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Optimal Vibration 

Suppression in Modal Space 

for Flexible Beams Subjected 

to Moving Loads 

Optimal independent modal space control for vibration suppression of beam structures 
traversed by a moving concentrated force was examined. Two control methodologies, 
optimal linear quadratic tracking and an optimal linear quadratic regulator, were utilized, 
with the former approach taking into account the disturbance due to the moving load 
and the latter one simply ignoring that disturbance. One single actuator placed at the 
beam center was found to be sufficient to suppress excessive vibration of a beam traversed 
by the moving load with a reasonable amount of control input. This study shows that 
excessive vibration of the beam structure induced by the moving load can be more 
effectively suppressed using the tracking control approach than using the regulator design, 
even with ±50% variation of the moving load magnitude or speed from that designed 
for the tracking control system. © 1997 John Wiley & Sons, inc. 

INTRODUCTION 

The dynamic analysis of structures subjected to 

moving loads has attracted much attention from 

engineers and scientists since the 19th century 

(Stokes, 1883). A dedicated monograph was writ

ten by Fryba on the subject of moving load prob

lems (1972). When a simply supported beam was 

subjected to a moving force traveling at constant 

velocity, the maximum dynamic beam displace

ment was found to be about 50% greater than that 

of the static case when the concentrated force was 

moving at a velocity corresponding to the first 

resonant beam mode (Timoshenko, 1955). It was 

later found that the maximum dynamic response 

can be as high as 1.743 times that of static deflec

tion when the traveling time to cross the beam 
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span is 0.81 times the fundamental period of the 

beam (Warburton, 1976). Besides the original con

cerns for dynamic analysis of railway bridges and 

highway structures subjected to moving vehicle 

loads, the case of a rotating beam subjected to 

deflection-dependent moving forces, pertinent for 

the study of lathe machining operation, was stud

ied (Katz et al., 1987). To handle more complex 

situations, finite element methods were applied by 

Filho (1978), Hino et al. (1984, 1985), and Yoshi

mura et al. (1986). A general treatment for various 

moving load problems and application to a high 

speed industrial precision drilling machine were 

reported by Lin and Trethewey (1990) and Lin et 

al. (1990). 

In spite of the intense research activities on the 

dynamic analysis of structures subjected to moving 
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loads, research effort on the effective suppression 

of excessive vibration induced by the moving loads 

is quite limited and an in-depth study to ensure 

structural safety and operation accuracy is re

quired. Lin and Cho (1993) examined the perfor

mance of a passive technique for reducing struc

tural vibration for systems excited by moving 

loads. A coupled mode control formulation on 

the moving load problem was reported by Su and 

Tadjbakhsh (1991) with control forces determined 

from the past information only. Another straight

forward coupled mode control scheme using the 

finite element method for a fixed-fixed beam sys

tem traversed by a moving load was developed 

by Lin and Trethewey (1993). The formulation 

resulted in the requirement of solving a set of 

78 first-order simultaneous nonlinear differential 

equations for the elements in the Riccati matrix 

and another set of 12 first-order differential equa

tions with time-dependent coefficients while only 

four finite elements were used in the model. The 

purpose of this study is to alleviate such de

manding computational requirements by applying 

the independent modal space control technique 

(Meirovitch and Baruh, 1982) and to assess the 

obtainable level of vibration reduction with re

spect to the level of the control actuation. With 

the use of this formulation, only a set of three first

order simultaneous nonlinear differential equa

tions for the elements in the Riccati matrix and 

another set of two first -order differential equations 

with time-dependent coefficients need to be solved 

for each mode controlled. Robustness of this 

modal control technique for systems with uncer

tain parameters has been demonstrated (Meiro

vitch and Baruh, 1983; Baruh and Silverberg, 

1985). In this work, optimal tracking control for

mulation combined with the independent modal 

space control technique are developed to take into 

account the disturbance caused by the moving 

load. The regulator control approach is also ana

lyzed for comparison to assess the effectiveness of 

the tracking control design. 

