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ABSTRACT OF DISSERTATION 
 
 
 

OPTIMAL WATER QUALITY MANAGEMENT STRATEGIES FOR URBAN 
WATERSHEDS USING MACRO-LEVEL SIMULATION MODELS LINKED WITH 

EVOLUTIONARY ALGORITHMS 
 

 
Urban watershed management poses a very challenging problem due to the various 
sources of pollution and there is a need to develop optimal management models that can 
facilitate the process of identifying optimal water quality management strategies.  A 
screening level, comprehensive, and integrated computational methodology is developed 
for the management of point and non-point sources of pollution in urban watersheds.  The 
methodology is based on linking macro-level water quality simulation models with 
efficient nonlinear constrained optimization methods for urban watershed management.  
The use of macro-level simulation models in lieu of the traditional and complex 
deductive simulation models is investigated in the optimal management framework for 
urban watersheds.  Two different types of macro-level simulation models are investigated 
for application to watershed pollution problems namely explicit inductive models and 
simplified deductive models.  Three different types of inductive modeling techniques are 
used to develop macro-level simulation models ranging from simple regression methods 
to more complex and nonlinear methods such as artificial neural networks and genetic 
functions. A new genetic algorithm (GA) based technique of inductive model 
construction called Fixed Functional Set Genetic Algorithm (FFSGA) is developed and 
used in the development of macro-level simulation models.  A novel simplified deductive 
model approach is developed for modeling the response of dissolved oxygen in urban 
streams impaired by point and non-point sources of pollution.  The utility of this inverse 
loading model in an optimal management framework for urban watersheds is 
investigated. 

 
In the context of the optimization methods, the research investigated the use of parallel 
methods of optimization for use in the optimal management formulation.  These included 
an evolutionary computing method called genetic optimization and a modified version of 
the direct search method of optimization called the Shuffled Box Complex method of 
constrained optimization.  The resulting optimal management model obtained by linking 
macro-level simulation models with efficient optimization models is capable of 
identifying optimal management strategies for an urban watershed to satisfy water



quality and economic related objectives. Finally, the optimal management model is 
applied to a real world urban watershed to evaluate management strategies for water 
quality management leading to the selection of near-optimal strategies. 
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Water Quality, Watershed management 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

According to the 2000 National Water Quality Inventory report, about 40% of the 

assessed streams in the U.S. were not clean enough to support designated uses such as 

fishing and swimming.  Leading causes of impairment in these assessed waters include 

bacteria, nutrients, metals (primarily mercury), and siltation. Runoff from agricultural 

lands, municipal point sources (sewage treatment plants and combined sewer overflows), 

and hydrologic modifications (such as channelization, flow regulation, and dredging) are 

the primary sources of impairment. Although the United States has made significant 

progress in cleaning up polluted waters over the past 30 years, much remains to be done 

to restore and protect the nation’s waters (EPA, 2002).  In the United States, many federal 

and state level environmental policies and regulations have been initiated to control such 

problems. These include policies and programs such as the Clean Water Act (CWA) 

(Federal Register, 1972), the Federal TMDL (Total Maximum Daily Load) program 

(Federal Register, 1972), and programs for the control and management of combined 

sewer overflows (CSOs) and sanitary sewer overflows (SSOs). The TMDL regulations 

that currently apply are those that were issued in 1985 and amended in 1992 (40 CFR 

Part 130, section 130.7).  

 

Both point and non-point sources of pollution are internationally recognized as critical 

environmental problems.  In recent years it has become increasingly obvious to EPA that 

in order to enhance and achieve the objectives of the Clean Water Act, an integrated 

watershed management approach is needed that addresses both point and non-point 

sources of pollution affecting a watershed. 

 

Watershed management is a complex process that involves multiple uses and diverse 

stakeholders (Dorn, 2004).  Complex watershed management requires the use of a variety 

of computer-based hydrologic, hydraulic, and water quality models.  These simulation 

models are used to quantify the impact of hydrologic and water quality processes 
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occurring in a watershed.  The use of accurate and practical simulation models plays an 

important role in watershed management.  Such models can be used to identify effective 

management solutions to restore water quality in watersheds.  The goal in most cases is to 

select a strategy (solution) that meets all economic, environmental, and other objectives.  

In cases where multiple feasible scenarios need evaluation, the use of simulation models 

alone can be cumbersome, time consuming, and cost prohibitive.  In such situations, an 

optimization model coupled with simulation model(s) can be used to identify optimal 

solutions.  Such a comprehensive approach of watershed management is an emerging 

science (Muleta, 2003) and there is a need to develop more efficient and practical tools to 

assist in such an approach.    

 

Urban watershed management poses a very challenging problem due to the various 

sources of pollution and there is a need to develop optimal management models that can 

facilitate the process of identifying optimal management strategies. An optimal 

management formulation for urban watersheds should consist of effective and practical 

simulation model structures as well as efficient optimization algorithms.  For such an 

optimal management formulation to be effective, it should allow the evaluation of 

management strategies that address both point and non-point sources of pollution.  

Finally, the optimal management formulation should result in alternatives that are 

feasible as well as practical and meet both water quality as well as economic objectives. 

 

It is increasingly evident that most water quality problems in urban watersheds are 

complex and require costly solutions.  There continue to be a need for management tools 

and methodologies that can guide decision makers in formulating solutions to such 

complex problems that are both least-cost and environmentally sustainable.  By necessity, 

such tools will require a linkage of water quality simulation models with optimization 

models in an effective and efficient manner.  Since most existing comprehensive water 

quality simulation models do not lend themselves for integration into such an 

environment, there is a need to develop simpler models to represent the response of 

hydrologic and water quality processes in such watersheds.  Such macro-level models can 

be more effectively linked with efficient optimization models to provide a decision 
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support system for watershed managers.  The need for macro-level models was recently 

highlighted in the National Research Council (NRC, 2001) report that assessed the 

scientific basis of the Federal TMDL Program (40 CFR Part 130, section 130.7).  The 

NRC report recommended that “Given the variety of existing watershed and water quality 

models available, and the range of relevant model selection criteria, EPA should expand 

its focus beyond mechanistic process models to include simpler models (NRC, 2001).” In 

the same context, the report also recommended that “EPA should support research in the 

development of simpler mechanistic models that can be fully parameterized from the 

available data (NRC, 2001).”  

 

 

1.2 Summary of Previous Work 

Due to the fact that comprehensive watershed management is an emerging and rather 

challenging area for researchers, there are relatively few applications that exist (Muleta, 

2003).  Ormsbee (1983) lists some of the contributions in the area of urban watershed 

management, particularly in studying the problem of optimal placement of detention 

basins in an urban watershed.  These include Abt and Grigg (1978), Mays and Bedient 

(1982), and Flores et al. (1982).  Ormsbee (1983) presented a methodology for use in the 

planning of dual purpose detention basins in urban watersheds.  The methodology 

employed continuous simulation, statistical analysis, and a design heuristic to obtain an 

integrated system of detention basins.  The methodology was capable of handling both 

water quantity and quality considerations.   

 

Recently, Muleta (2003) summarized a list of contributions in the area of watershed 

management.  These include contributions by Harrell and Ranjithan (1997), Sengupta 

(2000), Dorn et al. (2001), Zhen and Yu (2002), and Srivastava et al. (2002).  More 

recent contributions include those of Zechman (2005) and Dorn (2004).  Muleta (2003) 

developed an integrative computational methodology for the management of non-point 

source pollution from agricultural watersheds.  The method is based on an interface 

between evolutionary algorithms (EAs) and a comprehensive watershed simulation 

model known as Soil and Water Assessment Tool (SWAT).   
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Dorn (2004) developed a new evolutionary algorithm based technique for systematic 

generation of alternatives and multi-objective optimization to aid in watershed 

management.  The new EA-based framework focused on storm water management issues 

such as use of best management practices (BMPs) to control runoff resulting from new 

developments.  In particular, the modeling and management framework was applied to 

watersheds for obtaining cost-effective system of pipes and dry detention ponds to 

convey runoff generated by a design storm while meeting objectives of runoff control.  

The optimization model developed in the study is linked with a storm water simulation 

model (called SWMM – Storm Water Management Model) developed by EPA.   

 

Zechman (2005) developed a new model error correction procedure to improve the 

predictive capabilities of simulation models for use in watershed management.  The work 

also results in new evolutionary computation (EC) based methods to generate alternatives 

for numeric and symbolic search problems.  The alternatives generation procedure 

developed are then coupled with the model error correction procedure to improve 

predictive capabilities of simulation models and to address the non-uniqueness issue. 

 

 

1.3 Research Needs 

Based on a review of the most recent research in the area of optimal watershed 

management, several research needs were identified.  These are listed as follows: 

 

1. There continues to exist a need for an optimal management framework for urban 

watershed management that addresses both point and non-point pollution sources. 

2. There continues to exist a need for efficient macro-level water quality simulation 

models for use in such a framework. 

3. There continues to exist a need for efficient nonlinear constrained optimization 

models for use in such an optimal management framework. 
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1.4 Research Questions 

This dissertation will investigate the following four research questions as they relate to 

water quality modeling and management of urban watersheds that are impaired due to 

point and non-point sources of pollution: 

  

1. Can macro-level (simplified) models be used in lieu of more complex deductive 

model(s) in providing a sufficient cause and effect relationship on which to base 

sound management decisions? 

2. Can macro-level models be effectively integrated into a nonlinear constrained 

optimization framework so as to provide an effective decision-making tool for 

evaluating optimal water quality strategies for watershed management? 

3. What types of macro-level simulation models are most efficient in generating such 

optimal management strategies?  

4. What types of optimization models are most efficient in generating such optimal 

management strategies?  

 

 

1.5 Research Objectives 

The objective of this research is to develop a screening level, comprehensive and 

integrated computational methodology that can be used by decision makers to evaluate 

cost-effective water quality management strategies leading to reduction of point and non-

point source pollution in urban watersheds.  The research will investigate the utility of 

macro-level water quality simulation models for use in an integrated watershed 

management framework.  An optimal management model will thus be developed by 

linking a macro-level water quality model with an efficient optimization model (Figure 1-

1). 
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Figure 1-1. Proposed Framework of the Optimal Management Model 
 

This is a disaggregated approach of formulating an optimal management problem in 

which a set of decision variables are passed on from the optimization model to the 

simulation model.  The simulation model evaluates the system equations and any 

constraints that are being considered, and returns the information back to the optimization 

model.  Based on the information passed to the optimization model, a particular solution 

set or strategy is assigned an objective function value or fitness value.  The process 

continues and different solution sets are evaluated and ranked based on their fitness value 

leading to the selection of the optimal solution set or strategy.  Thus there are two distinct 

components of the optimal management model namely 1) the water quality simulation 

model, and 2) the optimization model.  This research will investigate the utility of macro-

level water quality simulation models in lieu of the traditional and complex process-based 

(deductive) models in developing optimal load reduction strategies for complex urban 

watersheds affected by both point and non-point source pollution. 

 

The systematic analysis of a complex urban watershed will frequently require the 

application of multiple deductive models of watershed processes.  While such deductive 

models can be expected to better reflect the true dynamics of the process or processes 

being modeled, such models may not be ideally suited for application in an integrated 

watershed management framework.  In many cases, the linkage of such deductive models 

with an associated optimization model may not be feasible or even physically possible.  

In such an environment, more compact and computationally efficient macro-level models 

Optimization Model

Descriptive Model

Function 
Evaluation 

Decision 
Variables 
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may be necessary.  If macro-level models can be shown to produce comparable 

management decisions to those solutions obtained using more comprehensive deductive 

models, then the use of such efficient macro-level models can be justified.  In theory, 

three different levels or types of macro-level simulation models are possible namely 1) 

implicit inductive models, 2) explicit inductive models, and 3) simplified deductive 

models.  This research will investigate the utility of the last two classes of models 

(explicit inductive and simplified deductive) in the context of an optimal watershed 

management framework.  State-of-the-art operations research techniques will be explored 

for use in developing the explicit inductive models.  In particular, these techniques range 

from simple regression models to more complex and nonlinear models such as artificial 

neural networks (ANNs).  A genetic algorithm-based function approximation technique 

recently developed by the author named FFSGA (Fixed Functional Set Genetic 

Algorithm) approach will also be investigated for use in developing macro-level models. 

 

In the context of optimization methods, the research will investigate the utility of linking 

macro-level simulation models with “parallel” methods of optimization.  Specifically, the 

utility of two different types of optimization techniques will be investigated for use in the 

proposed optimal management model. These include 1) an evolutionary computation-

based method called genetic optimization (Goldberg, 1989) and 2) a modified version of 

the direct search method of optimization called the Box Complex method of constrained 

optimization (Box, 1965).  This modified method is named Shuffled Box Complex 

method of constrained optimization.  Finally, the research will evaluate the utility of the 

proposed optimal management model in application to a real world problem.  The 

proposed methodology uses practical and state-of-the-art knowledge from different 

interconnected disciplines of hydrology, operations research, artificial intelligence, and 

watershed management.  The research objectives are in line with the short and long-term 

goals of the CWA (Federal Register, 1972), the Federal TMDL Program (40 CFR Part 

130, section 130.7), and recommendations of the NRC report (NRC, 2001). 
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1.6 Research Application 

The modeling methodology developed in this dissertation will be used to address the 

environmental problems of the Beargrass Creek watershed in Jefferson County, 

Louisville, Kentucky (Figure 1-2).  The watershed contains three different sub-basins all 

of which have been placed on the State of Kentucky’s 303(d) List of Impaired Water 

Bodies since the early 1990’s for pathogens and dissolved oxygen/organic enrichment.  

The sources of pollution include storm water runoff as well as wet weather discharge 

from numerous CSOs and SSOs.     

 

The Louisville and Jefferson County Metropolitan Sewer District (MSD) provides 

sanitary sewer, storm water drainage, and flood protection services for all of Jefferson 

County.  The Commonwealth of Kentucky filed a civil suit against MSD in state court in 

February, 2004 for unlawful discharge of untreated sewage and overflows of combined 

sewage into the Ohio River and its tributaries totaling billions of gallons each year.  The 

U.S. Department of Justice, U.S. Environmental Protection Agency, and Commonwealth 

of Kentucky's Environmental and Public Protection Cabinet (EPPC) jointly signed a 

consent decree on April 25, 2005 for a comprehensive Clean Water Act settlement with 

the Louisville and Jefferson County Metropolitan Sewer District (MSD). The settlement 

requires that MSD will make extensive improvements to its sewer systems to eliminate 

unauthorized discharges of untreated sewage and to address problems of overflows from 

sewers that carry a combination of untreated sewage and storm water at a cost likely to 

exceed $500 million (U.S. Department of Justice, 2005). 

 

To restore these water bodies to compliance, the Louisville and Jefferson County MSD is 

in the process of establishing Total Maximum Daily Loads (TMDLs) for each of the three 

sub-basins of the Beargrass Creek watershed as well as developing a long term control 

plan (LTCP) that will enable them to achieve such loads.  In support of the development 

of the pathogen and nutrient TMDL for these sub-basins, a comprehensive water quality 

monitoring and modeling effort is underway.  Data for this watershed will be used in the 

development of macro-level water quality models and optimal management models for 
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the Beargrass Creek watershed.  Beargrass Creek is an urban and complex watershed that 

is impaired due to both point and non-point sources of pollution and thus provides an 

excellent opportunity to evaluate the utility of the proposed methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Beargrass Creek Watershed, Louisville, Jefferson County, Kentucky 
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The proposed optimal management model will be used as a screening tool to evaluate 

least cost water quality management strategies for the Beargrass Creek watershed that is 

impaired by multiple sources (i.e. CSOs, leaking sewers, and non-point source pollution).  

Alternatively, the optimal management model will also be used to develop water quality 

management strategies as constrained by a specified budget.   

 

 

1.7 Significant Contributions of the Research 

The unique contributions of this research are summarized as follows: 

 

1. A comprehensive and screening level optimal management model for integrated 

watershed management is developed for complex urban watersheds impaired by both 

point and non-point sources.  The management model is obtained by linking macro-

level water quality simulation models with efficient optimization models in a 

disaggregated constrained optimization framework.  The proposed framework makes 

use of a novel inverse loading deductive model for simulating dissolved oxygen 

linked with a new, highly efficient optimization method called the Shuffled Box 

Complex method. 

2. A macro-level approach of water quality simulation modeling is proposed for use in 

an optimal management framework.  Such an approach provides greater flexibility 

and allows for the use of several different types of simulation model structures for use 

in the optimal management model and results in significant savings in computational 

time when compared to more traditional process-based simulation models. 

3. A novel simple deductive model is developed to simulate the dissolved oxygen (DO) 

and biochemical oxygen demand (BOD) dynamics in an urban watershed impaired by 

wet weather flows from CSO discharges, urban runoff, and leaking sewers along 

stream banks.  This inverse loading model is based on the classic Streeter-Phelps 

equation (Streeter and Phelps, 1925) for modeling dissolved oxygen deficit in a water 

column and is calibrated using observed dissolved oxygen data collected in the 

watershed to back-calculate the corresponding effective BOD concentration that is 

causing the DO deficit in the stream reach.  The effective BOD loads (concentration 
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and flows) are then disaggregated into different components corresponding to the 

source of pollution (i.e. point, non-point, and other).  Once the BOD loads are 

disaggregated, the model is run in the forward direction to simulate DO response in 

the watershed.  An added advantage of this inverse load model is that it eliminates the 

use of a rainfall-runoff model (and thus the error associated with it) by using observed 

stream flows in the simple deductive model. 

4. A new genetic algorithm-based technique for inductive model construction is 

developed called FFSGA (fixed functional set genetic algorithm).  FFSGA can be 

effectively used to develop inductive (empirical) models for a response function in 

the area of water resources and environmental engineering and management.  This 

new technique competes well with existing state-of-the-art techniques used for 

inductive model development such as artificial neural networks (ANNs) and genetic 

programming (GP) (Tufail and Ormsbee, 2004; Tufail and Ormsbee, 2006).  An 

added advantage of FFSGA over other state-of-the-art techniques such as ANNs and 

GP is that it results in a compact, simple, and easy to use expression for a response 

function modeled. 

5. This research investigated the use of two different types of optimization techniques 

(genetic algorithms and Shuffled Box Complex method) for use in the optimal 

management model to evaluate their relative performance and applicability to 

watershed management problems.  The Shuffled Box Complex method of constrained 

optimization is a new method that is based on the original Box Complex method of 

constrained optimization (Box, 1965).  The new method introduces the concept of 

multiple complexes and random shuffling in the original Box Complex method and 

application results demonstrates that the modified Shuffled Box Complex method can 

be successfully applied to watershed management problems with performance 

superior or equal to that of genetic algorithms.  The advantage of using Shuffled Box 

Complex over genetic algorithms (GAs) is that it is relatively simple and it eliminates 

the use of penalty functions to handle inequality constraints in the optimal 

management model.  The use of penalty functions in using GAs for constrained 

optimization can be considered as a drawback as they can require extensive fine 

tuning and parameter estimation. 
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1.8 Organization of the Dissertation 

This dissertation is organized into eight chapters as follows.  Chapter 1 provides an 

introduction to the research that consists of a problem statement, summary of previous 

work, research needs, research questions, research objectives, research application, and 

significant findings of the research.  Chapter 2 presents a discussion on optimization 

methods that can used in an optimal management framework.  In particular, two types of 

optimization techniques are discussed in detail namely an evolutionary-based method 

called genetic algorithms (GAs), and a direct search method called Shuffled Box 

Complex method of constrained optimization.  Chapter 3 presents a literature review of 

mathematical models for watershed management.  A review of both deductive and 

inductive models and their methods of analysis are presented in this chapter.  Chapter 4 

presents a new approach for function approximation called Fixed Functional Set Genetic 

Algorithm (FFSGA).  FFSGA can be effectively used to develop inductive and macro-

level simulation models for a response function in water resources engineering and 

management.  Chapter 5 is devoted to the development of a series of macro-level water 

quality simulation models.  These include 1) explicit inductive models for pathogens, 

nutrients, and dissolved oxygen response in a watershed, and 2) a simplified deductive 

and inverse loading model for dissolved oxygen response in an urban watershed.  Chapter 

6 presents the mathematical formulation of the proposed optimal management model.  

Chapter 7 presents the application of the optimal management model to a real world 

watershed that is impaired by point and non-point sources of pollution.  The watershed 

used for this application is the Beargrass Creek watershed in Louisville, Kentucky.  

Finally, the conclusions and recommendations of the research are summarized in Chapter 

8.  
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CHAPTER 2 

OPTIMIZATION FOR WATERSHED MANAGEMENT 

 

2.1 Introduction 

A common problem encountered by engineers in all fields is the problem of finding an 

optimal policy for a system under study.  Optimization is often applied to solve such 

problems in order to maximize the benefits and minimize the associated costs.  The 

theory of optimization finds applications in all branches of engineering at different levels.  

Some example areas of application include design, planning and analysis of existing 

systems, and control of dynamic systems (Reklaitis et al. 1983).  In most engineering 

applications, optimization is linked to a mathematical model of the system that is used to 

analyze and characterize the performance of the system. 

 

Watershed simulation models are frequently used to predict hydrologic and water quality 

responses for a variety of applications such as real time control of separate and combined 

sewer systems, impacts of combined sewer overflows and urban runoff on receiving 

waters, and evaluation of different management strategies for watershed pollution 

control.  Broadly speaking, the use of simulation models can fall into one or both of two 

major categories namely, 1) for use as an analysis or evaluation tool for engineers and 

scientists and 2) for use as design or management tool for decision makers.  In the latter 

case, the use of simulation models alone may not be the best way to achieve management 

objectives in which multiple strategies are evaluated to obtain the optimal solutions.  The 

number of design or management scenarios that may exist can be so large that a manual 

or trial and error investigation of such scenarios using simulation models alone can be 

cumbersome and tedious (Muleta, 2003).  In such applications, there is a need for an 

integrated management approach that uses an optimization technique linked to a 

simulation model to achieve optimal solutions.  Such an approach will allow the decision 

makers to choose the best solution that satisfies all constraints by evaluating multiple 

feasible management strategies in an effective manner. 
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In the context of watershed management, an optimal management formulation can be 

very useful to help watershed managers evaluate optimal management strategies needed 

to achieve water quantity and quality objectives.  Such a formulation will consist of an 

optimization model linked to one or more set of watershed models that simulates 

hydrologic and water quality processes and their impacts on the receiving waters in the 

watershed and is schematically shown in Figure 2-1 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Optimization Formulation for Watershed Management 

 

The choice of optimization technique to be linked with a simulation model for watershed 

management depends on the particular application and its complexity.  Traditional 

optimization methods (e.g. simplex method, steepest descent method) are known to 

perform well for mostly linear or quadratic functions.  Hydrologic and water quality 

processes occurring in a watershed are known to be highly non-linear and complex and 

the use of traditional optimization techniques are limited for such applications.  In such 

applications, traditional methods typically lack robustness and require continuous search 

spaces with defined derivatives.  Even when the processes are simplified and linearized, 

such techniques are known to produce questionable results in their application to multi-

modal functions (Muleta, 2003).  The use of evolutionary methods for complex processes 

tends to overcome some of the shortcomings of the traditional methods.  Evolutionary 

methods can handle large search spaces, do not require derivatives of the functions, 
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performs simultaneous evaluation of multiple solution vectors, and are particularly suited 

for large non-convex problems.  These advantages make them a suitable choice for use in 

conjunction with a water quality simulation model for watershed management, which is 

one of the objectives of this study.  In this research, the utility of two types of 

optimization models linked to macro-level simulation models are investigated in solving 

the optimal watershed management problem due to point and non-point sources of 

pollution. 

 

 

2.2 Definition of the Optimal Management Problem 

Optimization problems are mathematically formulated to include an objective function 

that is optimized (maximized or minimized) subject to a set of constraints, which can be a 

set of algebraic equations and/or inequalities.  The set of algebraic equations can be 

represented by a simulation model of the particular system being modeled.  Such a 

mathematical formulation or framework leads to the development of an optimal 

management model which can be used in the optimal design and operation of the system.  

More specifically, the optimal management problem can be stated as follows (Mays, 

1997): 

 

Given: 

1. The state equations 

2. A set of boundary conditions on the state variables at the initial time and the 

terminal time 

3. A set of constraints on the state variables and the control variables 

 

Determine the optimal (and admissible) values of the control variables so that a 

performance index (an objective function) is optimized (minimized or maximized). 

 

In its most general form, the optimal management problem may be formulated as non-

linear optimization problem given as follows (Equations 2-1 to 2-4): 
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Minimize or Maximize: F(X)    (2-1) 

         Subject to: g(X) = 0   (2-2) 

                           h(X) > 0   (2-3) 

                     Xmin < X < Xmax  (2-4) 

 

Where X represents a vector of decision variables, F(X) represents the objective function 

to be maximized or minimized, g(X) represents the explicit or implicit system constraints 

to be satisfied, and h(X) represents the implicit bound constraints to be satisfied by the 

optimal management formulation.  Xmin and Xmax represent the explicit bound constraints 

on the decision variables of the optimal management formulation.  The system 

constraints can be represented explicitly by the use of a set of linear or nonlinear 

equations or implicitly by the use of a simulation model (Ormsbee and Reddy, 1995).  

When using an implicit formulation, the system equations can be represented using either 

an inductive or deductive formulation.   

 

 

2.3 Types of Approaches in an Optimal Management Problem 

In most applications, the optimal management problem can be formulated in one or two 

distinct ways.  These include 1) a composite approach, where the explicit system 

constraints are lumped and solved with the corresponding bound constraints (e.g. the 

traditional linear programming formulation) or 2) a disaggregated approach, where the 

system constraints are separated from the optimization problem and explicitly enforced 

through simulation.  These are shown in Figures 2-2 and 2-3 below. 

 

 

 

 

 

 

 

Figure 2-2.  Composite Optimization Framework 

Optimization  Model

MIN:  F(X)

ST: g(X) = 0

h(X) > 0

X min < X <  X max
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Figure 2-3.  Disaggregated Optimization Framework 

 

This research is focused on the application of the disaggregated approach to optimal 

management of water quality in urban watersheds.  Such an optimal management 

formulation is comprised of two distinct components namely 1) an optimization model 

and 2) a descriptive model of the system or process for which the optimal management 

model is sought (Tufail and Ormsbee, 2005a). 

 

The disaggregated approach was chosen due to its flexibility in allowing the effective 

evaluation of different model structures for both optimization and descriptive models.  

Contrary to the composite approach, the mathematical programming in the disaggregated 

approach is less complex and easier to implement.  The next two sub-sections will 

describe some of the available choices for descriptive models as well as optimization 

algorithms for use in the disaggregated approach of optimal management formulation 

given in Figure 2-3. 

 

 

2.3.1 Types of Descriptive Models in an Optimal Management Problem 

A descriptive model can be represented in different ways in an optimization framework 

and Figure 2-4 and Table 2-1 below gives the broad classes of models that can be used to 

represent a descriptive model of a system.   

Optimization Model

Descriptive Model

MIN:  F(X)

ST: h(x) > 0

X min < X < X max

g(X) = 0

X h(X)
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Figure 2-4. Classes of Descriptive Models used in Optimal Management Problems 

 

Table 2-1. Examples of Descriptive Model Classes 
Descriptive model approaches Example model or method 
Complex deductive model HSPF/SWMM/WASP/CEQUAL-RIV1 

Explicit inductive model Regression/Neural Networks models using raw data 

Implicit inductive model Regression/Neural Networks using output from a 
calibrated deductive model  

Simplified deductive model Streeter-Phelps inverse load model 

 

 

2.3.1.1 Complex Deductive Model 

This approach requires the use of a complex deductive model linked to an optimization 

algorithm (per the framework given in Figure 2-3).  This approach can be 

computationally very expensive since most complex deductive models require significant 

time, particularly if applied to perform a continuous simulation over a longer period of 

time.  The transfer of control variables between the simulation model and optimization 

algorithm can thus be very time consuming.  For these reasons, this approach may not be 

very favorable for scenarios where multiple management scenarios need to be evaluated 

in a short period of time.  In addition, for more complex applications involving multiple 

deductive models, it may not be practical or even physically possible to embed the 

simulation models with an optimal management framework. 

 

2.3.1.2 Implicit Inductive Model 

An implicit inductive model is constructed by utilizing output data from a calibrated 

deductive model of the process or system being modeled.  This approach can be useful in 
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situations where 1) a fully calibrated deductive model is available but it is very complex 

for integration into an optimization framework and thereby computationally expense, and 

2) there is lack of raw data needed to develop an explicit inductive model.  Implicit 

inductive models can result in significant computational savings and may be more 

favorable if quick decisions are needed over a short period of time.  A certain degree of 

caution needs to be exercised in the development of implicit inductive models for 

integration into an optimization framework. Such a caution means that the resulting 

implicit models should capture the dynamics of the process with acceptable confidence in 

order to serve as a substitute for the calibrated deductive model.  This can be verified by 

comparing the performance of the implicit inductive model versus the calibrated 

deductive model using the same set of independent variables.  

 

 

2.3.1.3 Explicit Inductive Model 

An explicit inductive model can be constructed when sufficient data are available to 

permit the development of an inductive relationship between the independent and 

dependent variables.  Such models may be developed using various techniques such as 

linear or nonlinear regression, artificial neural networks (ANNs), or other evolutionary 

methods such as genetic programming and genetic functions.  The development of 

explicit inductive models requires sufficient raw data over a range of time to fully capture 

the behavior of the response function being modeled.  The use of explicit inductive 

models in an optimization framework can be a favorable choice due to their ease of use 

and simplicity as substitutes for more process-based deductive models. For instance, 

explicit inductive models may be preferred where 1) computational expense is a critical 

issue, 2) the process-based deductive model is over parameterized and cannot be 

adequately calibrated, and 3) budgetary constraints do not allow for a complex deductive 

model.  While such an approach can result in significant computational savings resulting 

in an efficient and effective optimal management framework, it is important to make sure 

that the resulting model is capable of accurately representing the response function.  This 

can be verified by evaluating the assumed cause and effect relationship between input 

and output variables through the process of model validation.   
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2.3.1.4 Simplified Deductive Model 

A simplified deductive model can be constructed for a particular response function for 

integration into an optimization framework when either of the following scenarios is 

valid: 

 

• A comprehensive calibrated deductive model is not available due to reasons such 

as budgetary constraints. 

• A comprehensive calibrated deductive model requires excessive computation 

time. 

• The deductive model consists of multiple complex deductive models which make 

it too complex to allow effective integration into the optimization framework. 

• An explicit inductive model is not available due to data scarcity. 

• An explicit inductive model does not fully capture the dynamics of the response 

function being modeled, that is it fails to accurately validate the cause-and-effect 

relationship between input and output variables. 

• An implicit inductive model is not available due to unavailability of a calibrated 

deductive model. 

•  An implicit inductive model does not capture the full dynamics of the response 

function as modeled in the calibrated deductive model.   

 

In this approach, a model of the system response function can be constructed by using a 

simplified approach to modeling.  Thus rather than constructing a comprehensive 

dynamic model for a system, one or more simplified model representations of the process 

or processes are constructed.  This is achieved by making reasonable assumptions about 

the system and validating the resulting models using any available data sets.  For 

example, under the appropriate conditions, the Kinematic Wave model may serve as a 

reasonable approximation of the St. Venant Equations for fully dynamic flow in an open 

channel.  Alternatively, the Streeter-Phelps model (applied over daily time step for 

simulating dissolved oxygen in a stream) may serve as a reasonable substitute for a more 

complex deductive water quality model for simulating dissolved oxygen such as HSPF or 

WASP or CE-QUAL2-RV1.  Such an approach has the advantage of reducing 
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computational time when integrated into an optimization framework and can provide an 

effective planning tool for evaluating multiple screening level management alternatives in 

the optimal management problem.    

 

 

2.3.2 Types of Optimization Models in an Optimal Management Problem 

Various optimization algorithms have been developed for solving different optimization 

problems.  In general, optimization algorithms may be subdivided into two broad 

classifications: constrained optimization methods and unconstrained optimization 

methods.  Unconstrained methods are for use in solving Equation (2-1) only, while 

constrained methods are for use in solving problems involving Equations (2-1) to (2-4).  

Constrained methods can further be subdivided into linear problems or nonlinear 

problems.  Due to the constrained nature of the watershed management problem, only 

those methods applicable to nonlinear constrained problems will be examined.   

 

Nonlinear constrained methods can broadly be classified into four categories namely 1) 

exhaustive search or optimal enumeration methods, 2) gradient-based methods, 3) direct 

search methods, and 4) evolutionary methods as shown in Figure 2-5 and Table 2-2.  The 

choice of a particular method depends on many factors such as the functional form of the 

objective function and the associated constraints, user preference, knowledge of 

technique, complexity of the application and other application-specific needs. 

 

Figure 2-5. Classes of Optimization Techniques 
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Table 2-2 Examples of Optimization Classes 
Class of Optimization methods Example method 
Optimal enumeration methods Dynamic Programming 

Gradient-based methods Generally Reduced Gradient (GRG) 

Direct search methods Box Complex 

Evolutionary computing methods Genetic Algorithms 

 

 

2.3.2.1 Optimal Enumeration Methods 

In optimal enumeration methods, the search algorithm evaluates the objective function 

value at each point in the feasible search space.  An example of this optimization method 

is the traditional Dynamic Programming (DP).  While very efficient for a particular 

subset of constrained nonlinear problems, DP is largely restricted to problems that can be 

separated into a series of independent problems or to those that involve only a small 

number of decision variables (Bellman, 1961). Unfortunately, the watershed management 

problem under consideration does not satisfy these restrictions.   

 

 

2.3.2.2 Gradient-based Methods 

Gradient based methods seek to minimize an expanded objective function made up of the 

original objective function (i.e. Equation 2-1) and a penalty term that incorporates the 

degree of violation of the associated constraints (i.e. Equations 2-2 through 2-3).  The 

expanded formulation is minimized by seeking to determine the values of the decision 

variables in the objective function that will yield a function gradient equal to zero.  The 

primary limitations of the method are due to 1) the requirement for gradients or higher 

order derivatives of the composite objective function, 2) the need for an iterative process 

to fine tune the weights associated with the penalty term in order to avoid a numerical 

distortion of the solution space, and 3) the potential convergence of the method to a sub-

optimal solution in those problems that may possess many alternative optimal solutions.  

Each of the three limitations tends to become particularly acute in application to the 

proposed watershed management formulation.  Examples of traditional gradient methods 

include the steepest descent method (Cauchy, 1847), quasi-Newton methods (Davidon, 

1959; Fletcher and Powell, 1963) and conjugate gradient method (Hestenes and Stiefel, 
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1952).  More recently, Abadie and Carpentier (1969) developed a gradient method called 

the Reduced Gradient method which is able to explicitly handle constraints without the 

need of a penalty function by breaking the problem into a series of unconstrained 

problems that are solved using either the conjugate gradient method or the quasi-Newton 

methods.   

 

 

2.3.2.3 Direct Search Methods 

Direct search methods are similar to gradient based methods in that they seek to yield a 

search path through the decision space that minimizes the objective function, but 

dissimilar in that they are able to obtain the incremental search direction without the use 

of derivatives.  Thus they tend to be more applicable to optimization problems formulated 

using the disaggregated approach.  Like gradient methods, constraints are normally 

handled through the use of a penalty method and thus the method cannot guarantee a 

global optimal solution due to a directed search along a single search path.  Examples of 

traditional direct search methods include Rosenbrock’s algorithm (1960), Powell’s 

method of conjugate direction (Powell, 1964), and the downhill Simplex method of 

Nelder and Mead (1965).  Unlike the methods of Rosenbrock and Powell, the Simplex 

method is able to search along a single decision path that incorporates a local search 

around the search direction, thereby increasing the efficiency of the search. One 

limitation of the Simplex method is that the solution space is investigated along a single 

search path.  However, this limitation has been overcome through the use of multiple 

simplexes that are used to pursue an optimal solution along multiple simultaneous paths 

(Duan et al. 1993).  Duan et al. (1993) developed a method called Shuffled Complex 

Evolution (SCE) approach for global minimization in which multiple complexes 

(simplexes) are evolved in different search paths.  In addition to evolving multiple 

simplexes, the approach by Duan et al. (1993) introduced the idea of shuffling between 

simplexes in a random manner.   

 

Unlike the previous methods which were applied only to unconstrained problems, Box 

(1965) developed a method similar to that of Nelder and Mead (1965) that is applicable 
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to constrained problems.  This was done by explicitly incorporating the constraints into 

the search space via a constrained simplex which he called a Complex (without the need 

of a penalty term), thereby greatly improving the efficiency of the overall algorithm.  

Despite these improvements, the method still suffers from the fact that the solution space 

is investigated along a single search path, although a more robust one as a result of the 

use of an expanded complex. 

 

In this research, a new method is proposed called the Shuffled Box Complex method of 

constrained optimization, which is a modification of the original Box Complex method of 

constrained optimization (Box, 1965) by introducing the concept of multiple complex 

evolution and subsequent complex shuffling for constrained optimization problems.  The 

Shuffled Box Complex method was chosen as a candidate for the watershed management 

problem because 1) the method is conceptually simple, 2) no function derivatives are 

required, 3) the method is directly applicable to problems involving nonlinear inequality 

constraints without requiring any transformations and/or use of penalty functions, and 4) 

the method does not distort the region of search.  The next two subsections will describe 

first the original Box Complex method and then the proposed Shuffled Box Complex 

method of optimization. 

 

 

2.3.2.3.1 Box Complex Method 

The Complex method of Box (1965) is based on the Simplex method of Spendley, Hext 

and Himsworth (1962) and has been explained in detail in Ormsbee (1983).   The method 

has successfully been applied to complex nonlinear problems in environmental design 

(Craig et al, 1978), hydrology (Ormsbee et al. 1984), and water distribution system 

design (Ormsbee, 1985). It is a direct search technique that moves through the region of 

search by use of a flexible mathematical figure called a complex.  Each vertex in the 

complex corresponds to a single design.  In general, k ≥ (n + 1) vertices are used in the 

complex, where n equals the number of decision variables.  Associated with each vertex 

are n coordinates, with each coordinate corresponding to an individual design variable.  

The Complex method of Box involves two distinct phases.  The first phase involves the 
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construction of the initial complex.  In order to generate an initial complex, an initial 

vertex corresponding to an initial design must be generated.  This initial design must 

satisfy all constraints (explicit and implicit bound constraints).  The remaining (k-1) 

points needed to set up the initial complex are obtained one at a time by the use of 

random numbers and bounds for each of the decision variables which are based on the 

explicit bound constraints for the decision variables as given in Equation (2-4) above.   

