Optimal value range in interval linear programming

Milan Hladík

Department of Applied Mathematics
Charles University, Prague

EURO XXII, Prague
July 8-11, 2007

Introduction

Definition

- An interval matrix

$$
A^{\prime}=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\},
$$

Introduction

Definition

- An interval matrix

$$
A^{\prime}=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\}
$$

- Midpoint and radius of A^{\prime}

$$
A_{c} \equiv \frac{1}{2}(\underline{A}+\bar{A}), \quad A_{\Delta} \equiv \frac{1}{2}(\bar{A}-\underline{A}) .
$$

Introduction

Definition

- An interval matrix

$$
A^{\prime}=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\}
$$

- Midpoint and radius of A^{\prime}

$$
A_{c} \equiv \frac{1}{2}(\underline{A}+\bar{A}), \quad A_{\Delta} \equiv \frac{1}{2}(\bar{A}-\underline{A}) .
$$

Consider the interval linear program

$$
f(A, b, c) \equiv \inf c^{T} x \text { subject to } A x=b, x \geq 0
$$

where $A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime}$.

Lower and upper bounds of the optimal value

$$
\begin{aligned}
& \underline{f} \equiv \inf f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime} \\
& \bar{f} \equiv \sup f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime}
\end{aligned}
$$

Lower and upper bounds of the optimal value

$$
\begin{aligned}
& \underline{f} \equiv \inf f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime} \\
& \bar{f} \equiv \sup f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime}
\end{aligned}
$$

Theorem (Rohn 2006)
We have

$$
\underline{f}=\inf \underline{c}^{\top} x \text { subject to } \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0
$$

Let \underline{f} be finite or let the right-hand side of (1) be positively infinite. Then

$$
\begin{equation*}
\bar{f}=\sup b_{c}^{T} y+b_{\Delta}^{T}|y| \text { subject to } A_{c}^{T} y-A_{\Delta}^{T}|y| \leq \bar{c} \tag{1}
\end{equation*}
$$

Unified approach

Consider the general interval linear program

$$
f(A, b, c) \equiv \inf c^{\top} x \text { subject to } x \in M(A, b)
$$

where $M(A, b)$ is described by a linear system.

Unified approach

Consider the general interval linear program

$$
f(A, b, c) \equiv \inf c^{T} x \text { subject to } x \in M(A, b)
$$

where $M(A, b)$ is described by a linear system.
Lower and upper bounds of the optimal value

$$
\begin{aligned}
& \underline{f} \equiv \inf f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime} \\
& \bar{f} \equiv \sup f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime}
\end{aligned}
$$

Unified approach

Consider the general interval linear program

$$
f(A, b, c) \equiv \inf c^{T} x \text { subject to } x \in M(A, b)
$$

where $M(A, b)$ is described by a linear system.
Lower and upper bounds of the optimal value

$$
\begin{aligned}
& \underline{f} \equiv \inf f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime} \\
& \bar{f} \equiv \sup f(A, b, c) \text { subject to } A \in A^{\prime}, b \in b^{\prime}, c \in c^{\prime}
\end{aligned}
$$

Dual problem

$$
\max b^{T} x \text { subject to } x \in N(A, c)
$$

Solution sets of $M(A, b)$ and $N(A, c)$, respectively, are

$$
\begin{aligned}
M & \equiv\left\{x \in M(A, b) \mid A \in A^{\prime}, b \in b^{\prime}\right\} \\
N & \equiv\left\{y \in N(A, c) \mid A \in A^{\prime}, c \in c^{\prime}\right\}
\end{aligned}
$$

Solution sets of $M(A, b)$ and $N(A, c)$, respectively, are

$$
\begin{aligned}
M & \equiv\left\{x \in M(A, b) \mid A \in A^{\prime}, b \in b^{\prime}\right\} \\
N & \equiv\left\{y \in N(A, c) \mid A \in A^{\prime}, c \in c^{\prime}\right\}
\end{aligned}
$$

Theorem
We have

$$
\underline{f}=\inf c_{c}^{T} x-c_{\Delta}^{T}|x| \text { subject to } x \in M
$$

Let $\bar{f}<\infty$ or let the right-hand side of (2) be positively infinite. Then

$$
\begin{equation*}
\bar{f}=\sup b_{c}^{T} y+b_{\Delta}^{T}|y| \text { subject to } x \in N \tag{2}
\end{equation*}
$$

Algorithm

Definition (Strong solvability)
The system describing $M(A, b), A \in A^{\prime}, b \in b^{\prime}$, is strongly solvable if $M(A, b)$ is nonempty for all $A \in A^{l}, b \in b^{l}$.

Algorithm

Definition (Strong solvability)

The system describing $M(A, b), A \in A^{\prime}, b \in b^{\prime}$, is strongly solvable if $M(A, b)$ is nonempty for all $A \in A^{l}, b \in b^{l}$.

