

King’s Research Portal

DOI:
10.1109/TWC.2018.2863685

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Friderikos, V., Zheng, G., & Tsiopoulos, A. (2018). Optimal VNF Chains Management for Proactive Caching.
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. https://doi.org/10.1109/TWC.2018.2863685

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 16. Aug. 2022

https://doi.org/10.1109/TWC.2018.2863685
https://kclpure.kcl.ac.uk/portal/en/publications/optimal-vnf-chains-management-for-proactive-caching(77beec57-6597-4623-87ea-4930a947f5d0).html
https://kclpure.kcl.ac.uk/portal/en/persons/vasilis-friderikos(275a3f3c-bf5e-4fbb-becb-15750e4471e1).html
https://kclpure.kcl.ac.uk/portal/en/persons/gao-zheng(310b50c0-01ec-47b8-a834-ad7468968b98).html
https://kclpure.kcl.ac.uk/portal/en/persons/anthony-tsiopoulos(ed9198e5-3b39-4a90-913e-df61fd101233).html
https://kclpure.kcl.ac.uk/portal/en/publications/optimal-vnf-chains-management-for-proactive-caching(77beec57-6597-4623-87ea-4930a947f5d0).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-wireless-communications(7e06c22c-25fe-4814-9e7b-3526c8ef3c09).html
https://doi.org/10.1109/TWC.2018.2863685

1

Optimal VNF Chains Management for Proactive

Caching
Gao Zheng, Anthony Tsiopoulos, Vasilis Friderikos

Centre for Telecommunications Research, King’s College London, London WC2B 4BG, England

E-mail: {gao.zheng, anthony.tsiopoulos, vasilis.friderikos}@kcl.ac.uk

Abstract—Notwithstanding the significant attention that Net-
work Function Virtualization (NFV) architectures received over
the last few years little attention has been placed in cases
where proactive caching is considered within a service chain.
Caching algorithms have been developed independently from
virtual network function (VNF) chaining schemes and as we
explain in detail in this paper such operation might lead to sub-
optimal overall network and service performance. Since caching
of popular content is envisioned to be one of the key adopted
technologies in emerging 5G networks to increase network
efficiency and overall end user perceived quality of service we
explicitly consider the interplay and subsequent optimization of
caching based VNF service chains. To this end, a mathematical
programming framework is proposed tailored to VNF caching
chains and in addition detail a scale-free heuristic algorithm to
provide competitive solutions for large network instances since
the problem itself can be seen as a variant of the classical NP-

hard Uncapacitated Facility Location (UFL) problem. A wide set
of numerical investigations are presented for characterizing the
attainable system performance of the proposed schemes.

Index Terms—Network Function Virtualization, 5G networks,
proactive caching, integer linear programming.

I. INTRODUCTION

I
T is well accepted that current mobile network architec-

tures suffer from insufficient scalability and flexibility to

speedily accommodate new services and ability to embrace

vertical industries [1]. To address these challenges, applying

software defined networking (SDN) [2] principles in emerg-

ing architectures towards 5G networks is gaining significant

momentum recently [3]. This goes hand-in-hand with the cur-

rently heavily studied network function virtualization (NFV)

[4] architectures, that together with SDN, can be considered

as the two enablers towards flexible 5G networks, where

full virtualization and efficient network slicing according to

the needs of different tenants can be implemented. Such an

SDN/NFV-enabled network is in essence able to decouple

network functions (NFs) from the underlying physical devices,

thereby, NFs can be virtualized, creating the so-called virtual

network functions (VNFs). The benefit stems from the fact

that VNFs can be flexibly controlled/assigned/moved within

the network using Virtual Machines or (docker) containers.

In NFV framework, an end-to-end network service (e.g., rich

voice/data) is described by an VNF forwarding graph, where

a number of VNFs (possibly distributed in various physical

nodes in the network) need to be visited in certain predefined

order [5]. To be more precise, the sequenced VNFs of a service

request form a service chaining as the service flow passes

through an ingress or egress point in a virtual network device.

An illustrative example of such service chain is shown in

figure 1, where caching is considered as one of the VNFs1

that constitute the overall service chain; these VNFs might

be located in different nodes in the network. Our aim is to

consider caching and the other possible VNFs that might be

required for the service in an integrated manner in order to

increase network efficiency.

Undoubtedly, among different VNFs, it is expected that

caching would emerge as one of the potential key network ele-

ments to be supported in emerging and future wireless/mobile

networks. Viral and popular video streams dominate aggregate

mobile Internet traffic2 and it is an application well suited to

various different caching strategies. In that respect, caching of

popular content deserves paying a special attention in terms of

VNF hosting location and chaining. This is because in the most

general case, a cached content must be visited before other

VNFs can be applied and this service flow might originate

from different possible network locations depending on the

caching strategy. In other words, this type of service does not

need to reach a gateway node or a specific cloud but can

originate at any node that host the required cached content

(which, most probably, be topologically closer to the end user).

Therefore, the location of caches in a VNF service chain,

greatly affects the overall VNF chain orchestration as well

as the aggregate traffic dynamic in the network, since links

of higher aggregation (deeper in the network) can reduce

their utilization levels. However, efficient caching in mobile

networks can be deemed as a highly challenging task since

the optimality of the cache locations are dependent on the

movement/mobility patterns of the end users. Notably, to

significantly reduce access delays to highly popular content

caching content close to the end user without considering

the effect of mobility might lead to a degradation of the

performance. In this case, caching popular content closer to the

end user might inevitably require more frequently changes of

the cache location to keep providing optimal performance. As

a result, the proactive caching location and the associated VNF

chaining need to be jointly considered to avoid sub-optimal

cases, especially under network congestion episodes where

performance can be significantly penalized. To summarize,

1The terms VNF and NF are used interchangeably in the rest of the paper,
except where differentiation is required.

2Mobile video traffic accounts for 60 percent of total mobile data traffic
according to the CISCO Global Mobile Data Traffic Forecast Update that has
been released in February 2017.

2

Fig. 1: An example of caching in conjunction with other virtual

network functions.

the focus and main motivation of the paper is on enhancing

proactive caching policies by taking into account the whole

VNF chain.

II. MOTIVATION AND ILLUSTRATIVE EXAMPLES

As already eluded, in this paper, we propose a Proactive

caching-chaining (PCC) scheme to enhance the mobility sup-

port of SDN-enabled/NFV service chaining in mobile net-

works. To motivate the research we detail hereafter illustrative

examples of the possible cross issues between caching and

VNF chaining with the aim to shed further light on some of

the key challenges. To start with, Figure 2 shows the case of

a service with two VNFs where the first one is caching and

the other one is assumed to be a video acceleration network

function. As can be seen from the figure, Case I entails a sub-

optimal allocation when mobility of the end user is not taken

into account. However, Case II shows a more suitable VNF

location where after the mobility event the cache and chain

location is topologically closer to the end user; note that in

Case II the VNFs are located 3 hops away from the end user

after the mobility event whereas in Case I, which is a mobility

oblivious allocation, the VNFs are located 4 hops away. Figure

3 shows the case where VNF chaining and pro-active caching

take place independently. The figure shows potential pro-active

caching locations but not in all of those pre-selected locations

from the caching algorithm it is possible to host the other

NFs due to numerous reasons such as for example reservation

policies, placement based on affinity and/or anti-affinity rules

and overall resource usage of the virtual machines [6]; for

example only in one of those locations the two VNF can be

co-located (node b). Furthermore, as shown in figure 4 the

optimal location of caching and the other VNF in the service

chain might be different; in the figure shown the optimal

location of caching is in node (b) whereas the VNF for video

acceleration is located at node (d) (assuming each node can

only host one NF). It is therefore important to consider the

issue of caching and service chaining in a holistic integrated

manner and subsequently to optimize the location and chaining

of the different VNFs in order to increase overall network

performance.

Based on the above discussion, the proposed scheme per-

forms proactive caching and VNF chaining so that overall

network performance is optimized whilst end user receive

their service requests seamlessly. Notably, we take VNF

chaining allocation and proactive caching as a joint problem

and formulate it as an Integer Linear Programming (ILP)

mobilityCase	I

1

2

3

4

a

b

d

c

Mobility oblivious VNF placement

Video	cache

Video	accelerator

Current	video	flow

Video	flow	after	
handover

mobilityCase	II

1

2

3

a

b

d

c

Mobility aware VNF placement

Fig. 2: Effect of mobility on the joint caching VNF chaining

problem.

problem with the objective to minimize the combined cost of

VNF placement, chaining and routing. We also investigate the

performance obtained of a proposed scale-free heuristic algo-

rithm since the problem resembles the NP -hard uncapacitated

facility location problem.

