Optimal Verification of Operations on Dynamic Sets

Charalampos Papamanthou, UC Berkeley
Roberto Tamassia, Brown University
Nikos Triandopoulos, RSA Labs \& BU

Data in the cloud

- Data privacy
- Server wants to learn our data
- Can we enable the server use encrypted data in a meaningful way?
- Computing on encrypted data
- Data and computations integrity
- Server wants to tamper with our data
- Are answers to queries the same as if

Google
 the data were locally stored?

- Authenticated data structures
- Verifiable delegation of computation

Verifying outsourced computation

- Conjunctive queries
" Emails that have the terms "Brown" and "Berkeley"
- Disjunctive queries
- Emails that have the terms "thesis" or "publication"
- All these queries boil down to set operations!

Authenticated data structures model

- Complexity
- Update at source and server
- Query at server
- Verification at client
- Size of proof
- Space
- Security
- A poly-bounded adversary cannot construct invalid proofs except with negligible probability
- Need for computational assumptions

Authenticated sets collection

Queries on sets

- m: number of sets (e.g., m = 4)
- M : sum of sizes of all the sets (e.g., $M=6+4+3+5=18$)
- t: number of queried sets (e.g., $\mathrm{t}=2$)
- δ : number of elements contained in the answer (e.g., $\delta=1$)
- n : the sum of sizes of the queried sets (e.g., $\mathrm{n}=6+5=11$)

Related work and comparison

- Optimal proof size and verification time: $\mathrm{O}(\bar{\delta})$
- Linear space: O(m + M)
- Efficient queries and updates
- Performance comparison for the intersection of $\mathrm{c}=\mathrm{O}(1)$ sets

	space	query	proof	assumption
D+04 YP09	$m+M$	$n+\log m$	$n+\log m$	Generic CR
M+04	$m+M$	n	n	Strong RSA
PT04	m^{c}	1	δ	Discrete log
PTT10	$m+M$	$n \log ^{3} n+$ $m^{\varepsilon} \log m$	δ	Bilinear q- strong DH

Our solution: Sets and polynomials

- Set X with n elements

$$
X=\left\{x_{1}, \ldots, x_{n}\right\}
$$

- Set Z is the intersection of X and Y
- The intersection of X and Y is empty, i.e., $X \cap Y=\varnothing$
- Polynomial $X(s)$ in Zp

$$
X(s)=\left(s+x_{1}\right) \ldots\left(s+x_{n}\right)
$$

- Polynomial $Z(s)$ is the GCD of $X(s)$ and $Y(s)$
- X(s) and Y(s) have GCD equal to 1, i.e., $\operatorname{gcd}(\mathrm{X}(\mathrm{s}), \mathrm{Y}(\mathrm{s}))=1$
- There are polynomials P(s) and $\mathrm{Q}(\mathrm{s})$ such that

$$
P(S) X(s)+Q(s) Y(s)=1
$$

Cryptographic tools we use

- Two multiplicative groups G and T of prime order p
- g is a generator of G
- A bilinear map e(...) from G to T such that
- $\mathrm{e}\left(\mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}\right)=\mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{ab}}$ for all a, b in Zp
- $\mathrm{e}(\mathrm{g}, \mathrm{g})$ generates T
- Bilinear q-strong Diffie Hellman Assumption
- Pick a random s in Zp
- s is the trapdoor
- Compute $\mathrm{g}^{\mathrm{s}}, \mathrm{g}^{\mathrm{s}^{2}}, \mathrm{~g}^{\mathrm{s}^{3}}, \ldots, \mathrm{~g}^{\mathrm{s}}$
- The public key pk are the values $\mathrm{g}^{\mathrm{s}}, \mathrm{g}^{\mathrm{s}^{2}}, \mathrm{~g}^{\mathrm{s}^{3}}, \ldots, \mathrm{~g}^{\mathrm{s}}{ }^{9}$
- The probability that a PPT Adv can find an a in Zp and output the tuple ($\left.\mathrm{a}, \mathrm{e}(\mathrm{g}, \mathrm{g})^{1 /(\mathrm{s}+\mathrm{a})}\right)$ is negligible

Bilinear-map accumulator

- G and T of order p have a map e(...)
- $X=\{x, y, z, r\}$ in Z_{p}
- Base $\mathrm{g} \in \mathrm{G}$, generator of G
- Secret $s \in Z_{p}$
- Digest
- $\mathbf{D}=\mathbf{g}^{(x+s)(y+s)(z+s)(r+s)}$
- Witness for x
- $\mathbf{W}_{\mathrm{x}}=\mathbf{g}^{(\mathrm{y}+\mathrm{s})(\mathrm{z}+\mathrm{s})(\mathrm{r}+\mathrm{s})}$
- Verification
- $e(D, g)=e\left(W_{x}, g^{(x+s)}\right)$?
- Security: q-strong Diffie-Hellman assumption
- [Nguyen (05)]

