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�e semi-in�nite time optimal control for a class of stochastically excited Markovian jump nonlinear system is investigated. Using
stochastic averaging, each form of the system is reduced to a one-dimensional partially averaged Itô equation of total energy. A
�nite set of coupled dynamical programming equations is then set up based on the stochastic dynamical programming principle
and Markovian jump rules, from which the optimal control force is obtained. �e stationary response of the optimally controlled
system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Itô equation. Two
examples are worked out in detail to illustrate the application and e	ectiveness of the proposed control strategy.

1. Introduction

Markovian jump system (MJS) is a class of hybrid systems,
which has di	erent operation modes or forms governed by
a Markov process. �is class of systems can be used to
represent complex real systems,whichmay experience abrupt
variation in their structures and parameters. It is well known
that random form switching can give rise to unexpected
phenomena of the whole MJSs, even if the dynamics in
each form is simple and well understood. Development of
methodology for analysis of such systems is thus much
deserving.

MJSs have been studiedwith growing interest and activity
in recent years since they are �rst introduced by Kats and
Krasovskii [1]. For dynamics analysis, several important
criteria for stochastic stability of MJSs have been established
[2, 3]. �e stationary response of the stochastically excited
nonlinear MJSs is studied by Huan et al. [4]. For the problem
of optimal control, Krasosvkii and Lidskii studied the LQR
control of Markovian jump linear systems �rstly [5]. As a
consequence, considerable attention has been paid to the
optimal control problem of MJSs [6, 7]. Sworder solved the
jump linear Gaussian problem for �nite time horizon [8].
�e in�nite time horizon problem of linear MJSs was studied

by Wonham [9] and Fragoso and Hemerly [10]. �e optimal
control solution for linearMJSs subject to Gaussian input and
measurement noise is given by Ji and Chizeck [11]. Ghosh
et al. investigated the ergodic control problem of switching
di	usion [12]. However, most of the published results are
applicable to linearMJSs. Far less is known about the optimal
control of nonlinear MJSs, particularly for stochastically
excited nonlinear MJSs.

Recently, a nonlinear optimal control strategy of stochas-
tic excited nonlinear systems has been proposed by Zhu
based on the stochastic averaging method [13] and stochastic
dynamical programming principle. It is proved that this
strategy is quite e	ective for response alleviation of nonlinear
stochastic systems. �e goal of this paper is to extend
the strategy for nonlinear stochastic system to the one for
nonlinear stochastic MJSs.

An in�nite time optimal control problem for single
degree-of-freedom (SDOF), stochastically excited, nonlinear,
Markovian jump system is investigated in this paper. �e
organization of this paper is as follows. In Section 2, the
equation of SDOF nonlinear Markovian jump system is
examined. Stochastic averaging method is applied to this
system in Section 3. �e partially averaged equation of total
energy for each form of the original system is obtained. A
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�nite set of coupled dynamical programming equations is
then set up in Section 4, fromwhich the optimal control force
is determined. �e Fokker-Planck-Kolmogorov (FPK) equa-
tion associated with the fully averaged Itô equation is also
derived and solved. In Section 5, two examples are worked
out in detail to illustrate the application and e	ectiveness of
the proposed control strategy.

2. Formulation of Control Problem

Consider a SDOF controlled, stochastically driven nonlinear
system with Markovian jump governed by

�̈ + � (�) = �� (�, �̇, � (	)) + �
 (�, �̇, � (	))
+ �1/2ℎ� (�, � (	))�� (	) ,

� (	0) = �0,
� (	0) = �0,

(1)

where �(�) is nonlinear sti	ness; � is a small parameter;��(�, �̇, �(	)) denotes light damping with Markovian jump;�
(�, �̇, �(	)) is the feedback control force; �1/2ℎ�(�, �(	)) (� =1, 2, . . . , �) represent the Markovian jump coe�cients of
weakly external and (or) parametric stochastic excitations;��(	) are independent Gaussian white noises with zero
means and intensities 2��.

