relationship
between the change in LST and the change in PRODES forest
cover are shown for the month of August. Both the change
in day LST and day‐night LST difference were negatively
correlated with the changes in forest cover, with correlation
coefficients of −0.59 and −0.65, respectively. While the day‐
night LST difference performed better than the day LST
for predicting patterns of deforestation from PRODES, the
reverse occurred for the Hansen et al. [2008] product, with
correlations of −0.70 for day and −0.67 for the day‐night
LST difference. During other dry season months, however,
including July and September, correlations with the day‐
night LST difference exceeded correlations with day LST for
the Hansen et al. [2008] product (Table 1).

3.3. Feature Selection

[34] Correlations between the change in day and day‐
night LST difference and the change in forest cover were
strongest during the dry season, and especially during the

Table 1. Monthly Relationships Between Physical Properties, Land Surface Temperature, and Land Surface Temperature Change

Month

Physical Properties
Correlation With PRODES

Forest Covera
Correlation With PRODES
Forest Cover Changeb

CorrelationWithHansen et al.
[2008] Forest Cover Changec

Precipitationd

(mm/month)

Day
LST
(K)

Night
LST
(K)

Day‐Night
LST
(K)

Day
LST

Night
LST

Day‐Night
LST

Day
LST

Night
LST

Day‐Night
LST

Day
LST

Night
LST

Day‐Night
LST

Jan 291.7 299.1 293.9 5.2 −0.69 0.14 −0.66 −0.12 0.05 −0.15 −0.23 0.19 −0.20
Feb 269.1 299.0 294.7 4.3 −0.73 −0.05 −0.50 −0.11 −0.01 −0.01 0.06 −0.09 0.08
Mar 263.1 298.8 294.1 4.7 −0.71 −0.09 −0.58 −0.09 0.03 −0.02 −0.03 0.06 0.02
Apr 125.8 299.8 293.8 6.0 −0.75 0.10 −0.72 −0.14 0.05 −0.21 0.02 0.17 −0.11
May 58.8 299.4 293.1 6.3 −0.71 0.41 −0.75 −0.37 0.02 −0.22 −0.31 −0.08 −0.18
Jun 16.0 300.7 291.9 8.8 −0.78 0.57 −0.77 −0.45 0.19 −0.50 −0.35 0.16 −0.39
Jul 16.5 301.2 291.1 10.1 −0.75 0.60 −0.80 −0.60 0.25 −0.63 −0.53 0.24 −0.56
Aug 24.1 303.6 291.6 12.0 −0.83 0.59 −0.83 −0.59 0.10 −0.65 −0.70 0.23 −0.67
Sep 70.5 304.1 293.5 10.6 −0.82 0.47 −0.83 −0.52 0.02 −0.51 −0.52 0.16 −0.56
Oct 155.4 303.0 294.1 8.9 −0.79 0.13 −0.80 −0.09 −0.02 −0.08 0.07 0.13 −0.08
Nov 189.2 301.8 294.1 7.7 −0.78 0.12 −0.78 −0.28 −0.11 −0.21 −0.32 −0.18 −0.19
Dec 279.7 300.6 294.0 6.6 −0.74 0.10 −0.72 −0.20 0.06 −0.06 −0.29 0.10 −0.29

aSpatial correlation of LST with the PRODES forest cover product. For both products we used the mean of the years 2000–2005. Pixels with errors in land
surface temperatures due to cloud contamination for all years (2000–2005) were excluded from the comparison with the PRODES forest cover product.

bSpatial correlation of the slope of LST with the slope of PRODES forest cover for the years 2000–2005. LST slopes were not calculated for cloud‐
contaminated pixels for the years 2000–2005. The influence of these errors on the slope is large because the data set covers only 6 years.

