
Optimal versus Heuristic
Global Code Scheduling

Sebastian Winkel

Intel® Compiler Lab

12/2007 MICRO-402/19

Introduction

• Importance of wide-issue in-order architectures

– traditionally dominant in embedded VLIW DSPs

– gaining some momentum in the high-end server segment

(Intel® Itanium® 2, IBM® Power6™)

• Global instruction scheduling is crucial to extracting

instruction-level parallelism on such architectures

• In comparison to local scheduling, global scheduling includes

code motion between basic blocks

– Many variants: upward, downward, compensation copies, etc.

– On Itanium intertwined with EPIC optimizations

(control and data speculation, predication, etc.)

12/2007 MICRO-403/19

Global Code Scheduling Example

ld V2=[V1] (A)

cmp p1,p2=1,V2 (B)

ld V2=[V1] (A)

cmp p1,p2=1,V2 (B)

shl V2=V4,V5 (C)shl V2=V4,V5 (C)

ld V3=[V6] (D)

add V3=8,V3 (E)

st [V6]=V3 (F)

cmp p3,p4=2,V2 (G)

ld V3=[V6] (D)

add V3=8,V3 (E)

st [V6]=V3 (F)

cmp p3,p4=2,V2 (G)

st [V1]=V2 (H)st [V1]=V2 (H)

B1
(block

frequency
100)

B3 (90)B2 (10) p1

B5 (40)

p2

p3 p4

B4 (60)

ld V2=[V1] (A)

ld.s V3=[V6] (D)

add V3=8,V3 (E)

cmp p1,p2=1,V2 (B)

cmp p3,p4=2,V2 (G)

(p1) br.cond B2

(p4) br.cond B5

ld V2=[V1] (A)

ld.s V3=[V6] (D)

add V3=8,V3 (E)

cmp p1,p2=1,V2 (B)

cmp p3,p4=2,V2 (G)

(p1) br.cond B2

(p4) br.cond B5

shl V2=V4,V5 (C)

(empty)
(empty)

shl V2=V4,V5 (C)

(empty)
(empty)

chk.s V3

st [V6]=V3

chk.s V3

st [V6]=V3
(p2)chk.s V3

(p2)st [V6]=V3 (F)

st [V1]=V2 (H)

(p2)chk.s V3

(p2)st [V6]=V3 (F)

st [V1]=V2 (H)

B1

B2 p1

B5

p4

fall-through

B4

0

0

1

1

1

1

1

0

1

2

0

0

0

(a) Incoming region before scheduling (b) Schedule with cycle annotation

Speculative
upward code
motion

Block
collapsing

Multiway
branch
generation

Compare
speculation

Length of hot path (B1�B3�B4) is reduced from 6 to 3 cyclesLength of hot path (B1�B3�B4) is reduced from 6 to 3 cycles

Predicated
downward code
motion with
compensation copies

12/2007 MICRO-404/19

Global Scheduling Heuristics

• Many heuristics have been developed

– E.g., trace, selective, hyperblock, Bernstein/Rodeh [1]

– Wavefront scheduling [Micro-32] used in the Intel compiler is

among the most comprehensive methods

• Challenges

– Complex interdependences between individual transformations

• Hard for heuristics to weigh cost and benefit

– Restrictions with respect to scheduling regions, supported code

motion classes

– No formal validation of correctness or quality of the results

12/2007 MICRO-405/19

Our ILP Scheduler

• Optimal global scheduler based on integer linear

programming (ILP), implemented experimentally in the

Intel® Itanium® product compiler

• Goals:

– Find performance headroom (in EPIC and in our compiler)

– Gain insights into global scheduling trade-offs – independently

of any heuristic scheduling method

• Contribution of this research in comparison with previous

work [Wilken00, Kästner00, Winkel04]:

– Large optimization scope: Arbitrary scheduling regions, includes

virtually all known EPIC scheduling optimizations

– Efficiency: Still permits relatively large problem instances

– Extensive experimental study

12/2007 MICRO-406/19

Overview

• Brief integer linear programming summary

• ILP scheduler overview

– Optimization scope

– Optimality notion

– Region scheduling

• Experiments

– Implementation and methodology

– Results

• Conclusion

ILP formulations not
covered in the talk, but
described in the paper.