In the following sections, first the equation 

of motion for a beam system subjected to a 

moving force traveling at constant velocity along 

with the control input is given. Next, the govern

ing equation is transformed to a modal coordinate 

to enable independent control in modal space. 

Optimal tracking control is applied to obtain the 

feedback gains by minimizing a cost function 

defined as the weighted sum of kinetic energy, 

potential energy, and the control effort. Finally, 

the numerical implementation considerations and 

the performance of the control system designed 

are discussed. 

MODEL DEVELOPMENT 

Figure 1 depicts the moving load problem being 

considered. A simply supported Bernoulli-Euler 

beam is subjected to a moving force traveling at 

a constant velocity. The equation of motion can 

be described as 

a4y a2y 
EI ax4 + y at2 = Foo(x - vt) + u(x, t), (1) 

where EI is the bending rigidity, y the mass density 

per unit length of the beam, Fo magnitude of the 

moving force, othe Dirac delta function, and u(x, t) 

the control input force to be designed. The moving 

force can be described by using the Fourier series 

expansion as 

2Fo ~ . mrvt . mIX 
Foo(x - vt) = - L..J SIll -L SIll -L . 

L n~l 
(2) 

At the current state of the art for active struc

tural control, distributed actuation on a real struc

ture is generally not possible and the control action 

is usually provided by discrete actuators as shown 

in Fig. 1. For discrete actuation, the control input 

u(x, t) can be described as 

In 

u(x, t) = L Uk(t)O(X - Xk), (3) 
k~l 

in which m and Xk denote the number and position 

of the actuators, respectively. 

The boundary conditions for the simply sup

ported beam considered here are 

yeO, t) = y(L, t) = 0 (4) 

and 

a2yl _. a2yl _ 
-2- - 0, -2 - O. 
a X FO ax x~L 

(5) 

Using the expansion theorem 

00 

y(x, t) = L (f>r(X)qi(t), (6) 
i~l 
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FIGURE 1 A beam traversed by a moving concentrated force. 

and knowing that (Mx) = sin i1TXIL are the mode 

shape functions for the beam system examined, 

Eq. (1) can be transformed to a set of an infinite 

number of ordinary differential equations by sub

stituting Eq. (6) into Eq. (1) and applying the 

orthogonality of mode shapes to obtain 

iji(t) + wrqi(t) = pJt) + f;(t), i = 1,2, . 

where 

and 

( ) 2Fo . i1Tut 
Pi t = yL Sllly 

2 In i1TX 
f;(t) = -L 2: Uk(t) sin L k . 

y k~l 

00 . , 
(7) 

(8) 

(9) 

Equation (7) can be completely decoupled if 

the modal control action f;(t) depends on i]i(t) and 

qi(t) only, which is the essence of the independent 

modal space control technique. In practice, it is 

not feasible to control the innumerable structural 

modes, nor is it necessary to do so because the 

higher modes are more difficult to be excited, and 

the control of the first few modes will usually be 

sufficient. To control the first n modes, let 

q.(t) = Lql(t) qz(t) . . qnCt)JT, 

pet) = Lpl(t) pz(t) . . Pn(t)JT, 

f(t) = L.h(t) fz(t)· . . f,.(t)Jr, (10) 

u(t) = LUI(t) Uz(t) . .. um(t)Jr, 

Ac = diag(wr w~ . . w~). 

Thus, the governing equation of motion in modal 

space can be written as 

tVt) + Acq.(t) = pet) + f(t), (11) 

where 

f(t) = Bu(t) (12) 

and 

B = [A~ sin i~k], i = 1,2, ... ,n, 
(13) 

k = 1,2, .. . ,m. 
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The actual control input oCt) can then be ob

tained using 

oCt) = B-lf(t). (14) 

Note that to avoid unnecessary inaccuracy due 

to the use of pseudoinversion, the B matrix should 

be square, which implies that the number of actua

tors is equal to that of the modes being controlled. 