Given upper and lower bounds X(u) and X(l), the pseudo-random variable uniformly 

distributed on the interval (0, 1) is sampled, and the point coordinates calculated using the 

following equation. 

 

( ) NirX ii ......,1XXX (l)(u)(l) =−+=   (2-5) 

 

Where Xi represents the individual design decision variables that make up a solution set, 

ri is the random number, and N is the number of points to be generated.  A point so 

selected will satisfy all the explicit bound constraints but not necessarily all the implicit 

bound constraints.  This will require the decision variables to be passed on to the 

simulation program or any descriptive model that represent the implicit system 

constraints.  If an implicit constraint is violated, then the random point is moved halfway 

back to the centroid of those points that have already been selected and satisfy all the 

constraints.  Ultimately, a satisfactory point will be found.  Following this procedure, the 

(k-1) additional points can be generated which satisfy all the constraints (Ormsbee, 

1986).   

 

The second phase of the Complex method involves the movement of the complex 

through the solution space.  This process is performed using two operations: complex 

expansion and complex contraction.  These two operations may be visualized as follows.  

At each stage of movement the objective function is evaluated at each of the points in the 

complex, and the vertex of the greatest objective function value determined.  The 

complex is then expanded away from this worst point (say Phigh), through the centroid 

(Pcentroid) of the remaining points to yield a new point (say Pnew).  Mathematically this 

may be written as: 
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( ) highcentroidnew PPP αα −+= 1  (2-6) 

 

Where α is the expansion coefficient and Pcentroid is the centroid of all points excluding 

Phigh.  Box recommended a value of 1.3 for α.  The objective function is then evaluated 

at this new point Pnew.  If the new point yields an objective function value which is better 

than the worst point Phigh, then the worst point Phigh is discarded and the replaced by 

Pnew.  In this way, the complex moves in the direction of function minimization (see 

Figure 2-6).  If, however, the value of the new point is worse than Phigh, then the new 

point is contracted back toward the centroid of the remaining points and a new point 

Pnew-2 is generated (see Figure 2-7).  This continues until an acceptable point is generated 

(Ormsbee, 1986).  The contraction process can be mathematically represented as follows: 

 

( ) centroidnewnew PPP ωω −+=− 12   (2-7) 

 

Where ω is the contraction coefficient for which a value of 0.5 is recommended.  This 

dual process of expansion and contraction continues until some constraint is violated or 

the algorithm converges.  If an independent variable Xi of a new point i violates some 

explicit bound constraint then that variable is reset to a value just inside the constraint.  If 

the new point violates some implicit bound constraint (inequality constraint) then the 

point is moved halfway towards the centroid of the remaining points.  Eventually a 

permissible point will be found.  The search finally terminates when the complex has 

collapsed into the centroid (Ormsbee, 1986).   
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Figure 2-6. Complex Expansion in the Box Complex Method 
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Figure 2-7. Complex Contraction in the Box Complex Method 
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2.3.2.3.2 Shuffled Box Complex Method 

The original Box Complex method of optimization is modified by incorporating the 

concept of multiple complex evolution and complex shuffling.  In the Shuffled Box 

Complex method, instead of generating one complex of solution points, multiple 

complexes are generated that move in the direction of function minimization 

simultaneously via different search directions.  After a specified number of generations 

(iterations), the points constituting the multiple complexes are shuffled randomly and 

reassigned to the complexes.  The new complexes then continue to move towards the 

constraint boundary in the direction of function minimization.  Such a shuffling process 

will ensure that information contained in the sample is efficiently and thoroughly 

exploited.  It will make the search process more robust and diverse by mixing 

information between complexes.  Shuffling will also enhance survivability by a sharing 

of the information between different solution sets.  This process of shuffling can be 

considered evolutionary in the sense that communities are made to mix during the search 

process causing a sharing of information similar to the genetic operations of crossover 

and mutation in the case of evolutionary optimization methods such as a genetic 

algorithm.  The shuffling continues until a specified convergence criterion is met or the 

specified number of generations is over. The concept of evolving multiple complexes and 

complex shuffling was first developed by Duan et al. (1993) in their Shuffled Complex 

Evolution (SCE) approach for global minimization. The difference between SCE 

approach and the proposed Shuffled Box Complex method lies in the specific application.  

The SCE approach was applied to an unconstrained optimization problem and a 

technique known as the competitive Complex evolution (CCE) was used to evolve each 

individual complex in the search space.  In contrast, the Shuffled Box Complex method 

has been developed for constrained optimization problems in which the individual 

complexes are evolved using the original Box Complex method of optimization with the 

provision for handling inequality constraints through complex contraction. 
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2.3.2.4 Evolutionary Methods 

Evolutionary computation is the study of computational systems which use ideas and get 

inspiration from natural selection and adaptation.  The primary aim of evolutionary 

computation is to study and develop robust and efficient computational systems for 

solving complex real world problems.  Sarker et al. (2002) reports that evolutionary 

optimization is the most active and productive area of evolutionary computation as 

measured by the number of successful applications and resulting publications in this area.  

All evolutionary or heuristic search methods are characterized by a population of 

solutions that evolve to better solutions through a process or mechanism that is analogous 

to the process of natural selection (Goldberg, 1989).  There is no formal mathematical 

proof for evolutionary methods but they have been proven to be superior to traditional 

optimization methods, particularly in case of nonlinear, non-convex, multi-modal 

problems (Muleta, 2003).   

 

Evolutionary computation consists of four major branches namely 1) evolutionary 

programming, 2) evolution strategies, 3) genetic algorithms, and 4) genetic programming.  

Of these four, the first three types of algorithms have been collectively grouped under 

evolutionary algorithms (EAs) by more and more researchers (Sarker et al. 2002).  All 

these three types of evolutionary algorithms namely evolution strategies, evolutionary 

programming, and genetic algorithms use similar computational framework.  This is 

shown in Figure 2-8. 
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Figure 2-8.  An Overview of Evolutionary Computation Methods 

 

Evolutionary strategies were first proposed by Rechenberg and Schwefel in 1965 as a 

numerical optimization method and did not include the concept of a “population”.  The 

“population” concept was introduced into evolution strategies later (Schwefel, 1981; 

Schwefel, 1995; Sarker et al. 2002). 

 

Evolutionary programming was first proposed by Fogel (1962) as a way to achieve 

artificial intelligence and since then several examples of evolving finite state machines 

were demonstrated (Fogel et al. 1966).  Since the late 1980’s, it has been used to solve 

various combinatorial and numerical optimization problems (Sarker et al. 2002).   

 

Genetic algorithms (GAs) were first introduced by Holland (1975) and his students 

(DeJong, 1975).  Genetic algorithms are mostly used as global optimization methods for 

combinatorial or numerical problems.  GAs are probably the most well-known branch of 

evolutionary computation (Sarker et al. 2002). 

 

Genetic programming (GP) is a branch of genetic algorithms (Koza, 1992).  It should be 

noted that GA is not a model-building tool and has been used traditionally for finding 

optimal values of parameters or decision variables of existing models.  Thus while GA 
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use a string of numbers to represent the solution, GP has the capability to create computer 

programs or models that can turn inputs to outputs from specified building blocks such as 

mathematical operations and variables.  The output from a GP is an empirical model used 

for approximation whereas the output from a GA is the optimal values of the parameters 

or decision variables of a known empirical model (Alvarez et al, 2000). 

 

 

2.3.2.4.1 Framework of Evolutionary Algorithms (EAs) 

All evolutionary algorithms have two prominent features that separates them from other 

search methods and these include 1) they are population based, and 2) there is 

communication and exchange of information between individuals in a population.  This 

types of communication and information exchange is a result of selection and/or 

recombination in evolutionary algorithms.  A general framework of evolutionary 

algorithms is given in Figure 2-10.  Note that the search operators for instance in the case 

of genetic algorithms will be the genetic operators such as generation, crossover, and 

mutation.  These operators are used to produce off-springs (new individuals or solution 

vectors) from parents (existing individuals).   

 

The framework given in Figure 2-9 is a general framework for all evolutionary 

algorithms.  Different algorithms vary from one another in the different representation of 

individuals and different methods of implementing fitness evaluation, selection, and 

search operators (Sarker et al. 2002).  The next subsection will give an overview of 

genetic algorithms for use as a global optimization technique in this research.   
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Figure 2-9. General Framework of Evolutionary Algorithms (Sarker et al. 2002) 

 

Of the three EAs described above (Figure 2-8), this research will investigate the utility of 

genetic algorithms (GAs) as an optimization method for application to the watershed 

management problem.  GAs are described in detail in the following section. 

 

 

2.3.2.4.2 Genetic Algorithms (GAs) 

GAs are a subset of EAs that mimic biological principles (Darwin’s theory of evolution) 

to optimize highly complex functions.  The method was developed by John Holland 

(1975) in the 1960s and 1970s but was popularized by one of his students, David 

Goldberg, who applied it to solve a difficult problem in engineering involving the control 

of gas pipeline transmission for his PhD dissertation (Haupt and Haupt, 1998).  A genetic 

algorithm (GA) is a stochastic numerical search procedure inspired by biological 

evolution and natural selection.  GA is used in cross breeding trial solutions and allowing 

the fittest solutions to survive and propagate to successive generations.  GA deals with a 

population of individual solutions which undergo constant changes by means of genetic 

operations of reproduction, crossover, and mutation (Goldberg, 1989).  GA can be 

viewed as a search procedure where the search process is controlled by the fitness of the 

solution vector (Burn and Yulianti, 2001).  A solution in GA is represented as a string of 

1. Set i = 0; 

2. Generate the initial population P(i) at random; 

3. REPEAT 

a. Evaluate the fitness of each individual in P(i); 

b. Select parents from P(i) based on their fitness; 

c. Apply search operators to the parents and produce generation P(i +1); 

4. UNTIL the population converges or the maximum time is reached 
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decision variables (also referred to as chromosome) that evolves through generations to 

further improve its fitness.  A simple GA consists of the following steps (Burn and 

Yulianti, 2001) as shown in Figures 2-10 and 2-11: 

 

 

 

 

 

 

 

 

 

 

Figure 2-10. A simple Genetic Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11. Steps in a simple Genetic Algorithm 

 

 

{ 
Initialize population; 
Evaluate population; 
While TerminationCriteriaNotSatisfied 

{ 
Select parents for reproduction; 
Perform crossover and mutation; 
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1. Select an initial population of solution vectors or strings. 

Each of these vectors (also called chromosomes) is defined by a sequence of decision 

variables, known as genes in GA terminology.  These can be represented as a string 

of binary or real numbers or integers.  In case of binary representation of genes, the 

length of each chromosome is defined by the user (Muleta, 2003).   

2. Evaluate the fitness of each string. 

For each of the solution chromosomes chosen during the random search, a measure of 

fitness (which corresponds to an objective function value) is evaluated.  All solution 

chromosomes in the initial population are referred to as species of the first generation.  

Their chance of survival depends on the values of their fitness (Muleta, 2003).   

3. Select strings from the current population to mate. 

The chromosomes of the first generation are then ranked in an ascending order (for 

minimization problems) to determine the ones that will get the chance to mate and 

produce off-springs.  The ones with higher fitness values (low objective function 

value) will have the greater chance to survive to the next generation (Muleta, 2003).  

This process of choosing mates is called selection. 

4. Perform crossover for the selected strings.   

Once the chromosomes for mating (parents) are selected, there is exchange of 

information between the genes of the selected parents that gives rise to off-springs.  

The mechanism of creating new individuals by assigning them genes of the parents is 

called crossover.  In this manner, new individuals will replace the ones that had the 

worst fitness values in the previous generation.  There are many ways in which 

crossover can be performed and using different methods generates new types of GAs 

(Muleta, 2003).  

5. Perform mutation for the selected string elements. 

To bring diversity in the new individuals created after crossover operation and to 

make sure that the search is not confined to the genes brought by the initial 

population selected randomly, the operation of mutation is performed.  In mutation, a 

certain percentage of chromosomes (often 3 to 10 percent) are selected and their 

genes are altered at a randomly selected location.  This will change the genes of the 

selected chromosomes and prevents the GA from being trapped in local minima.   
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6. Repeat steps 2-5 for the required number of generations. 

The process of evaluating fitness, selection, crossover, and mutation is carried over 

and over in a cyclic manner until the GA converges to an optimal solution that meets 

user’s criteria or the number of specified generations is over.  Also, if the solution 

vectors are not getting any better in successive generations, the GA search process 

can be terminated. 

 

There are many advantages of using GAs over traditional optimization methods and some 

of these are summarized as follows: 

 

• They do not require derivative information, 

• They can deal with a large number of parameters, 

• Their concept is easy to understand. 

• They support multi-objective optimization, 

• They are good for noisy environments, 

• They are well suited for parallel computers, 

• They provide a population of solutions and not just one solution, 

• They are capable of searching simultaneously from a population of solutions, 

• They are known to be successful in optimizing complex, non-linear, and noisy 

functions for which other traditional methods fail. 

 

The most important advantage of GAs as stated by Muleta (2003) is their ability to work 

for functions that are not easy to describe mathematically such as the hydrologic and 

water quality processes occurring in a watershed.  It is very difficult to obtain a well-

behaved mathematical relationship between the inputs and outputs involved in such 

processes and GAs are very well suited for such complex and non-linear problems.  GAs 

has been successfully applied to a variety of problems in water resources engineering and 

management as presented in Muleta (2003).  Consequently, there are numerous 

publications on the use of GAs as global optimization tools by researchers covering a 

broad spectrum of water resources engineering and management areas.  It is therefore not 

feasible to list a reference to all of these publication but a some of these include Hilton 
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and Culver (2000), Nishikava (1998), Ritzel et al. (1994), Reis et al. (1997), Wang 

(1991), McKinney and Lin (1994), Esat and Hall (1994), Oliveira and Loucks (1997), 

Wardlaw and Sharif (1999), Savic and Walter, (1997), Hellman and Nicklow, (2000), 

Reddy and Ormsbee (2002).        

 

It should be noted however that GAs are not the answer to every optimization problem 

and they too like other traditional optimization problems have certain limitations.  Effort 

should be made to understand such limitations and keeping them in view one should 

make a decision on when and how GAs can be used for a particular application.  For 

instance, for well behaved response functions, other traditional methods are known to be 

more efficient and they can outperform GAs in finding the optimal solutions (Haupt and 

Haupt, 1998). It should also be noted that GAs are technically only applicable to 

unconstrained problems.  Another shortcoming of the method is its significant 

computational expense, particularly in cases where the complex objective function 

evaluation may require significant time.  Finally, it should be realized that GA are a 

heuristic optimization technique and does not guarantee a globally optimal solution 

(Muleta, 2003).  But as pointed out by Nicklow (2000), the fact that the majority of 

literature on GAs demonstrates its ability to obtain global or near global optimal solution 

continue to make it a favorable choice for researchers.  The benefits of using the GA 

technology should meet the key requirements of the application in hand for GAs to be 

effective optimization tools.   

 

 

2.3.2.4.3 Genetic Algorithms for Constrained Optimization 

As indicated above, GAs are directly applicable only to unconstrained optimization 

problems.  In the application of GAs to constrained nonlinear optimization problems, a 

particular solution vector (chromosome) can violate certain constraints of the problem 

formulation and can thus result in infeasible solution sets.  In the recent years, different 

methods have been proposed for handling constraints by GAs.  These can be grouped into 

the following categories (Yeniay, 2005): 
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1. methods based on preserving feasibility of solutions, 

2. methods based on penalty functions, 

3. methods based on a search for feasible solutions, and  

4. hybrid methods (Michalewicz and Schoenauer, 1996). 

 

Of these four methods, penalty function methods are the most popular methods used for 

constrained optimization problems using a GA.  These methods transform a constrained 

problem into an unconstrained problem by imposing a penalty on the infeasible solution.  

This is done by adding to the objective function value a positive value (penalty) which 

reduces the fitness value of such infeasible solutions (Yeniay, 2005).  This decreases the 

chances of the solution to have a significant impact on the offspring solutions as they 

evolve in future generations.  Both static and dynamic penalties can be applied when 

using GAs for constrained optimization (Sarker et al. 2002).  Comparative studies about 

penalty function methods in GA can be found in Kuri-Morales and Gutierrez-Garcia 

(2001), Miettinen et al (2003), and Yeniay (2005).  The use of penalty functions in using 

GAs for constrained optimization can be considered as a drawback as they can require 

extensive fine tuning and parameter estimation.  This disadvantage of GAs was one of the 

motivator for developing the Shuffled Box Complex method for the constrained 

optimization problem in this research which does not require penalty functions.   
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CHAPTER 3 

MATHEMATICAL MODELS FOR WATERSHED MANAGEMENT 

 

3.1 Introduction 

In this chapter, an overview of the types of mathematical models and the methods of 

analysis used in mathematical models is presented.  This will lead to some applications of 

mathematical models used for watershed management.  In particular, this chapter will 

provide a brief discussion on the two commonly used approaches (types) of mathematical 

models (also referred to as simulation models) namely, 1) deductive or mechanistic 

models and 2) inductive or empirical models.  This will be followed by a discussion on 

the analysis methods used in the development of these two types of modeling approaches.  

In the context of watershed simulation models, both deductive and inductive watershed 

models will be discussed.  An overview of some of the available deductive watershed 

models available to the public is given in the context of deductive watershed models for 

hydraulic, hydrologic, and water quality modeling. 

 

This research will evaluate the development of effective watershed response models for 

processes occurring in an urban watershed that can be used in an optimal management 

framework for linkage with efficient optimization algorithms.  The concepts and methods 

discussed in this chapter are therefore important and will provide a good platform for 

understanding the work described in the future chapters. 

 

 

3.2 Mathematical Modeling  

Mathematical modeling is the process of creating a mathematical representation of some 

phenomenon in order to gain a better understanding of that phenomenon.  It is the use of 

mathematics to describe real world phenomena, test ideas, and make predictions about a 

real world process being modeled.  It can thus be seen as a process that attempts to match 

observation with symbolic statement.  "Generally the success of a model depends on how 
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easily it can be used and how accurate are its predictions." (Edwards and Hamson, 1990, 

p.3).        

 

The analysis, design, or management of any real world process is facilitated through the 

use of systems approach. In systems analysis (approach) a physical or engineered system 

is represented in a simplified form through the construction and use of a mathematical 

model (Figure 3-1).  Such models represent a systematic organization of a system’s 

knowledge developed for some kind of planning, engineering, or scientific purpose. From 

a watershed management perspective, the most important subsystem is the watershed 

system.  Scientists and engineers develop and use descriptive models for the purpose of 

describing such a physical system or sub-system and for the purpose of predicting the 

behavior of such a system in response to a given stimulus or loading.  

 

 

 

 
Figure 3-1. Systems Approach 

 

A mathematical model can be used to represent a wide range of systems (Sinha, 1991; 

and Mays, 1997) such as: 

 

• Static and dynamic systems 

• Linear and nonlinear systems 

• Time-varying and time-invariant systems 

• Deterministic and stochastic systems 

• Continuous-time and discrete-time systems 

• Lumped-parameter and distributed-parameter systems 

 

Depending on the type of system being modeled, the resulting mathematical model may 

be classified accordingly.  Most real world systems are dynamic, nonlinear, time-varying, 

System
Given Input Predicted Output
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and stochastic, and often require the development of complex models to fully and 

accurately represent them. 

 

It is worth mentioning here that computer models do not solve problems but only provide 

guidance to the user who then utilizes the information in the most beneficial way.  

Mathematical modeling plays a very useful role in the design, analysis, and management 

of a system through (Lund and Palmer, 1998): 

 

• Furthering understanding of the problem. 

• Defining solution objectives. 

• Developing promising alternatives. 

• Evaluating alternatives. 

• Providing confidence in solutions. 

• Providing a forum for negotiations in the final decision making. 

 

The purpose of most models is to reproduce consistently the observable phenomena that 

are of significance for a particular problem.  For example, the purpose of a dissolved 

oxygen water quality model is to reproduce in time and space the dissolved oxygen 

patterns observed at a particular site taking into account the effects of flows and pollution 

loads, etc.  Models can be used to assist in real-time decision-making or evaluate a 

physical or biological system under past, present, and future conditions (BDMF, 2000).  

For water-related areas, mathematical modeling can be applied to the following (BDMF, 

1997): 

 

• Fisheries, aquatic biology, and habitat health 

• Groundwater 

• Hydrodynamics 

• Hydrology, hydraulics, and irrigation 

• System operations and real-time management 

• Water quality and Watershed Management 

• Water resources planning 
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3.3 Types of Mathematical Models 

Mathematical models represent existing or hypothesized knowledge of how a system 

works and may be classified on the basis of the origins of such knowledge.  Two different 

strategies are typically employed in building a mathematical model.  These include either 

a deductive or mechanistic approach or an inductive or empirical approach.  Deductive 

models are based on the basic fundamentals of physics and chemistry governing a 

process or system, while inductive models are data driven models that are based more 

directly on field or laboratory observations.  The question of “which type of model to 

use?” has been asked ever since modeling of systems has been in place.  Numerous 

models have been developed in the quest to find the best approach or strategy to model 

different systems or processes.  It can be safely said that no one model can fully explain 

the complexity of the real world and that is the reason why modelers continue to develop 

models of varying complexity, generality, and validity.  Thus Beck (1985) has stated that 

"Different types of models are appropriate for solving different kinds of problems; there 

is no universal model for solving all manner of problems; comprehensiveness and 

complexity in a simulation are no longer equated with accuracy; and there is a healthy 

mood of critical questioning of the validity and credibility of water quality models”.  

Both empirical and mechanistic models have found various and successful 

implementations and developments in different scientific areas.  When comparing the 

potential of the empirical and mechanistic approaches, it is recommended to select 

models on both extremes of the empirical/mechanistic scale, (i.e., empirical models with 

as little mechanistic assumptions as possible and mechanistic models with as few 

empirical features as possible) (Nestorov et al. 1999). 

 

Different analysis methods are used to construct deductive and inductive models.  For 

deductive models these methods may consist of different numerical schemes (e.g. finite 

difference or finite element methods) to solve the underlying governing mathematical 

equations representing the process or system being modeled.  Conversely, inductive 

models are constructed using methods that relate a given set of independent variables to a 

given set of dependent variables (e.g. regression). 
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3.4 Deductive Mathematical Models 

Most traditional mathematical models used in planning and/or design are deductive or 

mechanistic models.  These are also referred to as physically or process based models.  

Such models rely on the fundamental laws of physics and chemistry that govern a 

particular process or system under study.  Some examples of deductive modeling 

approach are given as follows (BDMF, 2000): 

 

• Use of conservation of mass to derive models of the operation of river-reservoir 

systems; 

• Use of conservation of mass, momentum, and energy with channel geometries 

and bed elevations for hydraulic routing; 

• Use of principles of advection and dispersion for contaminant transport modeling;  

 

Mechanistic or deductive models commonly consist of a set of fundamental governing 

equations representing conservation of mass, energy, and momentum, reaction kinetics of 

various pollutants, etc.  In most cases, these equations are either partial differential 

equations or ordinary differential equations.  Except for a few particular cases, remote 

from the real world, a general analytical solution of the complex set of differential 

equations cannot be found (Ciriani et. al., 1977). These governing equations have initial 

or boundary conditions, and can be solved by several numerical schemes. 

 

Deductive models can be applied in different ways depending on the manner in which the 

input and output of the model is used.  These include 1) deterministic, 2) parametric, and 

3) stochastic.  In deterministic models, all model parameters are assumed to have discrete 

values that are used in the governing equations of the process being modeled to obtain 

model outputs.  In parametric models, model parameters are obtained by calibration using 

observed model inputs and outputs.  In stochastic models, probability distributions of 

model parameters are obtained for use in the model to obtain a probability distribution of 

the model output.   
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3.4.1 Analysis Methods for Deductive Models 

Once the mathematical form of a deductive model (set of differential equations) has been 

specified, the numerical method to solve the model equations must be found. Often, 

particularly for complex models, the solution method for the model equations will require 

testing to ensure that the numerical solutions are correct for the intended types of 

problems and modeling objectives.  Concerns about accuracy and stability of a particular 

numerical scheme can be addressed by comparing the numerical solutions with (1) 

analytical solutions available for special cases or (2) solutions from trusted numerical 

solution methods (BDMF, 2000).   

 

The key to various numerical methods is to convert the partial or ordinary differential 

equations that govern a physical phenomenon into a system of algebraic equations.  

Different techniques are available for this type of conversion.  There are five commonly 

used, closely related, numerical methods for solving differential equations namely 1) 

finite difference methods, 2) finite element methods, 3) collocation methods, 4) method 

of characteristics, and 5) boundary element methods (Pinder, 1983).  In applications of 

water resources systems modeling, the finite difference and finite element methods are 

more popular than any of the other methods (Tufail, 1995).  A brief description of these 

two methods is given as follows. 

  

 

3.4.1.1 Finite Difference Method (FDM) 

The finite difference has been a very familiar and popular approach for modeling of 

physical processes in engineering.  The method consists of replacing directly the 

governing partial derivatives by quotients of finite differences.  This results in a system 

of algebraic equations that are solved, after imposing the boundary conditions, for the 

unknowns at discrete mesh points of the region being analyzed.  Most common finite 

difference representations of derivatives are based on Taylor’s series expansion 

(Anderson, 1995).  There are several practical reasons for the popularity of this method as 

summarized below (Pinder, 1983): 
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• Finite difference methods are simple and conceptually straightforward. 

• The fundamental concepts are readily understood and do not require advance 

training in applied mathematics. 

• The form and algebraic simplicity of the equations arising from difference 

approximations have led to the development of several efficient algorithms for 

their solution. 

 

Finite difference methods can fall into one of the two approaches namely explicit or 

implicit as discussed below. 

 

 

3.4.1.1.1 Explicit Finite Difference Methods 

In an explicit approach of finite difference method, each difference equation 

(representing a governing differential equation) contains only one unknown and can 

therefore can solved in a straight forward manner explicitly for the unknown(s).  This is 

the simplest of the approaches of solving difference equations.  A disadvantage of the 

explicit methods is that they are not unconditionally stable, meaning that for a given 

spatial grid length ∆x, the corresponding temporal interval ∆t must be less than some 

limit imposed by the stability constraints.  This may in some cases lead to a very small ∆t 

thus leading to longer run times in the computation of the solution over a given 

simulation time.   

 

 

3.4.1.1.2 Implicit Finite Difference Methods 

In an implicit approach of finite difference method, there are more than one unknown in 

the resulting difference equations and these must be obtained by means of simultaneous 

solution of the difference equations applied at all points of the grid representing the 

discretization.  In terms of stability, implicit methods are unconditionally stable and thus 

they allow for using larger computational time steps (∆t).  However, the use of larger ∆t 

can lead to larger truncation errors in the solution.  Due to the simultaneous solution of a 

large system of equations, the implicit approach is more complex in terms of 
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computations and is relatively more difficult to program than the explicit approach 

(Anderson, 1995).     

 

 

3.4.1.2 Finite Element Method (FEM) 

The finite element is an approximation procedure for solving partial differential equations 

of boundary and/or initial value type in engineering and mathematical physics.  This is a 

very powerful, modern computational tool for solving engineering problems, and has 

gained wide acceptance in the area of computational fluid mechanics (Stasa, 1985).  The 

procedure employs subdivision of the solution domain into many smaller regions of 

convenient shapes, such as triangles and quadrangles, and uses approximation theory to 

quantize behavior on each finite element.  The approximation functions are derived using 

the basic idea that any continuous function can be represented by a linear combination of 

algebraic polynomials.  Thus, over each finite element, the physical process is 

approximated by functions of desired type (polynomials or otherwise), and algebraic 

equations relating physical quantities (unknowns of the governing differential equations) 

at selected points (nodes) of the element are developed (Reddy, 1993).  These element 

equations are collected together to form a global system of algebraic equations including 

a proper accounting of the boundary conditions.  Finally, the nodal values of the 

dependent variables (unknowns) are determined from the solution of this global matrix 

equation system (Baker, 1983). 

     

The most distinctive feature of the FEM that separates it from other numerical schemes is 

the division of a given domain into much simpler sub-domains, called finite elements.  

Any geometric shape that allows computation of the solution or its approximation at 

selected points (referred to as nodes) of the sub-domain, qualifies as a finite element.  

The use of interpolation functions to define the unknown variables throughout the 

problem domain is an important concept that distinguishes the FEM from the more 

popular FDM.  In the FDM, the unknowns are defined only at the nodal points, whereas 

in the FEM, the unknown variables are defined throughout the problem domain in a 

piecewise fashion over the individual elements.  This characteristic of the FEM permits 
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the application of variational or weighted residual principles.  One of the main 

advantages of the FEM over other numerical methods, including the FDM, is the fact that 

FEM can handle irregular geometries routinely.  However, for one-dimensional problems 

this is not a significant factor.  Another significant advantage of the FEM is the easy 

handling of the variable spacing of the nodes.  Also, the FEM has the capability with 

which non-homogeneous and anisotropic materials can be easily handled, a feature not 

available easily with the FDM.  Lastly, the implementation of higher-order elements in 

the FEM makes it more preferable than the FDM (Stasa, 1985).  This can allow modeling 

of critical regions of the domain more precisely, thus improving the accuracy of the 

approximate solution.  Some disadvantages associated with the FEM include the 

necessary use of digital computers and expensive software.  In the end, the choice of a 

particular method (FEM, FDM, or others) used in a particular application depends on the 

complexity of the problem, and the user’s familiarity with the different methods that can 

be used (Tufail, 1995). 

 

 

3.4.2 Deductive Watershed Models 

Deductive watershed simulation model provide tools for simulating the movement of 

precipitation and pollutants from the ground surface through pipe and channel networks, 

storage treatment units, and finally to receiving waters.  Both single-event and continuous 

simulation may be performed on catchments having storm sewers and natural drainage, 

for prediction of flows, stages and pollutant concentrations.  EPA and state agencies have 

emphasized watershed-based assessment and integrated analysis of point and non-point 

sources of pollution (EPA, 1997).  As a result, models are being increasingly used to 

evaluate a wider range of pollutant transport and receiving water impacts issues.   

 

Deductive watershed models play an important role in linking sources of pollutants to 

receiving water bodies as source loads.  Deductive watershed models are driven by 

precipitation, land use, impervious areas, slope, soil types, and drainage area.  A 

deductive watershed model for a watershed can simulate both water quantity and water 

quality processes such as interception soil moisture, surface runoff, interflow, base flow, 
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snow pack depth and water content, snowmelt, evapotranspiration, ground-water 

recharge, dissolved oxygen, biochemical oxygen demand (BOD), temperature, pesticides, 

conservatives, pathogens, sediment detachment and transport, ammonia, nitrite-nitrate, 

organic nitrogen, orthophosphate, and organic phosphorus. Any period from a few 

minutes to hundreds of years may be simulated in such models.  Such models are used to 

assess the effects of land-use change on different processes, stream flow routing, 

reservoir operations, point and non-point source treatment alternatives, flow diversions, 

etc.   

 

Different types of deductive models of varying complexity can be developed for a 

watershed.  For a given watershed of sufficient complexity, a general mathematical 

model can be represented as given in Figure 3-2.  

  

 

 

 

 

 

 

 

 

Figure 3-2. Deductive watershed model 

 

The following three broad categories of models are typically developed for a watershed 

management system: 
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1. Watershed response models, 

2. Transport models, and 

3. Receiving water models. 

 

In general, a comprehensive watershed model such as shown in Figure 3-2 can be used to 

simulate water quality contributions from both point and non-point sources of pollution 

and evaluate their impacts on the receiving waters.  From a practical perspective, the 

transport model as shown in Figure 3-2 will usually be combined with either the 

watershed response model or the receiving water model.  Thus we can categorize 

watershed simulation models (and thus water quality models) into two main and 

commonly used categories given as follows (USEPA, 1997): 

 

• Watershed loading models that simulates the generation and movement of 

pollutants from the source to a discharge point in the receiving waters, and  

• Receiving water models that simulate the movement and transformation of 

pollutants through water bodies such as lakes, streams, rivers, and estuaries. 

 

These models are used for different purposes allowing scientists and engineers to 

determine the assimilative capabilities of the water body, determine level of best 

management practices, etc.  Figures 3-3 and 3-4 give an overview of these two types of 

models supported by EPA for use in watershed assessment and water quality modeling 

and these range in complexity and applicability (EPA, 1997).  Three different types of 

loading models are given in Figure 3-3.  These include 1) simple models, 2) mid-range 

models, and 3) detailed models.  Simple models are derived from empirical relationships 

between physical characteristics of the watershed and pollution export.  They can often 

be applied using a spreadsheet program or hand-held calculator.  The mid-range models 

are used to evaluate pollution sources and impacts over broad geographical scales.  These 

types of models are a compromise between simple and detailed models.  The detailed 

models best represent the watershed processes affecting pollution generation.  These 

types of models are used to identify causes of problems rather than simply describing the 

overall conditions (EPA, 1997).  
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Figure 3-3. Overview of Watershed Loading Models (USEPA, 1997) 

 

The receiving water models are classified as either hydraulic models or water quality 

models as given in Figure 3-4.  Under these two classes, four different types of receiving 

water models are given in Figure 3-4.  These include 1) hydrodynamic models, 2) 

dynamic water quality models, 3) steady state water quality models, and 4) mixing zone 

water quality models.  Hydrodynamic models simulate the “dynamic” or time-varying 

features of water transport and are used to represent water movement in rivers, lakes, 

streams, reservoirs, estuaries, near-coastal waters, and wetland systems (EPA, 1997).  

Dynamic water quality models are used to simulate time-varying features of the fate and 

transport of water quality constituents.  Steady-state models do not have the capability to 

simulate the time-varying features of the fate and transport of water and pollutants, and 

use constant values of input variables to predict constant values of target variables.  

Lastly, mixing zone models are often referred to as “near field” models and are mostly 

used to assess limited areas of contaminant mixing in the vicinity of a wastewater 

discharge.  These models can be used in the development of discharge permits as well as 

TMDLs (EPA, 1997). 
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Interested readers are encouraged to refer to USEPA (1997) in which the detailed 

characteristics of each of these models is presented.  While some deductive models can 

be commercially purchased, others are public domain software developed mainly by 

governmental agencies for public use.  Additional information on the use and application 

of the above mentioned models can be found on the EPA web site 

(http://www.epa.gov/athens/wwqtsc/index.html) dedicated to providing technical support 

on watershed and water quality modeling (EPA, 2005). 

 

Figure 3-4. Overview of Receiving Water Models (USEPA, 1997) 

 

 

3.5 Inductive Mathematical Models 

An inductive or empirical model is based on data and is often used to predict, not explain, 

a system. An empirical model consists of a function that captures the trend of the data. 
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The equations and calibrations of inductive models rely (more directly) on field or 

laboratory data, or empirical observations.  It is important to understand the use of an 

inductive model for a particular application.  It has been found that an inductive model 

may be a very good “predicting tool” but may not provide a good cause and effect 

relationship between all input and output variables of the model.  This is due to the fact 

that inductive models are essentially data fitting models and it is sometimes difficult to 

capture the cause-and-effect dynamics of the process or processes being modeled.  

Regardless, inductive or data-driven models are becoming more and more popular due to 

their ease of use and simplicity as substitutes for more process-based models in a number 

of applications. For instance, inductive models may be preferred where 1) computational 

expense is a critical issue, 2) the process-based deductive model is over parameterized 

and cannot be adequately calibrated, and 3) budgetary constraints do not allow for a 

complex deductive model.  Inductive models may also be more favorable in the real time 

control of highly dynamic systems when quick and effective management decisions are 

needed to facilitate reliable and safe operation of the systems.  For instance, in the real 

time control of combined sewer systems, such models can serve as an effective 

management tool for managers to make quick operational decisions during storm events.  

The use of deductive models in such scenarios may be restricted by their inability to yield 

rapid response to dynamically changing conditions.   

 

Examples of inductive models range from simple linear regression models to more 

complex nonlinear models based on artificial neural networks (ANNs).  Both linear and 

non-linear inductive models can be used to fit a mathematical model to a given data set in 

order to represent a process.  By definition, regression based models are restricted in the 

sense that specific form of the function being sought has to be specified such as n-order 

polynomial, an exponential function, etc.  In cases where the dominant functional 

relationships of the data sets cannot be precisely pre-determined, other methods must be 

investigated (Tufail and Ormsbee, 2006). 
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3.5.1 Analysis Methods for Inductive Models 

Analysis methods for inductive models refer to the particular technique or method used in 

the development of such models.  Examples of inductive models range from simple linear 

regression models to more complex nonlinear models based on artificial neural networks 

(ANNs).  More recently, inductive models derived using evolutionary and biological 

principles are becoming increasingly popular.  Genetic algorithms (GAs) and artificial 

neural networks (ANNs) are two such evolutionary methods that have found numerous 

applications in the development and application of inductive models to real world 

engineering processes.  GAs represents a class of probabilistic search procedures that use 

computational methods based on natural evolutionary processes (Goldberg, 1989).  ANN-

based models represent a digital model of the functional processes of the human brain 

(Zurada, 1992).  ANNs can also be thought to be evolutionary in way that the training 

weights in the network evolve or are optimized to improve system performance.  Each of 

these models has been found to be particularly powerful in those applications when a 

large number of solutions need to be evaluated over a shorter period of time.  Regression 

techniques are the simplest form of inductive models being used in scientific research and 

will not be discussed in any detail here.  A detailed description of the increasingly 

popular evolutionary techniques used for building effective nonlinear inductive models 

for a response function is given in the sections to follow.  These include ANNs, a GA-

based technique called genetic programming (GP), and genetic functions (GFs).   

 

 

3.5.1.1 Artificial Neural Networks (ANNs)  

3.5.1.1.1 Introduction 

Recent advances in computational sciences have seen ANNs receiving a great deal of 

attention as a powerful tool of computation and knowledge representation.  This 

excitement is partially due to the ability of ANNs to imitate the brain’s ability to make 

decisions and draw conclusions.  Essentially, ANN is a mathematical model constructed 

so as to approximate the basis functions associated with a biological neuron.  In other 

words, it is a digital model of the human brain, and it imitates the way a human brain 

works.  It consists of a highly interconnected network of several simple processing units 
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called neurodes or neurons.   ANNs work by creating connections between processing 

elements (the computer equivalent of neurons) and consist of an input layer of elements 

or neurons, a hidden layer or layers of neurons, and an output layer of neurons (Figure 3-

5).  The organization and weights of these connecting elements determine the output.  