Algorithm (Optimal value range $[\underline{f}, \bar{f}]$)

1. Compute

$$
\underline{f}:=\inf c_{c}^{T} x-c_{\Delta}^{T}|x| \text { subject to } x \in M
$$

Algorithm

Definition (Strong solvability)

The system describing $M(A, b), A \in A^{\prime}, b \in b^{\prime}$, is strongly solvable if $M(A, b)$ is nonempty for all $A \in A^{l}, b \in b^{l}$.

Algorithm (Optimal value range $[\underline{f}, \bar{f}]$)

1. Compute

$$
\underline{f}:=\inf c_{c}^{T} x-c_{\Delta}^{T}|x| \text { subject to } x \in M
$$

2. Compute

$$
\bar{\varphi}:=\sup b_{c}^{T} y+b_{\Delta}^{T}|y| \text { subject to } y \in N .
$$

Algorithm

Definition (Strong solvability)

The system describing $M(A, b), A \in A^{\prime}, b \in b^{\prime}$, is strongly solvable if $M(A, b)$ is nonempty for all $A \in A^{l}, b \in b^{l}$.

Algorithm (Optimal value range $[\underline{f}, \bar{f}]$)

1. Compute

$$
\underline{f}:=\inf c_{c}^{T} x-c_{\Delta}^{T}|x| \text { subject to } x \in M .
$$

2. Compute

$$
\bar{\varphi}:=\sup b_{c}^{T} y+b_{\Delta}^{T}|y| \text { subject to } y \in N .
$$

3. If $M(A, b), A \in A^{\prime}, b \in b^{\prime}$, is strongly solvable, then set $\bar{f}:=\bar{\varphi}$, otherwise set $\bar{f}:=\infty$.

Examples

Example (simple case)
Let $M(A, b)=\{x \mid A x \leq b, x \geq 0\}$.

Examples

Example (simple case)
Let $M(A, b)=\{x \mid A x \leq b, x \geq 0\}$. Then

$$
\begin{aligned}
N(A, c) & =\left\{y \mid A^{T} y \geq c, y \geq 0\right\}, \\
M & =\{x \mid \underline{A x} \leq \bar{b}, x \geq 0\}, \\
N & =\left\{y \mid \bar{A}^{T} y \geq \underline{c}, y \geq 0\right\} .
\end{aligned}
$$

Examples

Example (simple case)
Let $M(A, b)=\{x \mid A x \leq b, x \geq 0\}$. Then

$$
\begin{aligned}
N(A, c) & =\left\{y \mid A^{T} y \geq c, y \geq 0\right\}, \\
M & =\{x \mid \underline{A} x \leq \bar{b}, x \geq 0\}, \\
N & =\left\{y \mid \bar{A}^{T} y \geq \underline{c}, y \geq 0\right\} .
\end{aligned}
$$

Strong solvability of $M(A, b)$ is equivalent to solvability to

$$
\bar{A} x \leq \underline{b} .
$$

Examples

Example (simple case)
Let $M(A, b)=\{x \mid A x \leq b, x \geq 0\}$. Then

$$
\begin{aligned}
N(A, c) & =\left\{y \mid A^{T} y \geq c, y \geq 0\right\}, \\
M & =\{x \mid \underline{A x} \leq \bar{b}, x \geq 0\}, \\
N & =\left\{y \mid \bar{A}^{T} y \geq \underline{c}, y \geq 0\right\} .
\end{aligned}
$$

Strong solvability of $M(A, b)$ is equivalent to solvability to

$$
\bar{A} x \leq \underline{b} .
$$

Optimal value bounds

$$
\begin{aligned}
& \underline{f}=\inf \underline{c}^{T} x \text { subject to } x \in M, \\
& \bar{f}=\sup \bar{b}^{T} y \text { subject to } y \in N .
\end{aligned}
$$

Example (with dependences)

Let the feasible set be described as follows

$$
M\left(A,\left(b^{1}, b^{2}\right)\right)=\left\{x, y \mid A x=b^{1}, A y=b^{2}, x, y \geq 0\right\}
$$

Example (with dependences)

Let the feasible set be described as follows

$$
M\left(A,\left(b^{1}, b^{2}\right)\right)=\left\{x, y \mid A x=b^{1}, A y=b^{2}, x, y \geq 0\right\}
$$

The dual feasible set and solution sets

$$
N\left(A,\left(c^{1}, c^{2}\right)\right)=\left\{u, v \mid A^{T} u \leq c^{1}, A^{T} v \leq c^{2}\right\},
$$

Example (with dependences)

Let the feasible set be described as follows

$$
M\left(A,\left(b^{1}, b^{2}\right)\right)=\left\{x, y \mid A x=b^{1}, A y=b^{2}, x, y \geq 0\right\}
$$

