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Optimal verification of general bipartite pure states
Xiao-Dong Yu 1*, Jiangwei Shang 2,3* and Otfried Gühne 1*

The efficient and reliable verification of quantum states plays a crucial role in various quantum information processing tasks. We
consider the task of verifying entangled states using one-way and two-way classical communication and completely characterize
the optimal strategies via convex optimization. We solve these optimization problems using both analytical and numerical
methods, and the optimal strategies can be constructed for any bipartite pure state. Compared with the nonadaptive approach, our
adaptive strategies significantly improve the efficiency of quantum state verification. Moreover, these strategies are experimentally
feasible, as only few local projective measurements are required.
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INTRODUCTION
A basic yet important step in most quantum information
processing tasks is to efficiently and reliably characterize a
quantum state. The standard approach is to perform quantum
state tomography by fully reconstructing the density matrix.1

However, tomography is known to be both time consuming and
computationally hard due to the exponentially increasing number
of parameters to be reconstructed;2,3 moreover, the underlying
approximations may be conceptually problematic.4 In fact, full
tomographic information is often not required, and a lot of effort
has been devoted to characterizing quantum states with non-
tomographic methods.5–8 Recently, an alternative statistical
approach, namely quantum state verification, has triggered much
research interest due to its powerful efficacy.9–13

Quantum state verification is a procedure for gaining con-
fidence that the output of some quantum device is a particular
state by employing local measurements.9 Consider a device that is
supposed to produce the target state ψj i, but may in practice
produce σ1; σ2; ¼ ; σN in N runs. In the ideal scenario, the verifier
has the promise that either σk ¼ ψj i ψh j for all k or that σk have a
finite distance to ψj i, i.e., ψh jσk ψj i � 1� ε for all k. Given access to
some set of allowed measurements, the verifier must certify that
the source prepares ψj i: One cannot exclude that he certifies the
source to be correct although it is not, but this failure probability δ
should be as small as possible.
In general, for each state σk the verifier may apply a different

measurement with some predefined probability. So a state
verification strategy can be expressed as Ω ¼Pn

i¼1piΩi , where
ðp1; p2; ¼ ; pnÞ is a probability distribution, and fΩi ;1� Ωig are
allowed measurements with outcomes labeled by “pass” and “fail”,
respectively. For each output state σk , the verifier randomly
chooses a measurement fΩi ;1� Ωig with probability pi , then
performs the test. In a pass instance, the verifier continues to state
σkþ1, otherwise the verification ends and the verifier concludes
that the state was not ψj i. To guarantee that the perfect state ψj i
is never rejected we assume Ωi satisfies ψh jΩi ψj i ¼ 1; it has been
observed in ref. 9 that such strategies are better than others. The
worst-case failure probability of each run is given by
max ψh jσ ψj i�1�εTrðΩσÞ ¼ 1� εvðΩÞ, where vðΩÞ represents the
spectral gap between the largest and the second largest
eigenvalues of Ω.9

In the case that all N states pass the test, we achieve the
confidence 1� δ with

δ � ½1� εvðΩÞ�N: (1)

In reality, however, quantum devices are never perfect, so the
verifier cannot be promised that either σk ¼ ψj i ψh j or ψh jσk ψj i �
1� ε for all k. Instead, a more practical task is to certify with high
confidence that the fidelity of the output state is larger than a
threshold value 1� ε. In this case, the verifier measures the
frequency f of the pass instances. If f > 1� εvðΩÞ, the confidence
1� δ can be derived from the Chernoff bound14,15