ILP formulations not
covered in the talk, but
described in the paper.

12/2007 MICRO-407/19

Integer Linear Programming (ILP)

• Proven combinatorial optimization method

– Many applications in research and industry

• An ILP is described by a system of linear inequalities and a

linear objective function

• Constraints can be thought to describe

a polytope

• Optimal solution is an integer point

contained in this polytope for which

the objective function is minimal

• ILP solving is NP-complete (exponential complexity)

• Polyhedral efficiency: It helps the solver if as many vertices

of the polytope as possible are integral

12/2007 MICRO-408/19

Overview of Modeled Optimizations
• Global code motion:

– Directions: upward, downward

– Control conditions: predicated, speculative

– Boundaries: across, into, and out of loops (cyclic)

– Enablers: renaming, compensation copies

– Global propagation of non-unit latencies

• Supported speculation features:

– Control- and data-speculative loads

– Partial-ready code motion, compare speculation

• Block model:

– Block emptying and collapsing

– Resulting multiway branch generation

– Choose fall-through edges and block order

(Highlighted: new
or significantly
improved parts
vs. previous work)

(Highlighted: new
or significantly
improved parts
vs. previous work)

ILP scheduler can resolve all interdependences between
these optimizations and deliver a global optimum

ILP scheduler can resolve all interdependences between
these optimizations and deliver a global optimum

12/2007 MICRO-409/19

Optimality Notion

• Objective function minimizes global schedule length (GSL)

– defined as the sum of the schedule lengths of the basic blocks,

each weighted by the execution frequency of the block

• GSL reductions directly translate into unstalled execution

time reductions

• Objective function is “blind” to all other efficiency criteria

• Second scheduling pass:

– Add constraints to the solved ILP that fix the block lengths

– Change objective function so that it minimizes global code

motion and speculation

– Run solver again

– Solvable within a few seconds because the GSL is fixed

12/2007 MICRO-4010/19

Region Scheduling

• Instances > 1000 instructions often cannot

be solved in acceptable time

• Newly developed region scheduling allows

to schedule routines of arbitrary size

• Forms and schedules regions iteratively

– First select largest and hottest loop

within region size limits

– Grow the region within the

next-outer loop nest

• Grow regions one block deep into already scheduled

“territory”

• Conceptually, generate and solve an ILP for the entire routine,

but set all out-of-region decision variables to constants

12/2007 MICRO-4011/19

Overview

• Brief integer linear programming summary

• ILP scheduler overview

– Optimization scope

– Optimality notion

– Region scheduling

• Experiments

– Implementation and methodology

– Results

• Conclusion

12/2007 MICRO-4012/19

Heuristic Scheduler GCS in Comparison

• Implements wavefront scheduling

– Schedules blocks in an order

defined by the downward

movement of the wavefront

– Scheduling decisions made

based on priority and veto

functions

– No backtracking

• Only supported by GCS:

– Integrated postincrement generation and redundancy

elimination

• Only supported by ILP:

– Cyclic code motion, downward code motion

C
W4

W3

W2

W1
A

B

12/2007 MICRO-4013/19

Experimental Methodology

• Compared ILP scheduler on five SPEC® CPU2006 integer

benchmarks against GCS

– Did not test the entire suite for compile time reasons

– Focused on those benchmarks with a relatively large

percentage of unstalled execution time (optimization target),

not dominated by pipelined loops

– Applied to the hottest routines that capture 90% of the

execution time

• Overall 104 routines were tested

– Tested each routine individually, measured speedup using HP

Caliper IP sampling

• 10.0 compiler, highest optimization level (-O3, IPO, PGO)

• ILPs solved with (nonparallel) ILOG® CPLEX 10.0

12/2007 MICRO-4014/19

0%

20%

40%

60%

80%

100%

I ≤ 100 100 < I
≤ 200

200 < I
≤ 300

300 < I
≤ 400

I > 400

Number of Instructions in ILP

P
er

ce
nt

ag
e

of
 IL

P
s

> 15%
≤ 15%
≤ 10%
≤ 5%
≤ 1%
0%

Solved with
optimality
gap:

ILP Solvability

• 625 (first pass) ILPs solved on a 1.6 GHz Itanium® 2

• Standard scheduling region size limit of 500 instructions

– For hard-to-solve routines, decremented in steps of 50 until the ILPs

can be solved within 4 hours

382 ILPs, average
sol. time 6s

88 ILPs, average sol. time 20 minutes, average
ILP size 8257 constraints x 5225 variables

Closeness to
optimality that
can be proven

by the solver

Closeness to
optimality that
can be proven

by the solver

12/2007 MICRO-4015/19

Main Results

• Average speedup of 10%

= 1/3-1/2 of GSL gain due to dynamic stalls

– Benefit of schedule length reductions could be higher on

processors with fine-grain SoEMT

Static weighted
instruction-per-clock
rate (excluding nops)

Static weighted
instruction-per-clock
rate (excluding nops)

GCS-GSL

ILP-GSL

GCS-GSL

ILP-GSL

Excluding pipelined
loops from the
calculation

Excluding pipelined
loops from the
calculation

After register
allocation

After register
allocation

GCS ILP
Benchmark Routines Instructions w-IPC w-IPC excl. SWP Post GRA Speedup
400.perlbench 32 25702 3.02 4.41 32% 30% 12%
401.bzip2 11 11729 3.14 4.64 30% 19% 10%
445.gobmk 44 27263 2.89 4.20 27% 23% 7%
458.sjeng 14 9362 3.00 4.51 32% 28% 11%
473.astar 3 725 3.01 4.69 40% 37% 10%
Total 104 74781 3.0 4.5 32% 27% 10%

Number of scheduled… (Static) GSL GainsGCS ILP
Benchmark Routines Instructions w-IPC w-IPC excl. SWP Post GRA Speedup
400.perlbench 32 25702 3.02 4.41 32% 30% 12%
401.bzip2 11 11729 3.14 4.64 30% 19% 10%
445.gobmk 44 27263 2.89 4.20 27% 23% 7%
458.sjeng 14 9362 3.00 4.51 32% 28% 11%
473.astar 3 725 3.01 4.69 40% 37% 10%
Total 104 74781 3.0 4.5 32% 27% 10%

Number of scheduled… (Static) GSL Gains

-1for Itanium 2

12/2007 MICRO-4016/19

ILP: Different Modeled Target Microarchitectures

• Narrow machine with halved issue width (3 instr./cycle)

– Half the number of execution units of each type

– Two-cycle L1 cache latency

• Results: GSLs 51% larger, w-IPC of 2.7

• Wide machine with double issue width (12 instr./cycle)

– Twice the number of execution units of each type

• Results: 8% GSL reduction, w-IPC of 5.1

� Six-wide design of Itanium® 2 seems to match the

available instruction-level parallelism best

12/2007 MICRO-4017/19

Frequency of Code Motion Classes

0%
5%

10%
15%
20%
25%
30%
35%

Upwar
d

Downw
ar

d
Cyc

lic
Pre

ad
y

Compe
ns

ati
on

Pre
dic

ate
d

Spe
cu

lat
ive

Acr
os

s L
oo

ps
Rena

m
ing

LD
.S

LD
.A

Compa
re

 sp
ec

F
re

qu
en

cy
 o

f A
pp

lic
at

io
n GCS

ILP

• Quantitatively, upward (speculative) code motion outnumbers all

other classes

• ILP scheduler achieves shorter schedules with less code motion and

speculation

– Spill/fill percentage GCS vs. ILP: 0.8% vs. 0.2%

12/2007 MICRO-4018/19

ILP: Impact of Code Motion Classes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Upwar
d

(1
)

Pre
dic

ate
d (

2)

Contr
ol

sp
ec

ula
tiv

e
(3

)
LD

.S
 (4

)
LD

.A
 (5

)

Rena
m

ing
 (6

)

Compe
ns

ati
on

 (7
)

JS
 b

lock
s (

8)

Par
tia

l-R
ea

dy
 (9

)

In
to

Lo
op

s (
10

)

Downw
ar

d (1
1)

Compa
re

 sp
ec

. (
12

)
Cyc

lic
 (1

3)

BB co
lla

ps
ing

 (1
4)

M
ov

e
su

bs
t. (

15
)

G
S

L
ga

in
 o

ve
r l

oc
al

 s
ch

ed
.

