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Abstract In the present work, we consider a mathe-
matical model of an SIR epidemic model with saturated
incidence rate and saturated treatment function. We
use an optimal vaccination strategies to minimize the
susceptible and infected individuals and to maximize
the number of recovered individuals. We work in the
nonlinear optimal control framework. Some results
concerning the existence and the characterization of the
optimal control will be given. Numerical simulations
are also presented.
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1 Introduction

In recent years epidemiological modeling of infectious
disease transmission has had an increasing influence on
the theory and practice of disease management and con-
trol. Mathematical modeling of the spread of infectious
diseases has become part of epidemiology policy decision
making in many countries, (See for example: [2, 3, 4],
[6], [14], [15], [23], [26, 27], [30]). They can provide a
powerful tool for investigating the dynamics and control
of infectious diseases.
Optimal control theory provides a valuable tool to begin
to assess the trade-offs between vaccination and treat-
ment strategies [9], [11], [12], [13], [10], [18], [19], [20],
[28]. Optimal control is a mathematical technique de-
rived from the calculus of variations. Anyhow we can
give suggestions to the public health authorities about
the effects of a particular control policy with respect to
others, and in this context the analysis and simulation
of mathematical models may become a powerful tool in
the hands of the above authorities. However, the con-
trol of epidemic systems is not usually an easy task since
in real situations it is rather difficult to implement the
control policies suggested by the mathematical analysis.
There are a number of different methods for calculating
the optimal control for a specific mathematical model.
For example, Pontryagin’s maximum principle [22] al-
lows the calculation of the optimal control for an ordi-

nary equation model system with a given constraint.
The aim of this work is not to consider a special disease
but to set up an optimal control problem relative to the
SIR model. To do this, we use a percentage of suscepti-
ble populations as a control in our model. This percent-
age is a function of time. Hence, the optimal control
(vaccination) strategy is to minimize the infected and
susceptible individuals, and to maximize the total num-
ber of recovered individuals.
The paper is organized as follows: In Section 2, the
model is described. In Section 3, we use Pontryagin’s
maximum principle to investigate analysis of control
strategies and to determine the necessary conditions for
the optimal control of the disease. Section 4 gives sev-
eral numerical examples, and Section 5 concludes this
work.

2 mathematical model

2.1 Model Assumptions

In this subsection, we first give the following basic
assumptions

• The total population is divided into three sub-
groups: susceptible, infected and recovered individ-
uals and S, I, R denote their numbers, respectively.
Positive constants A, δ, µ, ϵ are the recruitment
rate of the population, the natural death rate of the
population, the natural recovery rate of the infected
individuals and the disease-related death rate, re-
spectively.

• While contacting with infected individuals, the sus-
ceptible individuals become infected at a saturated
incidence rate λSI

1+kI , where λ is positive and k is
nonnegative.

• Through treatment, the infected individuals recover
at a saturated treatment function h(I) = rI

1+αI ,
where r is positive and α is nonnegative.

Wendi Wang (2006) introduced a staged treatment
function which describes that the treatment rate is pro-
portional to the number of the infective when the ca-
pacity of treatment is not reached, and otherwise, takes
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the maximal saturated level. This seems more reason-
able than the usual linear function. Besides this, we
know that the efficiency for treatment will be seriously
affected if the infected individuals are delayed for treat-
ment.
Zhang and Xianning (2008) added a parameter α in

the treatment function to measure the extent of the ef-
fect of the infected being delayed for treatment. At the
same time, in order to model the saturated phenomenon
of the treatment mentioned above, we propose a function
h(I) with the form in the assumptions, where r is the
cure rate (when α = 0, the saturated treatment function
returns to the linear one).
In addition, the incidence rate will also come to a sat-

urated situation as the infected individuals increase be-
cause of the psychological effect or the inhibition effect.
Capasso and Serio introduced a saturated incidence rate
λS(t)I(t)
1+kI(t) into the epidemic model which tends to a satu-

rated level when I gets large, where λS(t)I(t) measures
the infection force of the disease and 1

(1+kI) describes

the psychological effect or inhibition effect from the be-
havioral change of the susceptible individuals when their
number increases or from the crowding effect of the in-
fected individuals. Although this incidence rate is more
complex to deal with than the bilinear one, it seems
more reasonable.