cSpatial correlation of the slope of LST with the Hansen et al. [2008] forest cover loss for the years 2000–2005.
dThe 3B43 TRRM monthly accumulated surface rainfall (mm/month).
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Figure 5. (left) Spatial distribution of the August (month of largest day‐night LST difference) LST slope
in unit K/yr from 2000 to 2005, for (a) daytime LST, (c) nighttime LST, and (e) day‐night LST difference,
and (right) the corresponding scatterplots against forest cover change from PRODES during 2000–2005.
The results for linear regression fit (solid line) were: (b) for daytime LST, slope of −7.34, intercept of
0.37, and p < 0.01; (d) for nighttime LST, slope of 0.46, intercept of 0.20, and p < 0.01; (f) for day‐night
LST difference, slope of −7.80, intercept of 0.17, and p < 0.01. In total, 30436 pixels were used for the
above regressions.
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months of July, August, and September in Mato Grosso,
as described above (section 3.2 and Table 1). To develop
an approach that could be applied more widely across the
tropics, we needed to develop an algorithm that could locally
identify the seasonal period of the greatest drought stress. To
find this period, we identified the period of maximum day‐
night LST difference in each grid cell, since Table 1 shows
that during the months with the highest correlations between
LST and PRODES and Hansen et al. [2008] forest cover
change, the difference between day and night LST is the
largest. First, we used all available observations from our
2000–2005 time series to construct a monthly mean annual
cycle of day‐night LST difference at each pixel. In a second
step we found the monthly maximum day‐night LST differ-
ence from this climatology, and its corresponding month.
This month was defined as the center of a 3 month window

that we then used to sample and calculate the 3 month
averages of satellite products for our logistic regression
model, including day LST, night LST, day‐night LST dif-
ference, and NDVI.
[35] Using the above described feature selection method,

the correlation coefficients showed a small improvement
over the fixed monthly correlation coefficients shown in
Table 1. For the correlation with PRODES forest cover, our
algorithm showed correlation coefficients of −0.83 for day
LST, 0.56 for night LST and −0.84 for day‐night LST dif-
ference. The correlation coefficients with forest cover change
were −0.67 and −0.71 (day LST), 0.12 and 0.25 (night LST)
and −0.68 and −0.70 (day‐night LST difference) for PRODES
and Hansen et al. [2008] products, respectively. Figure 6a
shows the month of maximum day‐night LST difference for
the study area, the state of Mato Grosso. For most pixels, this

Figure 6. (a) The month corresponding to the maximum day and night land surface temperature differ-
ence for the study area. (b) The maximum monthly day‐night land surface temperature difference (K)
averaged over the years 2000–2005.

Table 2. Logistic Regression Model Performance With Different Sets of Satellite Input Data

Experiment

Full Domaina Active Deforestation Domainb

Correlation (r) Area Predicted/Observed Correlation (r) Area Predicted/Observed

LST Sampled During the Dry Season
Day 0.58 1.51 0.58 2.48
Night 0.11 0.82 0.19 −1.09
Day‐night 0.64 1.21 0.63 1.41

D‐N LST Sampled During Different Seasonal Periods
Annual mean 0.48 0.97 0.58 −0.19
Wet season 0.05 1.79 0.08 0.40

NDVI Sampled During Different Seasonal Periods
Dry seasonc 0.80 1.23 0.78 1.24
Annual mean 0.66 1.41 0.66 0.93
Wet seasond −0.03 0.62 0.03 −1.68

NDVI and D‐N LST Sampled During Different Seasonal Periods
Dry season 0.80 1.22 0.78 1.28
Annual mean 0.70 1.20 0.71 0.66
Wet season 0.02 1.85 0.07 −0.94

aThe full domain corresponds to the area where PRODES data are available.
bThe active deforestation domain corresponds to the pixels where PRODES predicted any deforestation.
cThe dry season corresponds to the mean of a 3 month window, with the month of maximum day‐night LST difference as center (see section 3.3).
dThe wet season corresponds to the 3 month window that is exactly 6 months out of phase with the dry season.
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month corresponded to the end of the dry season (August). In
the northern part of the study area there were some pixels
where the maximum in day‐night LST difference occurred
1 month earlier, whereas in the south many pixels reached a
maximum later in the year, during September, October, and
November. These differences can likely be explained by
regional differences in climate. The maximum day‐night LST
is shown in Figure 6b. Large values were found in the southern
part of the study area, whereas in the north and the wetlands of
the Pantanal lower values were observed.