The dual feasible set and solution sets

$$
\begin{aligned}
N(A, & \left.\left(c^{1}, c^{2}\right)\right)=\left\{u, v \mid A^{T} u \leq c^{1}, A^{T} v \leq c^{2}\right\}, \\
M= & \left\{x, y \mid \underline{A x} \leq \bar{b}^{1}, \bar{A} x \geq \underline{b}^{1}, \underline{A} y \leq \bar{b}^{2}, \bar{A} y \geq \underline{b}^{2}, x, y \geq 0,\right. \\
& \left.b_{\Delta}^{1} y^{T}+b_{\Delta}^{2} x^{T}+A_{\Delta}\left|x y^{T}-y x^{T}\right| \geq\left|\left(A_{c} x-b_{c}^{1}\right) y^{T}-\left(A_{c} y-b_{c}^{2}\right) x^{T}\right|\right\}, \\
N= & \left\{u, v\left|A_{c}^{T} u-A_{\Delta}^{T}\right| u\left|\leq \bar{c}^{1}, A_{c}^{T} v-A_{\Delta}^{T}\right| v \mid \leq \bar{c}^{2},\right. \\
& \left.\left(\bar{c}^{1}-A_{c}^{T} u\right)\left|v_{k}\right|+\left(\bar{c}^{2}-A_{c}^{T} v\right)\left|u_{k}\right|+A_{\Delta}^{T}\left|v_{k} u-u_{k} v\right| \geq 0 \forall k: u_{k} v_{k}<0\right\} .
\end{aligned}
$$

Example (with dependences)

Let the feasible set be described as follows

$$
M\left(A,\left(b^{1}, b^{2}\right)\right)=\left\{x, y \mid A x=b^{1}, A y=b^{2}, x, y \geq 0\right\}
$$

The dual feasible set and solution sets

$$
\begin{aligned}
N(A, & \left.\left(c^{1}, c^{2}\right)\right)=\left\{u, v \mid A^{T} u \leq c^{1}, A^{T} v \leq c^{2}\right\} \\
M= & \left\{x, y \mid \underline{A} x \leq \bar{b}^{1}, \bar{A} x \geq \underline{b}^{1}, \underline{A} y \leq \bar{b}^{2}, \bar{A} y \geq \underline{b}^{2}, x, y \geq 0,\right. \\
& \left.b_{\Delta}^{1} y^{T}+b_{\Delta}^{2} x^{T}+A_{\Delta}\left|x y^{T}-y x^{T}\right| \geq\left|\left(A_{c} x-b_{c}^{1}\right) y^{T}-\left(A_{c} y-b_{c}^{2}\right) x^{T}\right|\right\}, \\
N= & \left\{u, v\left|A_{c}^{T} u-A_{\Delta}^{T}\right| u\left|\leq \bar{c}^{1}, A_{c}^{T} v-A_{\Delta}^{T}\right| v \mid \leq \bar{c}^{2},\right. \\
& \left.\left(\bar{c}^{1}-A_{c}^{T} u\right)\left|v_{k}\right|+\left(\bar{c}^{2}-A_{c}^{T} v\right)\left|u_{k}\right|+A_{\Delta}^{T}\left|v_{k} u-u_{k} v\right| \geq 0 \forall k: u_{k} v_{k}<0\right\} .
\end{aligned}
$$

Optimal value bounds

$$
\begin{aligned}
& \underline{f}=\inf \left(c_{c}^{1}\right)^{T} x-\left(c_{\Delta}^{1}\right)^{T}|x|+\left(c_{c}^{2}\right)^{T} y-\left(c_{\Delta}^{2}\right)^{T}|y| \text { s.t. }(x, y) \in M \\
& \bar{f}=\sup \left(b_{c}^{1}\right)^{T} u+\left(b_{\Delta}^{1}\right)^{T}|u|+\left(b_{c}^{2}\right)^{T} v+\left(b_{\Delta}^{2}\right)^{T}|v| \text { s.t. }(u, v) \in N .
\end{aligned}
$$

Extension

Extension

Consider quadratic programming problem

$$
\min x^{\top} C x+d^{T} x \text { subject to } A x \leq b, x \geq 0
$$

Extension

Consider quadratic programming problem

$$
\min x^{T} C x+d^{T} x \text { subject to } A x \leq b, x \geq 0
$$

Its dual is

$$
\max -x^{T} C x-b^{T} u \text { subject to } 2 C x+A^{T} u+d \geq 0, u \geq 0
$$

Extension

Consider quadratic programming problem

$$
\min x^{T} C x+d^{T} x \text { subject to } A x \leq b, x \geq 0
$$

Its dual is

$$
\max -x^{T} C x-b^{T} u \text { subject to } 2 C x+A^{T} u+d \geq 0, u \geq 0
$$

Theorem

If C is fixed and $A \in A^{\prime}, b \in b^{\prime}, d \in d^{\prime}$, then

$$
\begin{aligned}
& \underline{f}=\inf x^{T} C x+\underline{d}^{T} x \text { subject to } \underline{A} x \leq \bar{b}, x \geq 0, \\
& \bar{f}=\sup -x^{T} C x-\underline{b}^{T} u \text { subject to } 2 C x+\bar{A}^{T} u+\bar{d} \geq 0, u \geq 0 .
\end{aligned}
$$

The End.