 

 

 

 

 

 

Figure 3-5.  Architecture of a simple ANN 

 

Each connection from one neuron (say A) to another neuron (say B) possesses a numeric 

weight representing the strength of connection between the two neurons.  A high positive 

strength means that when A is active B should also be active.  A near zero strength means 

that “A” being active will have little effect on “B”.  Other valuable characteristics of an 

ANN include 1) their ability to produce correct or nearly correct responses when 

presented with partially incorrect, incomplete, or noisy information in the form of input 

data, 2) their ability to generalize rules from the patterns presented on which they are 

trained, and apply these rules to new set of input data (Jain, 1994), and 3) their ability to 

extract the relationship between model inputs and outputs without knowing the 

underlying physics of the process being modeled (Muleta, 2003). 

 

 

3.5.1.1.2 History of ANNs 

Jain (1994) and Muleta (2003) have described the history of ANNs in their work which 

can be summarized as follows: 
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• The origin of ANNs dates back a century ago when William James published a 

book, Principles of Psychology (James, 1890) in which some of the principles of 

correlational learning and associated memory were stated.  He proposed the basic 

notion of a neuron’s ability to be a function of the sum of its inputs, with the past 

correlation history contributing to the strengths of interconnections. 

• In 1943, McCulloch and Pitts (1943) published a ground breaking paper in which 

they derived theorems related to models of neuronal systems by emulating the 

human brain’s information processing system. 

• Rosenblatt (1958) presented a paper in which the neural network structure of a 

perceptron was defined.  This led to the first perceptron model for implementation 

on an IBM computer in a study conducted at the Cornell Aeronautical Laboratory 

(Eberhart and Dobbins, 1990).  This also led to the development of supervised 

and unsupervised learning algorithms as seen in ANNs in the form of back 

propagation and Kohonen networks (Jain, 1994). 

• The popularity of ANNs as powerful and effective computation tools were 

realized after the efforts of Hopfield (1982) and Rumelhart et al. (1986).  The 

latter provided an excellent description of the basic anatomy of ANNs leading to 

the basic architecture and learning algorithm known as the back propagation 

method. 

• Since the work of Hopfield (1982) and Rumelhart et al. (1986), there have been 

numerous applications of ANNs in various fields of science and engineering such 

as physics, biomedical engineering, robotics, image processing, sound 

recognition, finance, and many others (Muleta, 2003). 

 

 

3.5.1.1.3 Structure of a Back Propagation ANN 

Back propagation ANNs are the most commonly used networks by engineers and 

scientists (Jain, 1994).  This can be attributed to its simple structure and its method of 

supervised learning that can be controlled externally depending upon the specific 

application.  ANN-based inductive models developed in this research use back 
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propagation neural networks and therefore only these type of neural network models are 

discussed in detail here.. 

 

Back propagation ANNs derive their name from the method in which they learn (i.e. the 

errors are propagated back from the output neurons) (Rumelhart, 1986).  Figure 3-6 

shows the structure of a simple 3-layer back propagation ANN model with an input layer 

(four neurons or inputs), a hidden layer (four neurons), and an output layer (two neuron 

or outputs).  The number of neurons in each of these layers can vary based on the specific 

application.  Also, the number of hidden layers varies based on the complexity of the 

model.  The number of hidden layers and the number of neurons in each hidden layer are 

often varied to train ANN models in order to achieve optimal training.  The neurons in an 

input layer receive input (also called activation) from an external source and then send 

output to a hidden layer.  A set of input values represent an input vector.  The neurons in 

a hidden layer receive input from the neurons in the input layer and transmit their output 

to the neurons in the output layer.  The set of output values represent an output vector 

(Jain, 1994).  In such a network, information is propagated in a forward direction from 

the input to the hidden to the output layers and is thus referred to as feed forward 

networks.  Recall that the error is propagated back from the output to the hidden to the 

input layer during training (or learning process).   
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Figure 3-6. Structure of a simple 3-Layer Back Propagation ANN 

 

 

The activation at a particular neuron is simply the weighted summation of the product of 

the activation coming from the previous neuron and its associated numeric weight.  This 

is mathematically represented as follows: 
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Where, 

Ij is the input received by neuron j from neurons in the previous layer, 

Oi is the output coming out from neuron i, 

Wij is the strength or weight of connection from neuron i to j, and 
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The output from a neuron depends on the transformation function used in the ANN 

model.  The most widely used transformation function is a sigmoid function which is 

continuous and differentiable (Jain, 1994).  The shape of a sigmoid function is shown in 

Figure 3-7.  It has a value between 0 and 1 and can be mathematically described by the 

following equation. 
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Figure 3-7. The Sigmoid Function 

 

3.5.1.1.4 Training of an ANN 

There are two types of training methods in ANNs namely the supervised learning and the 

unsupervised learning.  In supervised learning, the weights that connect the neurons are 

updated by a mechanism that is controlled externally based on some theoretical concepts.  

In the case of unsupervised learning, the network itself controls the updating of the 

weights connecting the neurons based on the kind and behavior of neurons.  The most 

common examples of supervised and unsupervised learning are the back propagation 

method and self-organizing neural networks respectively (Jain, 1994).  For most 

engineering applications, the back propagation algorithm is commonly used.  Muleta 

(2003) reported that for hydrology-related studies, the back propagation algorithm is a 

common choice. 
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3.5.1.1.5 Advantages of ANNs 

ANNs have certain advantages over other conventional inductive modeling techniques 

such as regression and these are summarized as follows: 

 

• In ANN modeling the functional form of the relationship between the input and 

output variables of the response function being modeled is not required a priori.  

In fact, a neural network will come up with a relationship based on its learning. 

• ANN models can be easily updated with new data. 

• ANNs are particularly suited for highly nonlinear and complex response functions 

for which conventional methods cannot be used.  ANNs can work well when the 

underlying physics of the process modeled is not known. 

• ANN models can result in significant reductions in computational time when 

compared to some of the more complex mechanistic models (Muleta, 2003). 

 

 

3.5.1.1.6 Limitations of ANNs 

ANN models are often referred to as “black box models” as they are not primarily used to 

produce empirical equation to represent a process, but are rather used to produce outputs 

according to inputs received by the model.  Such models require considerable data for 

training and are not favorable for applications where the objective is to obtain a simple, 

easy to use, and functionally compact approximation.  As the number of hidden layers 

and number of neurons in each hidden layer increases, the functional form extracted from 

these so called black-box models can turn out to be a long expression (a linear and non-

linear combination of sigmoidal functions) with numerous terms.  Other disadvantages of 

the ANN-based models as pointed out by Giustolisi and Savic (2004) include parameter 

estimation and over fitting.  Finally, since ANN models are developed without any 

knowledge of the physics of the process being modeled, it is possible that the resulting 

model may not be able to establish an effective cause-and-effect relationship between the 

input and output variables.  In such cases, while they serve as good prediction tools of the 

response function, their use in a management framework requiring a cause-and-effect 

relationship between variables may be limited. 
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3.5.1.2 Genetic Programming (GP)  

In addition to use in various optimization applications, evolutionary methods have also 

been successfully used to develop inductive models that fit available data to provide a 

closed form approximation of the response function.  The most successful of these 

applications have been found in the use of Genetic Programming (GP) which evolves 

symbolic expressions resulting in a formula for the given data set (Babovic et al., 2001).  

GP is a branch of genetic algorithms (Koza, 1992).  GP can be classified as a machine-

learning method that induces a population of computer programs or models that improve 

automatically as they experience the data on which they are trained (Banzharf et el., 

1998).  The most frequently used GP method is so-called symbolic regression proposed 

by Koza (1992)  Given a set of variables where some variables are dependent on others, 

GP helps to develop functions or models that relate the dependent and independent 

variables.  GP evolves tree-like solutions in finding the optimal function (or computer 

program) that best fits the given data set.  Each potential function is evaluated with the 

given data set and is assigned a fitness value based on how well the model fits into the 

data set.  The main distinctive feature of GP is thus its ability to search for a solution to 

the given problem by changing model structures (tree-like) rather than by finding better 

values of model parameters or decision variables.  An example tree-representation for the 

expression X + (Y*Z)) is given in Figure 3-8.  

 

 

 

 

 

Figure 3-8.  Tree-like structure in GP for the expression X + (Y*Z) 

 

These so-called parse trees represent a node-link structure whose nodes are procedures, 

functions, variables, and constants.  In Figure 3-8, the variables X, Y, and Z are leaves in 

the parse tree and belong to the so-called terminal set, while the mathematical operations 

+ and * are functions and are members of the so-called functional set.  Like genetic 

  X 

  Y 

  + 

   * 

 Z 



 61 

algorithms, the genetic operations of crossover and mutation take place in the same 

manner in GP.  Crossover can be achieved by replacing one or more nodes from one 

individual with those from another, while mutation can be performed by changing a 

node’s argument or operator function.  The result of crossover and mutation operations is 

the production of two new individuals in which they inherit some characteristics of the 

parents.  The process is continued until the fitness of the entire population increases and 

converges to finding the near optimal solution set.  As in most evolutionary algorithms, 

the models that produce the best fit to the given data set have the greatest opportunity to 

become parents and produce children.  The better models produce the smallest errors, or 

differences between the calculated output and the observed output.  While GP may 

generate a satisfactory function that reproduces the desires output vector {Y} for a given 

input vector {X}, there is no guarantee that the resulting model structure obtained by GP 

will give an insight into the actual working of the system.  The general idea of GP can be 

illustrated as given in Figure 3-9.  A training data set is fit to evolving computer 

programs generated by GP and the resulting optimal program is then used to generate 

output from given inputs.  Application of GP to problems in water resources engineering 

include Babovic and Keijzer (2000), Davidson et al. (1999), and Babovic and Abbott 

(1997). 

 

 

 

 

 

 

Figure 3-9.  General Representation of GP  
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3.5.1.3 Genetic Functions (GFs) 

While GAs have been extensively used for applications in engineering optimization, the 

methodology has recently been used by several researchers in the development of 

inductive models.  For instance, GAs are traditionally used for finding optimal values of 

parameters or decision variables of existing models (Alvarez et al, 2000).  Chapter 2 

describes the in detail the use of GAs as an optimization method.  Although similar to 

GP, GFs employ GAs to build an inductive model from a set of linear and higher order 

polynomials.  Rogers and Hopfinger (1994) and Shi et al. (1998) used GAs to develop 

inductive models as a combination of linear polynomials as well as polynomials of higher 

order to represent biological activity using physicochemical properties of a series of 

compounds.  Recently, a new technique called Evolutionary Polynomial Regression 

(EPR) (Giustolisi and Savic, 2004; Giustolisi et al., 2004) was developed which 

integrates numerical and symbolic regression to search for an explicit functional 

approximation of the system being modeled.  EPR uses polynomial structures to 

formulate functional forms and allows a GA search engine to obtain optimal exponents of 

such expressions (Giustolisi and Savic, 2004; Giustolisi et al., 2004).   

 

More recently, a new evolutionary method based on GAs for functional approximation of 

response functions from a given data set was introduced by Tufail and Ormsbee (2004).  

It is referred to as Fixed Functional Set Genetic Algorithm (FFSGA).  The method starts 

with a general pre-defined functional form, and searches for the optimal (best) computer 

model (empirical expression) by using a GA to search from a fixed set of sub-functions 

(of independent variables or model inputs) and mathematical operators (Tufail and 

Ormsbee, 2006).  In addition, the structure can include numeric coefficients to provide 

greater flexibility and accuracy to the resulting model.  The basic GA operators used in 

the search process include the operations of reproduction, crossover, and mutation.  In 

FFSGA, the user has the ability to control the complexity of the structure by evaluating 

simple (fewer terms) to complex (greater number of terms) in the formulation.  FFSGA 

also offers the flexibility and diversity to include linear or highly non-linear elementary 

functions in the library of internal functions provided for the GA search process.  Chapter 
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4 provides a detailed description of this method along with an example application to 

water resources engineering. 

 

 

3.5.2 Inductive Watershed Models 

Inductive modeling techniques are increasingly becoming popular for the construction of 

watershed models to model hydrologic and water quality processes.  Some of the 

techniques used for inductive watershed models include artificial neural networks 

(ANNs) genetic programming (GP), and genetic functions (GFs).   

 

 

3.5.2.1 ANN-based Inductive Watershed Models 

Models based on the principle of ANNs have been considered an alternate to physically 

based models, due to their simplicity relative to minimizing the need for collecting 

detailed watershed data. ANN modeling methodology offers a promising alternative to 

the traditional time-series approach for developing input-output simulations, and to the 

use of hydrologic models that require modeling the internal processes of a watershed 

(Zealand et al. 1999).  In the context of watershed modeling, current research on ANN-

hydrologic applications ranges from the predictions of peak discharge and time to peak 

from a single rainfall event, to the forecast of hourly or daily river stages or discharges 

(Wu et al. 2005).  Zealand et al. (1999) and Wu et al. (2005) provide listings of 

significant contributions related to the use of ANNs for hydrological modeling.  Recently, 

Muleta (2003) developed an ANN model to mimic SWAT (U.S. Department of 

Agriculture Soil and Water Assessment Tool) outputs and used the resulting inductive 

model in an optimal management model for controlling non-point source pollution.   

 

Recently there are successful applications of ANN in biological/pathogens modeling and 

identification of pollution sources.  These include Lingireddy and Brion (2004), Brion et. 

al. (2004), Brion and Lingireddy (2003), Neelakantan et al. (2002), Brion et al. (2002), 

Neelakantan et al. (2001), Brion and Lingireddy (2000), Brion and Lingireddy (1999), 

Brion et al. (2001), and Suen and Eheart (2003).  Tufail and Ormsbee (2005b) recently 
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developed an ANN-based inductive receiving water model for Beargrass Creek 

watershed in Louisville, Kentucky for predicting nutrient loads (total phosphorus and 

total nitrogen) and dissolved oxygen concentrations in the receiving streams.  Tufail and 

Ormsbee (2005c) have also developed an ANN-based inductive model for predicting the 

monthly geometric mean of fecal coliform in surface water bodies.  Both of these later 

applications will be discussed in more detail in Chapter 5.   

   

 

3.5.2.2 GP-based Inductive Watershed Models 

Babovic (1996) first introduced the idea of GP in the area of water resources and since 

then a number of researchers have used the technique to analyze water management 

problems. Application of GP to rainfall-runoff problems can be found in Drecourt (1999) 

and Savic et al. (1999).  Drunpob et al. (2005) developed a GP model to forecast stream 

flow rates in a semi-arid coastal watershed.  More recently, Jayawardena et al. (2006) 

performed a comparative analysis of a data driven model based on GP with GIS-based 

conceptual rainfall-runoff model and demonstrated the potential of GP as a viable data-

driven rainfall-runoff model.  

 

 

3.5.2.3 GF-based Inductive Watershed Models 

GF-based inductive watershed models are based on the recently developed GA-based 

method of functional approximation called FFSGA (fixed functional set genetic 

algorithm).  These include the development of a FFSGA-based inductive model (Tufail 

and Ormsbee, 2005b) for the three forks of Beargrass Creek watershed in Louisville, 

Kentucky for predicting nutrient loads, and the development of an inductive model for 

predicting the monthly geometric mean of fecal coliform in surface water bodies (Tufail 

and Ormsbee, 2005c).  The FFSGA technique is discussed in detail in Chapter 4.  

FFSGA-based inductive models for nutrients and pathogens are discussed in Chapter 5. 
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CHAPTER 4 

A FIXED FUNCTIONAL SET GENETIC ALGORITHM (FFSGA) 

APPROACH TO INDUCTIVE MODELING 

 

4.1 Introduction 

The goal in most modeling is to find an optimal balance between model complexity and 

model applicability by applying basic principles of model parsimony. The principle of 

parsimony states that we employ the smallest possible number of parameters in a model 

(Box and Jenkins, 1976).  Process-based or deductive models can be often comprised of 

too many parameters that need to be calibrated and can lead to computational expense 

and added complexity.  Inductive or data-driven models are becoming more and more 

popular due to their ease of use and simplicity as substitutes for more complex process-

based models in a number of applications. For instance, inductive models may be 

preferred where 1) computational expense is a critical issue, 2) the process-based 

deductive model is over parameterized and cannot be adequately calibrated, and 3) 

budgetary constraints do not allow for a complex deductive model.  More recently, 

inductive models derived using evolutionary and biological principles are becoming 

increasingly popular.  Chapter 3 provided a description of several of such inductive 

modeling techniques including artificial neural networks (ANN) and genetic 

programming (GP).  Both ANN and GP have been successfully used to develop inductive 

models for applications in water resources engineering.  In cases where a simple and 

compact empirical relationship is sought for the response function being modeled, a new 

technique called FFSGA (fixed functional set genetic algorithm) is proposed (Tufail and 

Ormsbee, 2006).    

 

While GP has been successfully used in model building of response functions, they often 

result in complex expressions for the function sought that are not often simple and easy to 

use. Also, such expressions can be difficult to interpret and could lead to over fitting of 

the problem (Giustolisi and Savic, 2004).  The fact that empirical models resulting from 

GP are of variable size and shape as model structures continuously undergo adaptations 
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from a class of parse trees explains variability in the resulting optimal model.  An 

example of this can be seen in the explicit polynomial approximation model for friction 

factor in turbulent pipe flow using GP in the work done by Davidson et al (1999). 

 

ANN-based inductive models require considerable data for training and are not favorable 

for applications where the objective is to obtain a simple, easy to use, and functionally 

compact approximation.  As the number of hidden layers and number of neurons in each 

hidden layer increases, the functional form extracted from these black-box models can 

turn out to be a long expression (a linear and non-linear combination of sigmoidal 

functions) with numerous terms.  Other disadvantages of the ANN-based models as 

pointed out by Giustolisi and Savic (2004) include parameter estimation and over fitting.   

 

More recently, a new technique called Evolutionary Polynomial Regression (EPR) was 

developed which integrates numerical and symbolic regression to search for an explicit 

functional approximation of the system being modeled (Giustolisi and Savic, 2004, 

Giustolisi et al., 2004).  The disadvantages of GP and ANN mentioned above were some 

of the key motivators for this new GA-based polynomial functional approximation.  EPR 

uses polynomial structures to formulate functional forms and allows a GA search engine 

to obtain optimal exponents of such expressions.  The proposed FFSGA method of 

inductive model building is also derived from a motivation to develop data-based 

inductive models that are simple to implement and produces compact and easy to use 

explicit expressions. FFSGA is different from EPR (Giustolisi and Savic, 2004) in that it 

does not use a polynomial structure for functional approximation, and allows the user to 

formulate any pre-defined form comprised of functions of model inputs (or combination 

of such functions), coefficients, and operators.  

 

 

4.2 Fixed Functional Set Genetic Algorithm (FFSGA) 

An inductive model represents a relationship between independent variables (model 

inputs) and a target response function (model output) that is being modeled.  In the 

proposed FFSGA method, a pre-defined general functional form is formulated 
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comprising of coefficients, sub-functions of independent variables or model inputs, and 

mathematical operators.  A GA algorithm is then used to search for the best combination 

of sub-functions of the model inputs (logarithmic, exponential, sine, cosine, etc.) and 

mathematical operators (+, -, *, /, ^) that will fit the pre-defined functional form while 

minimizing the difference between observed and predicted outputs.  The coefficients in 

the pre-defined functional expression are then sought using least squares optimization by 

starting from a pre-evolved starting point.  The library of sub-functions of the 

independent variables is provided by the user.  As would be expected, a library with 

greater number of sub-functions will ensure more choices for the GA search process 

leading to better functional approximation results.  Such a method is particularly suited 

for applications where some relationships between the input and output variables may be 

known or at least hypothesized (e.g., logarithmic or exponential relationship). The 

distinct feature of this method that distinguishes it from a standard GP-based inductive 

modeling technique is that the general form of the approximation function sought is 

defined prior to the evolutionary search process.  However, in the absence of prior 

knowledge about the response function sought, it is still possible with considerable ease 

to formulate “a very general” form via some logical arrangement of coefficients, 

functions of independent variables (model inputs), and mathematical operators.  Such a 

starting formulation determines the number of parameters and elementary functions to be 

used in the functional form sought and thus allow the user to control the complexity of 

the expression.  The most optimal expression at the end of the search process becomes 

the functional approximation of the response function under study.   

 

The process of obtaining the optimal functional form using FFSGA is thus achieved in 

two steps.  In the first step, the GA searches for the optimal functions of the decision 

variables and mathematical operators to obtain the optimal functional components that 

will constitute the structure of the desired functional form.  In the second step, the 

coefficients of the functional form are obtained by least squares optimization.  Such an 

approach helps in eliminating any potential convergence problems associated with 

searching for numeric coefficients (constants) and functional forms (sub-functions of 

independent variables and mathematical operators) at the same time.  By searching for 



 68 

the numeric coefficients and functional forms (sub-functions of independent variables 

and mathematical operators) at the same time can lead to convergence problems thus 

restricting the ability of FFSGA to be effective in obtaining optimal expressions. 

 

FFSGA is static in the sense that the general shape and size of the pre-defined functional 

form does not change during the GA search.  The pre-defined functional form can be 

based on any prior knowledge of the response function or the user can formulate several 

general formulations without any such knowledge.  The pre-defined formulations can be 

varied by varying the structure and corresponding number of terms (parameters) in the 

functional form as deemed appropriate by the user. This is different from the GP 

approach in which the parse tree structures (that represent the functional form) are 

dynamic and change form as they evolve to obtain the most fit functional form or 

expression for the data set being analyzed.  This static GA approach results in the optimal 

selection of a functional form or expression that can be simple, easy to use, and compact 

after training on a given data set.  The method uses the basic structure of GA 

optimization involving selection, crossover, and mutation processes by selecting sub-

functions of independent variables (model inputs) and mathematical operators that 

minimizes the mean square error between the observed and predicted output. 

 

 

4.3 FFSGA Methodology  

FFSGA is a GA-based method to develop inductive models for a response function 

sought.  For a given function Y for which an empirical functional form is sought, a pre-

defined functional form(s) is first selected.  Such a formulation can be based on any prior 

knowledge about Y or can be formulated without such knowledge.  The pre-defined 

functional form is a function of the independent variables (say X1 and X2) and one such 

formulation is given in Figure 4-1. 
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Figure 4-1. General pre-defined functional form for response function Y 

 

The objective function in the search process is the explicit functional form sought (Figure 

4-1) for Y (model output) and the fitness function is based on the mean square error 

(MSE) of the performance of the objective function in predicting the value of Y as a 

function of the two decision variables X1 and X2 (model inputs).  More than one 

functional form can be formulated for Y by varying the parameters and functional 

structure of the function sought.  Also, the user can increase the number of available sub-

functions of the independent variables for selection in the GA process.   

 

The basic genetic operations of GA (selection, crossover, and mutation) are used to select 

the best sub-functions and operators as identified in the pre-defined functional form given 

in Figure 4-1.  The FFSGA model starts with a random selection of solution sets resulting 

in an initial population.  Each solution set thus represents an explicit equation for the 

target variable Y.  GA works on a population of possible solutions attempting to find the 

optimal solution (in this case the most fit computer program or functional form) that 

maximizes the value of the fitness function.  In each generation, some population of 

solutions improves the fitness function and others get worse.  The superior solutions are 

used in producing the next generation of populations to continue the search process.  The 

FFSGA model continues to evolve a new set of solution vectors as the search marches 

from one generation to the other.  It is possible that some of the individuals (off-springs) 

may be worse than their parents as the average fitness of solutions generally increases.  

a1 F(X1) @ b1 F(X2)

Coefficients a1, b1 = {real numbers}

Mathematical Operator @ = {+, -, *, /, ^}

F( ) = 0, 1, X, log(X), exp(X), trig (X),     

sin(X), sqrt(X), 1/X, etc.

Y =
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The improved solution sets tend to survive from generation to generation, and those that 

are inferior (poor fitness values) will tend to die out in the process.  At the termination of 

the specified number of generations, the functional form that has the highest fitness value 

is selected as the optimal structure of the explicit expression sought in the search process.  

Finally, the coefficients of the functional form are obtained by applying least squares 

optimization to the optimal form obtained from the GA process.  The FFSGA approach 

works in a manner similar to GP, except that the general functional form is pre-defined 

and it does not change size and form.  The FFSGA approach can be illustrated by the 

flow chart as shown in Figure 4-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Flow Chart of FFSGA Model 
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4.4 FFSGA Search Strategy 
 

FFSGA is a general methodology that can be applied to obtain functional approximation 

of a response function under study.  The open-ended nature of the technique that allows 

the user to evaluate any desired form and associated sub-functions (linear and/or non-

linear) is strength of this approach that can bring more flexibility and diversity to the 

search process.  The following guidelines will aid the user to specify a starting pre-

defined formulation and associated library of internal functions (of model inputs) for the 

GA search process: 

 

1. Given the number of independent variables (model inputs), the starting functional 

form (e.g. as given in Figure 4-1) can include any number of coefficients, sub-

functions of model inputs, and mathematical operators as desired by the user.  The 

user can control the complexity of the form in this stage and it is recommended to 

start from a simple form (fewer terms) and move to more complex forms by adding 

more terms. 

 

2. Given a starting functional form, the GA would need a library of sub-functions of the 

independent variables (model inputs) to search for the most optimal sub-functions.  A 

breadth first and depth next approach of elementary sub-function search is suggested 

here.  For any given functional approximation sought, the user can start with a limited 

set of generally perceivable sub-functions of the model inputs (such as logarithmic, 

exponential, sine, square root, etc.) as well as combination of such sub-functions.  

The FFSGA model can be run with this initial library of sub-functions to evaluate the 

goodness of fit obtained for the response function.  Based on the results of the model 

application, if the resulting expression is within the model performance criteria, the 

user can 1) stop, or 2) further improve model performance by focusing on the optimal 

function types selected by the GA search and introducing more variations of that 

particular function type in the library of sub-functions.  
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3. If the model performance with the initial library of sub-functions is not within a 

prescribed target (such as a target MSE value), the user can continue to add more 

elementary sub-functions or combination of sub-functions to the library of sub-

functions to provide more flexibility and diversity to the search process.  The process 

continues until a functional expression is obtained that satisfies the user’s 

performance criteria.  It should be noted that any prior knowledge of the response 

function will obviously facilitate the search process as it allows the user to select 

functions (and its variations) that can better describe the process.   

 

 

4.5 Example Application (Friction factor for flow in pipes) 

The proposed fixed functional set genetic algorithm (FFSGA) approach will be used to 

derive a function to represent the relationship between friction (f) and the three 

independent variables of pipe diameter (D), pipe roughness (E), and the Reynolds number 

(Re). The resulting closed form expression(s) for the friction factor will be compared with 

an explicit polynomial expression derived previously by Davidson et al. (1999) using GP 

coupled with polynomial regression.  The resulting closed form expression(s) will also be 

compared to an explicit expression for friction factor, known as the Swamee and Jain 

equation (Swamee and Jain, 1976).  

 

The calculation of energy (or head) loss in pipe flow is the one of the most frequently 

calculated quantities in the area of fluid mechanics.  For a given pipe with diameter D, 

the head loss can be calculated using the Darcy-Weisbach equation as follows (Potter and 

Wiggert, 1991): 

 

Dg

VLf
H L

2

2

=    (4-1) 

 

Where, HL is the head loss in pipe, f is the friction factor, V is the velocity, D is the pipe 

diameter, and g is the gravitational constant.  The friction factor f depends on the relative 

roughness of the pipe (E/D) and pipe velocity (through Reynolds Number Re ≡ VD/υ), 
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and is computed either by implicit or explicit equations available or a chart-based 

solution such as Moody diagram (Moody, 1944) is used.  Experimental data that relate 

the friction factor f to the Reynolds number Re have been developed for fully developed 

pipe flow over a wide range of wall roughness (Potter and Wiggert, 1991).  The results of 

these data are available in the form of what is commonly referred to as the Moody 

Diagram (Figure 4-3) as given in most fluid mechanics books (Moody, 1944).  In 

practice, most of the pipe flow calculations lie in the turbulent zone (4000<Re<108).  

Empirical equations exist that represent the turbulent zone of the Moody Diagram 

(Moody, 1944).  Two of the most frequently used equations are presented here and these 

include the Colebrook-White equation (Colebrook, 1939) and the Swamee and Jain 

equation (Swamee and Jain, 1976).  For turbulent pipe flow, the Moody diagram (Moody, 

1944) is a graphical representation of the Colebrook-White equation as given in Equation 

(4-2). 
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Figure 4-3. Moody’s Diagram (Moody, 1944) 
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The most significant drawback of using Equation (4-2) is its implicit nature, i.e., the 

friction factor f appears on both sides of the equation, thus requiring the use of iterative 

methods to solve for f.  Regardless of this drawback, the Colebrook-White equation is 

considered the most accurate formula to compute friction factor f for pipe flow 

computations in the turbulent zone.  The Swamee and Jain (Swamee and Jain, 1976) 

equation is an explicit equation for obtaining the friction factor f, and for turbulent flow 

regime is given as follows:  

 

2

9.010
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74.5

7.3
log

25.0
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⎛
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⎝
⎛ +

=

D

E
f   (4-3) 

 

10-6 < E/D < .01 and 5000 < Reynolds Number < 3x108 

 

The Swamee and Jain (Swamee and Jain, 1976) equation is accurate to within 

approximately 2% of the Moody diagram (Moody, 1944). 

 

The purpose of this example application is to find an explicit functional approximation 

for the friction factor f for turbulent pipe flow as a function of Re (Reynolds number) and 

E/D (relative roughness of the pipe material) for a specific region in the transitional zone 

of Moody Diagram.  This region lies between Reynolds numbers ranging from 100,000 

to 1,000,000 and relative roughness values from 0.001 to 0.01 as highlighted in Figure 4-

3.  For the purpose of this study, the Colebrook-White equation was used to generate a 

data set consisting of a two-dimensional grid of 100 data points, created from 10 

Reynolds values selected in equal increments of 100,000 on the interval of 100,000 to 

1,000,000, and 10 relative roughness values selected in equal increments of 0.001 on the 

interval of 0.001 to 0.01.   Davidson et al. (1999) used the same data set for finding an 

explicit polynomial function for friction factor f using GP. The performance of the 

explicit functional form using FFSGA is compared to the Swamee and Jain equation 

(Swamee and Jain, 1976) and the results obtained by Davidson et al. (1999). 
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4.5.1 FFSGA Methodology for Friction Factor Functional Form 

The objective function in the example application is the explicit functional form sought 

for the friction factor and the fitness function is based on the mean square error (MSE) of 

the performance of the objective function in predicting the friction factor as a function of 

the two independent variables (model inputs).  These two independent variables include 

the relative roughness of the pipe (E/D) and Reynolds number (Re).  Note that E is 

defined as the average height of surface irregularities of the pipe and D is the pipe 

diameter. These are the same variables that are plotted on Moody Diagram (Figure 4-3) 

in determining the friction factor for turbulent pipe flow.  Five general functional forms 

were formulated to represent the expression for friction factor in the transitional flow 

zone.  Each of these forms is comprised of some logical combination of the two 

independent variables (or sub-functions of the two independent variables), some numeric 

coefficients, and mathematical operators, and are given in Figure 4-4.  It should be noted 

these functional forms were formulated in a general way so as not to mimic or replicate 

any particular functional form such as the Swamee and Jain equation (Swamee and Jain, 

1976).  In other words, these general functional forms were formulated without any 

attempt to match an already existing explicit form.  However, in a typical application, 

prior knowledge of the functional form can be used to develop such formulations thereby 

facilitating the search process. The user can formulate and evaluate any number of such 

functional forms for the response function being modeled, and the five given in Figure 4-

4 are formulated here for the sake of demonstration.  Table 4-1 gives a list of a sample of 

15 different internal or elementary sub-functions for the two independent variables 

(model inputs) that are available for selection by the FFSGA model.  The number of such 

elementary sub-functions can be expanded further by introducing more sub-functions or 

combination of sub-functions.  Table 4-2 gives the corresponding mathematical operators 

that are available for selection by the FFSGA model.  
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Figure 4-4. Pre-defined Functional Forms 

 

As seen in Figure 4-4, all of the five functional formulations are defined in terms of some 

function of the independent variables.  For example, “function_1 (E/D)” in functional 

form #1 can be selected to be any of the 15 sub-functions defined in Table 4-1, and so on.  

Similarly, “operator_1” in functional form #1 can take on any of the five operator values 

given in Table 4-2.  The coefficients C1, C2, and C3 are double precision real numbers.   

 

Table 4-1.  List of functions for Decision Variables (Re and E/D) 
Function # Function f (Re) or Function f (E/D) 
1 1 

2 Re or E/D 

3 1/Re or 1/(E/D) 

4 Exp (Re) or Exp (E/D) 

5 Loge (Re) or Loge (E/D) 

6 Log10 (Re) or Log10 (E/D) 

7 Exp (1/Re) or Exp (1/(E/D)) 

8 Loge (1/Re) or Loge (1/(E/D)) 

9 Log10 (1/Re) or Log10 (1/(E/D)) 

10 Re*Exp (Re) or (E/D)*Exp (E/D) 

11 Re* Loge (Re) or (E/D)*Loge (E/D) 

12 Re*Log10 (Re) or (E/D)*Log10 (E/D) 

13 1/Re*Exp (Re) or 1/(E/D)*Exp (E/D) 

14 1/Re* Loge (Re) or 1/(E/D)*Loge (E/D) 

15 1/Re*Log10 (Re) or 1/(E/D)*Log10 (E/D) 

 

 

Functional Form #1   =    {C1 operator_1  [function_1 (E/D) operator_2 function_2 (Re)]} operator_3    
                                         {C2  operator_4  [function_3 (E/D) operator_5 function_4 (Re)]}    
 
Functional Form #2   =    {C1 * [function_1 (E/D) operator_1 function_2 (Re)]} operator_2    
                                         {C2  * [function_3 (E/D) operator_4 function_4 (Re)]}    
 
Functional Form #3   =    {C1 * function_1 (E/D) * function_2 (Re)} operator_1    
                                         {C2 * function_3 (E/D) * function_4 (Re)}    
  
 Functional Form #4   =   {C1 * function_1 (E/D)} operator_1 {C2  * function_2 (Re)} 
                                               
 Functional Form #5   =   {[C1 * function_1 (E/D)] operator_1 [C2  * function_2 (Re)]} operator_2 
              {C3 * function_3 (E/D) * function_4 (Re)} 
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Table 4-2.  List of Mathematical Operators 
Operator # Operator 

1 + 

2 - 

3 * 

4 / 

5 ^ 

 

 

The basic genetic operations of GA are used to select the optimal elementary sub-

functions (from Table 4-1) and operators (from Table 4-2) for inclusion in the each of the 

five pre-defined functional forms given in Figure 4-4.  Each individual solution set in the 

GA process consists of a chromosome of decision vectors that makes up the structural 

components (sub-functions and operators) of the general functional form sought as given 

in Figure 4-4.  Thus the length of the solution set (chromosome) for each of the five 

functional forms given in Figure 4-4 will vary according to the number of terms.  These 

chromosomes are represented as strings of values in binary form (0 or 1).  For example, 

in the case of functional form #1 (Figure 4-4), there are 9 decision vectors in each 

solution set (chromosome).  These are given as follows: 

 

Solution set operator_1, operator_2, operator_3, operator_4, operator_5, function_1, 

function_2, function_3, and function_4 

 

Note that the coefficients in functional form #1 are not sought in the GA search process 

and thus are not included in the solution set (chromosome).  In the FFSGA model, strings 

of binary numbers of fixed length represent the values of the decision vectors contained 

in the solution set given above.  The length of each string representation depends on the 

numeric bounds of the individual parameter being represented.  For example, since 

operator_1 through operator_5 can have a value between 1 and 5 as given in Table 4-2, 

they can be represented by a 3-digit binary string.  Note that the maximum decimal value 

of a 3-digit binary string is 7, and appropriate mapping is performed in the decoding of 

binary numbers.  Similarly, if function_1 through function_4 can have a value between 1 

and 15 as given in Table 4-1, each of these sub-functions can be represented by a 4-digit 
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binary string.  Note that the maximum decimal value of a 4-digit binary string is 15.  

Consequently, for functional form #1, the total length of each solution set (chromosome) 

will be 31 for this particular illustration and is represented as follow (Table 4-3): 

 
 

Table 4-3.  Allocation of binary strings to decision vectors in a solution set 
(chromosome) for Functional Form #1 

String Operator_1 Operator_2 Operator_3 Operator_4 Operator_5 
# of binary 
digits 

3 3 3 3 3 

String Function_1 Function_2 Function_3 Function_4  

# of binary 
digits 

4 4 4 4 
 

 

4.5.2 FFSGA Results for Friction Factor 

The FFSGA model evaluates each of the five functional forms (Figure 4-4) individually.  

In other words, a separate search is conducted for each of the five formulations.  In each 

case, the model starts with a random selection of solution sets resulting in an initial 

population.  Each solution set thus represents an explicit equation for the friction factor.  

These solution sets are evaluated for the given data set (values of Re and E/D in this case) 

and the computed values of friction factor are compared against the target or actual 

function values to determine the mean square error (MSE).  The MSE is a measure of 

how good the given solution set is in representing the data set evaluated and translates 

into the corresponding fitness function.  The FFSGA model continues to evolve new set 

of solution vectors as the search marches from one generation to the other.  This is 

accomplished through the process of selection of new generation populations, crossover, 

and mutation.  Each functional form is evaluated individually by varying the number of 

populations, generations, and the probability of crossover and mutation in the GA search 

process.  The results of the analysis reveal that the GA search process produces the 

optimal expressions when the probability of crossover and mutation is fixed at 0.7 and 

0.03 respectively.  At the termination of specified generations, the functional form that 

has the highest fitness value is the optimal structure of the explicit expression sought in 

the search process.  Finally, the coefficients of the functional form are obtained by 

applying least squares optimization to the optimal form obtained from the GA process.  
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The final expressions representing the optimal functional forms for each of the five 

general forms are given below (Equations 4-4 through 4-8).  Table 4-4 gives the 

corresponding MSE values and maximum error of interpolation for the data set analyzed 

by each of the optimal expressions namely FFSGA-Function 1 through 5.  It is evident 

from the results that the FFSGA approach produces several compact and easy to use 

expressions for obtaining the friction factor f for a given data set consisting of Re and E/D 

values in the transitional zone.  Also given in Table 4-4 are the MSE values for the same 

data set for the expressions resulting from the GP approach used by Davidson et al. 