To facilitate the control system design process, the 

original governing equation is described using the 

state equation below: 

where 

qi(t) = Aiqi(t) + BiJ;(t) + Pi(t), 

i = 1,2, ... , n, 

qi(t) = Lqi(t) v;{t)Jr, 

viet) = qi(t) , 
Wi 

_ [0 Wi] Ai- , 
-Wi 0 

lo l.JT, Bi= 
Wi 

OPTIMAL CONTROL FORMULATION 

(15) 

(16) 

The concept of linear quadratic optimal control in 

dealing with the tracking problem was utilized to 

design a control system for the model presented 

in the previous section. The modal objective func

tion, Ji , to be minimized for the dynamic system 

described by Eq. (15) is defined as 

Ji = ~ zT(tt)SGZi(tt) + ~ I;. (zT(t)FiZi(t) + eJ7(t» dt, 

(17) 

in which 

Zi(t) = 1]i(t) - qi(t), (18) 

where the terminal time, tt, is specified; Sf; and Fi 

are 2 X 2 positive semidefinite matrices; ei is a 

1 X 1 positive definite matrix, or a positive scalar 

number; and 1]i(t) denotes the desired trajectory 

of the beam and is set to zero in this study to 

minimize the beam vibration. The modal control 

input, f;(t), is assumed to be unconstrained in 

this formulation. 

The first term on the right side of Eq. (17) is 

used to guarantee the error, Zi(t), at the terminal 

time, tt, is small. The term zT(t)FiZi(t) is used to 

weight the cost of the beam response during the 

entire period to to tt, while the term eJr(t) weights 

the control effort so that a reasonable amount of 

control energy is used. It is the designer's decision 

to choose proper weighting matrices, Sr., Fi , and 

ei to keep the error, z;(t), small without using exces

sively large or unrealistic control forces. In this 

study, Fi = wrI is used, where I is the 2 X 2 identity 

matrix, and the weighted beam response cost then 

becomes the total energy associated with the ith 

mode to be controlled. 

Minimization of the objective function, Ji , 

shown in Eq. (17) leads to (Kirk, 1970; Anderson 

and Moore, 1971) 

f;(t) = _1:. BT(Si(t)qi(t) - Ut», 
ei 

(19) 

in which Si(t) is the so-called Riccati matrix satis

fying the following nonlinear matrix differential 

equation: 

. TIT, _ 
Si(t) + Si(t)Ai + Ai Sj(t) - - S;(t)B;B; S;(t) -t- Fi - 0, 

ei 

(20a) 

with terminal conditions 

(20b) 

and g;(t) is an open loop control vector to account 

for the desired output, 1]i(t), and the disturbance, 

P;(t) , due to the moving load, that satisfies the 

following differential equation with time-depen

dent coefficients: 

. (1 T T) -gi(t) + ~ Si(t)BjBj - Aj 

(21a) 

gi(t) + S;(t)Pi(t) - F i 1]i(t) = 0, 

with terminal conditions 

(21b) 
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FIGURE 2 Optimal modal feedback controller and plant. 

The Riccati matrix, Si(t), shown in Eq. (20) is 

symmetric and thus only three nonlinear differen

tial equations need to be solved using backward 

integration. Once the Riccati matrix is determined, 

it can then be used in Eq. (21), which is also inte

grated backward, to obtain the gi(t) vector. Note 

that both the Riccati matrix, Si(t), and the gi(t) 

vector can be solved off-line because they are inde

pendent of the modal states. 

From Eq. (19), the modal control input, Nt), 

may also be expressed as 

fJt) = - Klt)qi(t) + ! BT glt) , (22a) 
ei 

where 

Ki(t) = ! BTSi(t). 
ei 

(22b) 

It is apparent from Eq. (22) that the modal 

control input, :t(t) , consists of two parts: the closed 

loop part, - Ki(t)qi(t), which is dependent on the 

states and has a time varying feedback gain matrix 

Klt); the open loop part, ! BT Q(t), which is inde

pendent of the current states. Figure 2 depicts the 

modal control block diagram used for the imple

mentation of this tracking control problem. Both 

the dynamic model and the controller are shown. 