δ � e�D½fkð1�εvðΩÞÞ�N; (2)

where Dðx k yÞ ¼ xlogðxyÞ þ ð1� xÞlogð1�x1�yÞ is the Kullback–Leibler
divergence.
The advantage of the state verification approach is that the

failure probability δ decreases exponentially with N, hence the
target state ψj i can be potentially verified using only few copies of
the state. As seen from Eqs. (1) and (2), the performance of a
verification strategy depends solely on vðΩÞ. Therefore, to achieve
an optimal strategy, we need to maximize vðΩÞ over all accessible
measurements. Although lots of effort has been devoted to this
research line, few optimal strategies have been found. To the best
of our knowledge, the only optimal strategy reported by now is
the verification of two-qubit pure states with local projective
measurements (PMs).9

In this work, we introduce adaptive measurements, i.e.,
measurements assisted by local operations and classical commu-
nication (LOCC)16,17 to the task of quantum state verification. We
show that the efficiency of the verification can be significantly
improved by considering adaptive measurements. For any d1 ´ d2
bipartite pure state, we explicitly construct the optimal one-way,
as well as near-optimal two-way adaptive verification strategies.
Best of all, in these strategies, only few local PMs are needed for
their implementation in the laboratory.

RESULTS
Optimal state verification as convex optimization
In the following, we derive two convex optimization problems that
completely characterize the optimal adaptive state verification
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strategies assisted by one-way and one-round two-way classical
communication, respectively. In general, to get an optimal
verification strategy, we need to consider the optimization
problem

maximize
pi ;Ωi

vðΩÞ

subject to Ω ¼Pn
i¼1

piΩi;

Pn
i¼1

pi ¼ 1; pi � 0; for all i;

ψh jΩi ψj i ¼ 1;Ωi 2 M; for all i;

(3)

where ψj i is the target state we want to verify, andM denotes the
set of all allowed measurements. Be reminded that vðΩÞ
represents the spectral gap between the largest and the second
largest eigenvalues of Ω. As Ωi � 1, the last constraint leads to
Ωi ψj i ¼ ψj i and P?ΩiP? ¼ Ωi � ψj i ψh j, where P? ¼ 1� ψj i ψh j.
Hence, vðΩÞ admits an alternative expression

vðΩÞ ¼ 1� jP?ΩP?�� ��j; (4)

where j �j jj denotes the largest eigenvalue.
Generally speaking, the optimization in Eq. (3) is difficult to

solve, if not impossible at all, because the set of all possible
measurements cannot be easily characterized. Here, we give a
complete characterization of Ω for both one-way and one-round
two-way adaptive measurements, then reduce the corresponding
problems to convex optimization. These optimization problems
can be further simplified and solved. For succinctness, hereafter
we restrict the two-way adaptive measurements to one-round
communication only. In addition, the accessible measurements
allowed in our verification strategies are not restricted to PMs, i.e.,
positive operator-valued measures (POVMs) are possible, although
in the end we show that the optimal strategies can be achieved
with PMs in most cases.
Without loss of generality, a bipartite pure state can be written

as ψj i ¼Pd
i¼1λi iij i, where the Schmidt coefficients satisfy λ1 �

λ2 � ¼ λd > 0 and
Pd

i¼1λ
2
i ¼ 1.18

We start with the analysis of one-way communication. In this
case, Alice first performs a measurement, and sends the
measurement outcome to Bob. Bob then chooses his measure-
ment in accordance with Alice’s measurement outcome. Hence,
the one-way adaptive strategy Ω! takes the form

Ω! ¼
Xn
i¼1

piΩ
!
i ; Ω!i ¼

X
a

Maji � Naji ; (5)

where fMajiga are measurements on Alice’s system, and each
fNaji ;1� Najig is a “pass” or “fail” measurement on Bob’s system
depending on Alice’s measurement outcome. Here, we can
assume that the Maji are rank-one, otherwise some further
decomposition can make this assumption satisfied. If the joint
system is in state ψj i, Bob’s subsystem would collapse to some
pure state Paji ¼ TrAðMaji � 1 ψj i ψh jÞ=TrðMaji � 1 ψj i ψh jÞ after
Alice’s measurement fMajiga. Then the best strategy for Bob is
to perform the measurement fPaji;1� Pajig to verify whether his
subsystem is in state Paji . Mathematically, to ensure that
ψh jΩ!i ψj i ¼ 1, Naji must satisfy that Naji � Paji . If all Naji satisfy
Naji ¼ Paji , we call the one-way adaptive strategy Ω! semi-
optimal. Hence, to maximize vðΩ!Þ, i.e., to minimize
jPipiP