(1999) as well as the Swamee and Jain equation (Swamee and Jain, 1976).   
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Table 4-4.  MSE and Maximum Error values for example application  
(Data set from Moody Diagram) 

Expression Type/Method MSE  Max. Absolute Error 
FFSGA-Function 1 (Equation 4-4) 0.00000020 0.001229585 

FFSGA-Function 2  (Equation 4-5) 0.00000050 0.001848040 

FFSGA-Function 3  (Equation 4-6) 0.00000315 0.003719280 

FFSGA-Function 4  (Equation 4-7) 0.00000011 0.001807310 

FFSGA-Function 5  (Equation 4-8) 0.00000022 0.001281080 

2-term GP term by Davidson et al (1999) 0.00000082 0.002293470 

4-term GP term by Davidson et al (1999) 0.00000016 0.001499050 

5-term GP term by Davidson et al (1999) 0.00000009 0.001491670 

10-term GP term by Davidson et al (1999) 0.00000002 0.000693730 

14-term GP term by Davidson et al (1999) 0.000000002 0.000193930 

Jane and Swamee Equation 0.00000002 0.000253750 

 

It can be seen in the Table above that the expressions resulting from the FFSGA approach 

competes well with all other methods.  Of the five pre-defined functional forms 

evaluated, the best results are obtained by using the FFSGA-Function 4 as given by 

Equation (4-7), and even though it does not compete with some of the higher order 

polynomial expressions derived by Davidson et al. (1999) in terms of accuracy, the 

expression is simple, compact, and easy to use.  The 14-point expression derived by 

Davidson et al (1999) as given in Equation (4-9) may be of greater accuracy (MSE is 

superior to the most accurate FFSGA expression by two significant digits), but results in 

an expression that is not as compact and simple as the ones derived by the FFSGA model.   
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It should also be noted that in the GP approach used by Davidson et al. (1999) to derive 

expressions for friction factor, the independent variables (Re and E/D) and target value (f) 

were transformed to fit on a scale ranging from 1 to 10.  This was done to reduce ill-

conditioning in the computations.  Thus the resulting expressions are in terms of a 

transformed friction factor (denoted as y in the Equation 4-12), which would need to be 

converted back into the actual friction factor using the transformation function.  In 

contrast, FFSGA approach uses the actual data set and no transformation is performed 

thus resulting in computational savings.   

 

 

4.6 Sensitivity Analysis 

In the FFSGA example application described above, none of the five general pre-defined 

functional forms given in Figure 4-4 are structured to replicate the Swamee and Jain 

equation with regard to the sub-functions of independent variables, operators, and 

coefficients.  For instance, none of the sub-functions given in Table 4-1 include functions 

that are dependent on both Re and E/D.  In fact, all of them are either a function of Re or 

E/D.  A sensitivity analysis was performed to evaluate the performance of the proposed 

technique by formulating a new functional form #6 (in addition to the five given in 

Figure 4-4) that in some way replicates the structure of the Swamee and Jain equation.  

This is done by introducing functions that are dependent both on Re and E/D.  This 

functional form #6 is given by Equation (4-13) as follows: 
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The FFSGA model when applied to such a starting functional formulation then finds the 

optimal sub-functions and operators by a GA search as described previously.  The 

optimal coefficients C1 through C8 are obtained by least squares optimization.  The 

optimal expression obtained by using Equation (4-13) as the starting functional form is 

given by Equation (4-14) and its performance matches that of the Swamee and Jain 

equation (MSE = 0.00000002) and is given below: 
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FFSGA-Function 6 given by Equation (4-14) is also similar in performance to the 10-

term expression by Davidson et al (1999).  Table 4-5 gives a comparison of the 

performance of this improved FFSGA expression and those derived by Davidson et al. 

(1999) as well as the Swamee and Jain equation (Swamee and Jain, 1976). The ability of 

the FFSGA model to match the performance of the explicit Swamee and Jain equation 

given a starting functional form (Equation 4-13) that benefits from prior knowledge of 

the response function highlights two things; 1) FFSGA improves in performance when 

some knowledge of the response function is known, and 2) FFSGA produces an optimal 

expression that looks similar to the Swamee and Jain equation.  The improved 

performance validates the promise that this approach has shown in functional 

approximation of response functions.  This sensitivity analysis was carried out to show 

that prior knowledge about the response function will benefit the FFSGA approach by 

facilitating the search process and achieving better accuracy.  It should however be noted 

that the GA may return other optimal expressions with different sub-functions that may 

provide the same accuracy.  This is anticipated as the search process is driven by the 

fitness of the expressions and there may be other sub-functions or combinations of sub-

functions and corresponding coefficients that would result in expressions of comparable 

accuracy.  It is however worth noting that given the limited number of sub-functions of 

the independent variables (initial library of function provided in Table 4-1) available for 

selection by the FFSGA model and the fact that all starting functional forms (Figure 4-4) 
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were formulated without prior knowledge of the response function, the performance of 

the FFSGA-based expressions (Equations 4-4 through 4-8) is quite encouraging.  It can 

thus be anticipated that expanding the library of sub-functions and/or combination of sub-

functions will bring more variability to the FFSGA model, and it can be expected to 

further improve its performance, ultimately approaching that of the Colebrook-White 

equation.  Such an expansion can be carried out either by conducting a breadth first and 

depth next search for optimal sub-functions or with the help of any knowledge that the 

user might have about the response function.  

 

Table 4-5.  Optimal FFSGA Results 
(MSE and Maximum Error values for example application) 

Expression Type/Method MSE  Max. Absolute Error 
FFSGA-Function 6  (Equation 3-10) 0.000000020 0.000883490 

2-term GP term by Davidson et al (1999) 0.000000820 0.002293470 

4-term GP term by Davidson et al (1999) 0.000000160 0.001499050 

5-term GP term by Davidson et al (1999) 0.000000090 0.001491670 

10-term GP term by Davidson et al (1999) 0.000000020 0.000693730 

14-term GP term by Davidson et al (1999) 0.000000002 0.000193930 

Jane and Swamee Equation 0.000000020 0.000253750 

 

 

4.7 General Remarks 

The use of inductive models that replicate existing deductive models is gaining popularity 

and this method provides a simple and useful tool for developing explicit relationships 

for a response function.  This method serves as a useful candidate for application in areas 

such as: 

 

• Rainfall-runoff modeling 

• Watershed response models such as pathogen and nutrient load models (Tufail and 

Ormsbee, 2005c) and 

• Receiving water models such dissolved oxygen models (Tufail and Ormsbee, 

2005b). 
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The fact that FFSGA results in simple and compact expressions for a response function 

being modeled makes it an ideal candidate for use as a simulation model for integration 

into an optimization framework.  Such integration can be quite cumbersome and 

computationally expensive if more complex deductive models are to be used.  An added 

benefit of the approach is that it allows the user to control the complexity of the 

functional form sought by incorporating fewer or more terms in the starting functional 

formulation.  FFSGA also offers the flexibility and diversity to include linear or highly 

non-linear elementary functions in the library of internal functions provided for the GA 

search process.  Other methods such as GP may be able to develop more accurate 

expressions, but it may be at the expense of increasing complexity in the form and size of 

such expressions (as demonstrated in the case of GP-based expressions by Davidson et al. 

(1999).  While the fixed functional framework of the proposed technique may limit the 

accuracy of the resulting models, such a compromise may be offset by a final model that 

is simple, compact, and easy to use (Tufail and Ormsbee, 2006).  A limitation of the 

proposed method is the selection of pre-defined general functional forms for the response 

function.  However, the fact that one can formulate such general forms without requiring 

any prior knowledge of the functional form sought still makes it an effective technique.   

 

Another limitation of the proposed FFSGA methodology for developing inductive models 

is its ability to handle a large number of inputs in the model.  Being in the early 

development stage, the method is currently well suited and tested on problems involving 

a manageable number of model inputs (up to 5).  As the number of inputs increase, the 

pre-defined functional form formulated by the user as required can become complex.  A 

methodology to handle large number of model inputs is needed to facilitate the search 

process while maintaining a compact and easy to use empirical structure of the model 

sought.  Work is underway to enhance the FFSGA methodology to overcome such 

shortcomings.  For processes involving a large number of model inputs, other nonlinear 

techniques such as ANNs can be used to obtain an empirical model for the process or 

system under study. 

 



 85 

Inductive models that result in a functional approximation of the response function tend 

to provide the added benefit of model parsimony.  However, it should be realized that not 

all inductive models (including the ones developed by using FFSGA) are parsimonious in 

that they 1) improve function interpretability, 2) contain less parameters and/or variables, 

and 3) provide better generalization and interpolation capabilities.  FFSGA allows the 

user the flexibility to control the complexity of the functional structure and parameters 

used.  Depending on the choice of the internal functions of the model inputs, the resulting 

expressions from the FFSGA model vary in their parameter and functional complexity.  

Model complexity comes with improved accuracy, but it renders the model to be less 

parsimonious and functionally interpretable.   
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CHAPTER 5 

MACRO-LEVEL WATER QUALITY SIMULATION MODELS  

 

5.1 Introduction 

An optimal management model for a watershed consists of two distinct components, 1) a 

water quality simulation model, and 2) an optimization model linked to the simulation 

model.  Chapter 2 described the different types of water quality simulation models as 

well as optimization models that can be used in such a formulation.  In theory, three 

different levels or types of macro-level models are possible in such a formulation namely 

1) implicit inductive models, 2) explicit inductive models, and 3) simplified deductive 

models.  This research will investigate the utility of explicit inductive and simplified 

deductive models in the context of an optimal watershed management framework.  

Macro-level models are simpler models that will be investigated for use as substitutes for 

complex deductive models and are discussed in detail in the following sections.   

 

 

5.2 Macro-level Models in an Optimal Management Framework 

Each water quality model has its own unique purpose and simulation characteristics and 

the preferred choice will depend on factors such as complexity of process being modeled, 

input data requirements, modeling objectives, and model applicability.  In a complex 

watershed, the modeling objectives may require the use of a combination of models.  In 

other cases, a very simplified representation of the processes or system under study might 

be sufficient to support the decision-making needs.  For a complex watershed, it is often 

required to construct a series of deductive models to simulate multiple processes 

occurring in the watershed.  For instance, both a watershed-scale loading as well as a 

receiving water model is needed for a watershed of sufficient complexity in which both 

point and non-point sources of pollution are being modeled.  Moreover, multiple 

receiving water models of increasing complexity may be needed to model the transport of 

pollutants from the source to the receiving waters.  Figure 5-1 shows one example of a 

series of models needed for a complex watershed.   
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Figure 5-1. Simulation Models for a Complex Watershed 

 

While such a series of deductive models are anticipated to better reflect the true dynamics 

of the process or processes being modeled, these can at times be cumbersome and 

complex.  Such models require extensive knowledge of the process being modeled, 

require significant efforts in calibration and verification, and can be computationally very 

expensive.  In particular, such models may not be ideally suited for application in a 

planning and water quality management framework in which multiple strategies would be 

evaluated in a short time.  For instance, it may require more than 24 hours completing 

one simulation run of a series of models given in Figure 5-1.  Linking such a series of 

models in an optimization framework can be very cumbersome and complex and will not 

allow for an efficient way to evaluate multiple management scenarios.    

 

In an optimal management formulation for water quality management, quick and simple 

simulation models will be more favorable to evaluate multiple scenarios in a relatively 

short period of time.  Such models can be very effective to support decision making on a 

planning level to formulate optimal strategies for water quality management in an urban 

watershed.  Once an optimal strategy or strategies are selected to be suitable for a 

particular application, they can always be validated by a full blown deductive or process-

based model of the watershed.  To facilitate such a process, the concept of a macro-level 

simulation model is introduced here.  Such a model is a simplified approach to modeling 

a response function of interest and is a macro-translation of the complex model or suite of 

models.  Macro-level models can be effectively incorporated into a nonlinear 

Flow Model: HSPF

Loading  Model: HSPF

Receiving  Water  Model: CEQUAL-RIV1

Transport Model: XP-SWMM- HSPF
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optimization framework for water quality management as shown in Figure 5-2.  As stated 

previously, once an optimal strategy or set of strategies are selected for a particular 

application, they can be verified by using the more detailed and complex process-based 

model developed for the watershed.  Three different levels or types of macro-level 

models can be used in such a formulation as given in Figure 5-3.  These include 1) an 

implicit inductive model, 2) an explicit inductive model, and 3) a simplified deductive 

model.  The choice of a particular model type depends on the particular application, 

available data, and the complexity of process or processes being modeled.  

 

 

 

    

 

 

 

 

Figure 5-2. Water Quality Management using Macro-level Simulation models 
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Figure 5-3. Types of Macro-Level Simulation Models 

 

 

5.3 Inductive Simulation Models 

Inductive or data-driven models are becoming more and more popular due to their ease of 

use and simplicity as substitutes for more process-based models in a number of 

applications. For instance, inductive models may be preferred where 1) computational 

expense is a critical issue, 2) the process-based deductive models are over parameterized 

and cannot be adequately calibrated, and 3) budgetary constraints do not allow for a 

complex deductive model (Tufail and Ormsbee, 2006).  These factors led to the 

motivation of evaluating the utility of inductive models as macro-level transformation of 

the more complex deductive models and their subsequent use in an optimal management 

formulation.  The following sections will describe the development of inductive 

simulation models for watershed management. 

 

 

5.3.1 Implicit Inductive Models 

An implicit inductive model is constructed by utilizing output data from a calibrated 

deductive model of the process or system being modeled.  This approach can be useful in 

situations where 1) a fully calibrated deductive model is available but it is very complex 

for integrated into an optimization framework and thereby computationally expense, and 
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2) there is lack of raw data needed to develop an explicit inductive model.  Implicit 

inductive models can result in significant computational savings and may be more 

favorable if quick decisions are needed over a short period of time.   

 

The techniques used to construct such inductive models can vary from simple regression 

methods to more complex and non-linear evolutionary methods such as Artificial Neural 

Networks (ANNs), genetic programming (GP), and genetic functions (GFs).  Muleta 

(2003) developed an ANN model to mimic SWAT (U.S. Department of Agriculture Soil 

and Water Assessment Tool) outputs and used the resulting inductive model in an 

optimal management model for controlling non-point source pollution. The real-world 

watershed used in this research is the Beargrass Creek watershed in Louisville, Kentucky. 

The fact that deductive models for the Beargrass Creek watershed are still under 

development did not allow for testing the utility of the implicit inductive approach in this 

research.   

 

 

5.3.2 Explicit Inductive Models 

An explicit inductive model can be constructed when sufficient data are available to 

permit the development of an inductive relationship between the independent and 

dependent variables.  The development of explicit inductive models requires sufficient 

raw data over a range of time to fully capture the behavior of the response function being 

modeled.  The use of explicit inductive models in an optimization framework can be a 

favorable choice due to their ease of use and simplicity as substitutes for more process-

based deductive models. While such an approach can result in significant computational 

savings resulting in an efficient and effective optimal management framework, it is 

important to make sure that the resulting model is capable of accurately representing the 

response function.  This can be verified by evaluating the assumed cause and effect 

relationship between input and output variables through the process of model validation.   

As in the case of implicit inductive models described above, the techniques used to 

construct explicit inductive models can vary from simple regression methods to more 

complex and non-linear evolutionary methods such as ANN, GP, and GFs.   
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Example applications of the explicit inductive model approach to watershed modeling are 

given as follows.  These include the following three types of explicit inductive models: 

 

1. Explicit inductive models for pathogens (fecal coliform). 

2. Explicit inductive models for nutrients (total phosphorus and total nitrogen). 

3. Explicit inductive models for dissolved oxygen (DO).   

 

The nutrient and DO models were developed by utilizing data collected for the Beargrass 

Creek watershed in Louisville, Kentucky.  For pathogen modeling, sufficient data was 

not available for the Beargrass Creek watershed at the time of this study, and thus data 

collected at the intake structure of a Water Treatment plant (Fayette County, Kentucky) 

on Kentucky River was used to demonstrate the utility of the explicit inductive modeling 

approach for pathogens.  These three types of explicit inductive models are described as 

follow: 

 

 

5.3.2.1 Explicit Inductive Models for Pathogens 

The U.S. Environmental Protection Agency (USEPA) lists bacteria as primary water 

quality concern.  Impairment of surface waters by fecal coliform bacteria is a water 

quality issue of national scope and importance (Moyer and Hyer, 2003).  The presence of 

fecal coliform bacteria in surface water indicates fecal contamination and possibly the 

presence of other organisms that may be cause disease (Christensen, et al. 2000).  Fecal 

coliform is a bacterium which can be found within the intestinal tract of all warm blooded 

animals. Fecal coliform can therefore be found in the fecal wastes of warm blooded 

animals. Fecal coliform in itself is not a pathogenic organism. However, fecal coliform 

indicates the presence of fecal wastes and the potential for the existence of other 

pathogenic bacteria. The higher concentrations of fecal coliform indicate the elevated 

likelihood of increased pathogenic organisms.  Fecal coliform bacteria concentrations 

that are elevated above the state water quality standard indicate an increased risk to 

humans through swimming and other contact recreational activities. 
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Fecal coliform modeling continues to be a challenge due to the numerous sources of 

bacteria and the corresponding magnitudes of contributions from each source add to such 

challenges.  In such challenging scenarios, the use of site specific inductive models based 

on water quality sampling data appears to be a promising choice.  Explicit inductive 

models are developed in this study.  The input to these models will include measured 

stream flows and turbidity.  Turbidity is the measure of the cloudiness of a sample of 

water. Suspended matter, such as clay, silt, fine organic and inorganic matter, soluble 

organic compounds, and microscopic organisms, increases the turbidity of the water.  

Turbidity is measured by recording the amount of light scattered when a light beam 

passes through a sample of water. The instrument used to measure turbidity is called a 

nephelometer, and it records turbidity in units of nephelometric turbidity units (NTUs). 

Values of less than 10 NTU are desirable.  Often, turbidity levels are positively correlated 

with water borne bacteria levels; as turbidity increases, bacterial levels increase. This 

phenomenon is typically due to the fact that surface runoff carries both suspended solids 

(silt, clay, and organic matter) as well as bacteria, so when it rains both the turbidity and 

the bacteria levels rise. 

 

Three different inductive modeling techniques were used to develop explicit inductive 

models for pathogens.  These include multiple linear regression, artificial neural networks 

(ANNs), and a fixed functional set genetic algorithm (FFSGA) approach to functional 

approximation. All ANN-based explicit inductive models were developed using a 

computer program called NEUROSORT (version 3.0) developed at the University of 

Kentucky (Lingreddy et al. 2003). 

 

 

5.3.2.1.1 Study Area 

The data used in developing inductive models for estimating fecal coliform concentration 

was extracted from a research report published by the Kentucky Water Resources 

Research Institute at the University of Kentucky (Brion et al. 2002).  This data was 

collected at the raw water intake structure on Kentucky River for a water treatment plant 

in Lexington, Kentucky.  The samples were collected at the intake site on the Kentucky 
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River between Lock 9 and Lock 10 as shown in Figure 5-4.  The data collected included 

instantaneous stream flow, turbidity, water temperature, daily rainfall, and fecal coliform 

concentration.  Due to the spatial variability of daily rainfall data, it was not used as an 

input to the inductive models.  Initial screening of the raw data suggested a relationship 

between daily stream flows, turbidity, and fecal coliform concentration.  Consequently, 

daily stream flow and turbidity were used as inputs to the inductive model, and fecal 

coliform is the target output to be predicted by the inductive models. 

 

 

Figure 5-4.  Sampling Site Location for data used in Inductive Pathogen Models 

 

5.3.2.1.2 Data Statistics 

The data used for analysis spans over a five year sampling period (1997 to 2001) and 

Table 5-1 gives a summary of the statistics of the data set used in this application.  Per 

Kentucky Water Quality Standards, the monthly geometric mean of fecal coliform 

  

 

Sampling Site 
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bacteria in the recreational season (May 1 through October 31) is not to exceed 200 

colonies per 100 ml or 20 percent or more of all samples taken in one month period are 

not to exceed 400 colonies per 100 ml (Kentucky Administrative Regulations Title 401, 

Chapter 5, Water Quality).  

  

Table 5-1. May through October Statistics of the Data Set 
Year Average Q Min Q Max Q Total Rain Average FC Maximum FC 

  (cfs) (cfs) (cfs) (inches) (col/100 ml) (col/100 ml) 

1997 3910 140 41500 27.28 305 10000 

1998 4005 158 23700 25.84 376 7700 

1999 656 22 7360 11.79 16 296 

2000 1802 160 13800 10.34 31 400 

2001 2071 224 22500 24.82 120 3800 

 

 

5.3.2.1.3 Development of Inductive Models 

Two different types of models will be developed for pathogens.  These include 1) a 

prediction model in which the model output will be the fecal concentration, and 2) a 

classification model in which the output will be the class of fecal concentration as defined 

below in Table 5-2. 

 

Table 5-2. Classes of Fecal Coliform Concentration 

Class or 
Group 

Range of Fecal Concentration 
(col/100 ml) 

1 0-200 

2 200-400 

3 400 and above 

  
 

Predicting the class (i.e. the range of the fecal concentration) rather than the actual 

concentration can be beneficial when the actual concentration of fecal coliform is not 

required.  For instance, in cases where early warning systems or advisories are needed to 

prevent people from contact with contaminated water, models capable of predicting the 

range of fecal coliform as opposed to the actual fecal coliform concentration can assist in 

minimizing the associated human health risks.  For instance, such advisories and 
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warnings are routinely needed at recreational beaches to inform the public of potential 

health risks associated with such water bodies. 

  

 

5.3.2.1.3.1 Regression Models 

Linear multiple regression inductive models were developed for predicting fecal coliform 

concentration based on the daily stream flow and turbidity measurements collected at the 

site.  The form of the multiple linear regression models is given as follows: 

 

TaQaaFC 210 ++=   (5-1) 

 

where a0 through an are regression coefficients, Q (daily stream flow) and T (turbidity) 

are the independent variables in the regression model, and FC (fecal coliform 

concentration) is the dependent variable to be predicted by the model.   

 

Results of the Regression Models 

Regression models to estimate fecal coliform concentration were developed using the 

1997 through 2000 data set and validated by using the 2001 data set.  Two different types 

of prediction models were developed including: 

 

• Model A in which the actual values of flow, turbidity, and fecal concentration 

were used in model development and 

• Model B in which the logarithmic values of flow, turbidity, and fecal 

concentration were used in model development.   

 

The log transformation has a significant effect on the performance of the models as 

demonstrated in the results to follow.  The resulting regression equations for the two 

types of prediction models are given in Equation 5-2 and 5-3. 

 

TQFC 36.3023.016 ++−=    (5-2) 
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TQFC 101010 log249.1log055.0log +−=   (5-3) 

 

Figures 5-5 through 5-8 give the time series of fecal coliform monthly geometric mean 

for the two types of regression models (Model A and B) in training and validation.  Table 

5-3 gives a summary of results for the regression-based prediction models including 

average absolute error, maximum absolute error, mean square error (MSE), and 

coefficient of determination (R2) for predicting the concentration of fecal coliform 

concentration for both model training and validation.  Results are given for both model 

structure A and B.  Table 5-4 gives a comparison of the performance of regression-based 

prediction and classification models in successfully predicting the class of fecal coliform 

concentration as identified in Table 5-2.  

 

 

 

Figure 5-5.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Training) 
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Figure 5-6.  Time Series of Fecal Coliform Monthly Geometric Mean  

(Model “B” Training) 
 
 
 
 
 

 

Figure 5-7.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Validation) 
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Figure 5-8.  Time Series of Fecal Coliform Monthly Geometric Mean  

(Model “B” Validation) 
 
 
 

Table 5-3. Results Summary of Regression-Based Prediction Models 
Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1)

1997-2000 
Training(2) 

2001 
Validation(2)

# of Data 1,382 336 1,382 336 

Average Absolute Error  
(Monthly Geometric Mean) 

89 85 30 14 

Maximum Absolute Error 
(Monthly Geometric Mean) 

560 282 440 61 

Mean Square Error (MSE) 
(Monthly Geometric Mean) 

18,338 13,143 4,212 431 

Coefficient of Determination (R2) 
(Monthly Geometric Mean) 

0.58 0.62 0.66 0.69 

(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 
(2): Logarithmic transformed data (log flow, log turbidity, log fecal concentration) used in the development  
       of the model. 

        

 
Table 5-4. Comparison of Regression-Based Prediction and Classification Models 

Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1) 

# of Data 1,382 336 

% Success (Prediction Model) 79% 77% 

% Success (Classification Model) 84% 86% 
(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 
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It is interesting to note that the model results improve significantly when the logarithmic 

transformed data is used in the training and subsequent validation of the model.  Log 

transformation is a technique often used in regression analysis as it improves the 

performance and prediction ability of the resulting models.  This is particularly true for 

cases where there is significant variability (volatility) in the raw data, and the use of log-

transformed regression is recommended because it provides the most stable estimation.  

For instance, the regression models developed by Christensen, et al. (2000; 2002) also 

result in expressions that predict the log transformed values of fecal concentration.   

 

  

5.3.2.1.3.2 ANN Models 

The popular multi layer feed-forward back propagation neural networks were used in 

developing inductive models for fecal coliform bacteria modeling.  The model structure 

included one input layer, one hidden layer, and a corresponding output layer.  The input 

layer consists of two input nodes representing daily stream flow (Q) and turbidity (T) 

whereas the output layer consist of one node representing the target fecal coliform 

bacteria concentration (FC).  The number of hidden nodes (H) in the hidden layer was 

varied in the model development, starting with two nodes and going up to a maximum of 

six nodes. A general schematic of the ANN structure used in developing the fecal 

coliform inductive models is given below in Figure 5-9.   

 

The ANN network architecture was varied by trying different number of hidden nodes in 

the hidden layer and varying the learning rate and momentum rate parameters.  The 

learning rate is a factor that determines the amount by which the connection weight is 

changes according to error gradient information.  The momentum parameter governs the 

weight change in the current iteration of the algorithm due to change in the previous 

iteration.  These factors are obtained by trial and error method (Zurada, 1992).  In the 

majority of evaluations, the most optimal results were obtained by using two hidden 

nodes in the hidden layer. The ANN structure used for fecal modeling used a logistic 

sigmoid function of the form given as:  
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Figure 5-9.  Neural Network Structure for Inductive Pathogen Models 

 

Results of the ANN-based Inductive Models 

ANN models to estimate fecal coliform concentration were developed using the 1997 

through 2000 data set and validated by using the 2001 data set.  As in the case of the 

regression models, two types of prediction models (Model A and Model B) were 

developed, one using the raw data (actual values of flow, turbidity, and fecal 

concentration), and the other using the log-transformed values of these variables.  The log 

transformation improves the performance of the models as will be seen in the results to 

follow.  This improvement is not as significant as was seen in the case of the regression 

models. Figures 5-10 through 5-13 give the time series of fecal coliform monthly 

geometric mean obtained in training and validation for model types A and B.  Table 5-5 

gives a summary of results for the ANN-based prediction model including average 

absolute error, maximum absolute error, mean square error (MSE), and coefficient of 
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determination (R2) for predicting the concentration of fecal coliform concentration for 

both model training and validation.  Results are given for both model structure A and B.  

Table 5-6 gives a comparison of the performance of ANN-based prediction and 

classification models in successfully predicting the class of fecal coliform concentration 

as identified in Table 5-2. 

 

 

Figure 5-10.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Training) 

 

 

Figure 5-11.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “B” Training) 
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Figure 5-12.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Validation) 

 

 

Figure 5-13. Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “B” Validation) 
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Table 5-5. Results Summary of ANN-Based Prediction Models 
Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1)

1997-2000 
Training(2) 

2001 
Validation(2)

# of Data 1,382 336 1,382 336 

Average Absolute Error  
(Monthly Geometric Mean) 

74 64 24 13 

Maximum Absolute Error 
(Monthly Geometric Mean) 

616 228 387 71 

Mean Square Error (MSE) 
(Monthly Geometric Mean) 

13,974 7,551 2,852 441 

Coefficient of Determination (R2) 
(Monthly Geometric Mean) 

0.66 0.70 0.73 0.58 

(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 
(2): Logarithmic transformed data (log flow, log turbidity, log fecal concentration) used in the development  
       of the model. 

        

 
 

Table 5-6. Comparison of ANN-Based Prediction and Classification Models 
Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1) 

# of Data 1,382 336 

% Success (Prediction Model) 83% 80% 

% Success (Classification Model) 85% 87% 
(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 

 

 

5.3.2.1.3.3 FFSGA Models 

Fixed Functional Set Genetic Algorithm (FFSGA) approach of inductive modeling is 

particularly suited for cases in which a simple and easy to use functional form is sought 

to represent the response function being modeled.  The FFSGA approach starts with a 

pre-defined functional form which is a combination of numeric coefficients, sub-

functions of decision variables (model inputs), and mathematical operators. In the first 

step, the GA searches for the optimal sub-functions of the decision variables and 

mathematical operators to obtain the optimal functional components that will constitute 

the structure of the desired functional form.  In the second step, the coefficients of the 

functional form are obtained by least squares optimization.  In the present application, the 

objective function is the optimal functional form sought for the fecal coliform bacteria 

concentration in terms of the two model inputs (i.e. daily stream flow Q and turbidity T) 
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and the fitness function is based on the mean square error (MSE) of the performance of 

the objective function in predicting the target fecal concentration values.  Five different 

fixed functional forms were formulated to represent the expression for fecal coliform 

concentration as given in Figure 5-14 (these represent the general form of the empirical 

expressions sought), each being some combination of elementary sub-functions of the 

two independent variables.  These forms also consist of coefficients that act as weighting 

factors for the sub-functions of the independent variables.  These coefficients will be 

obtained using least squares optimization after the GA search process identifies the 

optimal sub-functions to be used in the expression sought.  Table 5-7 gives a list of a 

sample of 15 different sub-functions for each of the decision variables (model inputs) that 

are available for selection by the FFSGA model.  The number of such elementary sub-

functions can be expanded further by introducing more functions or combination of 

functions. A larger set of available functions will facilitate the GA search process by 

providing greater diversity and selection.  Table 5-8 gives the corresponding 

mathematical operators that are available for selection by the FFSGA model. 

 

  

 

 

 

 

 

Figure 5-14. Pre-defined FFSGA Functional Forms for Inductive Pathogen Models 

 
 
 
 
 
 

Functional Form #1   =    {C1 operator_1  [function_1 (Q) operator_2 function_2 (T)]} operator_3    
                                         {C2  operator_4  [function_3 (Q) operator_5 function_4 (T)]}    
 
Functional Form #2   =    {C1 * [function_1 (Q) operator_1 function_2 (T)]} operator_2    
                                         {C2  * [function_3 (Q) operator_4 function_4 (T)]}    
 
Functional Form #3   =    {C1 * function_1 (Q) * function_2 (T)} operator_1    
                                         {C2 * function_3 (Q) * function_4 (T)}    
  
 Functional Form #4   =   {C1 * function_1 (Q)} operator_1 {C2  * function_2 (T)} 
                                               
 Functional Form #5   =   {[C1 * function_1 (Q)] operator_1 [C2  * function_2 (T)]} operator_2 
              {C3 * function_3 (Q) * function_4 (T)} 



 105 

Table 5-7.  List of functions for Flow (Q) and Turbidity (T) 
Function # Function f (Q) or Function f (T) 

1 1 

2 Q or T or Sqrt(Q) or Sqrt(T) 

3 1/Q or 1/(T) 

4 Exp (Q) or Exp (T) 

5 Loge (Q) or Loge (T) 

6 Log10 (Q) or Log10 (T) 

7 Exp (1/Q) or Exp (1/T) 

8 Loge (1/Q) or Loge (1/T) 

9 Log10 (1/Q) or Log10 (1/T) 

10 Q*Exp(Q) or T*Exp(T) 

11 Q* Loge (Q) or T*Loge (T) 

12 Q*Log10 (Q) or T*Log10 (T) 

13 (1/Q)*Exp(Q) or (1/T)*Exp(T) 

14 (1/Q)* Loge (Q) or (1/T)*Loge (T) 

15 (1/Q)*Log10 (Q) or (1/T)*Log10 (T) 

 
 

Table 5-8.  List of Operators in the General Functional Forms 
Operator # Operator 

1 + 

2 - 

3 * 

4 / 

5 ^ 

 

The FFSGA model evaluates each of the five functional forms (Figure 5-14) individually.  

In each case, the model starts with a random selection of solution sets resulting in an 

initial population of solutions, each comprised of a set of functions (from Table 5-7) and 

operators (from Table 5-8).  Each solution set thus represents an explicit equation for 

fecal coliform concentration.  These solution sets are evaluated for the given data set 

(values of Q and T in this case) and the predicted values of fecal coliform concentration 

are compared against the target or actual fecal coliform concentration values to determine 

the mean square error (MSE).  The MSE is a measure of how good the given solution set 

is in representing the data set evaluated and translates into the corresponding fitness 

function.  The FFSGA model continues to evolve new set of solution vectors as the 

search marches from one generation to the other.  At the termination of specified 

generations, the functional form that has the highest fitness value is the optimal structure 
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of the explicit expression sought in the search process.  Finally, the coefficients of the 

functional form are obtained by applying least squares optimization to the optimal form 

obtained from the GA process.   

 

 

Results of the FFSGA-based Inductive Models 

FFSGA models to estimate fecal coliform concentration were developed using the 1997 

through 2000 data set and validated by using the 2001 data set.  As in the case of 

regression and ANN-based models, two types of models (A and B) were developed, one 

uses the raw data and the other uses the log-transformed values of the variables.  The log 

transformation improves the performance of the models as will be seen in the results to 

follow.  FFSGA identified two optimal expressions, one for the actual data (model type 

A) and one for the log transformed data (model type B) and these are given as Equations 

5-5 and 5-6. 
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The performance of the FFSGA-based models is demonstrated in Figures 5-15 through 5-

18 in which the time series of fecal coliform monthly geometric mean during training and 

validation are given.  Table 5-9 gives a summary of results for the FFSGA-based 

prediction models including average absolute error, maximum absolute error, mean 

square error (MSE), and coefficient of determination (R2) for predicting the concentration 

of fecal coliform concentration in both model training and validation.  Results are given 

for both model structure A and B.  Table 5-10 gives a comparison of the performance of 
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FFSGA-based prediction and classification models in successfully predicting the class of 

fecal coliform concentration as identified in Table 5-2. 

 

 

 

Figure 5-15.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Training) 

 
 

 

Figure 5-16.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “B” Training) 
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Figure 5-17.  Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “A” Validation) 

 

 

 

Figure 5-18. Time Series of Fecal Coliform Monthly Geometric Mean  
(Model “B” Validation) 
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Table 5-9. Results Summary of FFSGA-Based Prediction Models 
Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1)

1997-2000 
Training(2) 

2001 
Validation(2)

# of Data 1,382 336 1,382 336 

Average Absolute Error  
(Monthly Geometric Mean) 

83 100 26 13 

Maximum Absolute Error 
(Monthly Geometric Mean) 

387 318 393 62 

Mean Square Error (MSE) 
(Monthly Geometric Mean) 

11,543 16,240 3,203 409 

Coefficient of Determination (R2) 
(Monthly Geometric Mean) 

0.64 0.58 0.70 0.70 

(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 
(2): Logarithmic transformed data (log flow, log turbidity, log fecal concentration) used in the development  
       of the model. 
 

 
 

Table 5-10. Comparison of FFSGA-Based Prediction and Classification Models 
Data Set Description  
Model Performance 

1997-2000 
Training(1) 

2001 
Validation(1) 

# of Data 1,382 336 

% Success (Prediction Model) 82% 84% 

% Success (Classification Model) 84% 87% 
(1): Actual data (flow, turbidity, and fecal concentration) used in the development of the model. 

 

5.3.2.1.4 Summary of Results for Pathogen Models 

Fecal coliform modeling is challenging owing to the significant variability in its source 

and magnitude. This is encountered in both inductive and deductive modeling 

approaches. The use of inductive techniques to develop pathogen models given an 

adequate set of sampled water quality data is becoming increasingly popular.  Some of 

the recent work in this area includes the use of regression techniques in developing 

inductive models to estimate fecal concentration in surface water bodies (Christensen, et 

al. 2000).  There were some significant findings in the development of inductive models 

for fecal coliform in the current work as described above.  The model results show that 

log transformation of the input data removes the significant variability in the magnitude 

of fecal concentration.  As a result, the three techniques are not significantly different in 

performance as seen in the results.  It is worth mentioning that while regression results in 

a simple and linear model, ANN and FFSGA are highly nonlinear techniques capable of 
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capturing significant variability in the data.  A comparison of the coefficient of 

determination (R2) computed for the three techniques in predicting the 30-day geometric 

mean of fecal coliform reveal that for model structure “A”, the ANN-based model 

performed slightly better than the other two techniques. For model structure “B”, the 

FFSGA-based model performed slightly better than the other two techniques.  Figures 5-

19 through 5-22 gives a combined graph of the model results obtained using the three 

techniques in model training and validation for the two model structures “A” and “B”. 

Fecal Coliform Monthly Geometric Mean 

(1997 to 2000 FFSGA Model "A" Training)

0

300

600

900

1,200

0 300 600 900 1,200 1,500

Days

F
C

 G
eo

m
et

ri
c 

M
ea

n

Observed Regression ANN FFSGA

 

Figure 5-19. Comparison of Model Performance for Model Structure “A” Training 
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Figure 5-20. Comparison of Model Performance for 
Model Structure “A” Validation 
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Figure 5-21. Comparison of Model Performance for Model Structure “B” Training 

 

Fecal Coliform Monthly Geometric Mean 

(1997 to 2000 FFSGA Model "B" Validation)

0

50

100

150

200

0 150 300

Days

F
C

 G
eo

m
et

ri
c 

M
ea

n

Observed Regression ANN FFSGA

 

Figure 5-22. Comparison of Model Performance for 
Model Structure “B” Validation 

 

 

Another significant finding of this work is the utility of predicting the class of fecal 

concentration in a given numeric range as opposed to the prediction of the actual numeric 

concentration.  Given the significant variability in the magnitude and source of fecal 

concentration, it might be more beneficial to predict the class of fecal concentration as 

opposed to actual concentration. Such a class prediction can be of utility in monitoring 
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water quality in surface water bodies designated for contact recreation and issuing 

advisories and early warnings to minimize health hazards associated with contaminated 

waters.  In the current work, the class of fecal concentration (as classified in Table 5-2) 

can be obtained either using the prediction model (in which the actual fecal concentration 

is predicted) or using the classification model (in which the class of fecal concentration is 

predicted).  When the performance of the three inductive models is compared in 

predicting the class of fecal coliform, the more complex methods (ANN and FFSGA) 

performed slightly better than the simple regression method.  This is demonstrated in a 

comparison of the performance of the three models in Table 5-11. 