�e parameter �(	) is a continuous-timeMarkovian jump
process with �nite discrete state-space � = {1, 2, . . . , �} and
transition matrix Λ = {���} (�, � ∈ �), where ��� are real
numbers such that, for � ̸= �, ��� > 0, and for all � ∈ �,��� = −∑� ̸=� ���. �e transition probability is given by [14, 15]

� {� (	 + Δ	) = � | � (	) = �}
= {{{

���Δ	 + " (Δ	) , � ̸= �,
1 + ���Δ	 + " (Δ	) , � = �,

(2)

where "(Δ	) is such that limΔ�→0("(Δ	)/Δ	) = 0.
Our primary goal here is to design an optimal controller

which will result in the minimum of a speci�ed performance.
For in�nite-horizon control problem, the performance index
is speci�ed by

# (
)
= lim
��→∞

1	
$[∫
��

0
' (� (*) , �̇ (*) , 
 (*) , � (*)) -*] , (3)

where $[⋅] denotes an expectation operation; 	
 is the termi-
nal time of control; '(�(*), �̇(*), 
(*), �(*)) is cost function.
If random excitations ��(	) and Markovian jump process�(	) are ergodic, then the response of controlled system
approaches to stationary and ergodic as 	
 → ∞. In this
case, the performance index (3) is rewritten as

# (
) = lim
��→∞

1	
 ∫
��

0
' (� (*) , �̇ (*) , 
 (*) , � (*)) -*. (4)

Equations (1) and (4) constitute the mathematical for-
mulation of the in�nite-horizon optimal control problem for
a SDOF nonlinear system undergoing Markovian jump. In
this paper, we consider the perfect observation case, which
means that the system state (�(	), �̇(	)) and values of �(	) are
all available at each time 	.
3. Partially Averaged Equation

Let 7 = � and 8 = �̇; (1) can be converted to the following Itô
stochastic di	erential equations [11, 16]:

-7 = 8-	,
-8 = [−� (7) + �� (7, 8, � (	)) + �
 (7, 8, � (	))]

+ �1/2;� (7, � (	)) -<� (	) ,
(5)

where <�(	) are independent standard Wiener processes;7 and 8 are the generalized displacement and generalized
momentum, respectively; ;�(7, �(	)) = √2��ℎ�(7, �(	)). �e
Hamiltonian function @ (total energy) of the Hamiltonian
system associated with system (5) is

@(7, 8) = 822 + ∫
�

0
� (
) -
. (6)

Suppose that �(	) is a slow jump process and independent of
system’s state. �at means that, for original system (1) or (5),
the system jumps among the � forms or modes slowly and
independently. We consider one of the forms by letting the
Markovian jumpprocess be arbitrarily �xed at �(	) = � (� ∈ �).
When �(	) = �, denote �(�)(7, 8) = �(7, 8, �(	)), 
(�)(7, 8) =
(7, 8, �(	)), and ;(�)� (7) = ;�(7, �(	)). Since@ is a function of7 and 8, the Itô equation for @ can be derived from (5) by
using Itô di	erential rule as follows [17]:

-@ = � [�(�) (7, 8) B@B8 + 12;(�)� (7) ;(�)� (7) B
2@B82

+ �
(�) (7, 8) B@B8 ] + �1/2;(�)� (7) B@B8 -<� (	) .
(7)

In the case of light damping and weak excitations, the
Hamiltonian @ in system (7) is a slowly varying process
while the generalized displacement 7 in (5) is a rapidly
varying process. Since the slowly varying process is essential
for describing the long-term behavior of the system, the
stochastic averagingmethod is used to average out the rapidly
varying process and to yield the following partially averaged
Itô equation for@ [13, 18, 19]:

-@ = � [�(�) (@) + �(�)� (@)] -	 + �1/2;(�) (@) -< (	) , (8)
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where

�(�) (@) = 1F (@)
⋅ ∫
Ω
[�(�) (7, 8) B@B8 + 12;(�)� (7) ;(�)� (7) B

2@B82 ]
⋅ (B@B8 )

−1 -7,
�(�)� (@) = ⟨
(�) (7, 8) B@B8 ⟩ ,
{;(�) (7, 8)}2 = 1F (@) ∫Ω [;(�)� (7) ;(�)� (7) (

B@B8 )
2]

⋅ (B@B8 )
−1 -7,

⟨⋅⟩ = 1F (@) ∫Ω [⋅] (
B@B8 )
−1 -7.