In summary, we hereafter make the following key con-

tributions, We firstly, propose a novel VNF chaining place-

ment scheme, namely, proactive caching-chaining (PCC) that

improves the mobility support for the up coming SDN-

enabled/NFV network framework. Secondly, we model and

formulate the VNF chaining problem for proactive caching

to obtain optimal routing and placement cost and based on

that we devise a scalable heuristic approach and evaluate the

performance of the system. Finally, we meticulously exam-

ine the performance of the proposed schemes under various

network conditions. This paper is extended from our previous

work [7], in which two scalable heuristics are proposed for

seeking the suitable VNF chains for proactive caching. We

extend the study by finding the theoretical optimal solution

to calculate the difference of cost performance between the

proposed heuristics and the theoretical optimal value. More-

over, the analysis on a comprehensive set of practical network

scenarios explains to what extent the proposed heuristics can

find approximative solutions effectively.

III. PREVIOUS CLOSELY RELATED RESEARCH WORK

The overall logical/functional architecture of the VNF Man-

agement and Orchestration (MANO) framework has been

mainly an industry-lead initiative and has been defined within

ETSI [4]. An example of a VNF orchestrator, which is called

Stratos is presented in [8] and is built on top of a Floodlight3

controller. The work in [9] can be considered as another effort

to provide orchestration between virtualized NFs especially

with emphasis on issues such as Virtual Machine (VM)

migration and split/merging of service flows. An overview of

3www.projectfloodlight.org

3

mobility

a

b d

c

Video	cache

Video	accelerator

Current	video	flow

Proactive	video	cache

Video	accelerator	migration

No	VM	available	to	host	the	NF

Fig. 3: Limited availability of resources (in terms of Virtual

Machines for example) in the candidate pro-active caching

locations to host the required VNFs for the service.

mobility

a

b d

c

Video	cache

Video	accelerator

Current	video	flow

Proactive	video	cache

Video	accelerator	migration

Video	flow	after	handover

Fig. 4: An optimal VNF chain NF are located in different

nodes in the network.

the challenges emerging in virtual network function scheduling

is presented in [10]; in this paper the authors explain the

application of SDN and NFV technologies with emphasis on

backbone networks.

In terms of caching there has been recently a significant

amount of work. A caching scheme suitable for mobile net-

works that takes into account user mobility has been proposed

in [11] where the idea is to predict the mobility pattern of

users and opportunistically cache content along the predicted

path of users. A scheme that pro-actively cache content

using transportation and focusing on video content has been

presented in [12]. The idea is to utilize the almost deterministic

mobility of users in transportation systems such as trains to

proactively cache popular content that the users might request

upon their arrival. The ideas on proactive caching in this paper

resemble more closely the work in [13], [14] which propose

a set of mobility-aware caching schemes.

On the other hand, VNF placement problem has recently

received wide attention from both industry and academia. In

work [15], the authors address VNF placement for unordered

service chains in the cloud with the objective to satisfy as many

tenants’ requests as possible. In [16], the optimization problem

VNP-OP minimizes the cost (which can be further broken

down into deploy cost, energy cost and cost of forwarding

traffic) by carefully placing VNFs as well as their forwarding

traffic through best available paths. The work focuses on

providing VNF location optimization for fixed networks thus,

mobility of end-users are not considered.

However, none of previous research works make caching

decisions on a view of the whole VNF service chain, especially

for mobile networks. To the best of our knowledge this is the

first work to consider in an explicit and integrated manner

proactive caching as part of a VNF chain. In most practical

cases, this simple cache moving could lead to inefficient

routing of a mobile user to receive a service. Fig 1 gives

an example of the inefficient routing problem where firewall

as a NF must also be visited and only cache is moved 4. It

is apparent that, in order to improve the mobility support of

SDN-enabled networking, other NFs on a same VNF service

chain must also be moved, with the decision of caching. A

close related work can be found in [17] which aims to assign

VNFs into given SDN-enabled networks. However, it does not

take routing and location of VNFs into consideration.

IV. NETWORK MODELING AND PROACTIVE CHAINING

WITH CACHING

An arbitrary mobile network is modeled as an undirected

graph G = (N,E), where N denotes the set of nodes and

E denotes the set of links in the network. By F, we denote

the set of NFs and fi represents the specific NFi. Each

fi, if activated, consumes/requires some physical resources

(i.e., CPU cycles, DRAM memory). We uniformly describe

these resource requirements as a single column matrix ui,

meanwhile, the amount of available resources of node k, which

is able to host VNFs, is denoted using the single column matrix

Uk.

The term "chain" in the so-called service chaining represents

the different middleboxes that the service should traverse, with

a specific order, across the network using software provision-

ing. This is the case under the proposed NFV architecture,

where new services and/or network slices can be instantiated

as software-only, running on commodity hardware on top of

virtual machines or containers. To provide a service request

r ∈ R (with R we denote the set of requests5) for a

mobile user and/or tenant, a network function forwarding

graph (VNF-FG) [18] needs to access a set of corresponding

NFs that are visited in a pre-defined order (which the VNF

orchestrator should preserve). In this paper, we consider the

form of service request r as the set r = {f1, f2, · · · , fi}
where the function appearance sequence expresses the visiting

order of the different network functions while the function

index expresses a specific network function. The proposed

optimization scheme provides a batch processing based service

that the requests are handled in batches, such that the number

of requests processed in each batch is |R|. For modeling

simplification reasons, the corresponding relationship of a NF

and its order in a request can be represented by a binary matrix

Vril as follows,

Vril =

{

1 if the lth NF of request r is NFi.

0 otherwise.
(1)

Hereafter, we consider the scenario where a mobile user

and/or tenant connected to node o and requesting R services.

4NF movement in this paper refers to any approach that occurs the change
of the function’s location. (e.g., proactive caching)

5As part of the standard [19], VNF chain deployment in this paper is on a
per request basis. Nevertheless, coarser grain can be applied without change
to our model by referring the request as a set of traffic. This is based on the
granularity of VNF deployment and usage.

4

As presented in Figure 2, caching as a NF, is the head of

a service request chain and it is denoted as f0. We define

a candidate node set K ⊆ N that consist of the potential

candidate nodes of hosting NFs. By D, we define a set of po-

tential destinations that mobile users might move due to their

inherent mobility. Using historical data available to mobile

network providers it is feasible to estimate such probabilities

of end users moving from their current location to an adjacent

candidate destination node d. We denote this probability of

changing their serving access router with ρd. As eluded, we

assume that ρd is predefined by using available historical

data from operators so this assumption can be deemed as

realistic due to vast available data which can provide accurate

characterization of user mobility patterns. With known candi-

date cache locations, which can be done using for example a

proactive caching technique such as PCWR [13]), PCC aims

to proactively place network functions fi ∈ F into the set of

nodes K. To be more precise, we define by Sr to be the set of

initiating nodes (i.e., proactive caching locations) of a service

chain r, with H denoting the set of Sr. Given H and D, the

proposed scheme returns the optimal proactive allocation of

the NFs that minimizes the joint cost of routing, location and

chaining. To sum up, the key notations we used in this paper

are listed in I

TABLE I: Notations

Notation Meaning

R Set of requests arrive in a batch
K Set of NFV enabled candidate hosts
F Set of Network Functions
Sr Set of caching points for request r
D Set of potential destinations

Ck
i

The cost for placing VNF i at node k
ρd The probability of a mobile user moving to destination d
Pkm The routing cost of the path from node k to m

Vril Indicator of VNF i if it is the lth function of request r
ui Physical resource requirement of VNF i
Uk Physical resource capacity of node k
λr Flow rate requirement of request r
Λkm Link capacity of the path from node k to m

xk
ri

Decision variable indicates whether VNF i is placed
at k for request r

yksd
ri

Decision variable indicates whether VNF i of request r
with caching point s and destination d is visited from k

zkmsd
rij

Auxiliary variable defined as zkmsd
rij

= yksd
ri

ymsd
rj

A. Proactive chaining-caching problem

Based on the previously described network settings we

define the following binary decision variables,

xk
ri =

{

1 if NFi is placed at k for request r.