The regulator control design can be obtained by 

removing the open loop control part, namely, the 

disturbance due to the moving load is ignored. 

Note that the regulator formulation is optimal only 

when the disturbance due to the moving load is 

null. To synthesize the modal control force, the 

modal states, qi(t) , used as feedback, must be avail

able to the control system. The modal states can 

be estimated using modal filters for actual imple

mentation (Meirovitch and Baruh, 1982, 1985). 

NUMERICAL IMPLEMENTATION 

Numerical implementation considerations for the 

optimal control formulation are discussed in this 

section. The required computation for the Riccati 

matrix, the gi(t) vector for the open loop control, 

and the states of the dynamic model are addressed. 

Implementation consideration of the disturbance 

due to the moving load is also presented. For the 

optimal independent modal space control formu

lation presented here, a set of three nonlinear dif

ferential equations for elements in the Riccati ma

trix and another set of two linear differential 

equations with time-dependent coefficients for the 

glt) vector have to be solved by integrating back 

in time for each mode controlled. Computational 

time is significantly reduced when compared with 

the coupled mode control scheme in which 

2n(2n + 1)/2 nonlinear Riccati equations and 2n 

linear differential equations for the glt) vector are 

to be solved. 

There are different approaches to solve the 

nonlinear differential equations for the Riccati 

matrix (Anderson and Moore, 1971). In this work, 

the nonlinear equations are transformed to linear 

ones so that explicit expressions for Si(t) can be 

obtained without using the expensive step by step 

time integration scheme. The Riccati matrix can 

be solved as follows: 
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(23) 

in which 

(24a) 

with the terminal conditions 

(24b) 

and 

(24c) 

The state transition matrix in partitioned form 

for Eq. (24) is denoted as 

(25) 

with 

0 Wi -WT 0 

-Wi 0 0 -WT 

Qi= 0 0 0 Wi 
(26) 

0 
1 

0 
eiWT 

-Wi 

for the present problem, thus we have 

Y;{t) = 1>l1,(t - tf)Sc; + 1>12,(t - tf)' (27a) 

Zi(t) = 1>21,(t - tf)Sc; + ch2,(t - tr), (27b) 

and from Eq. (23) we obtain 

Si(t) = [1>l1;(t - tr)Sc; + 1>12;(t - tr)] 

[1>z1;(t - tf)Sc; + 1>22;(t - trW!· 
(28) 

Note that solution of the gi(t) vector requires 

backtracking of the moving load as can be seen 

from Eq. (21) with the terminal condition being 

specified from the optimization process. Because 

the desired output, the 7Ji(t) vector, is zero, the 

only nonhomogeneous term is Si(t)Pi(t) as shown 

in Eq. (21), which is integrated backward. There

fore, after the concentrated force leaves the beam 

span, the disturbance P;{t) vector due to the mov

ing force is zero and Eq. (21) becomes a set of 

homogeneous differential equations with terminal 

conditions being zero. This implies that the gi(t) 

vector will be null for the time period when the 

moving load is outside the beam span. After the 

Riccati matrix, Si(t), and the gi(t) vector are com

puted, they are used to synthesize the control in

put,j;(t), as shown in Eq. (19). The modal govern

ing equation, Eq. (15), can then be integrated 

forward in time to obtain the modal response and 

the physical beam response can be obtained using 

Eq. (6). 

SIMULATION RESULTS 

It has been shown that when an elastic beam is 

subjected to a moving concentrated force, the dy

namic response of the system is dominated by the 

fundamental mode with a very small contribution 

from the higher modes (Timoshenko, 1955). 