2.2 The model

The model to be studied takes the following form
Ṡ(t) = A− δS(t)− λS(t)I(t)

1+kI(t) ,

İ(t) = λS(t)I(t)
1+kI(t) − (δ + ϵ+ µ)I(t)− rI(t)

1+αI(t) ,

Ṙ(t) = µI(t) + rI(t)
1+αI(t) − δR(t)

(1)
With initial condition for the above system:
S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0

3 The Optimal Vaccination

We consider the control variable u(t) ∈ Uad to be the
percentage of susceptible individuals being vaccinated
per unit of time. Here Uad = {u|u(t) is measurable, 0 ≤
u(t) ≤ umax < ∞, t ∈ [0, tend]} indicates an admissible
control.
Now, we consider an optimal control problem to mini-
mize the objective functional

J(u) =

∫ tend

0

[A1S(t) +A2I(t) +
1

2
τu2(t)]dt (2)

subject to


Ṡ(t) = A−

(
δ + u(t)

)
S(t)− λS(t)I(t)

1+kI(t) ,

İ(t) = λS(t)I(t)
1+kI(t) − (δ + ϵ+ µ)I(t)− rI(t)

1+αI(t) ,

Ṙ(t) = µI(t) + rI(t)
1+αI(t) − δR(t) + u(t)S(t),

(3)

With S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0
here A1 and A2 are small positive constants to keep a
balance in the size of S(t) and I(t), respectively. The
square of the control variable reflects the severity of
the side effects of the vaccination. In the objective
functional, τ is a positive weight parameter which is
associated with the control u(t). The objective of our
work is to minimize the infected and susceptible indi-
viduals and to maximize the total number of recovered
individual by using possible minimal control variables
u(t).

3.1 Existence of an Optimal Control

For existence, we consider a control system (3) with
initial conditions. Then, we rewrite (3) in the following
form:

ϕt = Bϕ+ F (ϕ) (4)

where

ϕ =

S(t)I(t)
R(t)


B =

−(u(t) + δ) 0 0
0 −(δ + ϵ+ µ) 0

u(t) µ −δ



F (ϕ) =


A− λS(t)I(t)

1+kI(t)

λS(t)I(t)
1+kI(t) − rI(t)

1+αI(t)

rI(t)
1+αI(t)


and ϕt denote derivative of ϕ with respect to time t.
Equation (4) is a non-linear system with a bounded
coefficient. We set D(ϕ) = Bϕ+ F (ϕ).
Now,

F(ϕ1)− F (ϕ2) =
A− λS1(t)I1(t)

1+kI1(t)

λS1(t)I1(t)
1+kI1(t)

− rI1(t)
1+αI1(t)

rI1(t)
1+αI1(t)

−


A− λS2(t)I2(t)

1+kI2(t)

λS2(t)I2(t)
1+kI2(t)

− rI2(t)
1+αI2(t)

rI2(t)
1+αI2(t)



=



−λ

(
S1(t)I1(t)
1+kI1(t)

− S2(t)I2(t)
1+kI2(t)

)

λ

(
S1(t)I1(t)
1+kI1(t)

− S2(t)I2(t)
1+kI2(t)

)
− r

(
I1(t)

1+αI1(t)
− I2(t)

1+αI2(t)

)

r

(
I1(t)

1+αI1(t)
− I2(t)

1+αI2(t)

)


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Therefore∣∣F (ϕ1)− F (ϕ2)
∣∣ =

∣∣− λ
(

S1I1
1+kI1

− S2I2
1+kI2

)∣∣+ ∣∣λ( S1I1
1+kI1

− S2I2
1+kI2

)
− r
(

I1
1+αI1

− I2
1+αI2

)∣∣+ ∣∣r( I1
1+αI1

− I2
1+αI2

)∣∣
≤ 2λ

∣∣ S1I1
1+kI1

− S2I2
1+kI2

∣∣+ 2r
∣∣ I1
1+αI1(t)