0 otherwise.
(2)

yksdri =

1 if NFi of request r with head s and

destination d is visited from k.

0 otherwise.

(3)

The optimal VNF location and chaining for the proactive

caching problem is defined as the following non-linear integer

optimization problem,

min
xk

ri
,yksd

ri

∑

r∈R

∑

k∈K

∑

i∈F

Ck
i x

k
ri+

∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k∈K

∑

i∈F

ρdPskVri1y
ksd
ri

+
∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k,m∈K

∑

i,j∈F

L−1
∑

l=1

ρdPkmVrily
ksd
ri Vrj(l+1)y

msd
rj

+
∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k∈K

∑

i∈F

ρdPkdVriLy
ksd
ri

(4)

S.t.
∑

r∈R

∑

i∈F

uix
k
ri ≤ Uk, ∀k ∈ K (4a)

∑

r∈R

∑

d∈D

∑

i∈F

λrVri1y
ksd
ri ≤ Λsk, ∀r∈R, k∈K, s∈Sr (4b)

∑

r∈R

∑

s∈Sr

∑

d∈D

∑

i,j∈F

L−1
∑

l=1

λrVrilVrj(l+1)y
ksd
ri ymsd

rj ≤ Λkm,

∀k,m ∈ K (4c)
∑

r∈R

∑

s∈Sr

∑

i∈F

λrVriLy
ksd
ri ≤ Λkd, ∀k ∈ K, d ∈ D (4d)

∑

k∈K

∑

i∈F

Vrily
ksd
ri ≥ 1, ∀r ∈ R, s ∈ Sr, d ∈ D,

l = 1, . . . L (4e)

yksdri − xk
ri ≤ 0, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (4f)

xk
ri ∈ {0, 1}, ∀i ∈ F, k ∈ K (4g)

yksdri ∈ {0, 1}, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D(4h)

where Ck
i is the cost of placing NFi at k. While Psk, Pkm and

Pkd are the shortest path routing costs between the candidate

nodes. Accordingly, Λsk, Λkm and Λkd are the remaining

link capacities of a path (i.e., the bottleneck link capacity).

Further, notice that Λkm can be seen as flow rate tolerant of

a node when k = m. λr denotes the flow rate requirement

of request r. Constraint (4a) is the VNF processing capacity

constraint which takes into account the CPU cycles associated

with the Virtual Machine(VM) allocated to a VNF and the

memory capacity for a specific VNF. (4b)-(4d) are the QoS

constraints related to the service chain such that the requests

can be properly assigned based on the flow rate requirements

and the link capacity. (4e) enforces that each NF in a requested

chain must be visited at least once. (4f) is a binding constraint

that insures the availability of a NF at a node is valid only

when the NF is hosted at the node.

The first term of the objective function is the placement

cost of hosting VNFs at a node. The rest of the terms in

the objective function reflect the accumulative routing cost of

each hop on the VNF-FG of a requested chain. To linearize

the optimization problem, we replace the product of binary

decision variables yksdri ymsd
rj with an auxiliary variable zkmsd

rij ,

which is defined as follows,

5

zkmsd
rij =

1 if request r with head s and destination d

visits NFi at node k and NFj at node m.

0 otherwise.
(5)

Hereafter, the optimization problem is converted to the

integer linear programming problem shown as follows,

min
xk

ri
,yksd

ri

∑

r∈R

∑

k∈K

∑

i∈F

Ck
i x

k
ri+

∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k∈K

∑

i∈F

ρdPskVri1y
ksd
ri

+
∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k,m∈K

∑

i,j∈F

L−1
∑

l=1

ρdPkmVrilVrj(l+1)z
kmsd
rij

+
∑

r∈R

∑

s∈Sr

∑

d∈D

∑

k∈K

∑

i∈F

ρdPkdVriLy
ksd
ri

(6)

S.t.
∑

r∈R

∑

i∈F

uix
k
ri ≤ Uk, ∀k ∈ K (6a)

∑

r∈R

∑

d∈D

∑

i∈F

λrVri1y
ksd
ri ≤ Λsk, ∀r∈R, k∈K, s∈Sr (6b)

∑

r∈R

∑

s∈Sr

∑

d∈D

∑

i,j∈F

L−1
∑

l=1

λrVrilVrj(l+1)y
ksd
ri ymsd

rj ≤ Λkm,

∀k,m ∈ K (6c)
∑

r∈R

∑

s∈Sr

∑

i∈F

λrVriLy
ksd
ri ≤ Λkd, ∀k ∈ K, d ∈ D (6d)

∑

k∈K

∑

i∈F

Vrily
ksd
ri ≥ 1, ∀r ∈ R, s ∈ Sr, d ∈ D,

l = 1, . . . L (6e)

yksdri − xk
ri ≤ 0, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (6f)

zkmsd
rij ≤ yksdri , ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (6g)

zkmsd
rij ≤ ymsd

rj , ∀r ∈ R, j ∈ F,m ∈ K, s ∈ Sr, d ∈ D(6h)

zkmsd
rij ≥ yksdri + ymsd

rj − 1, ∀r ∈ R, i, j ∈ F, k,m ∈ K,

s ∈ Sr, d ∈ D (6i)

xk
ri ∈ {0, 1}, ∀i ∈ F, k ∈ K (6j)

yksdri ∈ {0, 1}, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D(6k)

zkmsd
rij ∈ {0, 1}, ∀r ∈ R, i, j ∈ F, k,m ∈ K,

s ∈ Sr, d ∈ D (6l)

where (6f)-(6i) are binding constraints that insure zkmsd
rij taking

the same value as product yksdri ymsd
rj .

V. SCALE FREE HEURISTIC APPROACHES

The PCC problem falls within the family of NP-hard

problems (the detailed proof can be seen in the Appendix).

As a result, heuristics becomes the only viable option of

finding competitive feasible solutions for real time operation.

Therefore, we present three heuristic approaches for finding

caching points and VNFs allocations that ponder features

including user mobility, network capacity utility and request

importance. Nevertheless, the presented schemes differ in the

performance of obtaining lower routing cost and the ability of

providing smaller pro-active service missing rate.

First, we propose Probability-prior proactive caching-

chaining (PPCC) which aims at minimizing the overall net-

work traffic cost with the awareness of end user mobility.

Based on user moving trend, PPCC places VNF chains be-

tween a pro-active caching point and the potential user moving

destination that with highest ρd.

The second algorithm, hereafter called Shortest Path Based

Allocation (SPBA) also allocates caching as well as VNFs

along the shortest path from pro-active caching points to

serving access routers but without taking user mobility into

consideration. The SPBA is presented as a mobility-unaware

baseline where allocation decision is made by assuming the

current accessing node is the permanent destination.

Finally, in the last algorithm, henceforth called All in Gate-

way (AGW), hosts all content caches and VNFs at the network

gateway. With a straightforward decision, AGW shows a lower

bound on the network traffic cost performance, in which no

optimization techniques are applied.

A. PPCC algorithm

In order to handle end user mobility feature, we propose

PPCC approach in which caching and VNF chains allocations

are decided based on user moving trend. In particular, the

main philosophy of the proposed PPCC heuristic is to create

a set of candidate pro-active caching points for each possible

visited access router and then weighted by the probability of

visiting each access router and explore node combinations for

creating the service chains. This approach is highly efficient

when the user movement is predicable. i.e., fixed route public

transportations.

1) For any request r, select the target node d ∈ D by

highest ρd and find the closest starting node s ∈ Sr by

minimum shortest path routing cost Psd;

2) On the shortest path from the selected s and d, find all

candidate nodes by K;

3) Choose the closest k from the selected s on the path

to host the NFi with the lowest visiting order sequence

in request r if there are enough resources (including

both the VNF processing capacity and the link capacity)

to support the function, otherwise, host the sub-lowest

function, until running out of resources;

4) Repeat step 2 and 3 until all NFs of request r are hosted.

In step 3, depending on different consideration of the features

of network capacity utility and request importance, PPCC also

provides two sub modes, namely, PPCC node first mode and

PPCC function first mode, which are denoted as PPCC-k and

PPCC-f respectively. In PPCC-f, step 1,2 and 4 are identical

to PPCC-k and are omitted:

3) Choose the NFi with the lowest visiting order sequence

in request r to host in the closest k from the selected s

on the path if there are enough resources to support the

function, otherwise, host in the sub-closest node, until

the last node;

PPCC is detailed in the pseudocode Algorithm I below. In

short, the main principle of PPCC-k is making use of the

network capacity by risking VNF visiting order. While PPCC-

6

f ensures the serving quality for a set of requests by over using

some network resources.