?Ω!i P?
�� ��j, we can restrict Ω! to be semi-optimal strategies.
From the definition, we get the following necessary conditions

for Ω! being semi-optimal

Ω! 2 S; TrBðΩ!Þ ¼ 1; ψh jΩ! ψj i ¼ 1; (6)

where S is the set of separable operators, i.e., unnormalized
separable states.17 Next, we show that these constraints are also
sufficient. Ω! is separable implies that there exists a

decomposition Ω! ¼P
aMa � Na, such that Ma are positive

semidefinite and Na are rank-one projectors. Then, TrBðΩ!Þ ¼ 1
implies

P
aMa ¼ 1, i.e., fMaga is a measurement on Alice’s system.

This concludes our proof by taking into account the last constraint.
Thus, the optimization in Eq. (3) can be written as

maximize
Ω!

vðΩ!Þ
subject to Ω! 2 S;

TrBðΩ!Þ ¼ 1;
ψh jΩ! ψj i ¼ 1;

(7)

for one-way adaptive verification strategies.
We move on to discuss the one-round two-way communication

scenario. In this case, Alice and Bob use shared randomness to
decide who performs the measurement first. After the measure-
ment, he/she sends the measurement outcome to the other party.
Then the receiver chooses her/his measurement according to the
received measurement outcome. Thanks to the permutation
symmetry of ψj i ¼Pd

i¼1λi iij i, the optimization in this setting
can be easily simplified. Let S be the SWAP operator, i.e., S ij i jj i ¼
jj i ij i for all i; j ¼ 1; 2; ¼ ; d, then we have S ψj i ¼ ψj i. This
indicates that, for two-way adaptive measurements, if Ω satisfies
the constraints in Eq. (3), so does 1

2 ðΩþ SΩSyÞ. Furthermore, Eq. (4)
implies

v
1
2
ðΩþ SΩSyÞ

� �
� 1

2
vðΩÞ þ vðSΩSyÞ� � ¼ vðΩÞ: (8)

Hence, we can focus on the two-way adaptive strategies Ω$ that
are invariant under the SWAP operation, i.e., Ω$ ¼ 1

2 ðΩ! þ Ω Þ,
where Ω! is a one-way adaptive strategy and Ω ¼ SΩ!Sy.
Similarly, to optimize vðΩ$Þ, we can also restrict Ω! to be semi-
optimal. Thus, the optimization in Eq. (3) can be written as

maximize
Ω!

v 1
2 ðΩ! þ Ω Þ� �

subject to Ω! 2 S;
TrBðΩ!Þ ¼ 1;
ψh jΩ! ψj i ¼ 1;

(9)

for two-way adaptive verification strategies.

Optimal verification of two-qubit states
Without loss of generality, we write the two-qubit entangled pure
state as ψj i ¼ cos θ 00j i þ sin θ 11j i with 0< θ � π=4. Then the
subspace P? is spanned by f ψij ig3i¼1 :¼ f 01j i; 10j i; sin θ 00j i�
cos θ 11j ig.
First, we need a group G to simplify the optimizations. The

group G is defined to be generated by the unitary operator
g ¼ Φ� Φy, where Φ is the phase gate, i.e., Φ 0j i ¼ 0j i and
Φ 1j i ¼ i 1j i. Then we can show

~Ω :¼ 1
4

X3
k¼0

gkΩg�k ¼
X3
i¼1

wi ψij i ψih j þ ψj i ψh j; (10)

for some wi ; see Supplementary Note A for the proof. As
g ψj i ¼ ψj i, ~Ω also satisfies the constraints in Eqs. (7) and (9) if Ω
does. Furthermore, Eq. (4) implies

vð~ΩÞ � 1
4

X3
k¼0

v gkΩg�k
� � ¼ vðΩÞ: (11)