Therefore, control of the first mode with one actu

ator is considered here, which will be sufficient 

for practical vibration suppression of the present 

system. In this work, one actuator, located at the 

beam center, is used to control the vibration of the 

first mode so that minimum hardware for control 

implementation is required. It will be shown in 

this section that this configuration is sufficient to 

effectively suppress excessive vibration of the 

beam system. It should be noted that although the 

design in modal space is always optimal, disregard 

the choice of the actuator position as long as B-1 

shown in Eq. (14) exists; the actuator position does 

affect the required amount of actual control input 

for control. Moreover, control spillover exists for 

a system controlled with discrete actuators as is 

evident in Eqs. (7)-(9). The choice of the beam 

center as the actuator position not only minimizes 

the required physical control input, but also re

duces the spillover effect because the adjacent 

mode, the second mode in this analysis, and the 

higher antisymmetric modes are not excited due to 

actuation occurring at the nodal position. Control 

spillover to the symmetric modes, starting from 

the third mode, is present and this effect is ac

counted for in the numerical computation for 

this study. 
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FIGURE 3 Dynamic displacement at the beam center with different weighting factors. 

For the simulation study, the following set of 

numerical data was used: bending rigidity, EI = 
6.3487(103)Nm2(2.2122(106) lb. - in.2), mass den

sity per unit length, y = 15.1 kglm (2.1901(10-3) 

Ib.s2/in.2), beam length, L = 1.1938 m (47 in.), and 

moving load magnitude, Fo = 444.8 N (100 lb.). 

The moving speed parameter of the concentrated 

force was Ttl T = 2, where Tt is the fundamental 

period of the support beam and T is the time re

quired for the moving force to travel from one 

end of the beam to the other. The final time, tf, 

was chosen to be 4 times the fundamental period 

of the beam. The weighting matrix, Sr., was chosen 

as zero for this study. Nine modes ~ere used to 

compute the beam response. 

The dynamic displacement and bending mo

ment responses at the beam center and the physi

cal active control input with different weights are 

shown in Figs. 3, 4, and 5, respectively. When the 

weighting factor for the control force is large, the 

beam response becomes greater because the con

trol system tends to conserve the control energy 

due to its high cost. Note that the beam is virtually 

motionless after tl T = 2, as is evident in the case 

represented by the solid curve shown in Figs. 3 

and 4 for ei = 0.0001. The response at the beam 

center without active control is shown to serve 

as a reference for performance evaluation of the 

control system design. During the period of the 

beam being loaded by the moving force, the bend-

ing moment histories are more irregular as shown 

in Fig. 4, which is due to slower convergence be

cause bending moment involves the second deriva

tive of the beam displacement. As can also be seen 

from Fig. 5, the control input is larger when a 

smaller value of weighting factor ei is used, which 

implies the control cost is less important. Table 1 

summarizes the performance of both the optimal 

linear quadratic regulator (LQR) and the optimal 

linear quadratic tracking (LQT) control designs, 

in which Dy and Din denote the dynamic impact 

factors defined as the maximum dynamic response 

normalized by the maximum static response for 

displacement and bending moment, respectively; 

u!ax is the maximum amount of physical control 

input force normalized by the magnitude of the 

moving force; and the last row shows the perfor

mance index (PI) of the two control strategies with 

various weighting factors for the modal control 

force. The PI is defined as shown in Eq. (17). The 

percent deviation denotes the percent difference 

of the PI between the optimal LQT and LQR 

designs normalized by the PI of the optimal LQT 

approach. As can be seen in Table 1, the impact 

factors using the optimal LQR design are larger, 

with the maximum peak control input being 

smaller, when compared with those using the opti

mal LQT approach. The PI shown in the last row 

of Table 1 was used to assess the effectiveness of 

the two different control designs. The deviation 
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FIGURE 4 Dynamic bending moment at the beam center with different weighting factors. 