B. SPBA algorithm

Similar to PPCC, SPBA moves towards the same objective

of minimizing the network traffic routing cost. The distinction

between it and PPCC is that SPBA calculates the allocation

solution without the requirement of knowing the end user

mobility trend. Accordingly, SPBA creates a set of candidate

pro-active caching points for the original access router and

then explores node combinations for creating the service

chains.

1) For any request r, select node o and find the closest

starting node s ∈ Sr by minimum shortest path routing

cost Pso;

2) On the shortest path from the selected s and o, find all

candidate nodes by K;

3) Choose the closest k from the selected s on the path to

host the NFi with the lowest visiting order sequence in

request r if there are enough resources to support the

function (including both the VNF processing capacity

and the link capacity), otherwise, host the sub-lowest

function, until running out of resources;

4) Repeat step 2 and 3 until all NFs of request r are hosted.

Just as PPCC, SPBA also supports the two sub modes. SPBA

is detailed in the pseudocode Algorithm II below.

C. AGW management scheme

With no optimization techniques involved, AGW provides a

quick and simple solution, that for each request r ∈ R, places

all the requesting VNFs and content caches at the network

gateway. As a result, all benefits of using pro-active caching

techniques are lost. Moreover, with a mass of VNF entities

running on the network gateway, the network resources of the

gateway becomes the bottleneck.

VI. CALCULATION COMPLEXITY ANALYSIS

In this section, we present the computation complexity

analysis for the three heuristics. The analysis provides the

incurred computational burden for each proactive caching and

chaining enabled node and captures both the node choosing

phase and the chaining allocation phase. The most important

parameter of each approach is the total computing duration

time for generating a chaining allocation, which is the sum of

the calculation time of the two phases.

As mentioned in V-A, PPCC selects a target node in D

and a caching point in Sr. We define such phase as the

node choosing phase for the three algorithms. For PPCC, a

maximum value finding problem and a minimum value finding

problem are involved in the node choosing phase. Therefore,

finding the appropriate target node and caching node, PPCC

needs an upper bound of |D|−1 and |Sr|−1 comparisons for

each request r ∈ R, that is, examining each element of the

set in turn and keep track of the largest/smallest element seen

so far. As a result, the computation complexity of the node

choosing phase of PPCC is O(|D|) +O(|Sr|).

Algorithm 1: PPCC

Input : G; D; R; K; F; H; attaching node o;

Output: VNF allocation: xk
ri; PPCC cost: PPCC;

PPCC← 0;

for k ∈ K do
Remaining utility of node k: RUk ← Uk

end

Initialize all path bottlenecks: RΛ← Λ;

for i ∈ D do

if ρi == max(ρi) then

Destination node: d← i;

end

end

for r ∈ R do
Starting node:s← find closest node s to d in Sr with

minimum Psd;

candidate node priority list: CPL← ∅;
CPL← sort k ∈

{

{n|n is on the shortest path from

s to d} ∩ K
}

by the distance between k and s

from low to high;

VNF priority list: FPL← ∅;
FPL← sort fi by its visiting sequence l of r;

former VNF location: m← s ;

:// PPCC-k

for k ∈ CPL do

for fi ∈ FPL do

if ui ≤ RUkn & λr ≤ RΛkm then

host fi at k: xk
ri ← 1 ;

RUk ← RUk − ui;

PPCC ← PPCC+Ck
i ;

end

end

end

:// PPCC-f

for fi ∈ FPL do

for k ∈ CPL do

if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xk
ri ← 1 ;

RUk ← RUk − ui;

PPCC ← PPCC+Ck
i ;

end

end

end

update RΛ;
end

for d ∈ D do

for r ∈ R do
Length of the chain requested by r: Lr ← the

number of requested VNFs by r;

VNF chaining list: I ← sort fi by its visiting

sequence l of r;

Chaining Routing cost between I(j) and I(j+1):
CRj,j+1 ← cumulative Pkm where k hosts I(j)
and m host I(j + 1) which is given by xk

ri;

Chaining Routing Cost: CRC ← 0;

CRC ← find the cost of shortest chaining

routing path from I(0) to d;

PPCC← PPCC+ρdCRC;

end

end

7

Algorithm 2: SPBA

Input : G; D; R; K; F; H; attaching node o;

Output: VNF allocation: xk
ri; SPBA cost: SPBA;

SPBA← 0;

for k ∈ K do

Remaining utility of node k: RUk ← Uk;

end

Initialize all path bottlenecks: RΛ← Λ;

for r ∈ R do
Starting node:s← find closest node s to o in Sr with

minimum Pso;

candidate node priority list: CPL← ∅;
CPL← sort k ∈

{

{n|n is on the shortest path from

s to o} ∩ K
}

by the distance between k and s

from low to high;

VNF priority list: FPL← ∅;
FPL← sort fi by its visiting sequence l of r;

former VNF location: m← s ;

:// SPBA-k

for k ∈ CPL do

for fi ∈ FPL do

if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xk
ri ← 1 ;

RUk ← RUk − ui;

SPBA ← SPBA+Ck
i ;

end

end

end

:// SPBA-f

for fi ∈ FPL do

for k ∈ CPL do

if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xk
ri ← 1 ;

RUk ← RUk − ui;

SPBA ← SPBA+Ck
i ;

end

end

end

update RΛ;
end

for d ∈ D do

for r ∈ R do
Length of the chain requested by r: Lr ← the

number of requested VNFs by r;

VNF chaining list: I ← sort fi by its visiting

sequence l of r;

Chaining Routing cost between I(j) and I(j+1):
CRj,j+1 ← cumulative Pkm where k hosts I(j)
and m host I(j + 1) which is given by xk

ri;

Chaining Routing Cost: CRC ← 0;

CRC ← find the cost of shortest chaining

routing path from I(0) to d;

SPBA← SPBA+ρdCRC;

end

end

After selecting an appropriate target node and caching point,

PPCC starts seeking for a set of candidate nodes k ∈ K along

the shortest path from the selected caching point to the selected

target to allocate the requesting VNFs. We define such phase

as the chaining allocation phase. In order to minimize the

probability of having packets being switched back and forth

along the path, PPCC greedily gives the highest priority to the

candidate node that has the closest distance from the caching

point to hold VNFs. Hence, a sorted list of the candidate VNF

holding nodes is required for the PPCC caching allocation

phase. Notice that, the calculation complexity of solving a

sorting list problem is verified based on different solutions.

Through out the paper, we use quick sorting for the sorting list

problems, which give us an average of O(κ log κ) calculation

complexity and O(κ2) complexity in the worst case, where κ

denotes the number of candidate nodes k along the shortest

path between the caching point and the target point. On the

other hand, the priority of the requesting VNF to hold is scaled

down by its visiting order in the corresponding request. This is

a result of trying to preserve the sequence of a chain such that

path segment overlap is kept at a minimum. As a result, the

computation complexity for sorting VNF to hold is O(φ log φ)
in average and O(φ2) for the worse case, where φ denotes the

number of requested VNF f of a request r. Notice that, the

node first mode and the function first mode are interchanging

the processes of looping over the two sorted lists. Hence, the

computation complexity of the two sub modes are identical.

Unlike PPCC, SPBA does not choose any target node in

D in its node choosing phase, instead, it finds the closest

caching points s ∈ Sr to node o for each request r ∈ R.

In this case, |Sr| − 1 comparisons are needed for finding the

closest caching point for each request r, which leads to a

calculation complexity of O(|Sr|). In the chaining allocation

phase, SPBA is identical with PPCC and therefore, the calcu-

lation complexity of the chaining allocation phase of SPBA

is O(κ log κ)+O(φ log φ) in average and O(κ2)+O(φ2) for

worse case as well.

AGW has constant calculation complexity for both the

node choosing phase and the chaining allocation phase as it

holds every VNF in the gateway. In summary the calculation

complexity of each heuristic approaches is presented in Table

II.

VII. OPTIMAL SOLUTION SCALABILITY ANALYSIS

As discussed earlier, the proactive chaining-caching prob-

lem resembles the NP-hard UFL problem. In this section,

we focus on the scalability analysis for the optimal solution

against the increasing problem size. Precisely, both the calcu-

lation scalability and the storage space scalability are in the

scope of our discussion.