(9)

�e region of integration is Ω = {7 | @(7, 0) ≤ @}, and the
parameter

F (@) = ∫
Ω
(B@B8 )

−1-7. (10)

Note that the second term �(�)� (@) on the right-hand of (8)

is unknown since 
(�) are unknown function of 7, 8, and � at
this stage.

Equation (8) is only valid when �(	) = �. As Markovian
jumps are allowed so that �(	) takes values from � = {1, 2,. . . , �}, (8) can be extended so that

-@ = � [� (@, �) + �� (@, �)] -	
+ �1/2; (@, �) -< (	) , (11)

where�(@, �),��(@, �), and ;(@, �) change as �(	) jumps, so

that�(@, �(	) = �) = �(�)(@),��(@, �(	) = �) = �(�)� (@), and;(@, �(	) = �) = ;(�)(@).
To be consistent with the partially averaged equation (11),

performance index (4) is also partially averaged: that is,

# (
) = lim
��→∞

1	
 ∫
��

0
' (@ (*) , ⟨
 (*)⟩ , � (*)) -*. (12)

�e original optimal control problem (1) and (4) has been
converted to the partially averaged optimal control problem
(11) and (12). �e partially averaged optimal control problem
is much simpler than the original one since (11) is only one-
dimensional. It has been proved [20] that the optimal control
for the partially averaged control problem is quasi-optimal
control for the original one.

4. Optimal Control Law

For the proposed control problem, we introduce the value
function:

Q (@, �) = min� # (
) . (13)

According to the stochastic dynamical programming
principle andMarkovian jump rules, the following dynamical
programming equation can be established [16]:

min� {12;2 (@) B
2Q (@, �)B@2

+ [� (@, �) + �� (@, �)] BQ (@, �)B@ + ' (@, ⟨
⟩ , �)
+ �∑
�=1
���Q (@, T)} = 0, � ∈ �,

(14)

where ��� are the transition rates described in (2). Equation
(14) is a �nite set of second-order partial di	erential equations
indexed by �. �ese equations are coupled through the zero-

order terms ∑��=1 ���Q(@, T).
�e necessary condition for minimizing the le�-hand

side of (14) is

BB
 {�� (@, �) BQB@ + ' (@, ⟨
 (7, 8, �)⟩ , �)} = 0. (15)

Let the cost function ' be of the form
' (@, ⟨
⟩ , �) = � (@, �) + Z ⟨
2⟩ , (16)

where �(@, �) ≥ 0, and Z is a positive constant. By substitut-
ing (16) into (15) and exchanging the order of the derivative
with respect to 
 and averaging in (15), the expression of the
optimal control force is determined:


∗ (7, 8, �) = − 12Z BQ (@, �)B@ B@B8 , � ∈ �. (17)

Note that Q(@, �) is generally a nonlinear functional of @.
Hence, 
∗(7, 8, �) is a nonlinear function of 7 and 8; that
is, the optimal feedback control is nonlinear. To ensure that
the control force 
∗(7, 8, �) is indeed optimal, the following
su�cient condition should be satis�ed:

B2B
2 ' (@, ⟨
⟩ , �) ≥ 0. (18)

Substituting the expression for 
∗(7, 8, �) in (17) into (14)
yields the �nal dynamical programming equation:

12;2 (@) B
2Q (@, �)B@2

+ [� (@, �) + �∗� (@, �)] BQ (@, �)B@
+ ' (@, ⟨
∗⟩ , �) + �∑

�=1
���Q (@, T) = 0,

(19)
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where

�∗� (@, �) = ⟨
∗ (7, 8, �) B@B8 ⟩
= − 12Z ⟨BQ (@, �)B@ (B@B8 )

2⟩.
(20)

�e value function Q(@, �) can be obtained by solving
(19). �e optimal control force 
∗(7, 8, �) is then determined
by substituting Q(@, �) into expression (17). By inserting the
optimal control force 
∗(7, 8, �) into (11) and averaging the
term ⟨
∗(7, 8, �)(B@/B8)⟩, the following completely averaged
Itô equation is obtained:

-@ = � [� (@, �) + �∗� (@, �)] -	
+ �1/2; (@, �) -< (	) . (21)

�e FPK equation associated with the fully averaged Itô
equation (21) is [4, 21, 22]

BB	8 (@, �, 	)
= − BB@ {[� (@, �) + �∗� (@, �)] 8 (@, �, 	)}
+ 12 B

2

B@2 [{; (@, �)}2 8 (@, �, 	)]
− �∑
�=1
� ̸=�

[���8 (@, �, 	) − ���8 (@, T, 	)] , � ∈ �,

(22)

where 8(@, �, 	) is the probability density function of total
energy@ for optimally controlled system (1) while the system
operating in �th form (8(@, �, 	) for uncontrolled system can
be obtained by letting 
∗(7, 8, �) = 0). �e initial condition is

8 (@, �, 0) = 8 (@0, �) (23)

and boundary conditions are

8 (0, �, 	) = �nite,
8 (@, �, 	)bbbb�→∞ c→ 0,
B8 (@, �, 	)B@

bbbbbbbb�→∞ c→ 0.
(24)

�e FPK equation (22) is a �nite set of second-order par-
tially di	erential equations, which are coupled through the
zero-order terms. Equation (22) does not admit easy solution,
analytically or numerically. However, in practical application
we are more interested in the stationary solution of FPK
equation (22). In this case, FPK equation (22) is reduced by
letting B8/B	 = 0. �en, the stationary probability density8(@, �) is obtained readily from solving (22) numerically.�e
stationary probability density 8(@) can be obtained from8(@, �) as follows:

8 (@) = d �∑
�=1
8 (@, �) , (25)

where d is a normalization constant. �e stationary probabil-
ity density8(7) of the generalized displacement and themean
value $[@] of the total energy are then obtained as

8 (7) = ∫∞
−∞
8 (7, 8) -8,

$ [@] = ∫∞
0
@8 (@) -@,

(26)

where

8 (7, 8) = 8 (@)F (@)
bbbbbbbb�=�(�,�) (27)

is the stationary joint probability density of the generalized
displacement and generalized momentum.

5. Numerical Example

To demonstrate the application and to assess the e	ective-
ness of the proposed control strategy, numerical results are
obtained for two examples.

5.1. Example 1. Consider a controlled van der Pol-Rayleigh
oscillator subjected to both external and parametric random
excitations, which is capable of independentMarkovian jump
and governed by

�̈ + � = {e (� (	)) − [f (� (	)) �2 + g (� (	)) �̇2]} �̇
+ 
 (�, �̇, � (	)) + ℎ1 (� (	))�1 (	)
+ ℎ2 (� (	)) ��2 (	) ,

(28)

where e(�(	)), f(�(	)), and g(�(	)) are Markovian jump
coe�cients of linear and quasi-linear damping, respectively;ℎ1(�(	)) and ℎ2(�(	))� denote Markovian jump coe�cients
of external and parametric random excitations, respectively;
(�, �̇, �(	)) is the feedback control force; ��(	) (� = 1, 2)
are independent Gaussian white noises with zero mean and
intensities 2��. �(	) is a �nite-state continuous-time Markov
process pointing to the system’s form with the transition
probability de�ned in (2).

We consider the 3-form case here that means � = 3 and� = {1, 2, 3}. Prescribe the transition rate ��� (�, � = 1, 2, 3)
between the form � and the form � by a transition matrix Λ =[���].

Let 7 = � and 8 = �̇. �e Hamiltonian associated with
system (28) is

@ = 1282 + 1272. (29)

As a Hamiltonian system, (28) can be expressed as

[7̇8̇] = [8 − 7
+ {e (� (	)) − [f (� (	)) 72 + g (� (	)) 82]} 8
+ 
 (7, 8, � (	)) + ℎ1 (� (	))�1 (	)
+ ℎ2 (� (	)) 7�2 (	)] .