Thus, we can restrict to the diagonal Ω! as in Eq. (10) for the
optimizations in Eqs. (7) and (9).
Then, we consider the case of one-way adaptive verification. For

two-qubit quantum states, the positive partial transpose (PPT)
criterion is necessary and sufficient to characterize their separ-
ability.19,20 Thus, by combining Eq. (10) with the PPT criterion, the
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optimization in Eq. (7) can be written as

maximize
wi

minif1� wig
subject to wi � 0; i ¼ 1; 2; 3;

w1 ¼ sin2θð1� w3Þ;
w2 ¼ cos2θð1� w3Þ;

(12)

where the constraints arise only from Ω! � 0 and TrBðΩ!Þ ¼ 1,
since the PPT criterion gives the redundant condition
w1w2 � sin2θcos2θð1� w3Þ2. As 0< θ � π=4, we have w2 � w1.
Thus, the solution of Eq. (12) is attained when w2 ¼ w3, and

max
Ω!

vðΩ!Þ ¼ 1
1þ cos2θ

: (13)

In general, the measurements associated with the optimal
solution are POVMs. However, one can directly calculate that the
bound in Eq. (13) can be achieved already with PMs

Ω! ¼ cos2θ
1þ cos2θ

PþZZ þ
1

2ð1þ cos2θÞ X
!
ψ þ

1
2ð1þ cos2θÞ Y

!
ψ ; (14)

where

P þZZ ¼ 0j i 0h j � 0j i 0h j þ 1j i 1h j � 1j i 1h j;
X!ψ ¼ φ0j i φ0h j þ φ2j i φ2h j;
Y!ψ ¼ φ1j i φ1h j þ φ3j i φ3h j;

(15)

with φ0j i ¼ 1ffiffi
2
p ð 0j i þ 1j iÞ � ðcos θ 0j i þ sin θ 1j iÞ and

φkj i ¼ gk φ0j i.
Next, we discuss the case of two-way adaptive verification. By

combining Eq. (10) and the PPT criterion, we can get a
simplification of the optimization in Eq. (9) by simply replacing
the objective function in Eq. (12) with

maximize
wi

min 1� 1
2
ðw1 þ w2Þ; 1� w3


 �
; (16)

whose solution is given by

max
Ω$

vðΩ$Þ ¼ 2
3
: (17)

Again, we explicitly write down the PMs

Ω$ ¼ 1
3
PþZZ þ

1
6
X!ψ þ

1
6
X ψ þ

1
6
Y!ψ þ

1
6
Y ψ ; (18)

where PþZZ , X
!
ψ , and Y!ψ are defined as in Eq. (15), and X ψ ¼ SX!ψ Sy

and Y ψ ¼ SY!ψ Sy.
Finally, we compare the adaptive strategies with the non-

adaptive approach in ref. 9. For two-qubit entangled states, we
plot the optimal values of vðΩÞ for different strategies in Fig. 1. As
can be seen, the two-way strategy works much better than the
one-way strategy, whereas both the adaptive strategies signifi-
cantly outperform the nonadaptive one. Concerning the resources
used in each strategy, we have the following remarks. Although
no classical communication is involved in the measurement
process of the nonadaptive strategy, it is still a necessary resource
for the data processing after the measurement. On the contrary,
the one-way adaptive strategy relies on classical communication
for the measurements, but no classical communication is needed
for the data processing as one party alone can determine whether
the result is a pass or fail instance. The case for the two-way
adaptive strategy is similar, but to obtain the final frequency of the
pass instances, the two parties need to cooperate.