Our construction

- Compute the accumulation value for every set

Our construction

- Compute the accumulation value for every set
- Build an accumulation tree on top [CCS 2008]
- $O(1 / \varepsilon)$ levels and $O\left(m^{\varepsilon}\right)$ internal degree
- $\mathrm{O}\left(\mathrm{m}^{\varepsilon} \operatorname{logm}\right)$ query, $\mathrm{O}(1)$ update and $\mathrm{O}(1)$ proof
- The accumulation values protect the integrity of the set elements
- The accumulation tree protects the integrity of the acc. values

Proof of intersection $I=S_{1} \cap S_{2}$

Proof of intersection $I=S_{1} \cap S_{2}$

- Elements of intersection $\{\mathrm{c}, \mathrm{e}\}$

Proof of intersection $I=S_{1} \cap S_{2}$

- Proof of accumulation values A_{1} and A_{2}
- Let Π_{1} and Π_{2} be such proofs

Proof of intersection $I=S_{1} \cap S_{2}$

- Proof of accumulation values A_{1} and A_{2}
- Let Π_{1} and Π_{2} be such proofs
- Values along the path of the tree
- Construction of proofs: $\mathrm{O}\left(\mathrm{m}^{\varepsilon} \operatorname{logm}\right)$
- Size of proofs: O(1)

Proof of intersection $I=S_{1} \cap S_{2}$

- Subset condition:

Proof of intersection $I=S_{1} \cap S_{2}$

- Subset condition:
- $\mathrm{I} \subseteq \mathrm{S}_{1}$: Subset witness $\mathrm{W}_{1}=\mathrm{g}^{(\mathrm{s}+\mathrm{a})(\mathrm{s}+\mathrm{b})(\mathrm{s}+\mathrm{d})(\mathrm{s}+\mathrm{f})}=\mathrm{g}^{\mathrm{P}(\mathrm{s})}$

Proof of intersection $I=S_{1} \cap S_{2}$

- Subset condition:

- $\mathrm{I} \subseteq \mathrm{S}_{1}$: Subset witness $\mathrm{W}_{1}=\mathrm{g}^{(\mathrm{s}+\mathrm{a})(\mathrm{s}+\mathrm{b})(\mathrm{s}+\mathrm{d})(\mathrm{s}+\mathrm{f})}=\mathrm{g}^{\mathrm{P}(\mathrm{s})}$
- $\mathrm{I} \subseteq \mathrm{S}_{2}$: Subset witness $\mathrm{W}_{2}=\mathrm{g}^{(s+\mathrm{h})(\mathrm{s}+\mathrm{z})}=\mathrm{g}^{\mathrm{Q}(\mathrm{s})}$

Proof of intersection $I=S_{1} \cap S_{2}$

- Subset condition:

- $\mathrm{I} \subseteq \mathrm{S}_{1}$: Subset witness $\mathrm{W}_{1}=\mathrm{g}^{(\mathrm{s}+\mathrm{a})(\mathrm{s}+\mathrm{b})(\mathrm{s}+\mathrm{d})(\mathrm{s}+\mathrm{f})}=\mathrm{g}^{\mathrm{P}(\mathrm{s})}$
- $\mathrm{I} \subseteq \mathrm{S}_{2}$: Subset witness $\mathrm{W}_{2}=\mathrm{g}^{(s+h)(s+z)}=\mathrm{g}^{\mathrm{Q}(\mathrm{s})}$
- Complexity
- Construction: O(nlog n) (polynomial interpolation)
- Size: O(1) (2 group elements)

Proof of intersection $I=S_{1} \cap S_{2}$

- Completeness condition:
- $\left(\mathrm{S}_{1}-\mathrm{I}\right) \cap\left(\mathrm{S}_{2}-\mathrm{I}\right)$ is empty

Proof of intersection $I=S_{1} \cap S_{2}$

- Completeness condition:
- $\left(S_{1}-I\right) \cap\left(S_{2}-I\right)$ is empty
- Recall $W_{1}=g^{P(s)}$ and $W_{2}=g^{Q(s)}$

Proof of intersection $I=S_{1} \cap S_{2}$

- Completeness condition:

- $\left(S_{1}-I\right) \cap\left(S_{2}-I\right)$ is empty
- Recall $\mathrm{W}_{1}=\mathrm{g}^{\mathrm{P}(\mathrm{s})}$ and $\mathrm{W}_{2}=\mathrm{g}^{\mathrm{Q}(\mathrm{s})}$
- Completeness witness $F_{1}=g^{A(s)}$ and $F_{2}=g^{B(s)}$
- $A(s) P(s)+B(s) Q(s)=1$
- Complexity: O(nlog²nlog log n) (ext. Euclidean algorithm)

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets
element of the proof complexity size
Intersection elements N б