3.4. Logistic Regression Model Comparisons

[36] The performances of the logistic regression model to
predict forest cover change for different experiments, as

described in section 2.3, are shown in Table 2. We used
different seasonal periods of satellite observations to con-
struct the logistic regression models. The “dry season” cor-
responds to sampling the satellite observations according to
the metric we developed in section 3.3. The wet season cor-
responded to a 3 month period that is exactly 6 months out of
phase with the dry season window defined above, and the
annual mean is simply the mean for all the months in a cal-
endar year.
[37] For LSTs sampled during the dry season, the logistic

regression model using the day‐night LST difference per-
formed better (r = 0.64) than the day LST (r = 0.58) or night
LST (r = 0.11) models over the full domain. The ratio of the
area of the predicted versus actual forest cover losses was

Figure 7. (a) Pixels in our study domain where PRODES showed more than 20% of deforestation
between the years 2000 and 2005. Gray corresponds to the area outside the PRODES domain. (b) Pixels
in our study domain where the NDVI and day‐night LST difference sampled during the dry season pre-
dicted more than 20% deforestation between the years 2000 and 2005. (c) Pixels in our study domain
where the NDVI and day‐night LST difference sampled during the dry season predicted more than 5%
of regrowth. (d) A map of the predicted deforestation and regrowth overlaid on the PRODES deforesta-
tion in our study area. Shown are the pixels where LST and NDVI, sampled during the dry season, pre-
dicted more than 20% of deforestation (red), pixels with more than 5% of predicted regrowth (green), and
pixels where PRODES showed more than 20% deforestation but our algorithm predicted no or less than
20% deforestation (gray).
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1.21 for the day‐night LST difference, indicating that the
model was too sensitive to changes in the input features.
Over the active deforestation part of the domain, the day‐
night LST difference model also had the highest correlation
with observed forest cover loss. The ratio of predicted to
observed forest cover loss was 1.41, and better than the ratio
of the day LST (2.48) or night LST (−1.09). A ratio of 1
is ideal, so the day and day‐night LST difference over-
predicted forest cover loss in grid cells that PRODES
identified as changing during 2000–2005. The negative ratio
of −1.09 (night LST) corresponded to a prediction of more
regrowth than deforested area.
[38] The use of information at the end of the dry season,

when day‐night LSTwas at maximum, substantially improved
model predictions as compared with models using annual
mean or wet season observations. This was true for models
using day‐night LST, NDVI, and both day‐night LST and
NDVI (Table 2). Models using annual mean observations
showed the second best performance, with the correlation of
0.48 and a ratio of the predicted forest cover change over
PRODES change of 0.97 in the whole domain. Models using
wet season observations were substantially degraded.
[39] The predictions with NDVI showed a slightly better

correlation than that with the day‐night LST difference
during the dry season, and the combination of the two sets
of observations gave the same correlations (r = 0.80 for
the full domain, and r = 0.78 for the active deforestation
domain). Overall, the differences between the performance
for the full domain and for only the active deforestation
domain were small.

[40] The logistic regression model sampling the observa-
tions according to our algorithm (section 3.3) performed
better than a model using observations from a fixed period
during the dry season: August, the month of highest cor-
relations between LST and PRODES forest cover (Table 1).
The prediction using only August observations had a corre-
lation coefficient with observed forest cover changes of 0.55
and 0.57 for day‐night LST difference, 0.75 and 0.76 for
NDVI, and 0.77 and 0.78 for the combination of NDVI and
day‐night LST difference (for the full and active deforestation
domains, respectively).
[41] For predictions with the combined NDVI and day‐

night LST difference during the dry season, the spatial pattern
of larger clearing areas (greater than 20% during 2000–2005)
agreed reasonable well with PRODES (Figures 7a and 7b),
although the logistic regression model predicted that the defor-
estation rate was somewhat higher than PRODES estimates
in central part of Mato Grosso (9°S–13°S, 54°W–59°W).
[42] Besides detecting deforestation, we also used our