 

 
Table 5-11. Comparison of Model Performance in Fecal Classification 

Data  
Set Description /  
Model 
Performance 

% Success 
in Fecal 

Classification
1997-2000 
Training(1) 

% Success 
in Fecal 

Classification
2001 

Validation(1) 

% Success 
in Fecal 

Classification 
1997-2000 
Training(2) 

% Success 
in Fecal 

Classification
2001 

Validation(2) 

Regression Model 79% 77% 84% 86% 

ANN Model 83% 80% 85% 87% 

FFSGA Model 82% 84% 84% 87% 
(1): Results are based on the fecal coliform “prediction” models. 
(2): Results are based on the fecal coliform “classification” models. 

 
 

The results of the three inductive models (regression, ANNs, and FFSGA) for estimating 

fecal coliform concentration are very encouraging given the difficulty of fecal modeling. 

It can be synthesized that regression models are simple but can be very useful and should 

always be explored as a starting point before using more complex models.  Data sets 

representing different physical processes vary from one to another. While non-linearity 

and complexity in some data sets may require more complex techniques such as those 

based on AI, simple regression methods continue to serve as a useful tool in most 

applications.  The performance of the new GA-based method (FFSGA) is encouraging 

when compared to ANN.  The greatest advantage of FFSGA approach (in comparison to 

ANN) is that it can generate simple, compact, and easy to use expressions that can be 

effectively used in estimating fecal coliform concentration.   
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5.3.2.2 Explicit Inductive Models for Nutrients 

Explicit inductive models were developed to predict nutrients loads in each of the three 

forks of the Beargrass Creek watershed.  These are described as follows. 

 

 

5.3.2.2.1 Study Area 

The Beargrass Creek watershed has multiple stream segments that are listed on the 

State’s 303(d) list for low dissolved oxygen and/or nutrient enrichment as shown in 

Figure 5-23 below.  Per Kentucky Water Quality Standards, the dissolved oxygen 

criterion for aquatic life is 5.0 mg/L (daily average) and 4.0 mg/L (instantaneous 

minimum) (Kentucky Administrative Regulations Title 401, Chapter 5, Water Quality).  

These include all of the South Fork and the lower reaches of the Middle Fork.  A 

comprehensive water quality sampling program is in place for this watershed that 

includes both continuous water quality monitoring and discrete sampling for key 

parameters.  The continuous sampling include DO meters that samples data every 15 

minutes.  The discrete sampling data include parameters such as total nitrogen and total 

phosphorus, which is hypothesized to be the main causes of low DO in the stream 

segments.  

 

 

 

 

 

 

 
 
 
 
 
 

Figure 5-23. Beargrass Creek watershed: Causes of Impairment 

Organic Enrichment/Low DO/Pathogens

Organic Enrichment/Low DO

Pathogens
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5.3.2.2.2 Development of Inductive Models 

Three different inductive modeling techniques namely regression, ANNs, and FFSGA 

were used to construct inductive models of watershed response for nutrients.  These 

models will be used to determine the total nitrogen and total phosphorus loads generated 

by each of the three forks of the watershed.  Nutrients are considered to be the main cause 

of the low dissolved oxygen (DO) in the impaired streams of the Beargrass Creek 

watershed (Figure 5-23).  The nutrient models were developed using discrete water 

quality data collected at discrete sampling locations on the three forks of the watershed.  

Total nitrogen and total phosphorus concentration data (in MG/L) collected at these 

locations was used in conjunction with stream flows (in CFS) recorded at the same 

locations to compute the corresponding nutrient loads (flow multiplied by the 

concentration measured in total pounds per day).  The nutrient loads thus computed were 

used as outputs in the inductive model with stream flows and conductivity used as inputs 

to the model.   

 

Separate models were developed for the three monitoring locations (one in each of the 

three sub-watersheds of Beargrass Creek watershed) to characterize the nutrient loads 

from all the three sub-watersheds.  These monitoring stations are shown in Figure 5-24 

and described as follows: 

 

1. Sampling site EMUMU001 on the Muddy Fork of Beargrass Creek 

2. Sampling site EMIMI010 on the Middle Fork of Beargrass Creek 

3. Sampling site ESFSF006 on the South Fork of Beargrass Creek 

 

Note that site ESFSF006 is located downstream of the confluence of Middle and South 

Forks of the Beargrass Creek.  Tables 5-12 through 5-14 give the raw data for these three 

sites.   
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Figure 5-24.  Discrete Sampling Sites used in Inductive Nutrient Models 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 116 

 
Table 5-12. Discrete Sampling Data for Site ESFSF006 

Data 
# Date Time 

TN 
(mg/L) 

TP 
(mg/L) 

Conductivity 
(aes/cm) 

Flow 
(cfs) 

TN Load 
(lbs/d) 

TP Load 
(lbs/d) 

1 03/03/04 9:25:00 AM 2.23 0.05 647 49 591 14 

2 03/03/04 1:45:00 PM 2.11 0.04 656 74 837 15 

3 03/03/04 1:45:00 PM 0.52 0.04 656 74 205 15 

4 03/03/04 2:25:00 PM 2.06 0.07 660 82 914 32 

5 03/03/04 3:25:00 PM 4.82 0.60 660 88 2291 283 

6 03/04/04 2:05:00 PM 2.00 0.22 683 451 4846 539 

7 03/04/04 2:06:00 PM 1.87 0.22 683 451 4531 537 

8 03/04/04 6:05:00 PM 2.73 0.21 692 294 4315 329 

9 04/12/04 11:05:00 AM 0.52 0.03 705 14 39 2 

10 04/12/04 11:05:00 AM 0.52 0.03 705 14 39 3 

11 04/12/04 12:20:00 PM 1.37 0.27 698 33 242 47 

12 04/12/04 2:05:00 PM 2.19 0.62 677 64 752 213 

13 04/14/04 3:45:00 AM 2.33 0.45 369 409 5126 999 

14 04/14/04 3:45:00 AM 2.21 0.43 369 409 4862 957 

15 04/14/04 7:20:00 AM 2.11 0.26 399 285 3229 402 

16 04/20/04 6:40:00 AM 1.95 0.14 715 31 327 24 

17 04/20/04 10:00:00 AM 0.52 0.03 715 31 87 5 

18 04/20/04 10:05:00 AM 0.52 0.03 715 31 87 5 

19 04/21/04 11:35:00 AM 2.12 0.05 729 34 386 8 

20 04/21/04 12:55:00 PM 2.16 0.20 636 142 1644 153 

21 04/22/04 2:40:00 PM 2.16 0.39 443 102 1187 212 

22 04/22/04 2:40:00 PM 2.35 0.30 443 102 1295 167 

23 04/22/04 10:00:00 PM 1.86 0.22 510 78 787 92 

24 04/23/04 1:15:00 AM 2.24 0.18 541 64 770 60 

25 05/14/04 4:35:00 PM 0.52 0.03 686 20 55 3 

26 05/14/04 4:37:00 PM 0.52 0.03 685 20 55 3 

27 05/14/04 5:55:00 PM 2.11 0.15 677 73 831 60 

28 05/14/04 7:35:00 PM 5.17 0.79 503 129 3605 553 

29 05/15/04 7:55:00 PM 1.58 0.17 528 206 1752 188 

30 05/15/04 7:56:00 PM 1.52 0.17 528 206 1685 185 
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Table 5-13. Discrete Sampling Data for Site EMUMU001 

Data # Date Time 
TN 

(mg/L) 
TP 

(mg/L) 
Conductivity 

(aes/cm) 
Flow 
(cfs) 

TN 
Load 

(lbs/d) 

TP 
Load 

(lbs/d) 
1 3/3/04 9:08 AM 2.24 0.03 662 61 735 11 

2 3/3/04 12:40 PM 0.52 0.03 667 63 175 10 

3 3/3/04 1:06 PM 2.14 0.03 667 64 737 10 

4 3/3/04 1:26 PM 2.13 1.03 667 62 710 344 

5 3/3/04 2:50 PM 2.50 0.03 668 70 941 11 

6 3/4/04 1:46 PM 2.56 0.09 534 140 1928 64 

7 3/4/04 1:47 PM 2.56 0.08 534 140 1928 61 

8 3/4/04 5:55 PM 3.27 0.06 588 129 2270 42 

9 4/12/04 10:45 AM 0.52 0.01 666 21 58 1 

10 4/12/04 10:45 AM 0.52 0.03 666 21 58 3 

11 4/12/04 12:00 PM 1.85 0.10 658 27 269 14 

12 4/12/04 1:25 PM 1.90 0.07 653 31 317 12 

13 4/14/04 3:30 AM 2.58 0.12 614 171 2373 110 

14 4/14/04 3:30 AM 2.28 0.11 614 171 2097 102 

15 4/14/04 7:10 AM 2.66 0.07 646 155 2218 62 

16 4/20/04 6:25 AM 2.18 0.06 761 55 645 17 

17 4/20/04 10:25 AM 0.52 0.03 765 55 153 9 

18 4/20/04 10:30 AM 0.52 0.03 765 55 153 9 

19 4/21/04 12:05 PM 2.13 0.06 748 56 641 18 

20 4/21/04 12:40 PM 2.30 0.07 735 60 742 24 

21 4/22/04 2:30 PM 2.28 0.08 721 70 858 30 

22 4/22/04 2:30 PM 2.41 0.09 721 70 907 34 

23 4/22/04 9:40 PM 2.43 0.14 718 46 601 36 

24 4/23/04 12:55 AM 2.35 0.08 714 40 506 18 

25 5/14/04 4:15 PM 0.52 0.03 2002 0 1 0 

26 5/14/04 4:18 PM 0.52 0.03 2002 0 1 0 

27 5/14/04 5:40 PM 2.53 0.07 1992 1 12 0 

28 5/14/04 7:20 PM 2.54 0.08 2689 1 18 1 

29 5/15/04 7:30 PM 2.21 0.11 2689 35 416 21 

30 5/15/04 7:31 PM 1.77 0.12 2689 35 333 22 

31 5/15/04 11:30 PM 3.30 0.09 2665 26 462 12 
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Table 5-14. Discrete Sampling Data for Site EMIMI010 

Data 
# Date Time 

TN 
(mg/L) 

TP 
(mg/L) 

Conductivity 
(aes/cm) 

Flow 
(cfs) 

TN 
Load 
(lbs/d) 

TP 
Load 
(lbs/d 

1 03/03/04 8:45 AM 2.03 1.07 803 42 458 242 

2 03/03/04 12:20 PM 0.52 0.03 815 40 111 6 

3 03/03/04 1:20 PM 2.43 0.07 813 40 523 16 

4 03/03/04 3:25 PM 2.30 0.08 815 45 557 20 

5 03/04/04 1:25 PM 1.89 0.17 359 305 3099 271 

6 03/04/04 1:26 PM 1.80 0.15 359 305 2951 252 

7 03/04/04 5:40 PM 1.88 0.09 449 175 1769 89 

8 04/12/04 10:55 AM 0.52 0.03 614 7.4 21 1 

9 04/12/04 12:15 PM 1.58 0.09 554 7.8 66 4 

10 04/12/04 2:00 PM 1.22 0.21 623 11 72 13 

11 04/14/04 2:45 AM 2.14 0.33 381 181 2083 325 

12 04/14/04 2:45 AM 2.25 0.35 381 181 2190 340 

13 04/14/04 6:40 AM 1.99 0.18 423 138 1477 131 

14 04/20/04 6:00 AM 2.00 0.12 729 13 140 8 

15 04/20/04 9:15 AM 0.52 0.03 676 13 36 2 

16 04/21/04 12:15 PM 2.03 0.18 684 14 153 14 

17 04/21/04 12:40 PM 2.24 0.16 695 22 265 19 

18 04/22/04 1:40 PM 1.89 0.14 519 30 305 22 

19 04/22/04 1:40 PM 1.95 0.13 519 30 315 22 

20 04/22/04 9:20 PM 2.24 0.16 540 40 482 34 

21 04/23/04 12:25 AM 2.04 0.13 525 32 351 23 

22 05/14/04 4:25 PM 0.52 0.03 703 8.7 24 1 

23 05/14/04 4:35 PM 0.52 0.03 703 8.7 24 1 

24 05/14/04 6:20 PM 2.40 0.36 705 12 155 23 

25 05/14/04 8:35 PM 2.57 0.17 708 46 636 41 

26 05/15/04 5:50 PM 0.66 0.17 695 110 388 100 

27 05/15/04 5:51 PM 1.53 0.16 695 110 904 94 

28 05/15/04 10:45 PM 2.05 0.15 501 65 717 51 

 

The raw data sets given in the Tables above were partitioned into two distinct sets namely 

the training data set and the validation data set.  The training data sets (comprising of 

80% of the total data) were used in the development of the inductive models and the 

validation data sets (comprising of 20% of the total data) were used in validating the 

inductive models.   
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5.3.2.2.2.1 Regression Models 

Linear multiple regression inductive models were developed for predicting total nitrogen 

and total phosphorus loads based on the daily stream flow and specific conductance 

measurements collected at each of the three sites discussed above.  The general form of 

the multiple linear regression models is given as follows: 

 

CaQaaTPorTN 210 ++=   (5-7) 

 

where a0 through an are regression coefficients, Q (daily stream flow) and C 

(conductivity) are the independent variables in the regression model, and TP or TN loads 

(total nitrogen or total phosphorus) is the dependent variable to be predicted by the 

model.  The regression models are given as follows in Equations 5-8 through 5-13 and 

Figures 5-25 through 5-36.  

  

( ) CQTN EMUMU 16.034.1630.424001 ++−=  (5-8) 

( ) CQTP EMUMU 008.056.077.19001 −+−=   (5-9) 

( ) CQTN EMIMI 54.056.927.373010 −+=   (5-10) 

( ) CQTP EMIMI 0138.005.177.15010 −+=   (5-11) 

( ) CQTN ESFS 12.174.1071.825006 −+=   (5-12) 

( ) CQTP ESFSF 78.038.121.503006 −+=   (5-13) 
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EMUMU001 Totla Nitrogen (TN) Model
Training Results
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Figure 5-25. Regression-based Total Nitrogen Model for Site EMUMU001 
(Model Training) 

 

EMUMU001 Total Nitrogen (TN) Model
Validation Results
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Figure 5-26. Regression-based Total Nitrogen Model for Site EMUMU001 
(Model Validation) 
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EMUMU001 Total Phosphorus (TP) Model
Training Results
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Figure 5-27. Regression-based Total Phosphorus Model for Site EMUMU001 
(Model Training) 
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Figure 5-28. Regression-based Total Phosphorus Model for Site EMUMU001 
(Model Validation) 
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EMIMI010 Totlal Nitrogen (TN) Model
Training Results
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Figure 5-29. Regression-based Total Nitrogen Model for Site EMIMI010 
(Model Training) 
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Figure 5-30. Regression-based Total Nitrogen Model for Site EMIMI010  
(Model Validation) 
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EMIMI010 Totlal Phosphorus (TP) Model
Training Results
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Figure 5-31. Regression-based Total Phosphorus Model for Site EMIMI010 
(Model Training) 
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Figure 5-32. Regression-based Total Phosphorus Model for Site EMIMI010 
(Model Validation) 
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ESFSF006 Total Nitrogen (TN) Model
Training Results
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Figure 5-33. Regression-based Total Nitrogen Model for Site ESFSF006 
(Model Training) 
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Figure 5-34. Regression-based Total Nitrogen Model for Site ESFSF006 
(Model Validation) 
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ESFSF006 Total Phosphorus (TP) Model
Training Results
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Figure 5-35. Regression-based Total Phosphorus Model for Site ESFSF006 
(Model Training) 
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Figure 5-36. Regression-based Total Phosphorus Model for Site ESFSF006 
(Model Validation) 
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5.3.2.2.2.2 ANN Models 

The popular multi layer feed-forward back propagation neural networks were used in 

developing nutrient inductive models.  The model structure included one input layer, one 

hidden layer, and a corresponding output layer.  The input layer consists of two input 

nodes representing daily stream flow (Q) and conductivity (C) whereas the output layer 

consist of one node representing the target total nitrogen or total phosphorus load (TN or 

TP).  The number of hidden nodes in the hidden layer (H) was varied in the model 

development, starting with two nodes and going up to a maximum of six nodes. A 

general schematic of the ANN structure used in developing the nutrient inductive models 

is given below in Figure 5-37. 

 

Figure 5-37.  Neural Network Structure for Inductive Nutrient Models 

 

The ANN network architecture was varied by trying different number of hidden nodes in 

the hidden layer and varying the learning rate and momentum rate parameters.  In the 

majority of evaluations, the most optimal results were obtained by using two hidden 

nodes in the hidden layer. The ANN structure used for nutrient modeling used a logistic 

sigmoid function of the form given as: 
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Figures 5-38 through 5-49 gives the results of the ANN-based nutrient models developed 

for each of the three sites. 
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Figure 5-38. ANN-based Total Nitrogen Model for Site EMUMU001 
(Model Training) 
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EMUMU001 Total Nitrogen (TN) ANN Model
Validation Results
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Figure 5-39. ANN-based Total Nitrogen Model for Site EMUMU001 
(Model Validation) 
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Figure 5-40. ANN-based Total Phosphorus Model for Site EMUMU001 
(Model Training) 
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EMUMU001 Total Phosphorus (TP) ANN Model
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y = 0.8605x

R
2
 = 0.9037

0

20

40

60

80

100

120

0 20 40 60 80 100 120

TP Observed (lbs/day) 

T
P

 P
re

d
ic

te
d
 (

lb
s
/d

a
y
) 

 

Figure 5-41. ANN-based Total Phosphorus Model for Site EMUMU001 
(Model Validation) 
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Figure 5-42. ANN-based Total Nitrogen Model for Site EMIMI010 
(Model Training) 
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EMIMI010 Total Nitrogen (TN) ANN Model
Validation Results
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Figure 5-43. ANN-based Total Nitrogen Model for Site EMIMI010 
(Model Validation) 
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Figure 5-44. ANN-based Total Phosphorus Model for Site EMIMI010 
(Model Training) 
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EMIMI010 Total Phosphorus (TP) ANN Model
Validation Results
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Figure 5-45. ANN-based Total Phosphorus Model for Site EMIMI010 
(Model Validation) 
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Figure 5-46. ANN-based Total Nitrogen Model for Site ESFSF006 
(Model Training) 
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ESFSF006 Total Nitrogen (TN) ANN Model
Validation Results
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Figure 5-47. ANN-based Total Nitrogen Model for Site ESFSF006 
(Model Validation) 
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Figure 5-48. ANN-based Total Phosphorus Model for Site ESFSF006 
(Model Training) 
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ESFSF006 Total Phosphorus (TP) ANN Model
Validation Results

y = 0.7434x + 65.533

R
2
 = 0.9195

0

50

100

150

200

0 50 100 150 200

TP Observed (lbs/day) 

T
P

 P
re

d
ic

te
d
 (

lb
s
/d

a
y
) 

 

Figure 5-49. ANN-based Total Phosphorus Model for Site ESFSF006 
(Model Validation) 

 

 

5.3.2.2.2.3 FFSGA Models 

The FFSGA approach of developing empirical equations for a response function was 

investigated for one of the sampling site (ESFSF006 on South Fork) to illustrate the 

utility of this approach.  Five different fixed functional forms were formulated to 

represent the expressions for total nitrogen and total phosphorus as given in Figure 5-50 

(these represent the general pre-defined form of the empirical expressions sought), each 

being some combination of elementary sub-functions of the independent variables in the 

data set.  These functional forms also consist of coefficients that act as weighting factors 

for the elementary sub-functions of the decision variables (independent variables).  The 

two independent variables consists of the daily stream flow (Q) and the specific 

conductance (C).  Table 5-15 gives a list of a sample of 15 different sub-functions for 

each of the independent variables (model inputs) that are available for selection by the 

FFSGA model.  Table 5-16 gives the mathematical operators that are available for 

selection by the FFSGA model.  
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Figure 5-50. Pre-defined FFSGA Functional Forms for Inductive Nutrient Models 

 
 
 

Table 5-15.  List of functions for Flow (Q) and Conductivity (C) 
Function # Function f (Q) or Function f (C) 

1 1 

2 Q or C or Sqrt(Q) or Sqrt(C) 

3 1/Q or 1/(C) 

4 Exp (Q) or Exp (C) 

5 Loge (Q) or Loge (C) 

6 Log10 (Q) or Log10 (C) 

7 Exp (1/Q) or Exp (1/ C) 

8 Loge (1/Q) or Loge (1/ C) 

9 Log10 (1/Q) or Log10 (1/ C) 

10 Q*Exp(Q) or C *Exp(C) 

11 Q* Loge (Q) or C *Loge (C) 

12 Q*Log10 (Q) or C *Log10 (T) 

13 (1/Q)*Exp(Q) or (1/ C)*Exp(C) 

14 (1/Q)* Loge (Q) or (1/ C)*Loge (C) 

15 (1/Q)*Log10 (Q) or (1/ C)*Log10 (C) 

 

Table 5-16.  List of Operators in the General Functional Forms 
Operator # Operator 

1 + 

2 - 

3 * 

4 / 

5 ^ 

 

Functional Form #1   =    {C1 operator_1  [function_1 (Q) operator_2 function_2 (C)]} operator_3    
                                         {C2  operator_4  [function_3 (Q) operator_5 function_4 (C)]}    
 
Functional Form #2   =    {C1 * [function_1 (Q) operator_1 function_2 (C)]} operator_2    
                                         {C2  * [function_3 (Q) operator_4 function_4 (C)]}    
 
Functional Form #3   =    {C1 * function_1 (Q) * function_2 (C)} operator_1    
                                         {C2 * function_3 (Q) * function_4 (C)}    
  
 Functional Form #4   =   {C1 * function_1 (Q)} operator_1 {C2  * function_2 (C)} 
                                               
 Functional Form #5   =   {[C1 * function_1 (Q)] operator_1 [C2  * function_2 (C)]} operator_2 
              {C3 * function_3 (Q) * function_4 (C)} 
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The FFSGA model evaluates each of the five functional forms (Figure 5-50) individually.   

The search for the optimal expression is carried out using the FFSGA model as discussed 

in Chapter 4.  At the termination of specified generations, the functional form that has the 

highest fitness value is the optimal structure of the explicit expression sought in the 

search process.  Finally, the coefficients of the functional form are obtained by applying 

least squares optimization to the optimal form obtained from the GA process.  Equations 

5-15 and 5-16 give the optimal expressions resulting from the FFSGA approach for total 

nitrogen and total phosphorus loads. The results of the FFSGA-based nutrient models 

using these equations in predicting the total nitrogen and total phosphorus loads for the 

South Fork of Beargrass Creek sampling site (ESFSF006) are given in Figures 5-51 

through 5-54.  
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Figure 5-51. FFSGA-based Total Nitrogen Model for Site ESFSF006 
(Model Training) 
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ESFSF006 Total Nitrogen (TN) FFSGA Model
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Figure 5-52. FFSGA-based Total Nitrogen Model for Site ESFSF006 
(Model Validation) 
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Figure 5-53. FFSGA-based Total Phosphorus Model for Site ESFSF006 
(Model Training) 
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ESFSF006 Total Phosphorus (TP) FFSGA Model
Validation Results
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Figure 5-54. FFSGA-based Total Phosphorus Model for Site ESFSF006 
(Model Validation) 

 

 

5.3.2.2.3 Summary of Results for Nutrient Models 

The three types of inductive models (regression, ANNs, and FFSGA) for predicting 

nutrient loads in the Beargrass Creek watershed shows that there is a strong correlation 

between stream flows and nutrient loads.  All three types of models performed equally 

well as demonstrated by the plots given above.  To demonstrate the relative performance 

of these three methods, Tables 5-17 through 5-20 gives the different measures of 

performance for the three methods at one of the three sites.  The South Fork site 

ESFSF006 was chosen for comparison since all three types of models were developed for 

this site.  The measure of performance reported includes the coefficient of determination 

(R2), mean square error (MSE), and average absolute error of prediction in both training 

and validation. 
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Table 5-17. Results Summary of Total Nitrogen (TN)  
Inductive Models in Training  

Data Set Description  
Model Performance 

Regression
(Training) 

ANN 
(Training) 

FFSGA 
(Training)

# of Data 25 25 25 

Average Absolute Error  358 417 383 

Max Absolute Error 1,930 1,959 1,789 

Mean Square Error (MSE) 334,737 313,399 321,107 

Coefficient of Determination (R2) 0.88 0.86 0.88 

 

Table 5-18. Results Summary of Total Nitrogen (TN) 
 Inductive Models in Validation 

Data Set Description  
Model Performance 

Regression 
(Validation) 

ANN 
(Validation) 

FFSGA 
(Validation)

# of Data 5 5 5 

Average Absolute Error  244 235 210 

Max Absolute Error 689 669 502 

Mean Square Error (MSE) 116,042 123,495 112,052 

Coefficient of Determination (R2) 0.74 0.75 0.83 

 
 

Table 5-19. Results Summary of Total Phosphorus (TP)  
Inductive Models in Training 

Data Set Description  
Model Performance 

Regression
(Training) 

ANN 
(Training) 

FFSGA 
(Training)

# of Data 25 25 25 

Average Absolute Error  95 80 64 

Max Absolute Error 265 366 338 

Mean Square Error (MSE) 14,622 10,203 10,612 

Coefficient of Determination (R2) 0.80 0.84 0.86 

 

Table 5-20. Results Summary of Total Phosphorus (TP)  
Inductive Models in Validation 

Data Set Description  
Model Performance 

Regression 
(Validation) 

ANN 
(Validation) 

FFSGA 
(Validation)

# of Data 5 5 5 

Average Absolute Error  62 51 46 

Max Absolute Error 131 76 75 

Mean Square Error (MSE) 5,665 3,012 2,540 

Coefficient of Determination (R2) 0.85 0.92 0.87 
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It is worth mentioning to note that the FFSGA method performed better than regression 

and ANN in the Total Nitrogen validation model in all four measures of performance.  

The FFSGA model also performed better in three of the four measures of performance 

(MSE, maximum absolute error, and average absolute error) in the Total Phosphorus 

validation model.   FFSGA has the ability to perform well under data scarce situations as 

is the case in this particular application.  On the contrary, ANN is particularly suited to 

applications where large amount of data is available for model training. 

     

 

5.3.2.3 Explicit Inductive Models for Dissolved Oxygen (DO) 

Explicit inductive models were developed to predict dissolved oxygen in the receiving 

waters of the Beargrass Creek watershed.  These are described as follows. 

 

5.3.2.3.1 Study Area 

The Beargrass Creek watershed has multiple stream segments that are listed on the 

State’s 303(d) list for violating the DO standards as shown in Figure 5-23.  Per Kentucky 

Water Quality Standards, the dissolved oxygen criterion for aquatic life is 5.0 mg/L 

(daily average) and 4.0 mg/L (instantaneous minimum) (Kentucky Administrative 

Regulations Title 401, Chapter 5, Water Quality). These include all of the South Fork and 

the lower reaches of the Middle Fork.  A comprehensive water quality sampling program 

is in place for this watershed that includes both continuous water quality monitoring and 

discrete sampling for key parameters.  The continuous sampling include DO meters that 

samples data every 15 minutes. Data collected for this watershed was used to develop 

explicit inductive models for dissolved oxygen.  

 

 

5.3.2.3.2 Dissolved Oxygen  

Dissolved oxygen refers to the volume of oxygen that is contained in a water column 

(Radwan et al. 2003).  Oxygen enters a water body by photosynthesis of aquatic plants 

and by the transfer of oxygen across the air-water interface.  Dissolved oxygen (DO) is 

vital to fish, shellfish and other aquatic life living in a given water body. These organisms 
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respire using the oxygen dissolved in water and are essentially suffocated when there is 

not enough oxygen available.  Low DO is frequently caused by excess nutrients, which 

can consume oxygen as they are chemically transformed or can cause algal blooms which 

then die-off and consume oxygen as they decompose.  The ability of a stream to maintain 

an acceptable dissolved oxygen (DO) concentration is an important consideration in 

determining its capacity to assimilate wastewater discharges. DO is used in the microbial 

oxidation of organic and certain inorganic matter present in wastewater. Oxygen supplied 

principally by re-aeration from the atmosphere will replace any DO lost through 

oxidation processes. If, however, the rate of oxygen use exceeds the rate of re-aeration, 

the DO concentration may decrease below minimum allowable standards (Thomann and 

Mueller, 1987). 

 

Sources and Sinks of DO 

To develop a water quality model for simulating DO dynamics in a stream, all significant 

factors affecting the DO process should be clearly understood and considered in the 

modeling.  In a typical water body, the sources of DO are (Thomann and Mueller, 1987): 

 

1. Re-aeration from the atmosphere. 

2. Photosynthetic oxygen production. 

3. DO in incoming tributaries. 

 

Similarly, the sinks of DO are listed as follows: 

 

1. Oxidation of carbonaceous waste material. 

2. Oxidation of nitrogenous waste material. 

3. Oxygen demand of sediments of water body. 

4. Use of oxygen for respiration by aquatic plants. 

 

Environmental Impacts of Dissolved Oxygen 

The introduction of excess organic matter or oxygen consuming material may result in a 

depletion of oxygen in a water body, mainly during warm and stagnant conditions in 
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which water mixing is minimal (Radwan et al. 2003).  Gower (1980) reported that 

exposure to less than 30% saturation (less than 2 mg/L) for one to four days may kill 

most of the biota in a system. Also, prolonged exposure to low DO levels (less than 5 

mg/L) may not directly kill an organism, but can increase its susceptibility to many other 

environmental stresses.  

 

Inductive models are data-based models and in-depth knowledge of the process being 

modeled is often not required.  However, if available, knowledge of the process modeled 

can facilitate model development by providing insights into the factors affecting the 

process.  To develop an inductive or empirical model for simulating DO in a water body, 

observed data collected in the field is used that includes DO and other parameters that 

can affect the DO dynamics in the water body.  These can include parameters such as 

nutrients (total nitrogen and total phosphorus), stream flows, and temperature.  The data 

used in the development of the DO inductive models was obtained from MSD personnel 

involved in the data collection and management of the Beargrass Creel watershed.  The 

following sub-sections will describe the development of inductive DO receiving water 

models for the Beargrass Creek watershed in Louisville, Kentucky. 

 

 

5.3.2.3.3 Structure of Inductive DO Receiving Water Model 

An ANN-based inductive receiving water model was constructed for simulating DO in 

the Beargrass Creek watershed (Figure 5-23).  The inductive model relates the DO to 

stream flows (Q), nutrients (TN and TP) and temperature (T).  A two-step approach of 

inductive model development was employed that included 1) a source-load inductive 

model to simulate nutrients as a function of flow and conductivity, and 2) a receiving 

water inductive model that relates the stream flows, nutrients, and temperature to DO in 

the stream as shown in Figure 5-55 and 5-56.  The source load model was constructed 

using three different techniques namely regression method, ANNs, and FFSGA.  The 

receiving water model was constructed using ANN due to its ability to work with large 

sets of data.  
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Figure 5-55. Source-load ANN Model for Nutrients 

 

Figure 5-56. Receiving Water ANN Model for Dissolved Oxygen 

 

5.3.2.3.4 Development of DO Inductive Model 

The nutrient inductive models for predicting TN and TP loads constitute the first phase 

(Figure 5-55) in the two-phase process for DO inductive receiving water model as 

outlined above and these were described in the previous section.  The second phase 

(Figure 5-56) consists of using the nutrient loads (computed using the nutrient inductive 

models) as inputs to a DO inductive receiving water model along with other related 
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parameters such as temperature and streams flow.  The target output of such a model will 

be the measured DO concentration obtained from the continuous DO meters at the point 

of interest in the watershed.  For these models to be effective, it is important that in 

addition to be accurate in predicting DO, these models also establishes a reasonably 

accurate cause-and-effect relationship between inputs and outputs.  Once such a 

relationship is established by these inductive models, they can be used in evaluating 

different management strategies leading to load reductions in nutrient loads in 

contributing sub-watersheds. 

 

The DO inductive receiving water model is based on the ANN inductive modeling 

technique.  Two different categories of DO models were investigated and these include 1) 

one that uses an hourly time step, and 2) one that uses a daily time step.  The DO 

continuous monitoring data is in 15-minute intervals and is aggregated into hourly and 

daily intervals for use in the two categories of ANN inductive models. 

 

 

5.3.2.3.4.1 ANN-based Hourly-DO Inductive Model  

In the hourly DO inductive model, the inputs to the model consists of hourly stream flow, 

temperature, conductivity, total nitrogen load, and total phosphorus load.  The output 

consists of the target hourly DO concentration at the confluence of all contributing 

tributaries in the watershed (Site ESFSF013).  Figure 5-57 shows the location of this site 

along with the location of the three sites used for development of nutrient models as 

described in the previous section.  The stream flow data is obtained from the USGS gage 

stations in each of the tributary sub-watersheds as shown in Figure 5-57.  Such a 

receiving water DO model can be used to determine total nutrients load reduction 

strategies needed to bring the DO at site ESFSF013 in compliance with regulatory limits.   
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Figure 5-57. Sites used in the DO Inductive Models 

 

The popular multi layer feed-forward back propagation neural networks were used in 

developing the hourly inductive model for DO.  The model structure included one input 

layer, one hidden layer, and a corresponding output layer.  The input layer consists of five 

input nodes representing daily stream flow (Q), conductivity (C), temperature (T), total 

nitrogen load (TN), and total phosphorus (TP).  The output layer consists of one node 

representing the target DO concentration (DO).  The number of hidden nodes (H) in the 

hidden layer was varied in the model development, starting with five nodes and going up 

to a maximum of twelve nodes. A general schematic of the ANN model structure used in 

developing the hourly DO inductive model is given below in Figure 5-58. 
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Figure 5-58.  Neural Network Structure for Hourly Inductive DO Model 

 

The ANN network architecture was varied by trying different number of hidden nodes in 

the hidden layer and varying the learning rate and momentum rate parameters.  In the 

majority of evaluations, the most optimal results were obtained by using five hidden 

nodes in the hidden layer. The ANN structure used for fecal modeling used a logistic 

sigmoid function of the form given as:  
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The data used in the model development included data collected for the period January 1, 

2004 through November 30, 2004.  The hourly data set (comprising of a total of 4,118 

data points) was partitioned into training and a validation data set.  A total of 3,600 data 
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model validation.  Figure 5-59 and 5-60 below shows the actual versus predicted DO 

from the ANN model in training as well as validation.  

  

 

Figure 5-59. Dissolved Oxygen ANN Model (Training Results) 

 

The line in red above is a 45-degree line and the green line is the linear trend line for the 

data.  The model performs very well in prediction as shown by the high coefficient of 

determination (0.89).  The model performs equally well in validation and has a 

coefficient of determination of 0.87 as shown in Figure 5-60 below. 
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Figure 5-60. Dissolved Oxygen ANN Model (Validation Results) 

 

Table 5-21 below gives the measures of performance for the DO model in training and 

validation. 

 
 

Table 5-21. Measure of Performance of the Dissolved Oxygen ANN Model 
Model Type Coefficient of 

Determination 
(R2) 

Mean Square 
Error  
(MSE) 

Average 
Absolute 

Error 

Maximum 
Absolute 

Error 
Training 0.89 1.31 0.78 7.22 

Validation 0.87 1.58 0.84 7.33 

 

An error analysis was carried out for the ANN model in training and validation to 

demonstrate that the error is randomly distributed and there is no significant trend 

followed.  The error graphs for the ANN-based hourly DO models in both training and 

validation are shown in Figures 5-61 and 5-62 below. 
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Figure 5-61. Dissolved Oxygen ANN Training Model Error Analysis 
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Figure 5-62. Dissolved Oxygen ANN Validation Model Error Analysis 

The hourly receiving water DO model for site ESFSF013 discussed above was analyzed 

for sensitivity of different input parameters.  Due to the strong correlation between 

temperature and DO, temperature has the greatest impact of all the input parameters used 

in the model.   
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5.3.2.3.4.2 ANN-based Daily-DO Inductive Model  

In the daily DO inductive model, the inputs to the model consists of daily average stream 

flow, daily average temperature, daily average total nitrogen load, and daily average total 

phosphorus load.  The output consists of the target daily average DO concentration in the 

receiving water at the point of interest in the watershed. The inductive model is used to 

predict DO at site ESFSF006, which is located downstream of the confluence of South 

and Middle forks of Beargrass Creek watershed (Figure 5-57). The stream flow data is 

obtained from the USGS gage stations in the watersheds as shown in Figure 5-57.  Such a 

receiving water DO inductive model can be used to determine total nutrient load 

reduction strategies needed to bring the DO at site ESFSF006 within the regulatory 

limits.   

 

Similar to the hourly DO model, the popular multi layer feed-forward back propagation 

neural networks were used in developing the daily DO inductive model.  The model 

structure included one input layer, one hidden layer, and a corresponding output layer.  

The input layer consists of four input nodes representing daily stream flow (Q), 

temperature (T), total nitrogen load (TN), and total phosphorus (TP).  The output layer 

consists of one node representing the target DO concentration (DO).  The number of 

hidden nodes (H) in the hidden layer was varied in the model development, starting with 

five nodes and going up to a maximum of twelve nodes. A general schematic of the ANN 

structure used in developing the DO inductive model is given below in Figure 5-63. 
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Figure 5-63.  Neural Network Structure for Daily Inductive DO Model 

 

The ANN network architecture was varied by using different number of hidden nodes in 

the hidden layer and varying the learning rate and momentum rate parameters.  In the 

majority of evaluations, the most optimal results were obtained by using five hidden 

nodes in the hidden layer.  

  

Data from October 1, 2003 through September 30, 2004 was used in the ANN-based 

daily average DO inductive model resulting in a total of 342 data points after 

disregarding the days for which no data was recorded.  Figure 5-64 shows the average 

daily flow and average daily dissolved oxygen data for this period.  Figure 5-65 shows 

the average daily temperature and average daily DO data for this period.   
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Figure 5-64.  Flow and DO data for Site ESFSF006 (South Fork) 
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Figure 5-65.  Temperature and DO data for Site ESFSF006 (South Fork) 

 

The significant feature to note in the Flow-DO plot above (Figure 5-64) is the DO crashes 

that occur after a significant storm event.  The crash seems to occur not immediately after 



 152 

the storm event but is lagged by one or more days.  This would imply that the storm event 

brings a load of oxygen consuming material and it takes a day or more for that material to 

be consumed by the oxygen demanding organisms in the column of water. 