Here we denote a proactive chaining-caching and routing

problem by π(K,R,Sr,D, L,F), where the size of this

problem is determined by the network size K, the request size

R, the caching nodes of a request Sr, the number of access

nodes in D, the length L of a chain (the number of VNFs in

a chain) and the VNF size F. For legibility, hereafter π and

π(K,R,Sr,D, L,F) are used interchangeably unless when

differentiation is required.

8

TABLE II: Calculation Complexity

Heuristic Node Choosing Phase Chaining Allocation Phase (Avg.) Chaining Allocation Phase (worst case)

PPCC-k O(|D|) +O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

PPCC-f O(|D|) +O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

SPBA-k O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

SPBA-f O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

AGW O(1) O(1) O(1)

A. Calculation Scalability

Given problem π, its ILP problem can be presented in

the standard matrix form. By Π we denote the constraint

coefficients matrix of π. While Row(Π) and Col(Π) are the

functions that return the number of rows and columns in Π
respectively. Let Ω(π) be the function returns the number of

computations for finding the optimal solution of π. In this

case, we measure the computational growth of the proactive

chaining-caching problem by the scalability factor απ , which

is defined as follows,

απ =
Ω(π)

Ω(πo)
(7)

where Ω(πo) is the calculations of the original problem and it

is given by:

Ω(πo) = Ω(π(1, 1, 1, 1, 1, 1)) (8)

A solution of problem π is the set of the binary variables

i.e., x, y and z in formula (6). Since verifying an optimal

solution requires two processes, the feasibility verification for

each solution and the minimum value searching among the

solutions. Therefore, for any problem π, we derive that Ω(π)
holds:

Ω(π) = Ωfv(π) ∗ Ωfm(π) (9)

where Ωfv(π) returns the number of calculations for verifying

the feasibility for each solution of π and Ωfm(π) returns the

number of calculations for finding the minimum cost solution

for π.

For each solution of π, the feasibility verification needs

to exhaustively traverse each constraint in the worst case.

Consequently, Row(Π) calculations are involved and hence

we have

Ωfv(π) = Row(Π) (10)

From formula (6), we know

Row(Π) = n|K|+ |RSrK|+ |DK|+ |RSrDL|

+|K2|+|RSrDKF|+3|RSrDK
2
F

2|
(11)

where n is the size of ui or Uk, i.e., the number of dimensions

of the resources to hold a VNF.

On the other hand, finding the objective value of each solu-

tion involves one calculation. While searching for the optimal

solution given the amount of the solutions requires a number

of calculations that equals to the amount of the solutions in the

worst case. Since for any problem π, the variables are binary,

we derive the number of candidate solutions of a problem π

is 2Col(Π) and hence

Ωfm(π) = 2Col(Π) (12)

From formula (6), we know

Col(Π) = |RKF|+ |RSrDK|+ |RSrDK
2
F

2| (13)

Using Eq. (8) to (13), we obtain:

Ω(πo) = (n+ 8) ∗ 23 (14)

By replacing Eq. (10), (12) and (14) into (7), we derive the

calculation scalability factor of proactive chaining-caching:

απ =
Row(Π) ∗ 2Col(Π)

(n+ 8) ∗ 23
(15)

In summary the calculation scalability of the proactive

chaining-caching problem is presented in Table III.

TABLE III: Calculation Scalability

π(K,R,Sr,D, L,F) Ωfv(π) Ωfm(π) απ

(1,1,1,1,1,1) n+ 8 23 1

(1,1,1,1,1,2) n+ 18 28
(n+15)∗28

(n+8)∗23

(1,1,1,1,1,3) n+ 34 215
(n+31)∗215

(n+8)∗23

.

K,R,Sr,D, L,F Row(Π) 2Col(Π) Row(Π)∗2Col(Π)

(n+8)∗23

B. Memory Space Scalability

In order to solve the ILP, a computer needs to assign

a certain amount of memory space to hold the coefficients

matrices for π. To present a upper bound of the memory

size requirement of π, we focus on the case of using full

matrices. Without loss of generality, we use the constraint

coefficients matrix memory space scalability to represent the

memory space scalability of π, as it is the dominating storage

space consumer.

Based on the above settings, we define Θ(π) the function re-

turns the storage size requirement of the constraint coefficients

matrix of a problem π. Similar to the calculation scalability,

we measure the storage size requirement growth of π by the

scalability factor βπ , which is defined as follows,

βπ =
Θ(π)

Θ(πo)
(16)

9

Fig. 5: A City Network like Topology Example

Using full matrix, we have

Θ(π) = Row(Π) ∗ Col(Π) (17)

By replacing Eq. (11), (13) and (17) into (16), we derive the

memory space scalability factor of proactive chaining-caching:

βπ =
Row(Π) ∗ Col(Π)

(n+ 8) ∗ 3
(18)

In summary the calculation scalability of the proactive

chaining-caching problem is presented in Table IV

TABLE IV: Memory Space Scalability

π(K,R,Sr,D, L,F) Θ(π) βπ

(1,1,1,1,1,1) (n+ 8) ∗ 3 1

(1,1,1,1,1,2) (n+ 18) ∗ 8
(n+18)∗8
(n+8)∗3

(1,1,1,1,1,3) (n+ 34) ∗ 15
(n+34)∗15
(n+8)∗3

.

K,R,Sr,D, L,F Row(Π) ∗ Col(Π)
Row(Π)∗Col(Π)

(n+8)∗3

VIII. NUMERICAL INVESTIGATIONS

The numerical investigation part consists of two sets of

simulated network settings. The first part is devoted to examine

the performance under different network topology types, in

which we apply both optimal and heuristics on a set of random

generated networks including a hybrid network, a star network

and a ring network. In the second part, to further understand

the performance under more general and practical network

scenarios, we then carry out our simulations on a range of

random network graphs that are generated with the well-used

technique outlined in [20]; the key idea is that an edge between

two nodes are generated based on a probability that is related

to the distance between the two nodes.

Since the proposed scheme is highly effective in edge net-

works, we estimate the simulated network size by referencing

the advanced 5G Ultra-Dense CellUlar network architecture

with the single gateway model [21]. The applied random

networks contain up to 400 small cells [21]. In typical settings,

the number of deployed small cell per marco cell is 8 [22],

however it can reach 20 if dense small cell deployment

scenarios are considered [23] [24]. Together with the 1 : 1
router to marco cell base station ratio [25], we set the number

of the candidate VNF hosting nodes |K| to be between 20 to

50. Moreover, the number of starting points and destination

points are set from 1 to 5.

As to the number of requests in the system, we assume that

a total of 200 requests per second [26] are generated and we

take 0.25 to 1 seconds for each batch which converts to a total

number of 50 to 200 requests per batch. We also assume that

the flow rate requirement of a request varies from 64Kbps [27]

(e.g. audio traffic) to 10Mbps [28] (e.g. 4K video streams).

In terms of mobility, the moving probabilities to candidate

destination nodes are randomly generated between 0 and 1 (in

a non independent manner however, since all should add up

to one). In order to flesh out in a clear manner the effect of

routing we set the VNF placement cost to zero. As eluded in

previous sections the proposed framework is generic one to

encapsulate various different shortest path definitions; such as

for example delay, congestion level at the node and/or energy

consumption. However, and without loss of generality, we

choose to use in the numerical investigations section typical

metrics used in Open Shortest Path First (OSPF) or Enhanced

Interior Gateway Routing Protocol (EIGRP) protocols. To

maintain the link diversity, we normalize the routing metric

in the range from 1 to 100. In terms of physical resources of

candidate VNF hosting node, we assume that each candidate

node has 8 to 16 GByte memory capacity and 32 virtual CPU

cores (e.g. a CPU with 4 cores 8 threads). While each VNF

consumes memory in a range from 10 to 50 MBytes and uses

0.125 to 0.25 cores (i.e., each virtual CPU supports 4 to 8

VMs). As for the link capacity, we assume each link has a

capacity of 2Gbps.