(30)
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Upon stochastic averaging, (11) for system (28) is
obtained, for whichΩ = {7 | @(7, 0) ≤ @}, and
�(@, � (	) = �) = − [f(�)2 + 32g(�)]@2 + {ℎ(�)1 }

2�1
+ (e(�) + {ℎ(�)2 }2�2)@,

�� (@, � (	) = �) = ⟨
(�) (7, 8) 8⟩ ,
;2 (@, � (	) = �) = 2 {ℎ(�)1 }2�1@ + {ℎ(�)2 }2�2@2,

� = 1, 2, 3.

(31)

For the proposed control strategy, the partially averaged
cost function ' is of the form of (16) with

� (@, �) = d0 (�) + d1 (�)@ + d2 (�)@2 + d3 (�)@3. (32)

Following (17), the expression of the optimal control force
is


∗ (7, 8, �) = − 12Z BQ (@, �)B@ 8. (33)

Substituting 
∗(7, 8, �) in (33) into the dynamical pro-
gramming equation (14), completing the averaging yields the
following �nal coupled dynamical programming equations:

12;2 (@) B
2Q (@, �)B@2

+ [� (@, �) − 14Z BQ (@, �)B@ ⟨(B@B8 )
2⟩] BQ (@, �)-@

+ � (@, �) + 3∑
�=1
���Q (@, T) = 0, � = 1, 2, 3.

(34)

To solve (34), the value function Q(@, �) is supposed to
be of the following form:

Q (@, �) = l0 (�) + l1 (�)@ + l2 (�)@2. (35)

Since the optimal control force 
∗ is function of BQ/B@,
only the coe�cients l1(�) and l2(�) are determined by insert-
ing (32) and (35) into (34):

l1 (� = �) = l(�)1
= 2 (d2 + ∑

3
�=1 ���l(�)2 + 2l(�)2 e(�) + 2�2 {ℎ(�)2 }2 l(�)2 )Z

2l(�)2 + f(�)Z + 3g(�)Z ,
l2 (� = �) = l(�)2
= −12f(�) − 32g(�)Z
+ 12√(f(�))2 Z2 + 6f(�)Z2g(�) + 9 (g(�))2 Z2 + 4d3Z,
� = 1, 2, 3.

(36)

Uncontrolled

Optimally controlled

1 2 3 4 50
0

1

2

3

4

5

6

7

H

p
(H

)

Figure 1: Stationary probability density 8(@) of total energy of
uncontrolled and optimally controlled system (28). �e lines are
obtained fromnumerical solution of (37) while the dots are obtained
from direct simulation of original system (28).

By substituting (35) into (17) with the coe�cients deter-
mined by (36), the optimal control force is determined.�en,
the following completely averaged FPK equation is obtained:

BB	8 (@, �, 	)
= − BB@ {[� (@, �) + �∗� (@, �)] 8 (@, �, 	)}
+ 12 B

2

B@2 [{; (@, �)}2 8 (@, �, 	)]

− 3∑
�=1
� ̸=�

[���8 (@, �, 	) − ���8 (@, T, 	)] ,
� = 1, 2, 3,

(37)

where

�∗� (@, � = �) = − 12Z (l(�)1 + 2l(�)2 @)@. (38)

Solving (37) numerically with B8/B	 = 0, the stationary
probability density 8(@, �) of optimal controlled system can
be obtained. �e stationary probability densities 8(@) of the
total energy, 8(7) of the generalized displacement, and the
mean value $[@] of the total energy are then obtained using
(25) and (26).

Some numerical results are obtained as shown in Figures
1–4 for system parameters �1 = 0.03; �2 = 0.03; Z = 1.0;
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Uncontrolled

Optimally controlled

q

−4 −2

p
(q
)

Figure 2: Stationary probability density 8(7) of displacement of
uncontrolled and optimally controlled system (28). �e lines are
obtained fromnumerical solution of (37) while the dots are obtained
from direct simulation of original system (28).

1 1.5 2 2.5 3
0

0.5

1

1.5

2

Uncontrolled

Optimally controlled

E
[H

]

�11/�22

Figure 3:Mean value$[@] of total energy of uncontrolled and opti-
mally controlled system (28) as functions of the ratio �11/�22 (�22 =�33). �e lines are obtained from numerical solution of (37) while
the dots are obtained from direct simulation of original system (28).