of the optimal LQR design from the optimal LQT 

approach becomes larger as a smaller weighting 

factor for the control force is used. This indicates 

that the effectiveness of the optimal LQT ap

proach becomes more appreciable than that of the 

optimal LQR design when more vibration sup-

0.5 1 1.5 

pression of the system is called for. The amount 

of peak control input to render the response per

formance, denoted by the solid line illustrated in 

Figs. 3 and 4, is 0.7417 times the magnitude of the 

moving force using the optimal LQT design. To 

further suppress the beam response, the required 

2 2.5 3 

tlr 

3.5 

j 

I 

4 

FIGURE 5 Active control input with different weighting factors. 
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Table 1. Impact Factors (Displacement D y , Moment D m ), Normalized 

Maximnm Control Force (u* max), and Performance Index (PI) for 

Different Weighting Factors (e;) 

ej 0.01 

Dy 

LQT 1.4346 

LQR 1.4903 

Dm 
LQT 1.1806 

LQR 1.2276 

u!ax 
LQT 0.0730 

LQR 0.0547 

PI 

LQT 8.3261(104) 

LQR 8.5145(104) 

Deviation (%) -2.2629 

control input will be increased for this control sys

tem. For reference, the impact factors Dy and Dm 

are 1.5478 and 1.2746, respectively, for the UnCon

trolled beam system. Apparently, excessive vibra

tion of the beam system SUbjected to a moving 

force can be effectively suppressed using the cur

rent control formulation with a minimum hard

ware requirement. 

xl()4 

4[ 
I 

3.5 r 
3 

I>< 
<0 

"0 2.5 ~ -<0 
<) 

~ 2 ro 
e 

L 
... 
.g 
<0 

1.5
1 ~ 

11 
0.5 

~.5 0.6 0.7 0.8 0.9 

0.001 0.0001 

0.9920 0.3954 

1.2382 0.7732 

0.8149 0.3194 

1.0221 0.6340 

0.3574 0.7417 

0.2742 0.5681 

4.0726(104) 8.4298(1(}l) 

4.5983(104) 1.1634(104) 

-12.9082 -38.0104 

For some civil engineering structures subjected 

to moving loads, the magnitude and speed of the 

load may be known as a priori (Leipholz and 

Abdel-Rohman, 1986), and the optimal LOT ap

proach can be used to yield the optimal vibration 

suppression performance. However, for some 

other mechanical structures, the characteristics of 

the moving load may not be accurately estimated. 

1 1.1 

Fa/Fo 

I 
. I 
l 

vQ~. . .' ---~~~~//--J 
_-------------LQ'f' I 

1 

i 
1.2 1.3 1.4 1.5 

FIGURE 6 Effect of the moving load magnitude variation on performance index using 

optimal LQT and optimal LQR control designs. LQT): load magnitude known exactly; LQT2 : 

load magnitude known approximately with designed magnitude Fo = 444.8 N (100 lb.); LQR: 
disturbance due to moving load ignored. 
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FIGURE 7 Effect of the moving load speed variation on performance index using optimal 

LOT and optimal LOR control designs. LOTI: moving speed known exactly; LOT2 : moving 

speed known approximately with designed moving speed Tfl T = 2; LOR: disturbance due 

to moving load ignored. 

Therefore, it is of interest to examine the perfor

mance of the tracking control approach as com
pared to that of the regulator control design when 

the actual magnitude and speed of the moving 

load deviate from that designed for the tracking 

control system. Note that the only difference be
tween the tracking and the regulator control de

signs is that the former incorporates an additional 

open loop control by synthesizing the ~i(t) vector 
based on the knowledge of the moving load magni

tude and speed. Figures 6 and 7 illustrate the per

formance comparison between the optimal LQT 

design and the optimal LQR approach with re

spect to the moving load magnitude and speed, 

respectively. The weighting factor for the modal 

control force is 0.0001. For the analysis shown in 

Fig. 6, the design magnitude of the moving load 

was Fo = 444.8 N (100 lb.); the moving speed pa

rameter, T/T, was 2. The abscissa denotes the ac

tual load magnitude, Fa, normalized by the de

signed one, Fo. A range of ±50 variation from 

that designed in the moving load magnitude was 

analyzed. The solid line, denoted by LQT1 , repre

sents the true optimal tracking control perfor

mance where the magnitude of the moving load 

was known exactly. The dashed line, denoted by 
LQT2 , shows the case where the tracking control 