    

The ANN model structure as shown in Figure 5-63 with four inputs was not able to 

capture the observed DO dynamics within a reasonable confidence limit and resulted in a 

model that performed poorly (coefficient of determination ranging from 0.3 to 0.5).  This 

can be attributed to the fact that since most of the DO crashes occur with a lag of one or 

more days after the storm event, a model with just daily values of flow and nutrient loads 

would not be able to model the DO crashes as observed in Figure 5-64 (flow-DO plot) 

above.  Keeping this in mind, two more ANN model structures were analyzed and these 

included: 

 

1. An ANN model in which the input data includes average daily nutrient loads 

(total nitrogen and total phosphorus) and average daily temperature values for up 

to 14 days (lagged from the current day).  

2. An ANN model in which the input data includes average daily flow and average 

daily temperature values for up to 14 days (lagged from the current day). 

 

Using current and previous days of data in the model would help in capturing the effect 

of flow and nutrient loads on the observed DO, in particular the crashes observed in the 

data.  The inclusion of the 14-day lagged input parameters in the ANN model resulted in 

significant improvement in the prediction performance of the DO model.  The model was 

able to capture with reasonable confidence the DO crashes as seen in the flow-DO plot.  

The results of these two types of models are provided as follows.  It should be noted that 

flow and nutrient inputs are in some way analogous due to the high correlation that exists 

between the two parameters.  This is evident from the nutrient models developed and 

discussed in the preceding section.  However, the ANN-based average daily DO models 

using flow or nutrients as model inputs may vary slightly due to the lagged effect of the 

two inputs on the observed DO. 
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ANN-based DO Inductive Model with Nutrients and Temperature as Model Inputs 

(current and up to 14-day lag)  

The ANN model structure is given in the Figure 5-66 below in which TN represents the 

average daily total nitrogen load, TP is the average daily total phosphorus load, and T is 

the average daily temperature. 

 

Figure 5-66. ANN DO Model Structure with Nutrient and Temperature Inputs 

 

TNt-14 

...... 

TNt 

TPt-14 

TPt 

...... 

Tt-14 

Tt 

...... 

H1 

H2 

H3 

H4 

H5 

Hn 

   DOt 

INPUT 
LAYER 

HIDDEN 
LAYER 

OUTPUT 
LAYER 



 154 

The ANN model consists of 45 inputs (15 total nitrogen load values, 15 total phosphorus 

load values, and 15 average daily temperature values).  The number of hidden nodes in 

the hidden layer were varied from 10 to 30 and 15 hidden nodes in most cases gave the 

best model results.  Figure 5-67 and 5-68 below shows the actual versus predicted DO 

from the ANN-based inductive model in training as well as validation.  Figure 5-69 

shows the actual and predicted time series of DO predicted by the ANN-based inductive 

model.   

 

 

Figure 5-67. Performance of the Daily DO ANN Model in Training 
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Figure 5-68. Performance of the Daily DO ANN Model in Validation  
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Figure 5-69. Time series of Daily DO from the ANN Model 
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Table 5-22 below gives the measures of performance for the DO model in training and 

validation. 

 

Table 5-22. Measure of Performance of the Dissolved Oxygen ANN Model 
(Nutrients and Temperature as Model Inputs) 

Model Type Coefficient of 
Determination 

(R2) 

Mean Square 
Error  
(MSE) 

Average 
Absolute 

Error 

Maximum 
Absolute 

Error 
Training 0.93 1.34 0.79 4.88 

Validation 0.63 7.49 2.05 7.46 

 

An error analysis was carried out for the ANN model in training and validation to 

demonstrate that the error is randomly distributed and there is no significant trend 

followed.  The error graphs for the ANN model in both training and validation are shown 

in Figures 5-70 and 5-71 below. 
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Figure 5-70.  Error Analysis of the ANN Model in Training 
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Figure 5-71.  Error Analysis of the ANN Model in Validation 

 

ANN-based DO Inductive Model with Stream Flow and Temperature as Model Inputs 

(current and up to 14-day lag) 

The ANN model structure is given in the Figure 5-72 below in which Q represents the 

average daily stream flow, and T is the average daily temperature.  The ANN model 

consists of 30 inputs (15 daily average flow values, and 15 average daily temperature 

values).  The number of hidden nodes in the hidden layer were varied from 10 to 30 and 

15 hidden nodes in most cases gave the best model results.  Figure 5-73 and 5-74 below 

shows the actual versus predicted DO from the ANN model in training as well as 

validation.  Figure 5-75 shows the actual and predicted time series of DO predicted by the 

ANN model.   
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Figure 5-72. ANN DO Model Structure with Flows and Temperature Inputs 
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Figure 5-74. Performance of the Daily Dissolved Oxygen ANN Model in Validation 
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Figure 5-75. Time series of Daily Dissolved Oxygen from the ANN Model 
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Table 5-23 below gives the measures of performance for the DO model in training and 

validation. 

 

Table 5-23. Measure of Performance of the Dissolved Oxygen ANN Model 
(Flow and Temperature as Model Inputs) 

Model Type Coefficient of 
Determination 

(R2) 

Mean Square 
Error  
(MSE) 

Average 
Absolute 

Error 

Maximum 
Absolute 

Error 
Training 0.99 0.06 0.18 0.93 

Validation 0.67 7.95 1.77 9.49 

 

An error analysis was carried out for the ANN model in training and validation to 

demonstrate that the error is randomly distributed and there is no significant trend 

followed.  The error graphs for the ANN model in both training and validation are shown 

in Figures 5-76 and 5-77 below. 
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Figure 5-76.  Error Analysis of the ANN Model in Training 
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Figure 5-77.  Error Analysis of the ANN Model in Validation 

 

5.3.2.3.5 Summary of Results for DO Inductive Models 

Three different types of inductive DO models based on ANNs were described in the 

previous sections.  These include an hourly DO model with five inputs (Q, T, C, TN, and 

TP), an average daily DO model with 45 inputs (15 values of T, 15 values of TN, and 15 

values of TP), and an average daily DO model with 30 inputs (15 values of T and 15 

values of Q).  The results show that ANN is capable of modeling the DO response in the 

stream based on the model inputs identified.  The measure of performance of the ANN 

models included the coefficient of determination (R2), mean square error (MSE), average 

absolute error, and maximum absolute error.  All three models give varying degree of 

accuracy in predicting the DO.  As a prediction tool, all three models perform reasonably 

well to capture the DO dynamics.  The next test was to use these models as a 

management tool to establish load reductions necessary to improve the DO to above the 

regulatory limits.  Using a trained ANN model, the inputs were modified to reflect a 

reduction in the nutrient loads and the modified inputs were evaluated using the DO 

inductive models.  The models failed to respond in a favorable manner to the reductions 

applied in the stream flows or nutrient loads.  Even though there was slight improvement 

in the DO with reduced nutrients, a more definite cause-and-effect relationship could not 
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be established as would be needed for the model for it to be used as a management tool 

for evaluating different reduction strategies.  This is a significant finding and it points out 

an important fact that even though an inductive model may fit well to the given data and 

be an accurate prediction tool, it may lack the ability to be used as a management tool.  

For an inductive model to be effective for use as a management tool, it should be able to 

provide a reasonably accurate cause-and-effect relationship between inputs and outputs.  

Also, the cause-and-effect relationship provided by the model needs to be practical and 

reflective of the real world processes.  The inability of the ANN models to provide a 

more realistic cause-and-effect relationship can be attributed to many reasons such as: 

 

• The raw data used in the model development may be erroneous. 

• The fact that ANN is a black-box model and does not understand the underlying 

processes and relationships of the inputs and outputs of the model. 

• One or more model inputs may have a significant impact on the model output 

rendering other model inputs (particularly the ones for which load reductions are 

sought) rather insensitive to the model output (DO).  For instance, temperature is 

strongly related to DO and may be driving the response of DO causing other model 

inputs such as flow and nutrients less effective in impacting the output. 

• The model inputs for which reductions are sought may in reality have no significant 

impact on the model output.  For instance, the stream flow and/or nutrients may not 

be causing the DO to crash as seen in the time series of observed data (Figure 5-

64). 

 

Due to reasons such as those outlined above, it can be stated that the ANN-based 

inductive DO models may serve as effective prediction tools as a function of inputs such 

as flow, temperature, and nutrients.  However, these models will have little utility when 

used in a management framework to obtain optimal load reductions for water quality 

management.  For use in a management framework, it is important to establish a cause-

and-effect relationship between model inputs and outputs. 
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5.4 Simple Deductive Simulation Models 

This type of macro-level models represents a simplified form of a complex process-based 

model to represent a response function being modeled.  A complex water quality model 

for watershed management such as HSPF (Hydrologic Simulation Program Fortran) is 

usually developed to represent a variety of water quality processes (parameters of 

interest) occurring in the watershed such fecal coliform, dissolved oxygen, nutrients, 

biochemical oxygen demand, etc.  Such a model when calibrated and verified, represent a 

cause-and-effect relationship between sources of pollution and in-stream concentration of 

pollutants under study.  Such a complex model or suite of models can be broken down 

into simpler pieces with each piece representing the response of an individual process or 

a water quality parameter.  Each individual process or parameter can then be modeled 

using a simplified mathematical representation to provide a simple deductive simulation 

model that can be used on a macro-level for water quality management.  Examples of 

simple deductive models in hydrology and water quality modeling are given as follows: 

 

1. The Kinematic Storage Method is a simplified version of the fully dynamic Saint 

Venant equations (conservation of mass and momentum equations). 

2. The Green and Ampt equation for modeling infiltration is a simplification of the 

Richard’s equation for infiltration that involves partial differential equations.  

3. The Streeter-Phelps model for modeling dissolved oxygen deficit is a simplification 

of the advection-diffusion contaminant transport equation. 

  

 

5.4.1 Example Application 

To demonstrate the concept of simple deductive model for water quality modeling and 

subsequent use as a macro-level model in a water quality management framework, a 

simplified dissolved oxygen (DO) simulation model is developed for simulating DO in 

each of the three forks of  Beargrass Creek watershed.   
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5.4.1.1 Simplified Deductive Dissolved Oxygen Model 

The explicit inductive DO models described in the previous section reveals that while 

they can serve as good prediction models that fits well to a given set of input data, they 

have significant shortcomings when used in a management framework.  The simple 

deductive DO model based on the classic Streeter-Phelps equation (Streeter and Phelps, 

1925) is a motivation of the shortcomings resulting from the use of inductive DO models 

(as described in the previous section).  An effort is made to construct a simplified DO 

model that can establish a reasonable cause-and-effect relationship between model inputs 

and model output (DO) and can be effectively used for determining load reductions.  In 

this approach, it is hypothesized that the DO crashes observed in the data collected for the 

Beargrass Creek watershed (Figures 5-64 and 5-65) are largely due to the BOD loads 

contributed by different sources of pollution in the watershed.  This hypothesis is justified 

by the following factors: 

 

• The explicit inductive DO models based on stream flow, nutrients, and temperature 

were rather insensitive to the nutrient loads and stream flow used as model inputs. 

• BOD loads caused mainly by CSO/SSO events are responsible for the chronic DO 

crashes, while the more acute and diurnal fluctuation of DO over a 24-hour period 

are related to nutrients and algae presence. 

• The watershed does not seem to be nutrient limited and any reduction in nutrients 

may not significantly affect the DO, particularly in the case of the chronic crashes 

following a severe storm event (personal communication with Lynn Jarrett, 2005). 

 

The Streeter-Phelps (Streeter and Phelps, 1925) model relates the DO deficit in a water 

body to the ultimate BOD concentration and can be effectively used to evaluate the 

impact of BOD load reduction on DO in a water body.  Before the model development is 

described, it is important to understand the DO-BOD cycle and important processes 

occurring in such an interaction in a stream ecosystem.   
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5.4.1.1.1 DO-BOD Cycle in Stream Water 

In a stream ecosystem there are many inter-connected processes occurring simultaneously 

that affect the DO levels in the water column.  Figure 5-78 shows some of the most 

important processes occurring in a stream system that are usually considered in modeling 

DO.  Oxygen in such an environment is produced by photosynthesis of algae and plants 

and is consumed by respiration of plants, animals and bacteria, BOD degradation process, 

sediment oxygen demand (SOD), and oxidation.  It is re-aerated by the exchange of 

oxygen from the atmosphere.   

 

Figure 5-78. Processes related to modeling of DO (Radwan et al. 2003) 

 

Similarly, Figure 5-79 gives an overview of the most important processes related to BOD 

modeling in a stream system.  Degradation of the organic matter expressed as BOD 

results in the equivalent consumption of oxygen.  Degradation of BOD is also a source of 

nutrients (NH4-N) that are oxidized by oxygen and thus causing additional consumption 

of oxygen (Radwan et al. 2003).   
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Figure 5-79. Processes related to modeling of BOD (Radwan et al. 2003) 
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the ANN-based Inductive DO models with a daily time step as described in the previous 
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Figure 5-80. Dissolved Oxygen Sampling and Rain Gage Sites 

 

Many computer programs and equations are used to simulate water quality in streams, 

rivers, and lakes.  To model the DO deficit occurring in a stream, the most prevalent of 

such equations is the Streeter-Phelps equation (Streeter and Phelps, 1925).  Being a 

simplified representation of the actual DO dynamics, a model based on the Streeter-

Phelps equation has certain limitations due to the assumptions of the model.  The 

assumptions of the simplified deductive DO model developed in this study based on the 

Streeter-Phelps equation are described as follows: 

 

• Stream is an ideal plug flow reactor. 

• Steady-state flow and BOD and DO reaction conditions. 

• One dimensional stream flow is assumed. 
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• Effects of diffusion or dispersion are neglected. 

• The only reactions of interest are BOD exertion and transfer of oxygen from air to 

water across air-water interface. 

• Only carbonaceous BOD is exerted in the model. 

• Both reoxygenation and deoxygenation are first order. 

 

The dissolved oxygen in each of the streams, DO, depends on the oxygen deficit D and 

the saturation dissolved oxygen DOsat as given by Equation (5-18).  The oxygen deficit is 

a function of the initial deficit Do, ultimate BOD concentration Lo, BOD decay rate Kd, 

and re-aeration from the atmosphere Ka, and is given by Equation 5-19 (Streeter-Phelps 

DO Model).  Equation (5-20) is obtained by solving Equation (5-19) for the ultimate 

BOD concentration Lo and assuming that the initial deficit Do is equal to zero.  Figure 5-

81 gives a sketch of the DO dynamics along the length of each of the streams.  For 

simplification, the entire stream is considered one reach in the analysis starting at an 

upstream location where the DO is observed to be close to saturation and ending at the 

most downstream end of the stream. 
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Where   Do = initial deficit 

  Lo = ultimate BOD concentration (mg/L) 

  Ka = re-aeration rate (day)-1 
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  Kd = decay rate (day)-1 for carbonaceous BOD 

  U = average velocity in the stream (feet per day) 

  X = length of the stream (feet) 

 

   

 

 

 

 

 

Figure 5-81.  Dissolved oxygen deficit in the stream 

 

A schematic of the stream segments in each of the three forks is given in Figure 5-82 

below.  The term Do in Equation (5-19) is assumed zero since the model assumes 

saturation conditions at the upstream end of each of the three forks.  This assumption is 

backed by the fact that observed DO data at the upstream end does not show any 

impairment and is close to the saturation DO value for most days of the model period 

(October 1, 2004 to September 30, 2004).  A daily time step was used in the steady state 

dissolved oxygen model.    

Lo
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Figure 5-82. Schematic of the DO Model for three Forks in  
Beargrass Creek Watershed 

 

Based on the actual average daily deficit observed between the most upstream and 

downstream stations of the stream, Equation (5-20) is used to back-calculate the ultimate 

BOD concentration (Lo) that is causing the average daily DO deficit observed.  Initial 

deficit is assumed to be zero as the DO in the most upstream end of the each of the 

stream is fairly close to the saturation DO.  The rate of decay (Kd) is assumed to be 0.25 

(suggested range of 0.15 to 0.35 in most text books).  The re-aeration rate (Ka) is 

computed based on the average velocity and depth in the stream by using Equation 5-21 

(O’Connor and Dobbins, 1958), Equation 5-22 (Churchill et al. 1962), or Equation 5-23 

(Owens, et al. 1964).  The depth and velocity terms used in Equations 5-21 through 5-23 

were computed by using relationships derived from actual rating curves developed for all 

of the USGS gauging stations of the watershed. 
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The total average daily flow is obtained for each of the three forks by utilizing the data 

collected at five USGS gauging stations in the watershed.  Average daily flow is 

segregated into three components corresponding to the three sources namely (as shown in 

schematically in Figure 5-83): 

 

1. Point source flow from CSO discharges 

2. Non-point source flow from urban runoff,  and  

3. Base flow in the stream.   

 

The contribution of CSO flows for a particular stream reach is approximated by using 

USGS gauging stations upstream and downstream of the CSO areas as follows.  First, the 

total contributing drainage area between the two USGA stations was determined and 

separated into a CSO drainage area and a non-CSO drainage area using the GIS coverage 

for the watershed.  This will establish the percentage of CSO drainage area for a 

particular stream reach between the two USGS gauging stations.  Second, the difference 

of stream flow is computed between the two USGS gauging stations on a particular 

stream reach.  Lastly, the percentage of CSO areas computed in the first step is applied to 

the difference flow computed in the second step to get an approximation of the CSO 

component of the stream flow for a particular stream reach.  The remaining flow is 

assumed to be contributed by storm water runoff due to the non-CSO drainage area in the 

stream reach.  In addition, a constant base flow is assumed based on the actual total flow 

hydrograph obtained at the USGS sites. 
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Figure 5-83. Segregation of daily average flows for each fork of Beargrass Creek 

 

The ultimate BOD concentration (Lo) computed using Equation (5-20) represents a total 

effective BOD concentration (load) that is causing the DO deficit at the downstream end 

of the stream segment.  Figure 5-84 below shows a schematic of a typical stream segment 

in which the effective load applied at the upstream end of the segment is causing the DO 

deficit observed at the downstream end.  Figures 5-85 through 5-87 shows the effective 

total BOD concentration (Lo) time series computed for each of the three forks in the 

Beargrass Creek watershed for the period October 1, 2003 through September 30, 2004. 

 

 

 

 

 

 

 

 

Figure 5-84.  Schematic of BOD Load Application in the Deductive DO Model  
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Figure 5-85. BOD Time Series computed for Muddy Fork Watershed 
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Figure 5-86. BOD Time Series computed for Middle Fork Watershed 
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Figure 5-87. BOD Time Series computed for South Fork Watershed 

 

Once the effective daily ultimate BOD concentration (Lo) is computed, a mass balance of 

flow and concentration for each of the contributing sources is performed to quantify the 

BOD concentration from each source.  Three types of sources are identified to be 

contributing BOD loads into the stream segments including: 

 

1. Point source contribution of BOD loads from CSOs events during storm event. 

2. Non-point source contribution of BOD loads from storm water runoff. 

3. An unknown or undetermined source of BOD contribution that is associated with 

the base flow in the streams.  Such an unknown source may include other 

suspected sources of BOD contribution such as sediment oxygen demand (SOD) 

or ex-filtration from leaking sewers (that run close to the stream segments in the 

model) onto the stream banks.   

 

The total BOD concentration (calculated from Equation 5-20 above) can be represented 

as a mass balance of the flow and concentration from the three sources of flow and BOD 

concentration identified above and is given by Equation 5-24 below. 
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Where  Lo = total ultimate BOD concentration in mg/L 

QPS = point source flow (CSO discharges) in ft3/sec 

  QNPS = non-point source flow (urban runoff) in ft3/sec 

  QBF = base flow in ft3/sec 

  LPS = BOD concentration of CSO discharges in mg/L 

  LNPS = BOD concentration of urban runoff in mg/L 

  LUKS = BOD concentration of the unknown source 

 

BOD concentration values were assigned to the point and non-point source contributions 

based on a survey of literature values (Tetra Tech, 2005) and used in Equation 5-25 to 

obtain the BOD concentration for the unknown source.  Literature values used for LPS = 

50 mg/L and LNPS = 10 mg/L.  These can obviously be changed if actual values are 

available either from sampling or as an output from a more detailed process-based model 

of the watershed. 
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Once the unknown source BOD concentration is determined from Equation (5-25), the 

model can be used in the forward direction to compute DO at the downstream end of each 

of the three forks of the Beargrass Creek watershed.  A mass balance of DO and flows is 

performed to compute the DO at the confluence of the forks.  This is done at two 

locations in the model; first at the confluence of South and Middle forks, and second at 

the confluence of South and Muddy forks.  The resulting DO time series for the three 
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forks of Beargrass Creek watershed and the two confluence locations are given in Figures 

5-88 through 5-92.  As expected, the DO time series obtained using the simplified 

deductive model matches the observed DO at the outlet of the three sub-watersheds and 

the downstream confluence locations of the Beargrass Creek watershed. 
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Figure 5-88.  South Fork DO Time Series using Simplified Deductive Model 
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Figure 5-89.  Middle Fork DO Time Series using Simplified Deductive Model 
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Figure 5-90.  Muddy Fork DO Time Series using Simplified Deductive Model 
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Figure 5-91.  South-Middle DO Time Series using Simplified Deductive Model 

 



 178 

Dissolved Oxygen Time Series 

(Confluence of South and Muddy Forks)

0

2

4

6

8

10

12

14

10/01/03 11/30/03 01/29/04 03/29/04 05/28/04 07/27/04 09/25/04

Days

D
O

 (
m

g
/L

)

 

Figure 5-92.  South-Muddy DO Time Series using Simplified Deductive Model 

 

5.4.1.1.3 Summary and General Remarks 

A simplified macro-level DO simulation model based on the Streeter-Phelps equation 

was developed using observed DO deficit data for the three forks of the Beargrass Creek 

watershed.  This macro-level simple deductive approach results in a simple DO 

simulation model that is calibrated with observed data.  The model is capable of 

establishing a cause-and-effect relationship between organic loads (BOD) and DO in the 

streams.  Such a simplified DO-BOD load model can be very useful for use in an optimal 

management formulation to evaluate different water quality management strategies for 

BOD load reduction.  For instance, by varying any or all of the six terms on the right side 

of Equation (5-23) which includes QPS, QNPS, QBF, LPS, LNPS, and LUKS, a new value of the 

total ultimate BOD load (Lo) can be computed for each of the three forks.  The modified 

total BOD concentration (Lo) for each stream segment can then be used in the forward 

model using Equation (5-19) to compute the corresponding DO deficit.  This will allow 

the evaluation of different flow reduction and BOD concentration reduction strategies for 

all three stream segments in a management framework resulting in the improvement of 

DO in the water bodies.  Such a model will be more effective for evaluating management 

strategies because the Streeter-Phelps equation provides a very direct cause-and-effect 
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relationship between the effective total BOD concentration (Lo) and the corresponding 

DO deficit in the stream reach being analyzed.   
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CHAPTER 6 

THE OPTIMAL WATERSHED MANAGEMENT MODEL 

 

6.1 Introduction 

Increased urbanization in watersheds as a result of growth in U.S urban corridors is 

causing an increase in water pollution problems and a deterioration of the water quality of 

water bodies.  Integrated watershed management approach is increasingly being used to 

solve such problems.  Such an approach can lead to identification of management 

strategies for water quality management.  While acknowledging the problems of 

urbanization in watersheds and its associated impacts on water bodies, there is a need to 

further develop the science of integrated watershed management.  Such a need requires 

scientists, engineers, and all stakeholders in a watershed framework to work towards 

developing effective water quality management strategies for urban watersheds.  Such 

strategies can be developed by using principles of hydrology, water quality, computer-

based modeling, and the various techniques of operations research (optimization) in an 

integrated watershed management framework.  In principle, an effective management 

strategy for urban watersheds should be cost-effective, practical, and should satisfy all 

water quality objectives for the watershed.  The strategy should be comprehensive in that 

it should address both point, non-point, and other undetermined sources of pollution that 

may exist in the impaired watershed.  This has been the primary motivation of this 

research and an optimal management model for urban watersheds is presented here that 

can be effectively used to evaluate multiple management strategies resulting in optimal 

strategies (strategies that are cost effective and meet water quality objectives). 

 

 

6.2 Previous Work  

There are many applications of optimization techniques in general and evolutionary 

methods (such as genetic algorithms) in particular in the area of water resources 

engineering and management.  These range from calibrating watershed or water quality 

simulation models to selecting optimal storm water management strategies to identifying 
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optimal load reduction strategies for water quality management.  Broadly speaking, the 

use of optimization for water quality and/or watershed management falls into two 

categories namely 1) those studies in which optimization is used to enhance a simulation 

model (such as calibration and error correction), and 2) those studies in which 

optimization is used to achieve optimal management strategies (such as storm water 

quality and river water quality).  In the current research, optimization is used in an 

integrated watershed management framework to achieve optimal water quality load 

reductions by coupling with a macro-level simulation model.  In the past, there have been 

few applications of evolutionary algorithms for such integrative modeling for watershed 

management (Muleta, 2003). A brief description of some of the more recent contributions 

in the use of optimization models coupled with water quality simulation models for water 

quality and/or watershed management is given as follows. 

 

• Muleta (2003) developed an integrative computational methodology for the 

management of non-point source pollution from watersheds.  The method is based 

on an interface between evolutionary algorithms (EAs) and a comprehensive 

watershed simulation model known as Soil and Water Assessment Tool (SWAT).  

The decision support system developed is capable of identifying optimal land use 

patterns to satisfy environmental and economic related objectives.  The study also 

uses a simple genetic algorithm to calibrate the SWAT model thus improving its 

ability to accurately predict stream flows and sediment yields.  The resulting 

calibrated SWAT model is used with a simple GA for single objective optimization 

and with a Strength Pareto Evolutionary Algorithm for multi-objective 

optimization.  Finally, the study also investigates the utility of an alternative 

inductive model based on Artificial Neural Networks (ANN) that is trained on the 

output of a calibrated SWAT model as a substitute for the computationally 

expensive SWAT model in the management framework. 

• Vrugt et al. (2003) and Vrugt et al. (2003) developed efficient and effective 

optimization algorithms for estimating parameter uncertainty and calibration of 

hydrologic models.  The work described in these studies uses a Markov Chain 

Monte Carlo (MCMC) sampler called the Shuffled Complex Evolution Metropolis 
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algorithm (SCEM-UA) for parameter estimation and a Multi-objective Shuffled 

Complex Evolution Metropolis algorithm (MOSCEM) for calibration of hydrologic 

models.  Both the SCEM-UA and MOSCEM are derived using the Shuffled 

Complex Evolution approach of Duan (1993) and the unconstrained optimization 

method of Nelder and Mead (1965).  

• Dorn (2004) developed a new evolutionary algorithm based technique for 

systematic generation of alternatives and multi-objective optimization to aid in 

watershed management.  The new EA-based framework focused on storm water 

management issues such as use of best management practices (BMPs) to control 

runoff resulting from new developments.  In particular, the modeling and 

management framework was applied to watersheds for obtaining cost-effective 

system of pipes and dry detention ponds to convey runoff generated by a design 

storm while meeting objectives of runoff control.  The optimization model 

developed in the study works in conjunction with a storm water simulation model 

(called SWMM – Storm Water Management Model) developed by EPA. 

• Mujumdar and Subbarao (2004) presented a fuzzy waste load allocation model for 

water quality management of a river system.  The model uses a GA coupled with a 

steady state water quality simulation model called QUAL2E.  A GA is used as an 

optimization tool to find optimal fraction removals of BOD load from various 

dischargers into the river system while maintaining required levels of dissolved 

oxygen in the system.  A decoder-based method called homomorphous mapping 

(HM) is used to handle constraints using GA in this application.  A similar model is 

presented by Burn (2001) in which GA is used to identify solutions to the waste 

load allocation problem.  The constraints are handled through the use of penalty 

coefficient method.  If a solution is identified that results in one or more violations, 

the cost of treatment corresponding to that solution is increased by an amount that 

is a function of the number of violations and the magnitude of the sum of violations 

(Burn, 2001).  

• Goktas and Aksoy (2004) presented the application of GA for calibration and 

verification of a QUAL2E model.  The GA is used to determine the re-aeration 

coefficient for the water quality simulation model called QUAL2E. 
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• Durga Rao and Satish Kumar (2004) presented a GIS-based decision support system 

for supporting watershed management practices related to soil erosion.  

• Zechman (2005) developed a new method to improve the predictive capabilities of 

simulation models for use in watershed management.  The work results in new 

evolutionary computation (EC) based methods to generate alternatives for numeric 

and symbolic search problems.  This work is focused more on the simulation model 

component of the overall watershed management framework and finding new EC-

based methods for enhancing alternative generation capabilities of search 

algorithms for use in error correction of simulation models. 

 

 

6.3 Current Work 

In the current research, optimization is used in an integrated watershed management 

framework to achieve screening-level optimal water quality load reductions.  This is 

achieved by coupling macro-level water quality simulation models with efficient 

optimization models in a linked nonlinear constrained optimization framework.  Given 

the complexity and nonlinear nature of water quality processes occurring in an urban 

watershed subject to multiple sources of pollution including point and non-point sources, 

evolutionary algorithms were selected as one of the method of optimization in this 

research.  The fact that evolutionary methods work with a population of solutions, thus 

providing many alternative solutions favors its application to watershed management 

problems.  Different feasible alternative solutions will provide multiple management 

scenarios for watershed managers leading to the ultimate selection of the most effective 

strategy that meets economic, environmental (water quality), and other specified goals.  

In particular, a genetic algorithm is applied in a coupled simulation-optimization 

approach to the problem of water quality management for urban watersheds.  For 

comparison purposes, the performance of the GA algorithm is compared with a new 

Shuffled Box Complex method of constrained optimization, which is based on the 

original Box Complex method (Box, 1965).  The Box Complex (Box, 1965) method is 

modified from its original version by initializing multiple complexes (as opposed to one 

complex) and randomly shuffling the vertices of the complexes after a specified number 
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of generations (iterations).  Such an approach of multiple complexes and random 

shuffling is assumed analogous to the search mechanism in evolutionary methods making 

it more robust than the original Box Complex method.   

 

 

6.4 Optimal Management Model Formulation 

A disaggregated approach of optimal management formulation is used in the proposed 

management model.  Such an approach consists of using a water quality simulation 

model linked with an appropriate optimization model to evaluate management strategies 

for an impaired watershed.  Such a linked methodology will be referred to hereafter as the 

optimal management model.  The use of such an integrated linked methodology has been 

increasingly popular for water resources management problems and has been successfully 

used in the past.  Some examples of such a linked methodology include the work done by 

Nicklow and Mays (2000), Muleta (2003), and Dorn (2004).  Muleta (2003) provides a 

listing of several other applications of such a linked methodology in various areas of 

water resources management such as reservoir management, bioremediation design and 

groundwater management, and design and operation of water distribution systems.  Such 

a linked approach as shown in Figure 6-1 reduces the complexity and size of the overall 

optimization framework and provides for the evaluation of several simulation model 

structures as well as optimization techniques.  

  

 

 

 

 

 

 

Figure 6-1. General Framework of Linked Methodology 
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When applied to an urban watershed management and pollution reduction problem, the 

optimal management model will allow the evaluation of multiple water quality 

management strategies for the control of point, non-point, and any other sources of 

pollution in the watershed.  The optimal management model can be generally formulated 

as follows: 

 

Maximize environmental (water quality) and economic (budgetary) benefits for an urban 

watershed impaired by multiple pollution sources (point, non-point, and other) subject to 

1. Hydrologic and water quality relationships that govern the physical processes 

modeled in the watershed, and 

2. Water quality and hydrologic constraints such as regulatory compliance and 

infrastructure limitations. 

 

For an urban watershed impaired by point sources (CSOs and SSOs), non-point sources 

(urban runoff), and other undetermined or unknown sources, the methodology is designed 

to select optimal management strategies such as volume controls (storage) for CSOs and 

SSOs, storage for urban runoff such as detention and/or retention facilities, and other site 

specific controls such as low impact technologies, wastewater treatment technologies, 

and sewer system rehabilitation techniques.   

 

Two distinct formulations are proposed for the optimal management model.  The first one 

is a water quality-based formulation and the second one is an economic or budget-based 

formulation.  In the water quality-based formulation, the optimal management model 

evaluates multiple management strategies and selects the optimal strategy that is least-

cost and satisfies all water quality objectives.  In the budget-based formulation, the 

optimal management model evaluates multiple management strategies and selects the 

optimal strategy that minimizes the water quality violation while not exceeding a 

prescribed project budget.   

 

The methodology developed in this research links a macro-level water quality simulation 

model with two different optimization techniques for the single objective watershed 
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management model.  The macro-level simulation model is linked in a nonlinear 

constrained optimization framework to evaluate multiple management strategies leading 

to the optimal management strategy.  The macro-level simulation modeling approach is 

proposed to represent the hydrologic and/or water quality model for the physical 

processes occurring in the watershed that are modeled.  In theory, three different types of 

macro-level model structures can be used as described in Chapter 5.  These include 1) an 

implicit inductive model, 2) an explicit inductive model, and 3) a simplified deductive 

model.  While the macro-level approach may limit the accuracy of the model 

predictability in representing the physical processes modeled, it has several advantages 

over the use of traditional complex deductive simulation models in the context of an 

optimal watershed management framework.  These include 1) they are relatively simple 

to develop, 2) they are easy to integrate into the optimal management model, 3) they 

result in significant time savings when used in the optimal management model, 4) they 

provide the flexibility of several different model structures and model development 

techniques for use in the optimal management model.  Due to the simplified or macro 

nature of the simulation model, the resulting optimal management model is proposed for 

use as a screening tool for evaluating watershed management alternatives.  The resulting 

optimal strategies can be verified or validated with a full blown process-based model, if 

available.     

 

In the context of the different optimization methods, two different types of optimization 

techniques are used in the proposed optimal management model namely 1) a GA-based 

evolutionary optimization method, and 2) a Shuffled Box Complex method of 

constrained optimization. The use of two different optimization methods will provide for 

some comparison basis for evaluating the two techniques for application to watershed 

management problems.    In the context of watershed management, two factors make the 

proposed optimal management model unique when compared to similar work.  These 

include 1) the use of macro-level simulation models for use in the optimal management 

model, and 2) the use of two different classes or types of optimization techniques in the 

optimal management model, including a new technique called the Shuffled Box Complex 
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method.  Figure 6-2 is a simplified representation of the optimal management framework 

proposed in this research.   

 

Figure 6-2. Optimal Management Framework 

 

The decision variables in the optimal management formulation as shown in Figure 6-2 

above will include management scenarios such as volume controls (storage) for point 

sources, peak runoff controls, rehabilitation techniques, and any other technologies that 

can be implemented in an urban watershed for water quality management. Figure 6-3 

gives some possible management strategies for an urban watershed.  A set of decision 

variables will consist of the components that make up a possible management strategy (as 

given in Figure 6-3) that can be implemented in the watershed.  These decision variables 

are sent to the simulation model from the optimization model.  The simulation model will 

evaluate the corresponding response or impact of the system resulting from the particular 

solution set of decision variables that constitutes a management strategy. The simulation 

model thus ensures that all implicit system constraints and bound constraints are satisfied.  

The response of the simulation model is sent back to the optimization model which 

evaluates the constraints for the model such as violation of water quality or economic 

constraints. The optimization model continue to send new alternatives in the search for 

the optimal strategy, the simulation model accept these new alternatives, and the cycle 

continues until a user specified stopping criterion is satisfied. 

Optimization Model 
(Genetic Algorithms or 

Shuffled Box Complex Method)

Macro-level Watershed 
Simulation Model 

(Explicit Inductive, Implicit 
Inductive, or Simple Deductive) 

Pass 
Decision 

Variables 

Satisfy State 
Variables and 
Constraints 
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Figure 6-3. Possible Management Strategies for the Optimal Management Model 

 

In GA-based optimal management model, the set of decision variables are coded as genes 

in a solution chromosome as described in Chapter 2.  The suitability or survivability of 

such chromosome is based on its fitness value, which is directly linked to the objective 

function(s).  Since the optimization is driven by cost, the objective function is a cost 

function of a management strategy being evaluated.  In the Shuffled Box Complex-based 

optimal management model, the set of decision variables is represented as the vertex of 

multiple complexes that evolve in the search space.  As they evolve, the complexes move 

towards the constraint boundary and find the optimal solution along the constraint 

boundary.  This method too is driven by cost as the objective function in the search for 

the optimal solution.  In both models, the simulation model is called from the 

optimization model to evaluate the impact of the proposed strategy on the process or 

processes being modeled.  In GA-based optimization, penalty functions are used to 

penalize infeasible solutions, while the Shuffled Box Complex method does not require 

penalty functions. 

 

Every model run starts with an initialization of the optimization model with alternative 

solution sets.  In case of GA-based optimization, an initial population of solution sets is 
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randomly selected by generating a set of decision vectors within their prescribed explicit 

bounds.  The initial population selected then evolves in the search process and undergoes 

through the genetic operators of selection, crossover, and mutation as described in 

Chapter 2.  The simulation model is called periodically to evaluate the impact of each 

solution set on the watershed process or processes (hydrology and water quality).  In the 

Shuffled Box Complex method, the initial solution sets that constitute the vertices of the 

complexes are selected randomly using the techniques described in Chapter 2.  The 

complexes evolve in the search for the optimal solution, periodically calling the 

simulation model to evaluate the impact of each solution set on the watershed processes 

(hydrology and water quality).  The complexes are randomly shuffled as they evolve in 

the search space after a specified number of generations (iterations). 

 

 

6.5 Water Quality-based Problem Formulation 

In the water quality-based approach, the optimal management problem is formulated 

mathematically as a nonlinear constrained optimization problem to minimize costs while 

meeting all water quality objectives.  The problem will be formulated in a general manner 

for an urban watershed that has multiple sub-watersheds and three different sources of 

pollution (point, non-point, and other unknown or undetermined sources).  The objective 

function and associated constraints are given as follows in Equations 6-1 through 6-4. 