To measure the end-user experience, we define the blocking

chance as the probability of a request failing to build a

complete proactive chain. We further assume the blocked

requests are routed to the Internet via the gateway to simulate

the impact of the broken chains that caused by mobility. In

this case, the routing cost of a blocked request is consist of

the destination-gateway shortest path cost and a penalty cost

in a range from 500 to 700, which imitates a general Internet

routing cost. All results presented hereafter are obtained by

averaging 100 Monte Carlo simulations. Also we calculate

the optimal allocations by utilizing MATLAB and its build-

in Mixed-Integer Linear Programming solver. Further details

and to sum up, the parameters that have been used in the

investigations are presented in Table V.

A. Performance evaluation for practical networks

In this first part of the numerical investigations, we apply the

Proactive chaining for caching technique on an urban network

like topology as shown in figure 5. Without loss of generality,

we assume that a mobile user moves across a number of

Base Stations (BS)/Access Routers (AR) within an urban

environment following a pseudo-predictable path (i.e., using

navigation information from GPS). With proactive caching

techniques, the pre-caching points are set to be at nodes 7,9

10

TABLE V: Simulation Parameters

Parameter value

Number of candidate hosting nodes(|K|) 20-50
Degree per node 2-5
Moving probability (ρd) 0-1
Number of starting points per request (|Sr|) 1-5
Number of destination points per user (|D|) 1-5
Number of requests per batch (|R|) 50-200
VNF number (|F|) 10
Maximum number of VNF in a chain (L) 3-5
Routing cost per link (Pkm) 1-100
Routing penalty per blocking request 500-700

Cost per node to host VNF (Ck
i

) 0
Memory capacity per candidate node 8-16 GByte
Number of virtual CPU cores per candidate node 32
Memory requirement per VNF 10-50 MByte
CPU core requirement per VNF 0.125-0.25
Flow rate requirement per chain (λr) 0.064 - 10 Mbps
Capacity per link (Λkm) 2 Gbps

50

100

150

200

250

 1 2 3 4 5 6 7 8

Number of Handovers

A
v
e

ra
g

e
 R

o
u

ti
n

g
 C

o
s
t

Mobility Aware-OPT

Fixed OPT

AGW

Fig. 6: Average gains of using proactive chaining for caching

and 10 respectively. In that respect, before the mobile user

leaving for the next the BS, the proactive chaining for caching

technique pre-allocate the request service chains along the

nodes between the proactive caching point and the destination

node. Figure 6 depicts the average gains when using proactive

chaining for caching in that specific use case. Note that that the

average routing cost when using proactive chaining for caching

is significantly lower than in the case where we have a static

VNF caching chain (i.e., mobility agnostic scheme). Also,

as expected, when the mobile user move further away from

its original connected BS the gains of the proposed optimal

mobility-aware allocation scheme are increased compared to

the baseline scheme.

To further study the performance of the proposed optimal

and heuristic schemes on practical network topologies, we

apply the proposal schemes in three different topologies; a

random generated tree-like topology consisting of 25 nodes,

a star network consisting of 26 nodes and a ring network

with 13 nodes. Since the original optimization problem is

NP − hard, we scale down the request size to 20 per batch

in order to obtain the optimum. The network capacity is set to

be approximately supporting 10 to 12 requests simultaneously.

The rest of the network settings remain identical to the case

as described in the previous experiments and summarized in

Table IV. The aim is to investigate the impact of the topology

type on the performance gains related to routing and blocking

as shown in Table VI. The table depicts routing cost and

blocking probability in three groups for low (R=5), mid (R=12)

and high (R=20) number of requests. From the hybrid network

we observe the optimal solution can achieve more than 75%

gains against the sub-optimal heuristic for the low number

of requests scenario whereas the gain is increased further in

the other two scenarios. Unlike hybrid networks, in the star

topology we obtain in average a 60% gain with the optimal

allocation. This reduced gap between the optimal and heuristic

solutions in star topology can be explained due to the more

limited number of cache points for each access router. This

trend can be found by comparing the costs listed in the Star

and Hybrid fields of Table VI. In the star network, edge nodes

have less degrees leading to that a limited set of links are

concentrated in cache-destination paths.

The heuristic routing performance is further approximating

the optimal one in the ring topologies scenarios. Precisely, the

difference between the optimal solution and PPCC-k is less

than 20%. It is also noteworthy that, due to each node has

only 2 degrees in a ring network, the optimal allocation is

highly identical to the PPCC solution and hence the routing

deviations shown in ring scenarios are much smaller than

that in other scenarios. Therefore, the result indicates that,

in a small network with its node degrees are low, the PPCC

scheme can very well balance the routing performance and the

computational complexity.

B. Performance evaluation for scenarios of random generated

topologies

To better understand the practical implement of the proposed

proactive chaining for caching technique, we test our proposed

heuristics on a wider set of random generated network graphs.

Figure 7-8 depicts the routing performance comparisons for

different scenarios of random generated topologies. We divide

the simulation into two cases. In the first case, which is

called uncapacitated, every candidate node has a relatively

high capacity e.g. memory requirement of each VNF is low,

such that none of the requesting VNFs will be blocked in

the sense that there are no available resources in the hosted

nodes. While in the other case, which we call it as capacitated,

we assume a congestion episode scenario where nodes do not

have sufficient resource to support all the requesting VNFs

simultaneously.

In figure 7, we depict the routing performance for the

random generated networks in the uncapacitated case. For the

simulations on the topologies that have sufficient capacity, the

two sub modes of PPCC return identical solutions and SPBA

holds this feature as well. As such we do not distinguish the

two sub modes in the plot. Figure 7 (a) shows the performance

of the proposed scheme compared to the previous mentioned

baseline techniques for different number of nodes in the

network. As can be seen from the figure, a performance gain of

around 10% being mobility-aware (i.e., PPCC vs SPBA) can

be achieved which remains robust against different network

11

TABLE VI: Routing and Blocking Performance of different schemes

R OPT PPCC-k PPCC-f SPBA-k SPBA-f CAGW

Hybrid

Routing

cost

(k)

5 0.18 0.93 0.85 1.23 1.1 1.5

12 0.41 1.9 2.1 3.16 4.46 12.61

20 0.69 4.37 7.79 6.82 10.06 65.10

Blocking

Probability

5 0 0 0 0 0 0

12 0 0 0.06 0 0.06 0.29

20 0 0.16 0.44 0.16 0.44 0.58

Star

Routing

cost

(k)

5 0.19 1.80 1.54 2.90 2.71 4.60

12 0.45 3.53 3.60 6.44 6.58 28.95

20 0.75 4.62 10.52 10.17 13.55 108.70

Blocking

Probability

5 0 0 0 0 0 0

12 0 0 0.02 0 0.02 0.30

20 0 0 0.39 0 0.37 0.58

Ring

Routing

cost

(k)

5 0.18 0.35 0.26 2.06 1.58 4.15

12 0.43 1.54 3.74 4.25 3.95 26.35

20 0.72 5.59 10.68 7.97 10.92 101.29

Blocking

Probability

5 0 0 0 0 0 0

12 0 0 0.06 0 0.06 0.29

20 0 0.15 0.43 0.15 0.43 0.58

20 25 30 35 40 45 50

Number of Nodes (K)

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(a)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

50k

100k

150k

200k

250k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(c)

Fig. 7: Random generated networks with sufficient capacity: (a) Performance of the proposed scheme with different number

of nodes in the network. (R=200); (b) Performance of the proposed scheme with increased number of service requests in the

network. (K=20); (c) Performance of the proposed scheme for different values of the parameter ρ0. (K=20, R=200)

sizes. This is expected by the fact that as the network resources

are preserved for the most probable routing path, lower routing

cost is obtained. A similar observation can be made from

figure 7 (b), which shows the performance for different number

of requests. With increased number of requests, i.e., more

constrained allocations, the performance gains increase from

22% to 23%. It is noteworthy that, the performance metric

shows a linear growth trend due to that each request are

technically identical i.e., the number of VNFs in the chain is

similar for each request. As a result, a higher gain is expected

in the case of dense mobile networks where the number of

arriving requests in a certain amount of time is large. Finally,

in figure 7 (c) we show the performance of the proposed

scheme for different mobility use cases. The figure shows

the performance gains as a factor of the parameter ρo. This

parameter is defined as follows ρo = 1 −
∑

d∈D
ρd, which

means that as ρo reaches close to 1 there is no mobility of the

end-user, i.e., there is no change on the serving access router.

As expected, there are no gains when there is no mobility, but

as the mobility increase the gains reach more than 26%. The

result suggests that, the proposed scheme is ideal for public

transport mobile scenarios where mobile users have almost

predictable mobility paths. Last but not least, the two proactive

schemes achieve overall exceptional routing performance in

compared with AGW.