− I2
1+αI2

∣∣
≤ 2λ

∣∣S1I1

(
1+kI2

)
−S2I2

(
1+kI1

)(
1+kI1

)(
1+kI2

) ∣∣+ 2r
∣∣ I1(1+αI2

)
−I2

(
1+αI1

)(
1+αI1

)(
1+αI2

) ∣∣
≤ 2λ

∣∣S1(t)I1 + kS1I1I2 − S2I2 − kS2I1I2
∣∣+ 2r

∣∣I1 − I2
∣∣

≤ 2λ
∣∣S1I1 − S2I2 + kI1I2

(
S1 − S2

)∣∣+ 2r
∣∣I1 − I2

∣∣
≤ 2λ

∣∣S1I1 − S2I1 + S2I1 − S2I2 + kI1I2
(
S1 − S2

)∣∣+ 2r
∣∣I1 − I2

∣∣
≤ 2λ

∣∣I1(S1 − S2

)
+ S2

(
I1 − I2

)
+ kI1I2

(
S1 − S2

)∣∣+ 2r
∣∣I1 − I2

∣∣
≤ 2λ

(∣∣I1∣∣∣∣S1 − S2

∣∣+ ∣∣S2

∣∣∣∣I1 − I2
∣∣+ k

∣∣I1∣∣∣∣I2∣∣∣∣S1 − S2

∣∣)+ 2r
∣∣I1 − I2

∣∣
≤

∣∣I1 − I2
∣∣(2λ∣∣S2

∣∣+ 2r
)
+
∣∣S1 − S2

∣∣(2λk∣∣I1∣∣∣∣I2∣∣+ 2λ
∣∣I1∣∣)

≤
(
2λA

δ + 2r
)∣∣I1 − I2

∣∣+ (2λkA2

δ2 + 2λA
δ

)∣∣S1 − S2

∣∣
≤ M

(∣∣S1 − S2

∣∣+ ∣∣I1 − I2
∣∣)

where M = max

(
2
(λA

δ
+ r
)
; 2λ

A

δ

(kA
δ

+ 1
))

Also, we get ∣∣D(ϕ1)−D(ϕ2)
∣∣ ≤ V

∣∣ϕ1 − ϕ2

∣∣, where V = max
(
M, ∥B∥

)
< ∞.

Thus, it follows that the function D is uniformly Lipschitz continuous. From the definition of the control u(t) and
the restriction on S(t), I(t) and R(t) ≥ 0, we see that a solution of the system (4) exists (Birkhoff and Rota, 1989).
Let us go back to the optimal control problem, (2) - (3). In order to find an optimal solution, first we find the
Lagrangian and Hamiltonian for the optimal control problem (2) - (3). In fact, the Lagrangian of the optimal
problem is given by

L(S, I, u) = A1S(t) +A2I(t) +
1

2
τu2(t).

We seek the minimal value of the Lagrangian. To accomplish this, we define the Hamiltonian H for the control
problem:

H(S, I,R, u, λ1, λ2, λ3, t) = L(S, I, u) + λ1(t)
dS(t)

dt
+ λ2(t)

dI(t)

dt
+ λ3(t)

dR(t)

dt
(5)

where λ1(t), λ2(t)and λ3(t) are the adjoint functions to be determined suitably.

Theorem 3.1 There exists an optimal control u∗(t) such that

J(u∗(t)) = min
u∈Uad

J(u(t))

subject to the control system (3) with initial conditions.

Proof. To prove the existence of an optimal control we use the result in (Lukes, 1982). Note that the control and
the state variables are nonnegative values. In this minimizing problem, the necessary convexity of the objective
functional in u(t) is satisfied. The control space

Uad = {u|u(t) is measurable, 0 ≤ u(t) ≤ umax < ∞, t ∈ [0, tend]}

is also convex and closed by definition. The optimal system is bounded which determines the compactness needed
for the existence of the optimal control. In addition, the integrand in the functional (2), A1S(t)+A2I(t)+

1
2τu

2(t)
is convex on the control u(t). Also, we can easily see that, there exist a constant ρ > 1, positive numbers ω1 and
ω2 such that J(u(t)) ≥ ω2 + ω1(|u|2)

ρ
2 . We conclude that there exists an optimal control.
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3.2 Characterization of the optimal control

In the previous section we showed the existence of an optimal control which minimize the functional (2) subject
to system(3). In order to derive the necessary conditions for this optimal control, we apply Pontryagin’s maximum
principle to the Hamiltonian H.