Optimal verification of general bipartite states
We move on to discuss the optimal adaptive verification of
general bipartite states. Firstly, we need a larger group G for the
general bipartite (two-qudit) pure state ψj i ¼Pd

i¼1λi iij i, where the
Schmidt coefficients satisfy λ1 � λ2 � ¼ λd>0 and

Pd
i¼1λ

2
i ¼ 1.

The group G is defined to be generated by the unitary operators
fgk ¼ Φk � Φyk ; k ¼ 1; 2; ¼ ; dg, where Φk jj i ¼ i jj i when j ¼ k,
and Φk jj i ¼ jj i otherwise. Then we can show

~Ω :¼ 1
Gj j

X
g2G

gΩgy ¼
Xd
j≠i;i¼1

wij ijj i ijh j þ
Xd
i;j¼1

ρij iij i jjh j; (19)

for some wij and ρij , where Gj j is the order of G; see
Supplementary Note A for the proof. Similar to the two-qubit
case, if Ω satisfies the constraints in Eqs. (7) and (9), so does ~Ω,
since g ψj i ¼ ψj i for all g 2 G. Furthermore, Eq. (4) implies

vð~ΩÞ � 1
Gj j

X
g2G

v gΩgy
� � ¼ vðΩÞ: (20)

Hence, we can restrict Ω! to be of the form in Eq. (19) for the
optimizations in Eqs. (7) and (9). Additionally, ψh jΩ ψj i ¼ 1, i.e.,
Ω ψj i ¼ ψj i, means ρλ ¼ λ, where ρ :¼ ðρijÞdi;j¼1 is Hermitian, and
λ ¼ ðλ1; λ2; ¼ ; λdÞT.
Secondly, we consider the case of one-way adaptive verification

with the help of the group G. The main difference between two-
qudit and two-qubit states is that the PPT criterion is only
necessary but not sufficient to characterize the separability for
d � 3.20 Hence, by replacing Ω! 2 S with ðΩ!ÞTB � 0, Eqs. (7)
and (19) only give us a relaxation of the original optimization

maximize
wij ;ρij

min 1� wij; 1� ρ� λλT
�� �� �

subject to 0 � ρ � 1;wij � 0; for all i ≠ j;

wijwji � ρij
�� ��2; for all i ≠ j;X

j≠i

wij þ ρii ¼ 1; for all i;

ρλ ¼ λ;

(21)

where the constraints arise from 0 � Ω! � 1, the PPT criterion,
TrBðΩ!Þ ¼ 1, and ψh jΩ! ψj i ¼ 1 respectively. Therefore, the
solution of this relaxed problem sets an upper bound of the
optimal vðΩ!Þ. To show that the solution is a valid strategy, we
still need to prove that the optimal Ω! obtained from Eq. (21) is
separable. Here, instead of resorting to numerical methods, we
can analytically solve the optimization in Eq. (21), which gives

max
Ω!

vðΩ!Þ � 1

1þ λ21
; (22)

0 /12 /6 /4

 0.40

 0.45

 0.50

 0.55

 0.60

 0.65

Nonadaptive strategy [9]
One-way adaptive strategy
Two-way adaptive strategy

Fig. 1 Optimal values of vðΩÞ with different verification strategies
for the two-qubit entangled pure state ψj i ¼ cos θ 00j i þ sin θ 11j i
with 0< θ< π=4. Note that when θ ¼ π=4, i.e., ψj i is the maximally
entangled state, all three strategies give the same optimal value
vðΩÞ ¼ 2=3.
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for all d � 2. Moreover, the bound in Eq. (22) can be achieved with
PMs