system still used the designed moving load magni

tude Fo to synthesize the open loop control vector, 
without knowing the actual moving load magni

tude. The dotted line represents the situation when 

the regulator control design was used. As can be 
seen in Fig. 6, the performance of the tracking 

control with inaccurate knowledge of the moving 

load magnitude only deviates slightly from the op

timal tracking performance where the load magni

tude is known exactly. It can be concluded from 

Fig. 6 that even with inaccurate information of 

the moving load magnitude, the tracking control 

approach always performs better than the regula
tor control design within the range of load varia

tion considered here. In Fig. 7 the effect of speed 

variation of the moving load is examined. The 

designed moving load speed parameter, Tr/T, was 

2. The solid line, denoted by LQT1 , describes the 

case where the moving load speed was known ex

actly, the dashed line, denoted by LQT2 , repre

sents the situation where the control system still 

used the designed moving load speed Tr/T = 2 to 

formulate the ~i(t) vector, without adapting to the 

true moving load speed. As can be seen in Fig. 

7, it can also be concluded that, within a ±50% 

variation of moving load speed from that designed 

as shown in the present analysis, the tracking con-



trol approach with inaccurate knowledge of the 

moving load speed still has better performance 

than the regulator control design. Note that inac

curate estimation of the moving load magnitude 

and speed can never destabilize the tracking con

trol system because the gi(t) vector is independent 

of the feedback modal states. 

An alternative control formulation that does 

not require knowledge of the moving loads is the 

direct feedback control strategy. However, its non

collocated control version may lead to severe in

stability problems (Lin and Chu, 1995). Although 

the collocated design may provide improvement, 

the control is nonoptimal; that is, the optimal 

tracking control strategy as presented in this work 

provides an optimal method of structural vibration 

control due to moving loads when both the costs 

of system response and control input are taken 

into account and an objective function as depicted 

in Eq. (17) is considered. This consequence is logi

cal because the optimal control system has com

plete knowledge of the moving load characteristics 

and hence can better react and take a more appro

priate control action. 

CONCLUSIONS 

Vibration of structures subjected to moving loads 

can be significantly greater than that in the static 

case. For safety concerns, operation accuracy, or 

personnel comfort, appropriate means must be 

taken to mitigate the excessive structural vibra

tion. In this work, optimal independent modal 

space control for vibration suppression of beam 

structures subjected to a moving concentrated 

force was presented. Excessive beam vibration can 

be effectively suppressed by using this control 

strategy with far less computational effort when 

compared to conventional coupled mode control 

techniques. The optimal tracking problem led to 

a control strategy including a combination of open 

loop and closed loop control and was found to be 

more effective than the optimal regulator control 

design, even with inaccurate estimation (:±:50% er

ror) of the moving load magnitude or speed from 

that designed for the tracking control system. The 

required time varying feedback gains can be solved 

off-line, and hence real time control can be imple

mented without difficulties. 

The beam vibration can be suppressed while 

keeping the amount of control input within a rea

sonable range. Minimum hardware with only a 

single actuator for the control of the fundamental 
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mode was adopted, in consideration of the nature 

of the moving load effect. The performance of the 

control system depends on the choice of weighting 

matrices. In practice, the weighting matrices are 

chosen based on engineering considerations, i.e., 

the tolerable beam vibration, the magnitude limi

tation, and the cost of the control input. The de

signer is responsible for such choices. Future re

search topics include systems with closely spaced 

or repeated eigenvalues, time delay, nonlinearity, 

inelastic behavior, etc. Vibration control of sup

port structures subjected to moving sprung dy

namic systems, rather than moving concentrated 

forces, for more precise modeling, is also worth 

further exploration. 
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