2000 2100 2200 2300 2400 2500 2600

0

2

4

6

Uncontrolled

Optimally controlled

q

t

−4

−6

−2

Figure 4: �e sample time history of displacement of uncontrolled
and optimally controlled system (28).

�1 = �2 = �3 = 1.0; Λ = [ −�11 �11/2 �11/2�22/2 −�22 �22/2
�33/2 �33/2 −�33

]; �11 = �22 = �33 =
3.0 and

e(1) = 0.01;
f(1) = 0.01;
g(1) = 0.01;
ℎ(1)1 = 2.0;
ℎ(1)2 = 2.0;
e(2) = 0.01;
f(2) = 0.02;
g(2) = 0.02;
ℎ(2)1 = 2.0;
ℎ(2)2 = 1.0;
e(3) = 0.01;
f(3) = 0.04;
g(3) = 0.04;
ℎ(3)1 = 1.0;
ℎ(3)2 = 1.0.

(39)

�e stationary probability density 8(@) of the total
energy for uncontrolled and optimally controlled system
(28) is shown in Figure 1. Obviously, as @ increases, 8(@)
for optimally controlled system (28) decreases much faster
than that for uncontrolled system. �e stationary probability
density 8(7) of the displacement is plotted in Figure 2 with
the same parameters as in Figure 1. For optimally controlled
system, there is a much higher probability that 7 will be
located near their equilibrium. Hence, 8(7) has much larger
mode and smaller dispersion around 7 = 0 for optimally
controlled system than those for uncontrolled system. �is
implies that the proposed control strategy has high e	ective-
ness for attenuating the response of system (28).

Figure 3 shows the mean value $[@] of the total energy
of uncontrolled and optimally controlled system as functions
of ratio �11/�22 (�22 = �33). Obviously, higher value of ratio�11/�22 implies lower probability for the system operating in
form �(	) = 1 and higher probability for the system oper-
ating in forms �(	) = 2 and �(	) = 3. When the system oper-
ates in form �(	) = 1, the system has the smallest damping
coe�cients and the largest amplitudes of stochastic excita-
tions than those when it operates in forms �(	) = 2 and�(	) = 3. As a consequence, $[@] for uncontrolled system
decreases monotonously while the ratio �11/�22 increases, as
shown in Figure 3. However, $[@] for optimally controlled
system always keeps a very low value despite changing of
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the ratio �11/�22, which indicates that the proposed control
strategy is very e	ective and quite robust with respect to
the ratio �11/�22. In Figures 1–3, lines are obtained by
numerical solution of (37), while dots are obtained by direct
simulation of system (28).Observe that the dotsmatch closely
with the corresponding lines, demonstrating the validity and
accuracy of the proposed method. �e displacements of the
uncontrolled and optimally controlled system (28) are shown
in Figure 4, from which the e	ect of the optimal control on
the displacement can be visualized intuitively.

5.2. Example 2. Consider a controlled stochastically excited
Du�ng oscillator withMarkovian jumpwhich is governed by

�̈ + s2� + e�3 = f (� (	)) �̇ + 
 (�, �̇, � (	))
+ ℎ (� (	)) t (	) , (40)

where f(�(	)) is Markovian jump coe�cient of linear damp-
ing; ℎ(�(	)) is Markovian jump coe�cient of external random
excitation; 
(�, �̇, �(	)) is the feedback control force; t(	) is
Gaussian white noise with zero mean and intensity 2�. Here,
we consider the 2-form case, � = 2 and � = {1, 2}.

Upon the stochastic averaging method, the original jump
system (40) can be approximately substituted by the partially
averaged system (11) with

�(@, � = �) = {ℎ(�)}2� − f(�)u (@) ,
�� (@, � = �) = 4F (@) ∫

�(�)

0

(�) (7, 8) 8 -7,

{; (@, � = �)}2 = 2 {ℎ(�)}2�u (@) ,
u (@) = 4F (@) ∫

�(�)

0
(2@ − s272 − e742 )

1/2 -7,

F (@) = 4∫�(�)
0

(2@ − s272 − e742 )
−1/2 -7,

x (@) = [(s + 4e@)1/2 − s2e ]1/2 ,
� = 1, 2.