Theorem 3.2 Let S∗(t), I∗(t) and R∗(t) be optimal state solutions with associated optimal control variable
u∗(t) for the optimal control problem (2) and (3). Then, there exist adjoint variables λ1, λ2 and λ3 that satisfy

dλ1(t)

dt
= −A1 + λ1(t)

(
δ + u(t) +

λI

1 + kI

)
− λ2(t)

(
λI

1 + kI

)
− λ3(t)u(t)

dλ2(t)

dt
= −A2 + λ1(t)

(
λS

(1 + kI)2

)
− λ2(t)

(
λS

(1 + kI)2
−
(
δ + ϵ+ µ

)
− r

(1 + αI)2

)
− λ3(t)

(
µ+

r

(1 + αI)2

)
(6)

dλ3(t)

dt
= λ3(t)δ

with transversality conditions

λi(tend) = 0, i = 1, 2, 3. (7)

Furthermore, the optimal control u∗(t) is given by

u∗(t) = max

(
min

(
(λ1(t)− λ3(t))S

∗(t)

τ
, umax

)
, 0

)
(8)

Proof. We use the Hamiltonian (5) in order to determine the adjoint equations and the transversality conditions.
From setting S(t) = S∗(t), I(t) = I∗(t) and R(t) = R∗(t), and differentiating the Hamiltonian with respect to S, I
and R, respectively, we obtain (6).
And by using the optimality conditions we find

∂H

∂u
= τu∗(t)− λ1(t)S

∗ + λ3(t)S
∗ = 0, at u = u∗(t)

which gives

u∗(t) =

(
λ1(t)− λ3(t)

)
S∗(t)

τ

Using the property of the control space, we obtain

u∗(t) = 0 if

(
λ1(t)−λ3(t)

)
S∗(t)

τ ≤ 0

u∗(t) =

(
λ1(t)−λ3(t)

)
S∗(t)

τ if 0 <

(
λ1(t)−λ3(t)

)
S∗(t)

τ < umax

u∗(t) = umax if

(
λ1(t)−λ3(t)

)
S∗(t)

τ ≥ umax

So the optimal control is characterized as

u∗(t) = max

(
min

((
λ1(t)− λ3(t)

)
S∗(t)

τ
, umax

)
, 0

)
.

3.3 The optimality system

The optimal control and the state are found by solving the optimality system, which consists of the state system
(3) with the initial conditions at t = 0, the adjoint system (6) with the final conditions (7) and the characterization
of the optimal control (8).
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So the optimality system is given by

Ṡ(t) = A−
(
δ +max

(
min

(
(λ1(t)−λ3(t))S

∗(t)
τ , umax

)
, 0

))
S(t)− λS(t)I(t)

1+kI(t) ,

İ(t) = λS(t)I(t)
1+kI(t) − (δ + ϵ+ µ)I(t)− rI(t)

1+αI(t) ,

Ṙ(t) = µI(t) + rI(t)
1+αI(t) − δR(t) +max

(
min

(
(λ1(t)−λ3(t))S

∗(t)
τ , umax

)
, 0

)
S(t),

λ̇1(t) = −A1 + λ1(t)

(
δ +max

(
min

(
(λ1(t)−λ3(t))S

∗(t)
τ , umax

)
, 0

)
+ λI(t)

(1+kI(t))

)

−λ2(t)

(
λI(t)

(1+kI(t))

)
− λ3(t)max

(
min

(
(λ1(t)−λ3(t))S

∗(t)
τ , umax

)
, 0

)

λ̇2(t) = −A2 + λ1(t)

(
λS(t)

(1+kI(t))2

)
− λ2(t)

(
λS(t)