In figure 8, we examine the impact of network capacity.

In the capacitated case, we also assign the capacity size that

approximately supports 75% requests. Due to the resource

limitation, only a selective set of requests are assisted with

the service of proactive unbroken chains. In this setting, we

depict the topology size impact on the routing performance of

the proposed heuristics under capacitated scenarios in figure8

(a). The curves in the plot indicate that the Capacitated All

from Gateway (CAGW) scheme has the highest cost and it is

robust against the network topology. Since putting every VNF

in the gateway node consumes a large amount of network

resources, CAGW receives also the highest blocking chance

which cause huge routing penalties. In comparison, the node

12

20 25 30 35 40 45 50

Number of Nodes (K)

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(a)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

50k

100k

150k

200k

250k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(c)

20 25 30 35 40 45 50

Number of Nodes (K)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lo

c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(d)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

lo
c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lo

c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(f)

Fig. 8: Random generated networks with insufficient capacity: (a) Routing performance of the proposed scheme with different

number of nodes in the network. (R=200); (b) Routing performance of the proposed scheme with increased number of service

requests in the network. (K=20); (c) Routing performance of the proposed scheme for different values of the parameter ρ0.

(K=20, R=20);(d) Blocking performance of the proposed scheme with different number of nodes in the network. (R=200); (e)

Blocking performance of the proposed scheme with increased number of service requests in the network. (K=20); (f) Blocking

performance of the proposed scheme for different values of the parameter ρ0. (K=20, R=200)

first mode (the k mode) of both PPCC and SPBA scheme can

achieve in average 50% routing gains against the function first

mode (the f mode). This comes from the fact that the k mode

consumes less capacity compare to the f mode, which can be

justified from the blocking curves shown in figure8 (d). It is

worth noting that, with limited resource to place the requested

VNFs, the blocking probability and routing cost decrease with

the increasing topology size. This explains that in capacitated

case, the routing performance of PPCC and SPBA is topology

sensitive. As a result, if the path from the caching point to the

most potential destination has higher blocking probability due

to insufficient capacity, PPCC might receive higher routing

cost against SPBA.

In figure 8 (b) and (e), we describe the impact of the request

size on the routing and blocking performance in capacitated

case. We notice that the routing cost exhibits relatively linear

behavior when no blocking involved however larger growing

slopes show when blocking comes. As can be seen in figure 8

(e), the blocking probability of each scheme goes higher with

the increase of the request size. As expected, the blocking

probability of CAGW grows much faster against that of other

schemes and the k mode performs better than the f mode

in terms of blocking. It makes sense because the f mode

excessively place the VNFs among the cache-destination path

for ensuring the routing performance of a selective set of

requests. This trade off can be clearly observed in figure 8

(b), as the f mode holds more redundancy VNFs, it could

potentially generate shorter service chains against the k mode,

therefore, the f mode of both PPCC and SPBA start at a lower

routing cost and end up at a higher position against the k mode.

Moreover, it is noteworthy that, the routing cost curves of the

two sub modes of the same scheme cross at R=120 when the

f mode has blocking.

In figure 8 (c) and (f), we investigate the impact of mobility

on the routing and blocking performance in the capacitated

scenario. It can be observed from figure 8 (c), the routing

cost merges when ρ0 goes high. However, with respect to

mobility, PPCC could reach over 75% gains against SPBA.

In comparison with the gain under the uncapacitated scenario,

the enlarged gain mainly attributes to the blocking margin.

In figure 9 we show the execution efficiency of heuristics

PPCC, SPBA and AGW. The computation complexities of the

two sub modes are identical, hence we do not distinguish

them in this part. Evidently, the calculation time of the three

13

Fig. 9: Average execution efficiency of different schemes

against Number of Requests

schemes increases with larger request size. Although AGW

is much faster in execution, it sacrifices both routing and

blocking performance. The PPCC is in general 5.6% slower

than SPBA in VNF allocation however, it achieves significant

gains in terms of routing performance. The PPCC and SPBA

schemes are slower than AGW, nevertheless their execution

time is smaller than the preset batch length. In the simulation,

we use a PC with 8GB memory and 2.9GHz Intel Core i5

processor, thus, the execution time should be much lower if

the proposed schemes are applied on industrial level machines.

IX. CONCLUSIONS

In this paper, the rational of VNF location and chaining

for proactive caching has been presented together with some

key observations on this problem and the general principle of

optimizing cache specific VNF service chains. Based on those

observations an optimization framework using integer linear

mathematical programming has been detailed that integrates

VNF chaining and proactive caching. In addition, since the

problem resembles the UFL problem, which is NP-hard, some

scale-free heuristic algorithms have been presented that can

be applied in large network instances amenable for real time

implementations. The calculation complexity is analyzed as

well as the calculation and memory space scalability of the

formulated optimization problem.

Finally, the attainable performance of the proposed proac-

tive caching service chains schemes was investigated. Our

numerical results provide evidence that mobility-aware ap-

proaches receive significant performance benefits especially

during network congestion episodes and high mobility network

scenarios. In particular, the proposed PPCC-f mode provides

the best performance in terms of reducing routing cost but

requires sufficient resources across the VNF service chain

path. While another option that balances routing and resource

consumption is offered by PPCC-k mode which also achieves

a competitive performance. In more detail, our mobility-

aware heuristics is in general 60% larger than the theoretical

optimal performance however in specific networks i.e., ring

topology networks, this approximation gap can be significantly

decreased to under 20%.

ACKNOWLEDGMENT

Partially funded by the EC H2020-ICT-2014-2 project 5G

NORMA (www.5gnorma.5g-ppp.eu)

APPENDIX

A. The PCC problem is NP-hard

Lemma 1. Defining the following Linear programming formu-

lations of the uncapacitated facility location (UFL) problem:

min
χa,υab

∑

a∈A

Γaχa+
∑

a∈A

∑

b∈B

Υabυab (19)

S.t.
∑

a∈A

υab ≥ 1, ∀b ∈ B (19a)

υab − χa ≤ 0, ∀a ∈ A, b ∈ B (19b)

χa ∈ {0, 1}, ∀a ∈ A (19c)

υab ∈ {0, 1}, ∀a ∈ A, b ∈ B (19d)

Here, A and B are the set of facilities and the set of customers.

Accordingly, Γa and Υab are the cost for opening facility a and

the cost for customer b to access facility a. The two decision

variables: χ and υ. χa = 1 denotes facility a is opened, 0
otherwise; υab = 1 denotes customer b accesses the item from

facility a, 0 otherwise. Given such a UFL it is NP-hard to find

its optimum.

Proof. The Set Covering Problem (SCP) which is one of

Karp’s 21 NP-complete problems shown to be NP-complete

[29] can be reduced to the UFL, i.e., SCP <= UFL. The

detailed proof is provided in Chapter 3 of [30].

Theorem 1. Given an instance of the PCC problem shown as

(4). It is NP-hard to find an optimal VNF allocation such that

the objective function is minimized.

Proof. We proof the theorem by showing the UFL is reducible

to our PCC. Given an instance of the UFL, we can construct

an instance of the PCC such that an optimal solution of the

PCC gives an optimal solution to the UFL. First we construct

a UFL instance as in (19) and a PCC instance as in (4). For

each input variable χa of UFL, we construct the input variable

xk
ri of PCC by setting r and i as 1 such that xk

ri is basically xk.

Similarly, we construct yksdri by forcing r,i,s to be 1 for each

υab such that yksdri can be expressed as ykd. Accordingly, we

make |R|, |I|, |Sr| as 1 and |K| = |A|, |D| = |B|. The size of

the corresponding cost parameters of the PCC problem keeps

in-line with the size of the variables (e.g. Ck
i = Ck

1 = Ck

to just mention a few). For each k and d, we let Ck = Γa,

Pkd = Υab and Psk = Pkm = 0. Furthermore, for each d and

l, let ρd = 1 and Vril = Vl = 1. Besides, for each k, i and

r, we set ui, Uk, λr to be 0 respectively. At last, we make

Λsk = Λkm = Λkd = 0, for all s ∈ Sr, k,m ∈ K and d ∈ D.