algorithm to explore areas of savanna/forest regrowth. Because
regrowth occurs over longer timescales than deforestation,
we set the detection threshold in Figure 7 to a greater than 5%
increase in fraction tree cover (compared to a greater than
20% decrease for deforestation). Areas where regrowth might
occurred according to our algorithm were mostly confined
to the savanna woodlands in the southwestern part of the
PRODES domain (Figure 7c).
[43] Over our study period, climatic conditions (tempera-

ture and precipitation) that could also potentially explain
increases in plant productivity, showed no trend. The areas of
regrowth shown in Figure 7may have been deforested prior to
our study period. In past work, regrowth has sometimes
been excluded from remote sensing studies using fractional
tree cover to detect rates of deforestation [e.g., Achard et al.,
2002; Hansen et al., 2008]. Our analysis suggests that
changes in woodlands and savannas may also be contributing
to global land use change carbon fluxes, although more work
is needed with higher‐resolution imagery and field mea-
surements to verify these results and disentangle natural and
anthropogenic causes of variability and trends in savanna
structure and productivity.

3.5. Applicability of LST Metrics to Other Regions and
Time Periods

[44] To check if our LST metric was applicable for areas
other than the state of Mato Grosso, we compared cumu-
lative LST changes with estimates from PRODES (available at

Figure 8. Comparison of cumulative day‐night LST
changes (in K/yr) with estimates of deforestation from
PRODES (in km2/yr) for states in the Brazilian Amazon dur-
ing 2001–2005. The day‐night LST changes were estimated
as the slope of the day‐night LST difference for each CMG
grid cell sampled using our LST metric. Pixels with positive
slopes and correlation coefficients larger than 0.7 (r) were
summed within each state. The linear fit with PRODES
data was described by a slope of 0.40, r equal to 0.98, and
n equal to 9. Abbreviations are AC, Acre; AM, Amazonas;
AP, Amapá; MA, Maranhão; MT, Mato Grosso; PA, Pará;
RO, Rondônia; RR, Roraima; TO, Tocantins. Note that both
x and y axis are plotted on a log scale.

Table 3. Relationships Between Changes in Day‐Night LST and

PRODES or Hansen et al. [2008] Deforestation Rates

Region Dry Seasona Annual Mean Wet Seasonb

Legal Amazonc 0.98 0.88 0.37
Southeast Asiad 0.67 0.46 0.11

aThe dry season corresponded to the mean of the 3 month window,
centered on month of maximum day‐night LST difference (see section 3.3).

bThe wet season corresponded to the 3 month window that was exactly
6 months out of phase with the dry season.

cAggregated values from nine Brazilian states were used to compute the
correlation coefficient: Acre, Amazonas, Amapá, Maranhão, Mato Grosso,
Pará, Rondônia, Roraima, and Tocantins.

dSix areas were used: Cambodia, Kalimantan, Malaysia, Sulawesi,
Sumatra, and Thailand.
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the INPE website: http://www.obt.inpe.br/prodes/) for all of
the Brazilian states within the Amazon (Figure 8). Cumulative
LST changes were estimated as the slope of the day‐night
LST difference for the years 2000–2005 sampled using our
grid cell specific approach for identifying the dry season.
For each state, we took the sum of all pixels within each
spatial domain that had a positive slope and a correlation
coefficient larger than 0.7.
[45] In Table 3 we report the statistics for our day‐night

LST metric and for day‐night LST changes derived using
either annual mean or the 6 month out of phase observations.
We also show the results for different countries in Southeast
Asia, based on a comparison with the global deforestation
product from Hansen et al. [2008] for the years 2000–2005.
Although the spatial correlations of the regression were
not as good as for the states across the Brazilian Amazon,
a clear improvement occurred when day‐night LST was
sampled during the local dry season (i.e., during the sea-
sonal period when the day‐night LST differences were most
pronounced).
[46] In Figure 9 we compare the PRODES deforestation

rate in km2/yr with our day‐night LSTmetric described above
for two periods: 2001–2005 and 2006–2009. The day‐night
LST changes decreased during 2006–2009 relative to 2001–
2005 for many states within the Amazon, providing an
independent confirmation of lower deforestation levels dur-
ing the latter part of this decade as reported by PRODES.
For the states which are important from a deforestation per-

spective (Mato Grosso, Pará, Rondônia), we observed large
decreases in the day‐night LST metric for the 2006–2009
period.