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets

element of the proof	complexity	size
Intersection elements	N	$\overline{0}$
Accumulation values proofs	$\mathrm{tm}=\log \mathrm{m}$	t

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets

element of the proof	complexity	size
Intersection elements	N	δ
Accumulation values proofs	$\mathrm{tm}=\mathrm{log} \mathrm{m}$	t
Subset witnesses	Nog N	t

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets

element of the proof	complexity	size
Intersection elements	N	$\mathrm{\delta}$
Accumulation values proofs	tmºl m	t
Subset witnesses	Nlog N	t
Completeness witnesses	Nlog2 Nloglog N	t

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets

element of the proof	complexity	size
Intersection elements	N	δ
Accumulation values proofs	tm ${ }^{\text {l }}$ og m	t
Subset witnesses	$N \log \mathrm{~N}$	t
Completeness witnesses	N $\log ^{2}$ Nloglog N	t
TOTAL	$N^{2} \log ^{2}{ }^{2} \log \log N$ tm ${ }^{\varepsilon} \log m$	$t+\delta$

Recap

- \mathbf{t} sets are intersected and $\boldsymbol{\delta}$ is the size of the answer
- \mathbf{N} is the sum of sizes of intersected sets

element of the proof	complexity	size
Intersection elements	N	δ
Accumulation values proofs	$\mathrm{tm}^{\text {s }} \log \mathrm{m}$	t
Subset witnesses	$N \log \mathrm{~N}$	t
Completeness witnesses	N $\log ^{2}$ Nloglog N	t
TOTAL almost optimal	$N^{2} \log ^{2}{ }^{2} \log \log N$ $+$ tmºg m	$t+\delta$

Size of proof for $\mathrm{X} \cap \mathrm{Y}$ in practice

$\|X\|$	$\|Y\|$	$\|X \cap Y\|$	KBytes $[M+04]$	KBytes this work
1000	1000	10	3.34	$\mathbf{1 . 7 3}$
1000	100	1	1.68	$\mathbf{1 . 5 5}$
1000	10	0	$\mathbf{1 . 0 1}$	1.53
1000	1	0	$\mathbf{0 . 4 6}$	1.53
10000	10000	100	26.88	3.53
10000	1000	10	12.15	$\mathbf{1 . 7 3}$
10000	100	1	6.86	$\mathbf{1 . 5 5}$
10000	10	0	3.08	$\mathbf{1 . 5 3}$
100000	100000	1000	263.25	$\mathbf{2 1 . 5 3}$
100000	10000	100	116.13	$\mathbf{3 . 5 3}$
100000	1000	10	63.18	$\mathbf{1 . 7 3}$
100000	100	1	26.29	$\mathbf{1 . 5 5}$

Thank you!

Application: Supporting timestamps

- For timestamped documents, use segment tree over the time dimension (N timestamps)
- Search interval covered by $\mathrm{O}(\log \mathrm{N})$ canonical intervals in the segment tree, each corresponding to a set of documents T_{j}
- Timestamped keyword search equivalent to $O(\log N)$ set intersections
- $\mathrm{T}_{1} \cap \mathrm{~S}_{1} \cap \mathrm{~S}_{2} \ldots \cap \mathrm{~S}_{\mathrm{t}}$
- $\mathrm{T}_{2} \cap \mathrm{~S}_{1} \cap \mathrm{~S}_{2} \ldots \cap \mathrm{~S}_{\mathrm{t}}$

Verifying outsourced computation

- Computation "on demand"
- E.g., Google docs
-

" Find the pattern comput* in my document

- Is the result correct?
- Need for efficient computations

First solution: hashing

- [Devanbu et al., Algorithmica 2004; Yang and Papadias, SIGMOD 2009]
- Two-level tree structure and hierarchical cryptographic hashing
- Space: O(m + M), update: O(log m + log n)
- Intersection of two sets: O(n + log m) proof size and verification time
- Security: Cryptographic hashing
- Same complexities: Morselli et al., INFOCOM 2004

Second solution: precomputation

- [Pang and Tan, ICDE 2004]
- Sign the answer to every possible query
- Space: O(m² + M) for a 2-intersection
- For any possible intersection space is
- O(2m)
- Proof size and verification: $O(\delta)$
- Update: O(m²) for a 2-intersection
- Security: discrete log

Signatures of

$$
\begin{aligned}
& \mathrm{S}_{1} \cap \mathrm{~S}_{2} \\
& \mathrm{~S}_{1} \cap \mathrm{~S}_{3} \\
& \mathrm{~S}_{1} \cap \mathrm{~S}_{4} \\
& \mathrm{~S}_{2} \cap \mathrm{~S}_{3} \\
& \mathrm{~S}_{2} \cap \mathrm{~S}_{4} \\
& \mathrm{~S}_{3} \cap \mathrm{~S}_{4}
\end{aligned}
$$