• (Static) GSL gains over optimal local scheduling when enabling

optimizations in the shown order

• Overall 91% GSL gain, demonstrating the tremendous importance of global

instruction scheduling on wide-issue in-order architectures

+29% +.8% +4% +4% +3% +9% each+5% +1% +1%

12/2007 MICRO-4019/19

Conclusion

• Substantial performance headroom in global instruction

scheduling on IPF

– 10% over GCS at the highest optimization levels

– Static weighted IPC increases from 3 to 4.5, demonstrating

significant available instruction-level parallelism

• Experiments identified three optimizations with an

outstanding GSL impact:

– Speculative upward motion, cyclic code motion, block collapsing

• Solution times reasonable for targeted optimizations and

research, yet still too large for the product compiler

– May change in the long term because ILP solving is well

parallelizable

12/2007 MICRO-4020/19

Acknowledgments

• Kalyan Muthukumar

• Dan Lavery, Howard Chen, Gerolf

Hoflehner, Darshan Desai

Questions?

12/2007 MICRO-4021/19

12/2007 MICRO-4022/19

Backup

12/2007 MICRO-4023/19

ILP: Impact of Scheduling Region Sizes

• We have scheduled each routine with different region size

thresholds, studied GSL impact

#Instructions

500

250

125

62

-2%

-4%

-9%

• GCS scheduling regions are

significantly smaller than those

of the ILP scheduler (average

56 vs. 126)

• GCS regions are acyclic

– loops nested away

• ILP regions can be cyclic

– loops are first-class citizens

• Most of the benefit from the

larger ILP regions comes from

code motion into/out of loops

GSL loss

12/2007 MICRO-4024/19

• Speculative upward code

motion out of loop entry

blocks

• Requires that

compensation copies are

moved across the back

edge as well

– These cyclic copies are

subject to different, loop-

carried dependences

– Implementation stores

possible cyclic copies in a

common tail block, moves

them upward

synchronously with the

other copies ()

ld V2=[V1] ;;
chk.s V2
cmp.ge p1,p2 = V2,V3
ld.s V2=[V1]

ld V2=[V1] ;;
chk.s V2
cmp.ge p1,p2 = V2,V3
ld.s V2=[V1]

st [V4]=V2,8
cmp.eq p3,p4 = 0,V4
ld.s V2=[V1]

st [V4]=V2,8
cmp.eq p3,p4 = 0,V4
ld.s V2=[V1]

ld.s V2=[V1]

Loop entry
block

ld.s V2=[V1]

ld V2=[V1] ;;
chk.s V2
cmp.ge p1,p2 = V2,V3

ld V2=[V1] ;;
chk.s V2
cmp.ge p1,p2 = V2,V3

st [V4]=V2,8
cmp.eq p3,p4 = 0,V4
st [V4]=V2,8
cmp.eq p3,p4 = 0,V4

ld.s V2=[V1]ld.s V2=[V1]
Common
tail block

ld.s V2=[V1]

ld.s V2=[V1]

Cyclic Code Motion (CCM)

12/2007 MICRO-4025/19

Solution Time Optimizations

• Design of a functionally correct ILP model is comparably

easy

• The challenge is to make the method scale well on larger

problem instances

– Solution time optimizations took at least half of the entire

R&D effort

• Two approaches used

1. Reduce ILP sizes:

– Detect infeasible/definitely unprofitable code motion in

advance, exclude from search space

2. Improve polyhedral efficiency:

– Main approach: Search for maximum cliques of mutually

exclusive decision variables; extend clique constraints:

X1+X2+…+Xn ≤1+Xn+1