By such conversion, we translate the UFL as a special case

of PCC. Thus, if an algorithm can find the optimal solution

for our PCC then it can be used to calculate the optimum of

the UFL as well. Since all the above conversions can be done

in polynomial time, we can conclude that UFL is reducible

to PCC. Combining with Lemma 1, we can conclude that

SCP <= UFL <= PCC and it proofs the theorem.

14

REFERENCES

[1] R. Mijumbi et al., "Network function virtualization: State-of-the-art and
research challenges," IEEE Commun. Surveys Tuts., Vol. 18, No. 1, 2016.

[2] O. N. Fundation, "Software-defined networking: The new norm for
networks," ONF White Paper, 2012.

[3] X. Jin, L. Erran Li, L. Vanbever and J. Rexford, "SoftCell: Scalable and
flexible cellular core network architecture", Proc. 9th Int. Conf. Emerging

Netw. Exp. Technol., pp. 163-174, 2013.

[4] Network Function Virtualisation: ETSI introductory white paper,
http://portal.etsi.org/NFV/NFV_White_Paper.pdf, October 2012.

[5] "ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV);
Architectural framework," ETSI Ind. Spec. Group (ISG) Netw. Func-
tions Virtualisation (NFV), Sophia-Antipolis Cedex, France, Dec. 2014.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV/001_099/
002/01.02.01_60/gs_NFV002v010201p.pdf

[6] S. Lee, S. Pack, M-K. Shin, E. Paik, R. Browne, "Resource Management
in Service Chaining", Internet Research Task Force (IRTF), Internet-Draft,
July 2015.

[7] G. Zheng, A. Tsiopoulos, V. Friderikos, "Dynamic Placement of VNF
Chains for Proactive Caching in Mobile Edge Networks" arXiv preprint

arXive: 1807.10736, 2018.

[8] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, XY.Gao, A. Anand,
T.Benson , V. Sekar, A.Akella, "Stratos: A Network-Aware Orchestration
Layer for Virtual Middleboxes in Clouds", Technical Report, 2013.

[9] S. Rajagopalan, D. Williams, H. Jamjoom, A. Warfield, "Split/Merge:
System Support for Elastic Execution in Virtual Middleboxes", in ACM

USENIX Symposium on Networked Systems Design and Implementation,
2013.

[10] F. Riera, et al., "On the complex scheduling formulation of virtual net-
work functions over optical networks", in 16th International Conference

on Transparent Optical Networks (ICTON), 2014.

[11] T.Han and N.Ansari, "Opportunistic content pushing via WiFi hotspots",
in Proc. 3rd IEEE IC-NIDC, Sep. 2012, pp. 680-684.

[12] K. Kanai et al., "Proactive Content Caching for Mobile Video Utilizing
Transportation Systems and Evaluation Through Field Experiments", in
IEEE Journal on Selected Areas in Communications, vol. 34, no. 8, pp.
2102-2114, Aug. 2016.

[13] G. Zheng, V. Friderikos, "Optimal proactive caching management in
mobile networks" in Proc. IEEE ICC, 2016.

[14] V. A. Siris, X. Vasilakos, and G. C. Polyzos, "Efficient proactive caching
for supporting seamless mobility," arXiv preprint arXiv:1404.4754, 2014.

[15] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo, "Pace: policy-aware application cloud embedding" in
Proc. IEEE INFOCOM, 2013.

[16] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, O. C. M. B. Duarte,
"Orchestrating virtualized network functions", IEEE Trans. Netw. Service

Manage., vol. 13, no. 4, pp. 725-739, Dec. 2016.

[17] S. Mehraghdam, M. Keller, and H. Karl, "Specifying and placing chains
of virtual network functions," in Proc. IEEE 3rd Int. Conf. CloudNet, Oct.
2014, pp. 7-13.

[18] "ETSI GS NFV 001 V1.1.1: Network Functions Virtualisation
(NFV); Use Cases," ETSI Ind. Spec. Group (ISG) Netw. Functions
Virtualisation (NFV), Sophia-Antipolis Cedex, France, Oct. 2013.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/nfv/001_099/
001/01.01.01_60/gs_nfv001v010101p.pdf

[19] Framework for SDN: Scope and Requirements. Technical Recommen-

dation. Version 1. 0. ONF, 2015.

[20] B. M. Waxman, "Routing of multipoint connections" IEEE J. Sel. Areas

Commun., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

[21] X. Ge, S. Tu, G. Mao, C. Wang and T. Han, "5G Ultra-Dense Cellular
Networks", IEEE Wireless Communications, vol. 23, no. 1, pp. 72-79,
2016.

[22] M. Wang, H. Gao, T. Lv, "Energy-Efficient User Association and Power
Control in the Heterogeneous Network," IEEE Access, Vol. 5, pp. 5059-
5068, 2017.

[23] 3GPP standardization, "Scenarios and requirements for small cell en-
hancements for E-UTRA and E-UTRAN," TR 36.932 v12.1.0, Mar. 2013,
http://www.3gpp.org/.

[24] T. Yamamoto and S. Konishi, "Impact of Small Cell Deployments on
Mobility Performance in LTE-Advanced Systems," Proc. IEEE 24th Int’l.

Symp. Personal, Indoor and Mobile Radio Commun., Sept. 2013, pp. 189-
93.

[25] J. Li, J. Chen and K. Xiao, Comprehensive Carrier Network Planning

and Design Handbook, 1st ed. Bei Jing: The People’s Posts and Telecom-
munication Press, 2015.

[26] V.Sourlas,L.Gkatzikis,P.Flegkas,andL.Tassiulas,"Distributedcache man-
agement in information-centric networks", IEEE Transactions on Network

and Service Management, vol. 10, no. 3, 2013.
[27] Grzech , A. , P. Swiatek , and P. Rygielski, "Dynamic Resources

Allocation for Delivery of Personalized Services" In Software Services for

e-World , edited by W. Cellary and E. Estevez , 17-28. Berlin : Springer,
2010.

[28] G. Zheng, C. Chen, V. Friderikos, M. Dohler, "High Mobility Multi
Modal E-Health Services" in Proc. IEEE ICC, 2018.

[29] Richard M. Karp (1972). "Reducibility Among Combinatorial Problems"
In Complexity of Computer Computations. New York: Plenum. pp. 85-
103.

[30] P. B. Mirchandani and R. L. Francis, Discrete Location Theory. John
Wiley & Sons, New York, 1990.

Gao Zheng has received MSc degree in Telecommu-
nications and Internet Technology from King’s Col-
lage London (2014) where he is currently working
toward the Ph.D degree with Centre for Telecom-
munications Research. His research interests in-
cludes Future Internet Technologies, Network Func-
tion Virtualization, Information Centric Networks
and Mobile Edge Computing. The emphasis is on the
network optimization for routing, caching, resource
allocation in virtualized wireless networks with ap-
plication to practical implementations.

Anthony Tsiopoulos has received an MSc from
the University of Sussex in Scientific Computation
and Mathematics (2014) and an MSc in Com-
puting and Security from King’s College London
(KCL)(2015) where he then continued his research
in Cloud Technology, Telecommunications, Virtual-
ization and Software Implementation in the KCL
5G Telecommunications Laboratory. His research
interests include Security and Privacy, Distributed
Networks and Software Implementation of Network
Programming and Virtualization.

Vasilis Friderikos published 200 research papers in
flagship IEEE, Elsevier, Springer journals, interna-
tional conferences, book chapters and patents. He
has been program co-chair of IEEE ICT’16 and
co-chair at the IEEE WCNC 2010 conference (act-
ing technical program committee member for IEEE
Globecom, IEEE ICC and several other flagship
international conferences). He has also been organiz-
ing committee member of the Green Wireless Com-
munications and Networks Workshop (GreeNet) dur-
ing VTC Spring 2011. He has been teaching ad-

vanced mobility management protocols for the Future Internet at the Institut
Supérieur de l’Electronique et du Numérique (ISEN) in France during autumn
2010. Received two times best paper awards in IEEE ICC 2010 and WWRF
conferences respectively. He has been visiting researcher at WinLab in Rutgers
University (USA) and recipient of the British Telecom Fellowship Award
in 2005. Vasilis is a member of IEEE, member of IET and member of the
INFORMS section on Telecommunications. His research interests lie broadly
within the closely overlapped areas of wireless networking, mobile computing,
and architectural aspects of the Future Internet. The emphasis is on the design
and analysis of algorithms for scheduling, routing, admission control, load and
power management in virtualized wireless networks with application to both
centralized and distributed implementations.