4. Discussion

[47] Our analysis suggests that information from thermal
bands can be useful in monitoring deforestation; especially
when sampled during the dry season and when day and
night LST observations are combined. Logistic regression
models of forest cover change using LST sampled in this
way were slightly less effective than models using NDVI,
but they performed well enough to be useful when NDVI
data for a region is unavailable or noisy. LST observations
may be particularly useful with satellite spectrometers that
do not have high‐resolution spectral bands that allow for
estimation of NDVI (e.g., Geostationary Operational Envi-
ronmental Satellite (GOES)), or in areas where aerosols limit
the usefulness of visible and near‐infrared surface reflec-
tance observations.
[48] The information content of LST data varied consid-

erably from season to season. High correlations between
day‐night LST difference data and PRODES and Hansen
et al. [2008] forest cover change were observed at the end
of the dry season (August in our study area and approxi-
mately 1–2 months after minimum monthly precipitation).
In contrast, during the wet season the correlations
were significantly lower. The higher amount of cloud‐

Figure 9. Time series of PRODES deforestation rate in km2/yr (gray bars, y axis) and the cumulative
change in day‐night LST (in K/yr) within each region (solid black line, secondary y axis) for nine Brazilian
states (years 2001–2005 and 2006–2009).
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contaminated pixels in the wet months like December,
January, and February might have played a role here. Even
during periods without cloud cover, increases in column
water vapor content during the wet season likely contributed
to smaller differences in nighttime cooling between forest
and nonforest areas (e.g., Figure 3). Higher correlations were
found in the months when cloud contamination and pre-
cipitation were low, surface humidity was at a minimum,
and the difference between day and night LSTwas the largest.
We found large variations in the correlations between LST
data and forest cover change during the year. Therefore, it
is important that the use of LST data in deforestation clas-
sifiers take advantage of seasonal periods with the highest
descriptive power. To predict these months, we developed
a simple temporal sampling algorithm based on the largest
day‐night LST difference. Different tests showed that data
based on the LST during a 3 month window centered on the
month derived from this metric yielded the highest correla-
tions with independent data.
[49] Besides the importance of the temporal sampling of

LST data, our analysis showed that during the end of the dry
season the day‐night LST difference performed better than
the day LST for comparisons we made with PRODES;
several experiments in our logistic regression model con-
firmed this. On the other hand, a comparison with Hansen
et al. [2008] forest cover loss data showed slightly higher
correlations for the day LST than the day‐night difference
during August (but the reverse in July and September). The
reasons for the different performance of day‐night LST dif-
ferences with PRODES and Hansen et al. [2008] deforesta-
tion products remain unclear and will require further analysis
with higher spatial resolution LST data. Day LST has already
been used in different deforestation classifiers; the approach
of using the day‐night LST difference data in deforestation
classifiers is novel and may reduce the sensitivity of LST‐
based approaches to interannual variability in climate and
to variations in topography. Effects of climate change and
topography are expected to influence both day and night
LSTs in the same direction, so day‐night LST differences
may be less sensitive to these factors. This reduced sensitivity
may be of particular use in constructing long time series of
land cover change that extend across multiple satellites,
including those that have different sensor characteristics.
[50] A disadvantage of using the day‐night LST differ-

ence as compared to day LST is that the day‐night LST
difference may be more sensitive to cloud contamination
because two, rather than one, clear‐sky images are needed to
construct this metric and because cloud cover may be higher
in tropical regions at night [Durieux et al., 2003]. During the
dry season, and especially the months of July, August, and
September, day and night LST products from MODIS had
more cloud‐free observations than during other periods. As
described above, lower water content in the atmospheric
column also probably allows for greater nighttime cooling
and thus the potential for greater discrimination between
high and low stature vegetation. Thus, sampling LST during
the end of the dry season using the algorithm we developed
may have advantages considering both surface biophysical
and atmospheric contamination perspectives. In future work,
by combining Aqua and Terra observations (with up to four
overpasses per day) it may be possible to partly resolve
some of issues related to cloud contamination.