 

 

6.5.1 Objective Function 

The objective of the optimal management model for a watershed that is impaired due to 

point, non-point, and any other unknown or undetermined source is to minimize costs 

while maintaining acceptable water quality as required by water quality standards.  The 

decision variables that constitute a management strategy (resulting in improvements in 

the watershed) in the optimization framework can consist of management strategies such 

as volume controls (storage) for point and non-point sources and any other technologies 

to rehabilitate infrastructure that is identified as contributing to water quality problems.  

The volume controls for the point sources may include storage for CSO discharges such 
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as tunnels to minimize or eliminate the impact of CSO outfalls on the receiving water 

bodies.  Similarly, the volume controls for the non-point sources may include 

detention/retention storage facilities for treatment and/or removal of various water quality 

constituents in urban runoff.  In the case of infrastructure improvements, possible 

solutions may consist of sanitary sewer collection system rehabilitation strategies such as 

sewer lining to reduce wet weather flows and/or replacement of sewers.  Mathematically, 

the objective function may be expressed as given in Equation (6-1). 
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(6-1) 

 

Where ψ  = the total cost of improvements resulting from a management strategy for all 

the sub-watersheds in an urban watershed, w is the index number for sub-watersheds, nw 

is the total number of sub-watersheds, i is the index for point sources of pollution,  j is the 

index for non-point sources of pollution, k is the index for other unknown or 

undetermined sources of pollution, l is the number of point sources in each sub-

watershed, m is the number of non-point sources in each sub-watershed,  n is the number 

of unknown or undetermined sources in each sub-watershed, t is the time step used in the 

model, Xi,w is the decision variable for point source control in each sub-watershed, Yj,w is 

the decision variable for non-point source control in each sub-watershed, Zk,w is the 

decision variable for unknown or undetermined source control in each sub-watershed, 

C(Xi,w) is the cost of point source control decision variable in a sub-watershed, C(Yj,w) is 

the cost of non-point source control decision variable in a sub-watershed, and C(Zk,w) is 

the cost of unknown or undetermined source control decision variable in a sub-watershed. 

  

6.5.2 Constraints 

The objective function as described in Equation (6-1) above is subject to three types of 

constraints: 1) a set of implicit system constraints, 2) a set of implicit bound constraints, 
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and 3) a set of explicit decision variable bound constraints.  These are described as 

follows. 

 

6.5.2.1 Implicit System Constraints 

A macro-level simulation model will be used to satisfy the implicit system constraints 

that will include all governing hydraulic, hydrologic, and water quality relationships.  

The decision variables from the optimization model will be passed on to the simulation 

model which will in turn compute the hydrologic and water quality response of the 

watershed.  Such a response will reflect the effect of a particular management strategy 

being evaluated by the optimal management model.  This is mathematically expressed as 

given in Equation (6-2). 

 

tZYXg kji ∀= 0),(    (6-2) 

 

 

6.5.2.2 Implicit Bound Constraints 

The implicit bound constraints include any constraints on the water quality constituent 

being modeled in the optimal management model.  This corresponds to a certain numeric 

criteria such as greater than a prescribed threshold level as required by the water quality 

standards.  For instance, per Kentucky Water Quality Standards, the dissolved oxygen 

criterion for aquatic life is 5.0 mg/L (daily average) and 4.0 mg/L (instantaneous 

minimum) (Kentucky Administrative Regulations Title 401, Chapter 5, Water Quality).  

For each time step (such as hourly or daily) of the macro-level simulation model, the 

water quality constituent concentration must be greater than the prescribed water quality 

standard value.  This may be expressed as: 

 

twWQZYXh dardskji ,),( tan ∀≥   (6-3) 

 

Where w refers to a sub-watershed and t refers to the time step in the simulation model.  
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6.5.2.3 Explicit Decision Variable Bound Constraints 

The final set of bound constraints consists of explicit bounds on the decision variables in 

the optimization model.  Mathematically, this may be expressed as given in Equations 6-

4 through 6-6. 

 

wiXX iw ,0 max ∀≤≤   (6-4) 

wjXX jw ,0 max ∀≤≤   (6-5) 

wkXX kw ,0 max ∀≤≤   (6-6) 

 

Where w refers to a sub-watershed and i, j, and k refers to the three types of pollution 

sources. 

 

 

6.6 Budget-based Problem Formulation 

In the budget-based approach, the optimal management problem is formulated 

mathematically as a nonlinear constrained optimization problem to minimize the number 

of water quality violations while satisfying a prescribed project budget.  In such a 

formulation, the total cost of the management strategy evaluated is a constraint while the 

number of water quality violations constitutes the objective function.  The objective 

function and associated constraints are given as follows in Equations 6-7 through 6-12.  

 

 

6.6.1 Objective Function 

The objective function for a budget-based formulation is to minimize water quality 

violations while satisfying the cost constraints as prescribed by a project budget.  The 

decision variables that constitute a management strategy in the optimization framework 

are the same as described in the water quality-based optimal management formulation 

above.  Mathematically, the objective function is expressed as given in Equation (6-7). 
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Where η is the number of water quality impairment days,  w is the index for sub-

watersheds, nw is the total number of sub-watersheds, t is the time step used in the model, 

i is the index for point sources of pollution, j is the index for non-point sources of 

pollution, k is the index for other unknown or undetermined sources of pollution, Xi,w is 

the decision variable for point source control in each sub-watershed, Yj,w is the decision 

variable for non-point source control in each sub-watershed, Zk,w is the decision variable 

for unknown or undetermined source control in each sub-watershed. 

 

 

6.6.2 Constraints 

The objective function as described in (6-7) above is subject to three types of constraints: 

1) a set of implicit system constraints, 2) a set of implicit bound constraints, and 3) a set 

of explicit decision variable bound constraints. 

 

6.6.2.1 Implicit System Constraints 

A macro-level simulation model will be used to satisfy the implicit system constraints 

that will include all governing hydraulic, hydrologic, and water quality relationships.  

The decision variables from the optimization model will be passed on to the simulation 

model which will in turn compute the hydrologic and water quality response of the 

watershed. Such a response will reflect the effect of a particular management strategy 

being evaluated by the optimal management model. This is mathematically expressed as 

given in Equation (6-8). 

 

tZYXg kji ∀= 0),(    (6-8) 

 

6.6.2.2 Implicit Bound Constraints 

The implicit constraints include the total cost of a management strategy for the watershed 

under study.  Since this optimal management model is budget based, an upper bound on 
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total project budget is prescribed and the goal of the optimal management model is to 

select a management strategy that maximizes the water quality benefits while keeping 

within the prescribed project budget.  This may be expressed as given in Equation (6-9). 
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Φ is the prescribed total project budget to be spent in all sub-watersheds that should not 

be exceeded while maximizing the water quality benefits for the watershed, w is the 

index number for sub-watersheds, nw is the total number of sub-watersheds, i is the index 

for point sources of pollution,  j is the index for non-point sources of pollution, k is the 

index for other unknown or undetermined sources of pollution, l is the number of point 

sources in each sub-watershed, m is the number of non-point sources in each sub-

watershed,  n is the number of unknown or undetermined sources in each sub-watershed, 

t is the time step used in the model, Xi,w is the decision variable for point source control in 

each sub-watershed, Yj,w is the decision variable for non-point source control in each sub-

watershed, Zk,w is the decision variable for unknown or undetermined source control in 

each sub-watershed, C(Xi,w) is the cost of point source control decision variable in a sub-

watershed, C(Yj,w) is the cost of non-point source control decision variable in a sub-

watershed, and C(Zk,w) is the cost of unknown or undetermined source control decision 

variable in a sub-watershed. 

 

6.6.2.3 Explicit Decision Variable Bound Constraints 

The final set of bound constraints consists of explicit bounds on the decision variables in 

the optimization model.  Mathematically, this may be expressed as given in Equations 6-

10 through 6-12. 

wiXX iw ,0 max ∀≤≤   (6-10) 

wjXX jw ,0 max ∀≤≤   (6-11) 

wkXX kw ,0 max ∀≤≤   (6-12) 

Where w refers to a sub-watershed and i, j, k refers to the three types of pollution sources. 
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6.7 Solution Methodology 

The optimal management model as formulated in Sections 6.5 and 6.6 above can be used 

to evaluate alternative management strategies for a watershed under study. The solution 

methodology used in both the water quality and budget-based formulations depend on the 

type of optimization model linked to the macro-level simulation model.  As described 

previously, two types of optimization methods are used in the proposed management 

model.  Thus two solution methodologies are given, each corresponding to the type of 

optimization method.  These two types of methodologies are given in Figure 6-4 (solution 

methodology for the genetic algorithm-based optimal management model) and Figure 6-5 

(solution methodology for the Shuffled Box Complex-based optimal management 

model).  In both cases, the model starts with the initialization of the initial set of solutions 

or population of solutions.  These set of solutions are passed to the macro-level 

simulation model to evaluate state variables and constraints of the system.  The objective 

function is used to determine the corresponding fitness of the initial set of solutions.  In 

the GA-based optimization, the initial population goes through the genetic operators of 

selection (based on fitness values), crossover, and mutation to determine the solution set 

for the next generation (off-springs).  The population of solutions thus evolves in this 

manner from one generation to the next until a user specified stopping criterion is reached 

or the model is otherwise terminated.  As described in Chapter 2, GAs are directly 

applicable only to unconstrained optimization problems. If a solution set violates any of 

the implicit bound constraints, a penalty is applied to its fitness value thus degrading the 

quality of an infeasible solution.  Penalty function methods are the most popular methods 

used for constrained optimization problems using a GA (Yeniay, 2005).  These methods 

transform a constrained problem into an unconstrained problem by imposing a penalty on 

the infeasible solution.  This is done by adding to the objective function value a positive 

value (penalty) which reduces the fitness value of such infeasible solutions (Yeniay, 

2005).  This decreases the chances of the solution to have a significant impact on the 

offspring solutions as they evolve in future generations.  Both static and dynamic 

penalties can be applied when using GAs for constrained optimization (Sarker et al. 

2002).  In this research, static penalty functions were used to penalize infeasible solutions 

in the GA search process.  In static penalty methods, several levels of violation are 
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created for each constraint, and for each level of violation and each constraint, a penalty 

coefficient is created. Higher levels of violation can thus be penalized more than lower 

levels of violation.  In most cases, the optimization model is terminated when there is no 

further improvement in the global optimal solution obtained in the GA search process.   

 

In the Shuffled Box Complex-based optimization, a single feasible initial solution is 

generated that satisfies all system state equations as well as implicit and explicit bound 

constraints.  The model then generates additional initial solution sets in a sequential 

manner using random numbers and the explicit bounds of the decision variables.  These 

initial solution sets are used to form the vertices of the complexes.  The solution sets are 

partitioned into a specified number of complexes with each vertex of a complex 

representing a feasible solution (set of decision variables representing a particular 

watershed management strategy).  Each complex then evolves in the search space 

through the process of complex expansion and contraction as explained in Chapter 2.  

Each successful expansion or contraction results in the worst solution in the complex 

being replaced by a new solution set and thus represent a new generation. After a certain 

number of specified generations, the solution sets in individual complexes are shuffled 

randomly and re-assigned to individual complexes.  After the shuffling, each complex is 

set to evolve again in the search space.  The model is terminated after a specified number 

of generations (iterations) for each complex and corresponding number of shuffling 

operations.  The termination usually occurs when the complexes collapse into the 

centriod and there is no further improvement in successive generations.   
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Figure 6-4. Schematic of GA-based Optimal Management Model 
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Figure 6-5. Schematic of the Shuffled Box Complex-based  
Optimal Management Model 

 

Box Complex Solution Set Input Data 
N = dimensions 
P = no. of complexes 
M = no. of points in each complex 

START 

Evaluate Sample 
Size S = P*M 

Generate Initial 
Feasible Solution

Generate (S-1) Feasible 
Random Solutions

Partition S into P 
Complexes

Evolve each 
Complex

Box Complex 
Method 

Evaluate Objective 
Function for S solutions

Call Simulation 
Model 

Shuffle Sample S 
after specified 

generations 

Replace each 
Complex with 
shuffled points 

Evaluate Objective 
Function for S solutions 

in P Complexes 

Stopping 
Criterion 

met? 
END 

Yes 

No 



 199 

CHAPTER 7 
 

EXAMPLE APPLICATION OF THE OPTIMAL  
MANAGEMENT MODEL 

 

7.1 Introduction 

The optimal management model formulations described in Chapter 6 were applied to the 

problems faced by environmentalists, local, state, and federal regulatory authorities, and 

general citizens of the Beargrass Creek watershed in Louisville, Kentucky.  Beargrass 

Creek watershed (one of the 9 watersheds in Jefferson County, Kentucky) is a highly 

complex urban watershed with a total drainage area of approximately 61 square miles.  

The watershed consists of three distinct streams representing three sub-watersheds, and is 

impaired due to low dissolved oxygen and/or nutrient enrichment, and pathogens (Figure 

7-1).  This watershed provides for an excellent application of the optimal management 

model as it is urban, consists of distinct sub-watersheds, and is impaired by multiple 

sources of pollution including point and non-point sources.  Five segments of the 

Beargrass Creek are on the State of Kentucky’s 303(d) list of impairment and currently 

pathogens TMDL and dissolved oxygen/nutrient TMDL are being developed for the 

watershed (KDOW, 2003).  A comprehensive water quality monitoring program is 

currently in place to collect pertinent data for the watershed.  A suite of hydrologic and 

water quality models are also currently being developed to characterize the hydrologic 

and water quality response in the watershed.  The sources of pollution include storm 

water runoff as well as wet weather discharge from numerous CSOs and SSOs.  There are 

approximately 37 SSOs, 57 CSOs, and 1000 storm water discharge points in the 

watershed.  In the example application, the optimal management model will be used to 

evaluate water quality management strategies to improve the dissolved oxygen in the 

impaired segments of the watershed. 
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Figure 7-1. Beargrass Creek Watershed, Louisville, Jefferson County, Kentucky 
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The Commonwealth of Kentucky filed a civil suit against MSD in state court in February, 

2004 for unlawful discharge of untreated sewage and overflows of combined sewage into 

the Ohio River and its tributaries totaling billions of gallons each year.  The U.S. 

Department of Justice, U.S. Environmental Protection Agency, and Commonwealth of 

Kentucky's Environmental and Public Protection Cabinet (EPPC) jointly signed a consent 

decree on April 25, 2005 for a comprehensive Clean Water Act settlement with the 

Louisville and Jefferson County Metropolitan Sewer District (MSD). The settlement 

requires that MSD will make extensive improvements to its sewer systems to eliminate 

unauthorized discharges of untreated sewage and to address problems of overflows from 

sewers that carry a combination of untreated sewage and storm water at a cost likely to 

exceed $500 million (U.S. Department of Justice, 2005).  This is a challenging task and 

would require an effective management tool to evaluate least-cost management strategies 

to achieve water quality goals as agreed upon in the consent decree.   

  

 

7.2 Beargrass Creek Watershed, Louisville, Kentucky  

The optimal management model will be used to evaluate management strategies to 

improve the dissolved oxygen in each of the contributing sub-watersheds of Beargrass 

Creek watershed and obtain BOD load reductions in the most cost-effective manner while 

satisfying water quality objectives.  The following sections will give a summary of the 

regulatory history of Jefferson County, Louisville, Kentucky, a detailed description of the 

Beargrass Creek watershed and the problems that need to be addressed through water 

quality modeling and management. 

 

 

7.2.1 Regulatory History of Jefferson County 

The Louisville and Jefferson County Metropolitan Sewer District (MSD) was created on 

July 9, 1946 after which it took over the city’s sewer system and allowed it to expand its 

service area throughout Jefferson County.  MSD provides sanitary sewer, storm water 

drainage, and flood protection services to over 200,000 customer accounts. All capital 

projects relating to sanitary sewers, storm sewers, and flood control structures in all nine 
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watersheds in Jefferson County are managed by MSD.  MSD is also responsible for 

overall management of these watersheds as it relates to restoring water quality 

impairments resulting from natural or man-made activities in the watersheds  

 

MSD is responsible for the operation and management of three different types of 

programs relating to capital infrastructure, water quality, and watershed management.  

These include the MS4 (Municipal Separate Storm Sewer System) program, the CSO 

(Combined Sewer Overflows) program, and the SSO (Sanitary Sewer Overflows) 

program.  The programs are briefly described below: 

 

 

7.2.1.1 MS4 Program 

The purpose of the Municipal Separate Storm Sewer System (MS4) program is to 

manage the separate storm sewer system and to maintain and enhance water quality in 

Jefferson County.  The purpose is also to protect and promote the public health, safety 

and welfare by preventing the introduction of harmful materials into the separate storm 

sewer system (Louisville-Jefferson County MSD website, 2005a). 

 

 

7.2.1.2 CSO Program 

The Morris Forman Wastewater Treatment Plant (MFWTP) KPDES Permit required that 

MSD develop and implement a Combined Sewer Overflow (CSO) Abatement Program. 

The objective of the CSO Abatement Program is to reduce the pollutant loads caused by 

CSOs on receiving streams through compliance with the EPA CSO Control Policy. The 

initial phase of the program began in early 1991 and culminated in the development of a 

Combined Sewer Operational Plan (CSOP). Since that time, yearly updates to the original 

CSOP have been prepared.  

 

The EPA CSO Control Policy, published in 1994, provided guidance on coordinating the 

planning, selection and implementation of CSO controls that meet the requirements of the 

Clean Water Act. The policy contained provisions for developing appropriate, site-
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specific NPDES permit requirements for combined sewer systems that overflow as a 

result of wet weather events. The policy established two main objectives for permittees: 

implementation of the Nine Minimum Controls (NMCs), and the development and 

implementation of a CSO Long-Term Control Plan (LTCP).  

 

The nine minimum CSO controls as outlined by the Environmental Protection Agency 

(EPA, 1995) are given as follows: 

 

1. Proper operation and regular maintenance programs for the sewer system and 

CSO outfalls. 

2. Maximum use of the collection system for storage.  

3. Review and modification of pretreatment requirements to ensure that CSO 

impacts are minimized.  

4. Maximization of flow to publicly owned treatment works for treatment.  

5. Elimination of CSOs during dry weather.  

6. Control of solid and floatable materials in CSOs.  

7. Pollution prevention programs to reduce contaminants in CSOs.  

8. Public notification to ensure that the public receives adequate notification of CSO 

occurrences and CSO impacts.  

9. Monitoring to effectively characterize CSO impacts and the efficacy of CSO 

controls. 

 

The intent of the NMCs is to secure the prompt implementation of control measures that 

will at least partially control wet weather CSO discharges. Per the CSO Control Policy, 

MSD’s NMCs were implemented on January 1, 1997. Selection and implementation of 

actual control measures was based on consideration of the specific combined sewer 

system and in many cases may address more than one of the NMCs.  

 

The policy also directed the permittee to develop and implement a LTCP based on 

characterization, monitoring and modeling of the combined sewer system. The plan 
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considers the site-specific nature of CSOs and gives highest priority to controlling 

overflows in sensitive areas (Louisville-Jefferson County MSD website, 2005b).  

 

 

7.2.1.3 SSO Program 

The Sanitary Sewer Overflow (SSO) program is MSD’s centralized program for 

managing the investigation, prioritization and rehabilitation of the separate sanitary sewer 

system in order to abate sanitary sewer overflows and basement backups. This program 

represents MSD’s proactive approach toward eliminating excess inflow and infiltration 

(I/I) from the separate sanitary collection system. MSD’s SSO Program has the following 

goals:  

 

• Eliminate and/or reduce the frequency/volume of recurring SSOs caused by 

excessive I/I.  

• Eliminate basement flooding caused by sewer backup as a result of excessive I/I.  

• Reduce MSD expenditures to construct, maintain, and operate sewage collection 

and treatment systems impacted by existing I/I.  

• Assure compliance with the Kentucky Division of Water (KDOW) regulations 

governing sanitary lateral extensions and wastewater treatment plant upgrades 

(Louisville-Jefferson County MSD website, 2005c). 

 

 

7.2.2 Water Quality Management in Jefferson County 

MSD employs an aggressive approach to investigate, evaluate and develop solutions to 

the water quality issues facing Jefferson County, Kentucky. Specific programs initiated 

by MSD in this regard are discussed as follows. 

 

 

7.2.2.1 MSD’s Wet Weather & Water Quality (WWWQ) Program 

Since 1999, the Louisville Jefferson County Metropolitan Sewer District (MSD) has been 

in the process of transitioning from a programmatically-driven approach to one that is 
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more water quality-driven. In the past, the MS4, CSO, and SSO programs (described in 

the previous section) were reported and managed separately within MSD. To attain the 

goal of a water quality-based program, MSD has had to redefine goals and reorganize 

departments. In 2002 the Wet Weather & Water Quality (WWWQ) program was started, 

with the responsibility of combining the MS4, CSO, SSO and water quality programs 

into one comprehensive program. The creation of the WWWQ program allows for a more 

effective integration of MSD’s regulatory responsibilities across departmental 

boundaries. The responsibilities of the WWWQ Team stretch across all nine watersheds 

in Jefferson County (Figure 7-1) with an ultimate goal of improving the water quality in 

these watersheds (Louisville-Jefferson County MSD website, 2005d). 

 

 

7.2.2.2 Watershed Management Approach 

Through the implementation of a Wet Weather & Water Quality (WWWQ), MSD 

employs an aggressive approach to investigate, evaluate and develop solutions to the wet 

weather and water quality issues facing Jefferson County, Kentucky. The sources of 

water quality impairment are multi-faceted. MSD’s approach is that of watershed 

management, in which all sources of impairment are evaluated simultaneously to 

determine real solutions to real problems and to obtain the ultimate goal – stream water 

quality enhancement (Louisville-Jefferson County MSD website, 2005d).  

 

In the watershed management approach, MSD decided to break the strategic plan of 

overall water quality improvement into more manageable pieces. It was decided to use a 

five year planning window consistent with MSD’s capital budgeting process. The mission 

statement was then refined for this first five-year period. Specifically, it called for the 

development and implementation of a sustainable strategic process for water quality 

management within the wet weather programs. The process selected was called the 

Resource Management Process (RMP). The goal for this process was to be transferable 

and applicable to all county watersheds (Louisville-Jefferson County MSD website, 

2005d). 
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This process sets the foundation for water quality-based decision making and will be 

utilized to integrate programs, as well as manage resources, on a watershed basis. This 

process should allow MSD to prioritize the Capital Improvement Program (CIP) using 

criteria that reach beyond just regulatory requirements, taking into account environmental 

benefit, habitat, biodiversity, and community livability goals.  The RMP is cyclic because 

the process of watershed management is dynamic. Conditions and priorities change; 

therefore, the community needs a process that is responsive and adaptive to change. The 

cyclic process chosen ensures that CIP decisions will be periodically reviewed and 

adapted as necessary to optimize resources (Louisville-Jefferson County MSD website, 

2005d). 

 

Selection of a Watershed as the pilot implementation area 

Of the 9 watersheds within Metro Louisville (Figure 7-1), the Beargrass Creek watershed 

was selected as the pilot implementation area for which a comprehensive water quality 

assessment, modeling, and management was to be performed. This watershed has an area 

of approximately 61 square miles and contains about 148 streams miles. The Beargrass 

Creek Watershed contains three sub-watersheds namely South Fork, Middle Fork, and 

Muddy Fork watersheds. The watershed is approximately 38% impervious area with a 

land use breakdown of 44% residential, 5% industrial, 20% commercial, 15% public, 4% 

parks, and 12% undeveloped. It contains 57 CSOs, 37 SSOs and 1,000 storm water 

outfalls. 

 

MSD has developed the Beargrass Creek Water Quality Model (BCWQM). This tool 

utilizes a suite of hydraulic, hydrologic, and water quality simulation computer models 

(specifically, they use HSPF, XP-SWMM, and CEQUAL2-RV1) to predict the potential 

benefits for the watershed for various alternative scenarios, including combinations of 

alternatives. This predictive tool is currently under development and upon completion 

will be utilized to develop program priorities and project scheduling. 

 

The 2002 Kentucky 303(d) list classifies all three forks within Beargrass Creek as not 

meeting the designated-use criteria for Primary Contact Recreation and Aquatic Life due 
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to pathogens and organic enrichment/dissolved oxygen.  Per the Clean Water Act (CWA) 

provisions for establishing section 303(d) list priority ranking of impaired waters and to 

establish total maximum daily loads (TMDLs) for such waters, dissolved oxygen and 

pathogen TMDLs are scheduled to be completed in December 2006. These TMDLs will 

rely heavily on the monitoring network and BCWQM developed by MSD. The Kentucky 

Division of Water (KDOW), in partnership with the University of Kentucky and MSD, 

will develop the TMDLs with the financial assistance of a USEPA Region IV grant. The 

TMDL reports will be submitted to EPA Region IV for approval. 

 

The next step will be to use the TMDL in concert with the Beargrass Creek stakeholder 

group and the RMP to develop a Watershed Plan that minimizes or eliminates the 

discharge of wet weather pollutants to Beargrass Creek.  The process will serve to define 

the problems and describe policies, programs, and activities necessary to rehabilitate and 

manage the watershed.  The intent is to use the process developed for Beargrass Creek as 

a model for the other watersheds across the county.  

 

 

7.2.3 Description of the Beargrass Creek Watershed 

The Beargrass Creek watershed drains approximately 61 mi2 (38,970 acres) of eastern 

Jefferson County located in north-central Kentucky, bordering and draining into the Ohio 

River.  The Beargrass Creek watershed is comprised of three tributary sub basins: South 

Fork (27.0 mi2), Middle Fork (25.1 mi2), and Muddy Fork (8.9 mi2) as shown in Figure 7-

2.  The two southern tributaries, South and Middle Forks join together to form the lower 

reaches of the Beargrass Creek, and Muddy Fork then joins the flow from the combined 

South Fork and Middle Fork prior to entering the Ohio River (Jarrett et al. 1998; Jarrett, 

and Saffran, 1999). 
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Figure 7-2.  Three tributaries of the Beargrass Creek Watershed 

 

Elevation in the Beargrass Creek watershed ranges from 420 feet, along the stream 

channel at the northwestern extent of the watershed, to 748 feet above mean sea level at 

the eastern extent of the Middle Fork sub basin. The headwaters drain Silurian age 

dolomite, shale, and minor amounts of limestone. The creek cuts into Devonian age 

limestone and shale before flowing into the Ohio River. A more detailed description of 

the basins can be found in Evaldi and Moore (1992).  Land use in the basins varies from 

single family residential to light industrial. The dominant land use in all three sub basins 

is single-family residential, followed by paved (impervious) surfaces (roads and parking 

lots), parks, and cemeteries (Table 7-1). 

 

 

 

Ohio River

Muddy Fork of 
Beargrass Creek

South Fork of
Beargrass Creek

Middle Fork of 
Beargrass Creek
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Table 7-1. Land use in Beargrass Creek Watershed 

South Fork Middle Fork Muddy Fork 
Land Use Area 

(sq-mi) 
Percent 

 (%) 
Area 

(sq-mi) 
Percent 

(%) 
Area 

(sq-mi) 
Percent 

(%) 
Single-family residence 12.6 46.7 11.0 43.8 5.00 56.0 

Multiple-family residence 1.3 4.7 1.5 5.8 0.60 6.7 

Commercial 2.1 7.6 2.2 8.7 0.30 3.0 

Industrial 1.1 4.1 0.3 1.0 0.05 0.6 

Churches, schools, non-commercial  1.6 5.8 1.5 6.1 0.30 3.5 

Parks, cemeteries, public open space 2.6 9.8 2.8 11.2 0.80 8.9 

Vacant or undeveloped 1.7 6.2 2.5 9.8 0.90 0.1 

Roads and other paved areas 4.1 15.1 3.4 13.6 1.10 10.0 

 

 

Most of the watershed is sewered with separate sanitary and storm sewers (27,906 acres, 

72%). The dense commercial central business district is drained mainly by a complex 

system of combined sanitary and storm sewers, with few open channels and several miles 

of concrete channels.  A section of the concrete channel in the South Fork tributary of the 

Beargrass Creek is given in Figure 7-3.  Due to the intensity of development within this 

watershed, streams in the Beargrass Creek watershed are true urban streams. A very high 

percentage of this watershed is impervious. In addition, there are 57 combined sewer 

overflows (CSOs) and 37 sanitary sewer overflows (SSOs) in the area. This combination 

results in moderate to high nutrient levels.  Fecal coliform populations exceed pollution 

standards almost two thirds of the time. Fast moving storm water scours the stream 

banks, causing erosion, sedimentation, siltation, and resulting in the decline of water 

quality and habitat quality. Physical pressures, high water fluctuations during storm 

events, and microbiological effects result in severe impacts on both habitat and the 

biological communities in the streams. 
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Figure 7-3. Section of concrete channel in South Fork of Beargrass Creek 

 

Overall water quality impacts to the streams in Beargrass Creek watershed are considered 

moderate to severe. Impacts here are also highly variable, depending on the flow rate.  No 

quick fixes will help reduce the impacts to this urban watershed. Solutions to the issues 

facing the Beargrass Creek watershed will have to be long term. Better water quality and 

quantity management requires the reduction of CSO and SSO discharges, as well as 

addressing non-point source pollution issues. Re-vegetation of stream banks and 

modification of stream channels to produce reaeration zones will help to improve both 

habitat and water quality. 

 

 

7.2.3.1 South Fork of Beargrass Creek Watershed 

The South Fork of Beargrass Creek Watershed is approximately 27 square miles, and 

includes a portion of metropolitan Louisville. South Fork of Beargrass Creek begins 

above Bardstown Road area and flows through the northeastern section of downtown 

Louisville before emptying into the Ohio River. Several miles of this stream have been 

enclosed in concrete U-shaped channels.  

 

 

7.2.3.2 Middle Fork of Beargrass Creek Watershed 

The Middle Fork of Beargrass Creek watershed is approximately 25 square miles, and 

includes a section of metropolitan Louisville. The Middle Fork begins in the Middletown 
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area, runs through Cherokee and Seneca Parks, and later empties into the South Fork of 

Beargrass Creek.  

 

 

7.2.3.3 Muddy Fork of Beargrass Creek Watershed 

The Muddy Fork of Beargrass Creek Watershed is approximately 9 square miles, and 

includes a section of metropolitan Louisville. Muddy Fork runs along the Ohio River 

emptying into the South Fork of Beargrass Creek. It also receives backwater from the 

river.  

 

 

7.2.4 Water Quality Conditions and Impairments in Beargrass Creek Watershed 

Beargrass Creek has several stream segments on the State 303(d) list for aquatic life and 

recreational impairment.  These streams are listed for impairment due to pathogens and 

low dissolved oxygen and/or nutrient impairment.  Since this research will focus on the 

dissolved oxygen impairment, only a description related to dissolved oxygen impairment 

is given as follows. 

 

 

7.2.4.1 Dissolved Oxygen Impairment 

The Kentucky Surface Water Standards include numerical criteria for dissolved oxygen 

for the protection of aquatic life in warm water habitats. The Surface Water Standards 

specify that dissolved oxygen shall be maintained at a minimum concentration of 5.0 

milligrams per liter (mg/l) daily average; the instantaneous minimum shall not be less 

than 4.0 mg/l in warm-water (Kentucky Administrative Regulations Title 401, Chapter 5, 

Water Quality).  Low dissolved oxygen is a significant water quality problem in the 

Beargrass Creek watershed.  A comprehensive water quality sampling program is in 

place for the watershed and DO measurements are recorded at 20 continuous monitoring 

sites throughout the watershed (Figure 7-4).  These readings are taken every 15 minutes 

and can be compiled into hourly and daily data for a study period.   
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In 1999 a study was conducted to determine the factors that controlled dissolved oxygen 

concentrations in the Middle Fork and South Fork Beargrass Creek. Ruhl and Jarrett 

(1999) identified the environmental processes that most affect DO concentrations during 

base flow periods in the lower reaches of Middle Fork and South Fork Beargrass Creek. 

These reaches are affected by inputs from combined sewer overflows.  The results of the 

study indicated that algal production, stream flow, reaeration, and sediment oxygen 

demand (SOD) are the factors that most affect net production and depletion of DO in the 

lower reaches of the Middle Fork and South Fork Beargrass Creek.  More recent data 

suggest that organic load from CSO discharges may be a potential cause for some of the 

chronic dissolved oxygen crashes after a major storm event.  Overall, it is hypothesized 

that there are three sources of pollution that can cause the dissolved oxygen deficit in the 

Beargrass Creek watershed.  These include 1) point sources such as CSO discharges, 2) 

non-point sources such as organic load in urban storm water runoff, and 3) an unknown 

and undetermined source that may include other suspected sources of organic load such 

as leaking sewers resulting in ex-filtration of BOD load onto the banks of streams. 
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Figure 7-4. Continuous Monitoring Stations in Beargrass Creek Watershed 

 

 

7.2.4.2 303(d) Listings for Beargrass Creek Watershed  

The impairments in the Beargrass Creek Watershed have been formally identified on the 

303(d) List of Waters for Kentucky using data collected by the Louisville and Jefferson 

County Metropolitan Sewer District. (KDOW, 2003).  The water bodies that are listed on 

2002 303(d) List due to nonsupport of designated uses are given in Figure 7-5. 
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Figure 7-5. List of Water Quality impairments in Beargrass Creek Watershed 

 

 

Impairment #1 - Beargrass Creek of Ohio River  
River Mile 0.0 to 1.6 (Segment Length: 1.6 miles) 
Impaired Use: Aquatic Life (Nonsupport) 
Pollutant of Concern: Metals, Organic Enrichment/Low DO 
Suspected Sources: Municipal Point Sources, Combined Sewer Overflows, Urban 
Runoff/Storm Sewers 

 
Impairment #2 - Middle Fork Beargrass Creek    
River Mile 0.0 to 2.3 (Segment Length: 2.3 miles) 
Impaired Use: Aquatic Life (Nonsupport), Swimming (Nonsupport) 
Pollutant of Concern: Organic Enrichment/Low DO, Habitat Alteration, Metals 
(Cadmium), Pathogens 
Suspected Sources: Combined Sewer Overflows, Urban Runoff/ Storm Sewers, 
Hydromodification (Channelization).   
The most recent information shows that Middle Fork is no longer impaired by metals, 
but the data are limited. 
 
Impairment #3 - Middle Fork Beargrass Creek   
River Mile 2.3 to 15.2 (Segment Length: 12.9 miles) 
Impaired Use: Swimming (Nonsupport), Aquatic Life (Partial Support) 
Pollutant of Concern: Pathogens, Metals (Cadmium) 
Suspected Sources: Industrial Point Sources, Municipal Point Sources, Urban 
Runoff/Storm Sewers, Land Disposal, Combined Sewer Overflows, Sanitary Sewer 
Overflows 

 
Impairment #4 - South Fork Beargrass Creek    
River Mile 0.0 to 2.7 (Segment Length: 2.7 miles) 
Impaired Use: Aquatic Life (Partial Support), Swimming (Nonsupport) 
Pollutant of Concern: Metals (Cadmium), Pathogens, Organic Enrichment/Low DO 
Suspected Sources: Municipal Point Sources, Urban Runoff/Storm Sewers, Land 
Disposal, Combined Sewer Overflows, Sanitary Sewer Overflows 

 
Impairment #5 - South Fork Beargrass Creek    
River Mile 2.7 to 14.6 (Segment Length: 11.9 miles) 
Impaired Use: Swimming (Nonsupport), Aquatic Life (Partial Support) 
Pollutant of Concern: Pathogens, Organic Enrichment/Low DO 
Suspected Sources: Municipal Point Sources, Urban Runoff/Storm Sewers, Land 
Disposal, Combined Sewer Overflows, Sanitary Sewer Overflows 
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7.3 Optimal Management Model for Beargrass Creek Watershed 

The optimal management model described in Chapter 6 was applied to Beargrass Creek 

watershed to evaluate management strategies for improving the dissolved oxygen 

impairment in the watershed.  Such an optimal management model would require a 

macro-level watershed simulation model linked with an optimization model.  Both the 

GA-based and Shuffled Box Complex-based optimization techniques will be used in the 

optimal management model for Beargrass Creek watershed.  In selecting an approach for 

the macro-level simulation model of the process in hand (dissolved oxygen), three 

possible model structures were evaluated.  These are summarized as follows: 

 

1. Explicit Inductive Model 

Multiple explicit dissolved oxygen inductive models were developed using artificial 

neural networks (ANNs) and evaluated for use in the optimization framework.  These 

included hourly and daily dissolved oxygen models as described in Chapter 5.  The 

approach was not viable due to a failure to establish a reasonably accurate cause-and-

effect relationship between input (independent) and output (dependent) variables of 

the inductive models.  This can be attributed to the unavailability of sufficient raw 

data for model development or the fact that the raw data used in model development 

may have been erroneous. 

 

2. Implicit Inductive Model 

Another alternative was to develop implicit inductive models based on the output 

from a calibrated complex deductive suite of models for the watershed under study. 

This alternative was not viable as the complex deductive models for the Beargrass 

Creek watershed are currently in the development phase and have not yet been 

calibrated for water quality. 

 

3.  Simple Deductive Model 

The third and last alternative was to develop a simple and conceptual deductive 

model that is calibrated with observed data obtained during data collection.  Such a 

deductive approach can serve as an effective substitute to a complex deductive model, 
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particularly for evaluating management scenarios on a macro level.  Once a particular 

optimal solution or set of solutions are selected, a more complex and detailed 

deductive model can be used to validate such alternatives.  This approach was 

selected to demonstrate the application of the optimal management model to the 

Beargrass Creek watershed.  The inverse loading dissolved oxygen model based on 

Streeter-Phelps equations was developed for Beargrass Creek watershed (as described 

in Chapter 5) and used as the water quality simulation model in the optimal 

management model for this application.  The model is referred to as an inverse 

loading model because of its novel approach of first backing out an effective BOD 

concentration based on the observed DO deficit (using raw data collected), and then 

disaggregating the BOD load (flow and concentrations) resulting from various 

pollution sources (point, non-point, and unknown sources).  After disaggregating the 

BOD loads, the model is solved in the forward direction to compute the DO time 

series for the contributing watersheds. 

 

The objective of the optimal management model for Beargrass Creek watershed is to 

minimize costs while satisfying the dissolved oxygen (DO) criteria (above a certain 

threshold value as required by Kentucky State water quality standards).  The watershed is 

impaired due to low DO and/or nutrient enrichment.  The explicit inductive ANN-based 

DO models developed for the watershed (as described in Chapter 5) led to the assumption 

that organic (BOD) loads were responsible for the DO crashes observed in the raw data.  