(1+kI)2 −
(
δ + ϵ+ µ

)
− r

(1+αI(t))2

)
− λ3(t)

(
µ+ r

(1+αI(t))2

)
λ̇3(t) = λ3(t)δ

(9)
with λ1(tend) = 0, λ2(tend) = 0, λ3(tend) = 0, S(0) = S0, I(0) = I0, R(0) = R0

4 Numerical Simulations

4.1 The improved GSS1 method

The resolution of the optimality system (9) is created improving the Gauss Seidel − like implicit finite-difference
method developed in [10]and denoted GSS1 method. It consists on discretizing the interval [t0, tend] by the points
tk = kl+ t0(k = 0, 1, ..., n), where l is the time step. Next, we define the state and adjoint variables S(t), I(t), R(t)
, λ1(t), λ2(t), λ3(t) and the control u(t) in terms of nodal points Sk, Ik, Rk , λk

1 , λ
k
2 , λ

k
3 and uk with S0, I0, R0,

λ0
1, λ

0
2, λ

0
3 and u0 as the state and adjoint variables and the controls at initial time t0.S

n, In, Rn, λn
1 , λ

n
2 , λ

n
3 and

un as the state and adjoint variables and the controls at final time tend.
As it is well known, the approximation of the time derivative by its first-order forward-difference is given, for the

first state variable S(t), by dS(t)
dt = lim

l→0

S(t+l)−S(t)
l .

We use the scheme developed by Gumel et al. to adapt it to our case as following:

Sk+1 − Sk

l
= A− (δ + uk)Sk+1 − λSk+1Ik

1 + kIk
(10)

Ik+1 − Ik

l
=

λSk+1Ik+1

1 + kIk+1
− (δ + ϵ+ µ)Ik+1 − rIk+1

1 + αIk+1
(11)

Rk+1 −Rk

l
= µIk+1 +

rIk+1

1 + αIk+1
− δRk+1 + ukSk+1 (12)

By applying an analogous technology, we approximate the time derivative of the adjoint variables by their first-order
backward-difference and we use the appropriated scheme as follows:

λn−k
1 − λn−k−1

1

l
= −A1 + λn−k−1

1

(
δ + uk +

λIk+1

1 + kIk+1

)
− λn−k

2

(
λIk+1

1 + kIk+1

)
− λn−k

3 uk (13)

λn−k
2 − λn−k−1

2

l
= −A2 + λn−k−1

1

(
λSk+1

(1 + kIk+1)2

)
− λn−k−1

2

(
λSk+1

(1 + kIk+1)2
− (δ + ϵ+ µ) (14)

− r

(1 + αIk+1)2

)
− λn−k

3

(
µ+

r

(1 + αIk+1)2

)
λn−k
3 − λn−k−1

3

l
= λn−k−1

3 δ (15)

4.2 Numerical results

We use the following data:
S0 = 1000; I0 = 110;R0 = 61;µ = 0.1;A = 150;α = 0.01; δ = 0.1; τ = 105; r = 0.8; k = 0.1;A1 = 100;A2 = 10; γ =
0.003;= 0.1; ϵ = 0.01;
We obtain the following figures (see Figure1)

We can see that the optimal vaccination and treatment function have a very desirable effect upon the population
of infectious and susceptible which decreases while the recovered population increases for almost the entire length
of therapy.



190 Optimal Vaccination Strategies of an SIR Epidemic Model with a Saturated Treatment

Figure 1. The plot shows the population both with control and no control.

5 Conclusion

In this paper we do not consider any special disease but our aim is to set up an optimal control problem relative
to epidemic model with saturated incidence rate and saturated treatment function, so it is to minimize the infected
and susceptible populations and to maximize recovered populations.
A comparison between individuals with optimal control and no control is presented. It is easy to see that the
optimal control is much more effective for reducing the number of infected individuals. In order to illustrate the
overall picture of the epidemic, the numbers of infected, susceptible and recovered individuals under the optimal
control and no control are shown in figures.
So, we can see that the population of recovered individuals with control is more sharply increased than the indi-
viduals without control. The population of susceptible and infected with control is more sharply decreased than
the population without control.
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