Ω! ¼ wPZZ þ 1� w
Gj j

X
g2G

gX!ψ gy; (23)

where

P ZZ ¼
Xd
k¼1

kj i kh j � kj i kh j; X!ψ ¼
Xd
k¼1

f kj i f kh j � ϕkj i ϕkh j;

f kj i ¼ 1ffiffiffi
d
p

Xd
j¼1

γjkd jj i; ϕkj i ¼
Xd
j¼1

γ�jkd λj jj i;
(24)

with γd ¼ e
2πi
d and w ¼ λ21=ð1þ λ21Þ; see Supplementary Note B for

more details. In passing, we note two special cases of Eq. (24).
When ψj i is separable, i.e., d ¼ 1, Eq. (24) gives the optimal
nonadaptive strategy with vðΩÞ ¼ 1. When ψj i is maximally
entangled, f ϕkj igdk¼1 forms an orthogonal basis. Hence, Eq. (24)
gives the optimal nonadaptive strategy.9,21

In practice, the above strategy can be easily implemented. Alice
first randomly chooses one of the two measurements f kj igdk¼1 andf f kj igdk¼1 with probabilities w and 1� w, respectively. The former
measurement can be performed directly, while the latter one
requires some random phase shifts from G in advance. Then Alice
sends all the information to Bob via classical communication,
upon receiving which Bob can proceed to perform the
corresponding test.
Lastly, we consider the case of two-way adaptive verification. By

the same token, the efficiency can be improved by averaging Ω!

and its swap Ω . Specifically, we can get

vðΩ$Þ ¼ v
1
2
ðΩ! þ Ω Þ

� �
¼ 1

1þ λ2
; (25)

when Ω! is of the form in Eq. (23) with w ¼ λ2=ð1þ λ2Þ and
λ2 ¼ 1

2 ðλ21 þ λ22Þ. However, unlike the two-qubit case, this strategy
is only near-optimal for general bipartite states. To get the optimal
strategy, we can numerically solve the optimization in Eq. (25),
then explicitly decompose the obtained strategy with the method
in ref. 22. Our testing results show that the optimal strategy is at
most 4% better in efficiency than the near-optimal strategy for all
d � 10, whereas the measurement settings of the optimal
strategies may involve complicated POVMs; instead the near-
optimal strategies in Eq. (25) only involve PMs; see Supplementary
Note C for more details.
Before concluding, two remarks are in order. First, Eqs. (22) and

(25) imply that vðΩÞ � 1=2 for all of our adaptive strategies. This
implies that Nt 2ε�1 log δ�1 copies of states are enough for
verifying any bipartite states, which is independent of the
dimension d. This is of the same scale with the best global
strategies with entangled measurements, which need N �
ε�1 log δ�1 copies.9 On the contrary, the best nonadaptive
strategies known so far need N\ dε�1 log δ�1 to verify a generic
two-qudit state for d � 3,23 which is worse than our adaptive
strategies by an order OðdÞ. Second, it is possible to further
improve the efficiency of the adaptive strategies by involving
many-round communication. However, these strategies require
coherence-preserving measurements and can only improve the
efficiency up to a constant factor c with c � 2 for all dimensions.

DISCUSSION
Quantum state verification is an efficient and reliable method for
gaining confidence about the quality of quantum devices, which is
a crucial step in almost all quantum information-processing tasks
and foundational studies. In this work, we integrated adaptive
measurements to the problem of state verification and formulated
two convex optimization problems that completely characterize

the optimal adaptive strategies for one-way and one-round two-
way classical communication. We solve these optimization
problems using both analytical and numerical methods, and the
optimal or near-optimal strategies are constructed explicitly for
any bipartite pure state. As a demonstration, we compared the
optimal adaptive strategies with the nonadaptive one, and find
that the verification efficiency can be significantly improved if
classical communication is allowed. Finally, our adaptive verifica-
tion strategies are readily applicable in experiments as only few
local PMs are involved. For future research, it is very interesting to
consider the multipartite case, which is more relevant for
applications. Moreover, it is meaningful to discuss how the
present approach needs to be modified, if the measurement
devices are not perfectly characterized. Statistical tools developed
for quantum state discrimination24,25 may be helpful for this
purpose.
Note added. During the preparation of the manuscript we

became aware of related works by Wang and Hayashi26 and Li
et al.27
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