(41)

Following (17), the expression of the optimal control force
is


∗ (7, 8, �) = − 12Z BQ (@, �)B@ 8. (42)

�en, the following �nal dynamical programming equa-
tion is obtained:

12;2 (@) B
2Q (@, �)B@2

+ [� (@, �) − 14Z BQ (@, �)B@ u (@)] BQ (@, �)-@
+ � (@, �) + 2∑

�=1
���Q (@, T) = 0, � = 1, 2.

(43)

BQ/B@ can be obtained from solving (43) numerically.
�en the optimal control force is determined by substitutingBQ/B@ into (17). Substituting the optimal control force (17)
into the partially averaged equation (11) and completing
the averaging yield the following completely averaged FPK
equation:

BB	8 (@, �, 	)
= − BB@ {[� (@, �) − 12Z BQ (@, �)B@ u (@)]
⋅ 8 (@, �, 	)} + 12 B

2

B@2 [;2 (@, �) 8 (@, �, 	)]
− 2∑
�=1
� ̸=�

[���8 (@, �, 	) − ���8 (@, T, 	)] , � = 1, 2.

(44)

Solving (44) numerically with B8/B	 = 0, the statistics8(@), 8(7), and $[@] of the stationary response are then
obtained from (25) and (26).

�e numerical results shown in Figures 5–8 are for system

with parameters s = 1.0; e = 0.5; � = 002; Λ = [ −�11 �11�22 −�122 ];�11 = �22 = 2.0, and
f(1) = 0.01;
ℎ(1) = 2.0;
f(2) = 0.02;
ℎ(2) = 1.0.

(45)

�e stationary probability densities 8(@) of total energy
and 8(7) of the displacement of uncontrolled and optimally
controlled system (40) are evaluated and plotted in Figures
5 and 6, respectively. �e mean value $[@] of total energy
of uncontrolled and optimally controlled system (40) as
functions of ratio �11/�22 is shown in Figure 7. It is seen that
the optimal control force alleviates the response of system
(40) signi�cantly. �is e	ect can be seen more apparently
from Figure 8. Again, the analytical results obtained from
solving (44) match closely with those from digital simulation
of original system (40).

6. Conclusions

In this paper, we proposed a nonlinear stochastic optimal
control strategy for SDOF stochastically excited Markovian
jump systems where the jump parameter takes on values in a
�nite discrete set. In the slow jump case, the original system
was �rst reduced to one governed by a �nite set of one-
dimensional partially averaged Itô equation for total energy
upon stochastic averaging. Using the stochastic dynami-
cal programming principle and Markovian jump rules, a
�nite set of coupled dynamical programming equations was
derived, from which the optimal control force was obtained.
�e obtained optimal control force has been proved to be the
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Figure 5: Stationary probability density 8(@) of total energy of
uncontrolled and optimally controlled system (40). �e lines are
obtained fromnumerical solution of (44)while the dots are obtained
from direct simulation of original system (40).
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Figure 6: Stationary probability density 8(7) of displacement of
uncontrolled and optimally controlled system (40). �e lines are
obtained fromnumerical solution of (44)while the dots are obtained
from direct simulation of original system (40).

quasi-optimal control for the original system. �e strategy
was applied to two nonlinear oscillators that were capable
of independent Markovian jumps. Numerical results showed
that the strategy is fairly robust and e	ective in reduction
of stationary response of the controlled system. �us, it is
potentially promising for practical control applications a�er
further research.

�e proposed method has the potential to be extended to
the optimal control forMulti-DOFMarkovian jump systems.
However, to obtain the concrete conclusionmuchwork has to
be done. Mathematical tools should be developed to solve the
dynamical programming equation (14) for Multi-DOF case.

1 1.5 2 2.5 3
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E
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�11/�22

Figure 7: Mean value $[@] of total energy of uncontrolled and
optimally controlled system (40) as functions of the ratio �11/�22.
�e lines are obtained fromnumerical solution of (44) while the dots
are obtained from direct simulation of original system (40).
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Figure 8:�e sample time history of displacements of uncontrolled
and optimally controlled system (40).
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