[51] The region of focus for this study was in the arc of
deforestation in the state of Mato Grosso, Brazil. Defores-
tation and climatic characteristics in this region are well
suited for MODIS‐based deforestation monitoring, because
long dry seasons and low‐stature transition forest types
enable the mechanized clearing of forest cover [Morton et al.,
2005]. These large clearings are more easily detected with
moderate resolution remote sensing products, and cloud
cover is much lower during the dry season, increasing the
chance for cloud‐free MODIS imagery. In other important
humid tropical regions in Africa and Asia the dry season is
considerably weaker, limiting cloud-free imagery [Hansen
et al., 2009], and also the sizes of tropical forest clearings
may be smaller than those that typically occur in Mato
Grosso, Brazil. Large mechanized clearings are used for the
creation of pastures and croplands in Mato Grosso [Morton
et al., 2006], whereas clearings in Asia and especially Africa
are smaller in size and associated with logging activities and
smaller‐scale agricultural complexes.
[52] Although some results of our LST metric in other

areas (Brazilian Amazon and Southeast Asia) were promising
(Figures 8 and 9), more work with higher‐resolution LST data
is needed to assess whether our approach will be useful in
regions that have smaller clearing sizes. In principal, subpixel
changes in forest cover should impart changes in LST that are
detectable in moderate resolution observations; the linearity
of these responses are not well understood and require further
study.
[53] Use of the coarse resolution climate modeling grid

(CMG) products here was a useful first step for evaluating
the information content of different LST measurements as a
function of overpass time and monthly sampling interval. An
important next step toward the development of an operational
pantropical forest classifier is to assess the performance of
these different types of observations with 1 km MODIS LST
data, 90 m Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) observations, and in future,
with 60 m observations from the planned Hyperspectral
Infrared Imager (HyspIRI) Mission. Higher‐resolution LST
data also are likely to be more effective in identifying the
exact geographic location of deforestation. MODIS LST data
are appropriate for rapid identification of the location of
deforestation areas and trends in deforestation dynamics, but
cannot be seen as a replacement for higher‐resolution systems
based on Landsat and other higher‐resolution surface
reflectance imagery.

5. Conclusions

[54] LST data can be a useful information source in
classification models for distinguishing between forest and
nonforest areas and for quantifying deforestation in a con-
tinuous way. The information content of the day LST and
day‐night LST difference observations varied considerably
over an annual cycle. At the end of the dry season, when
precipitation was low, surface humidity was at a minimum,
and the difference between day and night LST was large, the
highest correlations were found with the PRODES and
Hansen et al. [2008] forest cover change in the Brazilian
state of Mato Grosso. Based on this analysis, we developed
a metric to monitor forest cover change in the humid tropics.
Besides the importance of sampling LST data during the
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months with the highest descriptive power, we found that
the day‐night LST difference in general improved the ability
of classification models to distinguish forest and nonforest
areas as compared with models that only use day LST. We
were able to show using this approach that changes in day‐
night LSTs were highly correlated with the spatial pattern
of deforestation across different Brazilian states within the
Amazon. Changes in day‐night LSTs were lower within the
Amazon during 2006–2009 relative to 2001–2005, provid-
ing independent confirmation of decreases in the rate of
deforestation during the latter part of this decade as reported
by PRODES.
[55] Further research is needed to optimize our day‐night

LST difference algorithm in detecting tropical forest cover
change; the use of higher spatial and temporal resolution
LST data needs to be explored, because the actual clearing
size of forest in often smaller than the pixel size of the coarse
resolution (0.05° × 0.05°) LST data used in this study. Longer
time series of LST from MODIS, that now extend over
a decade in length, may increase our ability to use LST
observations in effective ways to detect long‐term changes in
forest cover. Next steps are to validate this approach using
higher‐resolution Landsat observations and to extend this
approach globally.
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