In the context of the organic loads, three different types of pollution sources were 

identified as contributing organic (BOD) loads in the receiving streams.  These include 

point sources (CSO discharges), non-point sources (urban runoff), and an unknown 

source that was assumed to be linked to leaking sewers along the stream banks.  The 

decision variables that constitute a particular management strategy evaluated in the 

proposed optimization framework consists of 1) volume controls for point sources, 2) 

volume controls for non-point sources, and 3) a strategy to rehabilitate leaking sewer 

lines along the stream to minimize or eliminate leakage of organic matter (measured as 

BOD in mg/L) onto the banks of the stream.  The volume controls for the point sources 

include storage (deep tunnels) for CSO discharges to minimize or eliminate organic 
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matter from CSO outfalls into the stream.  Similarly, the volume controls for the non-

point sources include storage facilities (detention/retention basins) for treatment and/or 

removal of organic matter carried in urban runoff.  Thus for each of the three forks of the 

Beargrass Creek watershed, one point source decision variable and one non-point source 

decision variable is used in the optimization framework.  In the case of sewer 

rehabilitation strategy for each of the three forks, the decision variables consist of lengths 

of sewers of different diameters along the stream reach that would need to be lined.  

There are four classes of sewers (classified based on the diameter of the sewer line) in the 

South Fork, three classes in the Middle Fork, and three in the Muddy Fork.  In total, there 

are 16 decision variables in the optimal management model formulation including six for 

the South Fork, and five each for the Middle and Muddy Fork sub-watersheds of 

Beargrass Creek watershed.  These are given in Figure 7-6 below. 

 

 

 

 

     

  

 

 

 

 

Figure 7-6.  Decision variables in the optimal management formulation 

 

 

The proposed optimal management model for Beargrass Creek watershed consist of two 

distinct formulations namely 1) a water quality based formulation, and 2) a budget based 

formulation. In both cases, the optimal management problem is formulated 
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mathematically as a nonlinear constrained optimization problem.  The two optimal 

management model formulations and associated results are given as follows.  

 

 

7.4 Water Quality-based Optimal Management Model  

In the water quality-based formulations, the objective is to minimize costs and achieve all 

water quality goals.  In such a formulation, the objective function and the associated 

constraints are discussed below. 

 

 

7.4.1 Objective Function 

Mathematically, the objective function may be expressed as: 
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Where ψ  = the total cost of improvements resulting from a management strategy for all 

the three sub-watersheds, w is the index number for each sub-watersheds, i is the index 

for point sources of pollution ,  j is the index for non-point sources of pollution, k is the 

index for other unknown or undetermined sources of pollution, n is the number of 

unknown or undetermined sources in each sub-watershed,  Xi,w is the decision variable for 

point source control in each sub-watershed, Yj,w is the decision variable for non-point 

source control in each sub-watershed, Zk,w is the decision variable for unknown or 

undetermined source control in each sub-watershed, C(Xi,w) is the cost of point source 

control decision variable in a sub-watershed, C(Yj,w) is the cost of non-point source 

control decision variable in a sub-watershed, and C(Zk,w) is the cost of unknown or 

undetermined source control decision variable in a sub-watershed. 
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For the Beargrass Creek watershed, i and j are equal to 1 (i.e. there is one decision 

variable for each of the three sub-watersheds that consists of a point source volume 

control, and one decision variable for each of the three sub-watersheds that consists of a 

non-point source volume control).  In the case of the unknown or undetermined source, 

the value of n (the index for the unknown source decision variable) varies for the three 

sub-watersheds.   For the South fork sub-watershed, the value of n is four, whereas for 

the Middle and Muddy fork sub-watersheds, the value of n is three.  All the 16 decision 

variables (Xi,w, Yj,w, and Zk,w) in the optimal management model are defined in Figure 7-7. 

 

 

Figure 7-7.  Decision variables in the optimal management formulation 

 

7.4.2 Constraints 

The objective function as described in Equation (7-1) above is subject to three types of 

constraints: 1) a set of implicit system constraints, 2) a set of implicit bound constraints, 

and 3) a set of explicit decision variable bound constraints. 

 

 

South Fork 
Decision Variables 

Middle Fork 
Decision Variables 

Muddy Fork 
Decision Variables 

X1,1 =  Point  
           Source Volume 
Y1,1 =  Non-point  
           Source Volume 
Z1,1 =  Leaking Sewer     
           Length (class 1) 
Z2,1 =  Leaking Sewer     
           Length (class 2) 
Z3,1 = Leaking Sewer     
           Length (class 3) 
Z4,1 = Leaking Sewer     
           Length (class 4) 
 

X1,2 =  Point  
           Source Volume 
Y1,2 =  Non-point  
           Source Volume 
Z1,2 =  Leaking Sewer     
           Length (class 1) 
Z2,2 =  Leaking Sewer     
           Length (class 2) 
Z3,2 =  Leaking Sewer     
           Length (class 3) 
 
 

X1,3 =  Point  
           Source Volume 
Y1,3 =  Non-point  
           Source Volume 
Z1,3 =  Leaking Sewer     
           Length (class 1) 
Z2,3 = Leaking Sewer      
           Length (class 2) 
Z3,3 =  Leaking Sewer     
           Length (class 3) 
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7.4.2.1 Implicit System Constraints 

The evaluation of dissolved oxygen for each of the three sub-watersheds requires a 

simulation model that relates the dissolved oxygen to the organic load (BOD 

concentration in mg/L and associated flows).  The inverse loading BOD model developed 

for the Beargrass Creek watershed was used to represent the implicit system constraints 

in the optimal management model.  This simple deductive model is based on the classic 

Streeter-Phelps (Streeter and Phelps, 1925) dissolved oxygen deficit equation.  The 

decision variables (as given in Figure 7-7) from the optimization model (Xi,w, Yj,w, and 

Zk,w) will be passed on to this simulation model which will in turn compute the effective 

BOD load for each of the three sub-watersheds corresponding to a particular management 

strategy.  The inverse-loading BOD model is described as follows. 

 

Streeter-Phelps Dissolved Oxygen Model 

A simple, conceptual, and macro-level dissolved oxygen model was developed for each 

of the three forks of Beargrass Creek watershed using the classic Streeter-Phelps 

equations (Streeter and Phelps, 1925).  The dissolved oxygen in a stream, DO, depends 

on the oxygen deficit D and the saturation dissolved oxygen DOsat as given by Equation 

7-2.  The oxygen deficit is a function of the initial deficit Do, effective BOD 

concentration Lo, BOD decay rate Kd, and re-aeration from the atmosphere Ka, and is 

given by Equation 7-3.  Figure 7-8 gives a sketch of the DO dynamics along the length of 

a given stream segment. 
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Where   Do = initial deficit 

  Lo = ultimate BOD concentration (mg/L) 

  Ka = re-aeration rate (day)-1 



 221 

  Kd = decay rate (day)-1 

  U = average velocity in the stream (feet per day) 

  X = length of the stream (feet) 

 

   

 

 

 

 

 

Figure 7-8.  Dissolved oxygen deficit in a stream 

 

For the Beargrass Creek watershed, there are three stream segments in the model 

corresponding to the three sub-watersheds.  A schematic of the stream segments in each 

of the three sub-watersheds is given in Figure 7-9 below.   

Figure 7-9. Schematic of the Simplified Deductive DO Model for three Forks of the 
Beargrass Creek Watershed 
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Solving Equation (7-3) for Lo and assuming initial deficit to be zero yields Equation (7-4) 

as given below. 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

X
U

Ka
X

U

Kd

da

o

ee

DKK
L

)(
  (7-4) 

 

A daily time step was used in the steady state dissolved oxygen model.  Based on the 

actual average daily DO deficit observed between the most upstream and downstream 

stations of each of the three stream, Equation (7-4) was used to back-calculate the 

effective BOD concentration for each stream that is causing the observed deficit.  Initial 

deficit is assumed to be zero as the DO in the most upstream end of the each of the 

streams is fairly close to the saturation DO.  The rate of decay (Kd) is assumed to be 0.25 

(Chapra, 1997) (suggested range of 0.15 to 0.35 in most text books).  The re-aeration rate 

(Ka) is computed based on the average velocity and depth in the stream by using Equation 

7-5 (O’Connor and Dobbins, 1958), Equation 7-6 (Churchill et al. 1962), or Equation 7-7 

(Owens, et al. 1964).  The depth and velocity terms used in Equations 7-5 through 7-7 

were computed by using relationships derived from actual rating curves developed for all 

of the USGS gauging stations of the watershed. 
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The total average daily flow is obtained for each of the three forks by utilizing the data 

collected at five USGS gauging stations in the watershed.  Average daily flow is 
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segregated into three components corresponding to the three sources namely (as shown in 

schematically in Figure 7-10): 

 

4. Point source flow from CSO discharges, 

5. Non-point source flow from urban runoff,  and  

6. Base flow in the stream.   

 

The contribution of CSO flows for a particular stream reach is approximated by using 

USGS gauging stations upstream and downstream of the CSO areas as follows.  First, the 

total contributing drainage area between the two USGA stations was determined and 

separated into a CSO drainage area and a non-CSO drainage area using the GIS database 

for the watershed.  This will establish the percentage of CSO drainage area for a 

particular stream reach between the two USGS gauging stations.  Second, the difference 

of stream flow is computed between the two USGS gauging stations on a particular 

stream reach.  Lastly, the percentage of CSO areas computed in the first step is applied to 

the difference flow computed in the second step to get an approximation of the CSO 

component of the stream flow for a particular stream reach.  The remaining flow is 

assumed to be contributed by storm water runoff due to the non-CSO drainage area in the 

stream reach.  In addition, a constant base flow is assumed based on the actual total flow 

hydrograph obtained at the USGS sites. 

 

 

 

 

 

 

 

 

 

Figure 7-10. Segregation of daily average flows for each fork of Beargrass Creek 
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Once the effective daily ultimate BOD concentration (Lo) is computed for each of the 

three streams, a mass balance of flow and concentration for each of the contributing 

sources is performed to quantify the BOD concentration from each source.  Three types 

of sources are identified to be contributing BOD loads into the stream segments 

including: 

 

1. Point source contribution of BOD loads from CSO events during storm event. 

2. Non-point source contribution of BOD loads from storm water runoff. 

3. An unknown or undetermined source of BOD contribution that is associated with the 

base flow in the streams.  Such an unknown source may include other suspected 

sources of BOD contribution such as sediment oxygen demand (SOD) or ex-filtration 

from leaking sewers (that run close to the stream segments in the model) onto the 

stream banks.   

 

The total BOD concentration (calculated from Equation 7-4) can be represented as a mass 

balance of the flow and concentration from the three sources of flow and BOD 

concentration identified above and is given by Equation 7-8 below: 
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           (7-8) 

 

Where  Lo = Total ultimate BOD concentration in mg/L 

QPS = point source flow (CSO discharges) in ft3/sec 

  QNPS = non-point source flow (urban runoff) in ft3/sec 

  QBF = base flow in ft3/sec 

  LPS = BOD concentration of CSO discharges in mg/L 

  LNPS = BOD concentration of urban runoff in mg/L 

  LUKS = BOD concentration of the unknown source 
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BOD concentration values were assigned to the point and non-point source contributions 

based on a survey of literature values (Tetra Tech, 2005) and used in Equation 7-9 to 

obtain the BOD concentration for the unknown source.  Literature values used for LPS = 

50 mg/L and LNPS = 10 mg/L.  These can obviously be changed if actual values are 

available either from sampling or as an output from a more detailed process-based model 

of the watershed.  

 

 

( ) ( ) ( )( )
BF

NPSNPSPSPSBFNPSPSo

UKS
Q

LQLQQQQL
L

*** −−++
=   

           (7-9) 

 

Once the unknown source BOD concentration is determined, the model is used in the 

forward direction to compute DO at the downstream end of each of the three forks of the 

Beargrass Creek.  The DO simulation model as described above is used to obtain the time 

series of DO for the three sub-watersheds and the two confluence locations (confluence 

of South and Middle Forks and the confluence of South and Muddy Forks) for the period 

October 1, 2003 to September 30, 2004.  After initial screening of the data and discarding 

any suspicious observations, the resulting time series of DO consists of a total of 267 

days.  A mass balance of DO and stream flow is performed to compute the DO at the 

confluence of the forks.   

 

In the context of the optimization, each time a management strategy is evaluated, the 

decision variables are passed to the simulation model.  Each set of decision variables 

constituting a management strategy has an affect on the total BOD concentration Lo (as 

given in Equation 7-8) for a given time step in a given sub-watershed.  This effect on Lo 

is translated into a corresponding effect on the DO time series computed for each of the 

three sub-watersheds when the simulation models is run in the forward direction using 

Equation (7-3).  This is achieved in the following manner: 
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1. Effect of point source-related decision variables 

Each set of decision variables consists of a point source volume (Xi,w) for all three 

sub-watersheds.  When passed to the simulation model, this volume is compared 

against the actual point source flow for the given time step and sub-watershed.  If the 

value of the point source volume decision variable is equal or greater than the actual 

point source flow, the point source flow ( PSQ ) in Equation (7-8) is set to zero.  This 

means that all of the point source flow (resulting from a CSO event) is being stored 

per the management strategy evaluated.  Alternatively, if the value of the point source 

volume decision variable is less than the actual point source flow, the point source 

flow ( PSQ ) is set to the difference between the point source volume decision variable 

and the actual point source flow (expressed as a daily volume).  This means that a 

portion of the point source flow ( PSQ ) is being stored per the management strategy, 

and the remaining will be used in the forward DO simulation model to compute the 

time series of DO using Equation (7-3).  Point source related decision variables (Xi,w) 

in a given strategy will thus have an impact on the effective BOD concentration (Lo) 

computed using Equation (7-8).  Consequently, by changing the effective BOD load 

(Lo), a corresponding change is observed in DO time series for each sub-watershed 

computed using Equation (7-3) for the particular management strategy evaluated.  

This is mathematically stated as follows: 
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Where )(newQPS  is the modified point source flow reflecting the effect of the point 

source related decision variables, QPS is the actual point source contribution in the 

total stream flow time series (resulting from a CSO event), Xiw is the point source 

volume decision variable passed from the optimization model to the simulation 

model, and t is the daily time step used in the model.   
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2. Effect of non-point source-related decision variables 

Each set of decision variables consists of a non-point source volume (Yj,w) for all 

three sub-watersheds. This represents a detention/retention basin for the sub-

watershed that can be used to treat the storm water runoff and reduce or eliminate the 

BOD concentration in storm water runoff.   When passed to the simulation model, 

this volume is compared against the actual non-point source flow (runoff component 

of the hydrograph) for the given time step and sub-watershed.  This non-point source 

volume decision variable has an effect on the BOD concentration of non-point source 

flow component ( NPSL ) as given in Equation (7-8).  Depending on the volume of 

storage provided by the management strategy for storing non-point source flow (i.e. 

the value of Yj,w), either all or portion of the actual non-point source flows component 

is treated for BOD reduction.  If the value of (Yj,w) is greater or equal to the actual 

non-point source flow for a sub-watershed, all of the flow is treated for BOD 

removal.  Alternatively, if the value of (Yj,w) is less than the actual non-point source 

flow for a sub-watershed, the difference is treated for BOD removal.  It is assumed 

that any portion of the non-point source flow stored will result in a 90% removal of 

BOD concentration in the non-point source flow.  Thus for a particular management 

strategy and corresponding non-point source decision variable, the simulation model 

will compute a modified BOD load resulting from the non-point source component.  

The modified non-point source BOD load (flow multiplied by concentration) 

resulting from a particular management strategy is mathematically given as follows: 
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Where NPSLoadBOD  (new) represents the modified BOD load for use in Equation 

(7-8) to compute the total effective BOD concentration (Lo) reflecting the effect of 

the non-point source related decision variables (Yj,w) and LNPS is the non-point source 

BOD concentration.  Consequently, by changing the effective BOD load (Lo), a 
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corresponding change is observed in DO time series for each sub-watershed 

computed using Equation (7-3) for the particular management strategy evaluated. 

 

3. Effect of unknown source-related decision variables 

Each set of decision variables consists of multiple unknown sources related decision 

variables (Zk,w) for all three sub-watersheds. Each of these represents a length of 

leaking sewers in the proximity of the streams that need to be lined to eliminate ex-

filtration of BOD concentration onto the stream banks.  When passed to the 

simulation model, the length in each of these decision variables is compared against 

the actual length of sewers in each sub-watershed.  If the length of sewer in a 

particular management strategy for a particular sub-watershed is equal to the actual 

length of the sewer, all of the sewers in that sub-watershed are lined or rehabilitated.  

This means that the BOD concentration corresponding to the unknown source 

(represented by UKSL  in Equation 7-8) for that sub-watershed is eliminated.  If the 

length of sewer in a particular management strategy for a particular sub-watershed is 

less than the actual length of the sewer, a percentage of sewers are lined per the 

management strategy.  The corresponding decrease in the unknown source related 

BOD concentration is proportional to the percentage of sewers that are being lined 

per the management strategy.  Thus each set of decision variables related to the 

unknown source in each sub-watershed results in reduction of the corresponding 

BOD concentration ( UKSL ).  This will in effect change the total effective BOD 

concentration as computed by Equation (7-8).  Unknown source related decision 

variables (Zk,w) in a given strategy will thus have an impact on the effective BOD 

concentration (Lo) computed using Equation (7-8).  Consequently, by changing the 

effective BOD load (Lo), a corresponding change is observed in DO time series for 

each sub-watershed computed using Equation (7-3) for the particular management 

strategy evaluated  
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7.4.2.2 Implicit Bound Constraints 

The implicit bound constraints include the constraints on the dissolved oxygen in each of 

the three forks to be equal to or greater than a prescribed threshold level as required by 

the State of Kentucky regulations for aquatic life.  Per Kentucky Water Quality 

Standards, the dissolved oxygen criterion for aquatic life is 5.0 mg/L (daily average) and 

4.0 mg/L (instantaneous minimum) (Kentucky Administrative Regulations Title 401, 

Chapter 5, Water Quality). For each day of the DO simulation model, the dissolved 

oxygen must be greater than such a prescribed standard value.  This may be expressed as 

follows: 

 

twWQZYXDO dardskji ,),( tan ∀≥   (7-12) 

 

Where w refers to a sub-watershed and t refers to the time step in the simulation model.  

Thus for each set of decision variables in a management strategy, the model computed 

dissolved oxygen should be greater than or equal to the prescribed standard.  If the DO 

does not meet the standard, a violation is recorded by the model.  For the proposed 

optimal management model for Beargrass Creek watershed, three different standards 

were used in the model to evaluate the performance of the model under different DO 

standards.  These included average daily standards of 4.0 mg/L, 5.0 mg/L, and 6.0 mg/L.  

 

7.4.2.3 Explicit Decision Variable Bound Constraints 

The final set of bound constraints consists of explicit bounds on the decision variables.  

In this case, each of the 16 decision variables given in Figure 7-7 (six for South fork, five 

for Middle fork, and five for Muddy fork) will be restricted between a lower value of 

zero (corresponding to a no improvement strategy) and an upper value (corresponding to 

the maximum possible rehabilitation strategy).  Mathematically, this may be expressed as 

given in Equations 7-13 through 7-15 as follows: 

 

wiXX iw ,0 max ∀≤≤   (7-13) 

wjXX jw ,0 max ∀≤≤   (7-14) 
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wkXX kw ,0 max ∀≤≤   (7-15) 

 

Where w refers to a sub-watershed and i, j, and k refers to the three types of pollution 

sources.  The explicit bounds on the decision variables of the optimal management model 

were established for each of the three sub-watersheds and corresponding pollution source 

variables.  For point source related decision variables, the lower bound is set to zero (no 

storage required in the management strategy), while the upper bound is set at the 

maximum volume required for storage during a CSO event.  The upper bound was 

obtained from the time series of flows that are segregated into point sources (CSO flows), 

non-point sources (runoff), and base flow.  Likewise, the lower bound of the non-point 

source related decision variables are set tot zero (no storage required in the management 

strategy), and the upper bound is set to the maximum storage required for control of 

runoff.  For the decision variables in the rehabilitation strategy of leaking sewers, the 

lower bound is set to zero (no sewer lining in the watershed) and the upper bound is set to 

the maximum length of a particular class of sewer in each watershed.  These bounds on 

the decision variables for each sub-watershed are summarized in Table 7-2. 

 

Table 7-2. Explicit Bounds on Decision Variables in Management Model 
Decision Variable Lower Bound Upper Bound 

X1,1 0 202 MG 

X1,2 0 390 MG 

X1,3 0 80 MG 

Y1,1 0 401 MG 

Y1,2 0 390 MG 

Y1,3 0 158 MG 

Z1,1 0 20,200 feet 

Z2,1 0 26,700 feet 

Z3,1 0 17,000 feet 

Z4,1 0 2,300 feet 

Z1,2 0 13,200 feet 

Z2,2 0 27,300 feet 

Z3,2 0 15,900 feet 

Z1,3 0 19,800 feet 

Z2,3 0 39,100 feet 

Z3,3 0 3,900 feet 
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7.4.3 Cost Data for the Optimal Management Model 

The cost of the management strategies used in the management model was derived using 

EPA recommendations and construction estimates of municipal infrastructure works.  

These are described as follows (EPA, 2002). 

 

Cost of Volume Controls for Point Sources  

Deep tunnel storage option is used for storing the CSO discharges during a storm event.  

EPA (2002) costs curves for providing this type of storage in a watershed were used in 

the optimal management model to compute the cost of point source management 

strategies.  For deep tunnel storage, this is given as follows: 

 

C = 7.785 V 0.795    (7-16) 

 

Where   C = construction cost in 1999 Million $ 

V = volume of storage system in Million Gallons 

 

The above relationship was updated to December 2005 dollars in the optimal 

management model. 

 

Cost of Volume Controls for Non-Point Sources 

Retention and/or detention basins are commonly used to control urban runoff during a 

storm event and this storage option was used for storing the urban runoff during a storm 

event in the optimal management model.  EPA (2002) costs curves for providing this type 

of storage in a watershed were used to compute the cost of non-point source management 

strategies.  For detention basins, this is given as follows. 

 

C = 61,000 V 0.75    (7-17)  

 

Where   C = construction cost in 1999 $ 

V = volume of basin in Million Gallons 
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The above relationship was updated to December 2005 dollars in the optimal 

management model. 

 

Cost of Rehabilitation Strategy for the Leaking Sewers in the Watershed 

A comprehensive rehabilitation strategy was formulated for the leaking sewers in the 

Beargrass Creek watershed.  First, all the major sewers along or in close proximity to the 

banks of the three forks (South, Middle, and Muddy) of the watershed were identified.  

For each of the three forks, the sewers identified were assigned to a major class of sewers 

based on its diameter.  Accordingly, four classes of sewers were identified in the South 

Fork watershed, three classes in the Middle Fork watershed, and three classes in the 

Muddy Fork watershed.  A listing of these classes and their corresponding lengths are 

given for each of the three sub-watersheds in Tables 7-3 through 7-5. 

 

Table 7-3. Sewers in South Fork Watershed 

Class of Sewers Diameter Range  
(inches) 

Length  
(feet) 

1 8-21 20,200 

2 24-42 26,700 

3 48-66 17,000 

4 84-132 2,300 

 

Table 7-4. Sewers in Middle Fork Watershed 

Class of Sewers Diameter Range  
(inches) 

Length  
(feet) 

1 8-18 13,200 

2 24-42 27,300 

3 48-60 15,900 

 

 
Table 7-5. Sewers in Muddy Fork Watershed 

Class of Sewers Diameter Range  
(inches) 

Length  
(feet) 

1 6-21 19,800 

2 24-30 39,100 

3 36 3,900 
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A unit cost of lining these sewers was estimated by using actual bidding documents for 

some representative sewer projects in the state of Kentucky (Davis, 2005).  These are 

given in Table 7-6. 

 
 
    Table 7-6. Sewer Lining Costs 

Pipe Diameter 
(inches) 

Unit Cost of Lining 
($) 

6 35 

8 40 

10 40 

12 50 

15 60 

18 65 

21 75 

24 90 

27 100 

30 110 

33 125 

36 140 

39 160 

42 180 

45 200 

48 220 

 

 

7.4.4 Solution Methodology 

The optimal management model is used to evaluate multiple management strategies 

comprising of different combinations of the 16 decision variables.  The effect of these 

strategies is evaluated on the watershed response via the macro-level deductive dissolved 

oxygen (DO) simulation model. The objective of the model is to search for the optimal 

management strategy that is least-cost and achieves the goal of enhancing the DO in the 

receiving streams above the prescribed water quality standards.  Two different 

optimization models are used to solve the optimal management problem as formulated 

above.  These include the GA-based optimization model and the Shuffled Box Complex-

based optimization models.  The solution methodology for solving the optimal 

management model is described in Chapter 6 and shown schematically in Figure 6-4 

(GA-based solution) and Figure 6-5 (Shuffled Box Complex-based solution).   
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7.4.5 Results of the Water Quality-Based Optimal Management Model 

 

7.4.5.1 Results of the Genetic Algorithm-based Model 

The objective of the water quality-based optimal management model is to minimize costs 

associated with a management strategy that satisfies prescribed water quality constraints.  

In the Beargrass Creek watershed, the water quality problem in hand is the dissolved 

oxygen impairment.  Figure 7-11 and Table 7-7 gives the number of impairment days in 

the three contributing sub-watersheds for three different DO standards evaluated in the 

simulation model.   As shown in Figure 7-11 and Table 7-7, Muddy fork sub-watershed is 

least sensitive to the DO standard enforced in a particular simulation of the model.  This 

sub-watershed also has the most impairment of all sub-watersheds.  For the remaining 

two sub-watersheds, the number of DO impairments slightly increase as the DO standard 

is made more stringent from 4.0 mg/L to 6.0 mg/L.   
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Figure 7-11.  DO Violations in the Beargrass Creek Watershed  
under existing conditions 
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Table 7-7. DO Violation Days in Beargrass Creek Watershed  
under Existing Conditions 

Watershed DO Violation 
for 4 mg/L  

(Days)  

DO Violation  
for 5 mg/L 

(Days) 

DO Violation 
for 6 mg/L  

(Days) 
South  210 229 239 

Middle  114 138 169 

Muddy 234 239 247 

Beargrass Creek1  558 606 655 
 (1): The number of violation days for Beargrass Creek is the sum of the violations days 
        in South, Middle, and Muddy Fork sub-watersheds. 
    

 
The optimal management model was run per the solution methodology described above.  

The GA-based optimization was performed with different population sizes and varying 

number of generations.  The population size was varied between 30 and 200 whereas the 

number of generations in the model run was varied from 100 to 1000.  In the majority of 

model runs, the model that utilizes a population of 100 gave optimal results.  The model 

was also analyzed for sensitivity related to the probability of crossover and mutation.  

The model performed consistently better with a probability of crossover set to 0.7 and the 

probability of mutation set to 0.03.  The results of the optimal management model for the 

three DO standards (4, 5, and 6 mg/L) enforced are summarized in Figure 7-12 and 

Tables 7-8 through 7-11. 
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Figure 7-12.  Optimal Cost of Management Strategies using GA-based Optimization 
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Table 7-8.  Optimal Management Costs for Beargrass Creek Watershed  
(Water Quality-based Optimization using GA) 

# of 
Violations 

Optimal Cost 
for 4 mg/L  

(M$) 

Optimal Cost 
for 5 mg/L  

(M$) 

Optimal Cost  
for 6 mg/L 

(M$) 
0 203 304 554 

1 203 257 319 

2 201 257 319 

3 201 232 319 

4 177 206 319 

5 151 151 319 

6 123 128 277 

7 123 128 268 

8 103 128 264 

9 41 116 264 

10 29 84 264 
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Table 7-9.  Optimal Management Costs for South Fork Sub-Watershed 
(Water Quality-based Optimization using GA) 

#  
of 

Violations 

South Fork  
Point 

Source 
Costs 
(M$) 

South Fork  
Non-Point 

Source 
Costs 
(M$) 

South Fork 
Unknown 

Source 
Costs 
(M$) 

South  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

South  
Fork  
Costs 
( % of  
Total ) 

0 

0 
0 

79.97 
79.97 
138.80 

0.00 
6.05 
2.65 

8.85 
11.07 
11.00 

88.82 
97.11 
152.40 

203.18 
303.95 
554.24 

44 
32 
27 

1 
1 
1 

79.97 
79.97 
138.80 

0.00 
6.55 
6.05 

8.85 
11.06 
11.95 

88.82 
97.59 
156.80 

203.18 
257.39 
318.64 

44 
38 
49 

2 
2 
2 

79.97 
79.97 
138.80 

0.00 
6.55 
6.05 

7.51 
11.06 
11.95 

87.49 
97.59 
156.80 

201.15 
257.39 
318.64 

43 
38 
49 

3 
3 
3 

79.97 
79.97 
138.80 

0.00 
6.55 
6.05 

7.51 
11.43 
11.95 

87.49 
97.96 
156.80 

201.15 
231.63 
318.64 

43 
42 
49 

4 
4 
4 

79.97 
79.97 
138.80 

0.00 
5.54 
6.05 

9.61 
9.97 
11.95 

89.59 
95.50 
156.80 

177.32 
205.60 
318.64 

51 
46 
49 

5 
5 
5 

0.00 
0.00 

138.80 

1.96 
1.96 
6.05 

11.31 
11.31 
11.95 

13.27 
13.27 
156.80 

150.52 
150.52 
318.64 

9 
9 
49 

6 
6 
6 

0.00 
0.00 

138.80 

5.54 
3.29 
8.88 

8.08 
11.61 
10.70 

13.63 
14.91 
158.40 

122.91 
128.17 
276.59 

11 
12 
57 

7 
7 
7 

0.00 
0.00 

138.80 

5.54 
3.29 
3.89 

7.91 
11.61 
9.81 

13.46 
14.91 
152.50 

122.74 
128.17 
268.05 

11 
12 
57 

8 
8 
8 

0.00 
0.00 
79.97 

8.43 
3.29 
2.65 

8.23 
11.61 
10.54 

16.67 
14.91 
93.17 

102.63 
128.17 
264.37 

16 
12 
35 

9 
9 
9 

0.00 
79.97 
79.97 

7.51 
1.96 
2.65 

10.51 
11.80 
10.54 

18.02 
91.74 
93.17 

41.07 
116.02 
264.37 

44 
81 
35 

10 
10 
10 

0.00 
0.00 
79.97 

0.00 
8.43 
2.65 

8.58 
11.39 
10.54 

8.58 
19.83 
93.17 

28.98 
83.76 
264.37 

30 
24 
35 
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Table 7-10.  Optimal Management Costs for Middle Fork Sub-Watershed 
(Water Quality-based Optimization using GA) 

#  
of 

Violations 

Middle Fork  
Point 

Source 
Costs 
(M$) 

Middle Fork 
Non-Point 

Source 
Costs 
(M$) 

Middle Fork 
Unknown 

Source 
Costs 
(M$) 

Middle  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

Middle 
Fork  
Costs 
( % of  
Total ) 

0 
0 
0 

0.00 
0.00 

138.80 

5.93 
6.89 
3.81 

7.03 
10.32 
10.02 

12.96 
17.22 
152.60 

203.18 
303.95 
554.24 

6 
6 
28 

1 
1 
1 

0.00 
0.00 
0.00 

5.93 
7.81 
5.42 

7.03 
9.04 
9.77 

12.96 
16.86 
15.20 

203.18 
257.39 
318.64 

6 
7 
5 

2 
2 
2 

0.00 
0.00 
0.00 

5.93 
7.81 
5.42 

7.03 
9.04 
9.77 

12.96 
16.86 
15.20 

201.15 
257.39 
318.64 

6 
7 
5 

3 
3 
3 

0.00 
0.00 
0.00 

5.93 
3.81 
5.42 

7.03 
6.36 
9.77 

12.96 
10.18 
15.20 

201.15 
231.63 
318.64 

6 
4 
5 

4 
4 
4 

0.00 
0.00 
0.00 

4.37 
5.93 
5.42 

8.51 
6.91 
9.77 

12.89 
12.84 
15.20 

177.32 
205.60 
318.64 

7 
6 
5 

5 
5 
5 

0.00 
0.00 
0.00 

7.35 
7.35 
5.42 

7.77 
7.77 
9.77 

15.14 
15.14 
15.20 

150.52 
150.52 
318.64 

10 
10 
5 

6 
6 
6 

0.00 
0.00 
0.00 

2.60 
4.91 
8.69 

7.09 
8.53 
7.60 

9.70 
13.45 
16.31 

122.91 
128.17 
276.59 

8 
10 
6 

7 
7 
7 

0.00 
0.00 
0.00 

2.60 
4.91 
5.93 

7.09 
8.53 
9.12 

9.70 
13.45 
15.05 

122.74 
128.17 
268.05 

8 
10 
6 

8 
8 
8 

0.00 
0.00 
79.97 

3.81 
4.91 
6.89 

6.74 
8.53 
8.67 

10.56 
13.45 
95.55 

102.63 
128.17 
264.37 

1 
10 
36 

9 
9 
9 

0.00 
0.00 
79.97 

7.35 
5.42 
6.89 

7.33 
8.87 
8.67 

14.70 
14.30 
95.55 

41.07 
116.02 
264.37 

36 
12 
36 

10 
10 
10 

0.00 
0.00 
79.97 

1.91 
7.35 
6.89 

8.81 
8.92 
8.67 

10.73 
16.28 
95.55 

28.98 
83.76 
264.37 

37 
19 
36 
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Table 7-11.  Optimal Management Costs for Muddy Fork Sub-Watershed 
(Water Quality-based Optimization using GA) 

#  
of 

Violations 

Muddy Fork  
Point 

Source 
Costs 
(M$) 

Muddy Fork 
Non-Point 

Source 
Costs 
(M$) 

Muddy Fork 
Unknown 

Source 
Costs 
(M$) 

Muddy  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

Muddy 
Fork  
Costs 
( % of  
Total ) 

0 
0 
0 

91.72 
179.90 
238.90 

4.41 
3.50 
4.41 

5.25 
6.23 
5.92 

101.40 
189.60 
249.20 

203.18 
303.95 
554.24 

50 
62 
45 

1 
1 
1 

91.72 
137.70 
137.70 

4.41 
0.57 
3.50 

5.25 
4.68 
5.49 

101.40 
142.90 
146.70 

203.18 
257.39 
318.64 

50 
56 
46 

2 
2 
2 

91.72 
137.70 
137.70 

3.73 
0.57 
3.50 

5.24 
4.68 
5.49 

100.70 
142.90 
146.70 

201.15 
257.39 
318.64 

50 
56 
46 

3 
3 
3 

91.72 
115.30 
137.70 

3.73 
1.93 
3.50 

5.24 
6.25 
5.49 

100.70 
123.50 
146.70 

201.15 
231.63 
318.64 

50 
53 
46 

4 
4 
4 

66.45 
91.72 
137.70 

2.22 
1.32 
3.50 

6.16 
4.21 
5.49 

74.83 
97.26 
146.70 

177.32 
205.60 
318.64 

42 
47 
46 

5 
5 
5 

115.30 
115.30 
137.70 

0.57 
0.57 
3.50 

6.23 
6.23 
5.49 

122.10 
122.10 
146.70 

150.52 
150.52 
318.64 

81 
81 
46 

6 
6 
6 

91.72 
91.72 
91.72 

4.19 
3.25 
3.73 

3.66 
4.82 
6.47 

99.58 
99.81 
101.90 

122.91 
128.17 
276.59 

81 
78 
37 

7 
7 
7 

91.72 
91.72 
91.72 

4.19 
3.25 
3.01 

3.66 
4.82 
5.78 

99.58 
99.81 
100.50 

122.74 
128.17 
268.05 

81 
78 
37 

8 
8 
8 

66.45 
91.72 
66.45 

4.19 
3.25 
3.01 

4.75 
4.82 
6.18 

75.39 
99.81 
75.65 

102.63 
128.17 
264.37 

73 
78 
29 

9 
9 
9 

0.00 
0.00 
66.45 

3.01 
2.75 
3.01 

5.34 
5.21 
6.18 

8.35 
7.97 
75.65 

41.07 
116.02 
264.37 

20 
7 
29 

10 
10 
10 

0.00 
38.30 
66.45 

3.73 
4.41 
3.01 

5.92 
4.94 
6.18 

9.66 
47.66 
75.65 

28.98 
83.76 
264.37 

33 
57 
29 

 

 

 



 240 

Figures 7-13 and 7-14 provide an analysis of the allocation of total costs by sub-

watershed and by pollution types respectively for a specified number of violations 

allowed in the DO simulation.  Figure 7-15 provides the allocation of the number of total 

violation days allowed between the three sub-watersheds.  Figure 7-16 through 7-18 

provides the allocation of total costs in each sub-watershed by pollution type for a 

specified number of violations allowed in the DO simulation.  The results given in 

Figures 7-13 through 7-18 corresponds to a DO standard of 5 mg/L. 
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Figure 7-13.  Allocation of Total Costs by Sub-watershed in the GA-based Model 
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Allocation of Total Costs by Pollution Type in all Sub-

Watershed (DO Standard = 5 mg/L)
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Figure 7-14.  Allocation of Total Costs by Pollution Type in the GA-based Model 
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Figure 7-15.  Allocation of Total Violation Days in the GA-based Model 
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Allocation of Total Costs by Pollution Type in South Fork 

Sub-Watershed (DO Standard = 5 mg/L)
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Figure 7-16.  Allocation of Total Cost in South Fork by Pollution Type  
in the GA-based Model 
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Figure 7-17.  Allocation of Total Cost in Middle Fork by Pollution Type  
in the GA-based Model 
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Allocation of Total Costs by Pollution Type in Muddy Fork 

Sub-Watershed (DO Standard = 5 mg/L)
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Figure 7-18.  Allocation of Total Cost in Muddy Fork by Pollution Type  
in the GA-based Model 

 

 

7.4.5.2 Results of the Shuffled Box Complex-based Model 

The optimal management model for the Beargrass Creek watershed was run per the 

solution methodology for the Shuffled Box Complex-based optimization model.  Similar 

to the GA-based management model, this management model also utilizes the inverse-

loading macro-level model for simulating the DO response in the watershed.  In the 

Shuffled Box Complex-based optimization, a total of 100 initial feasible solutions sets 

are sequentially generated to form the complexes in the optimization model.  These were 

partitioned into 5 different complexes, each complex consisting of 20 solution sets 

(vertices of the complex).  The shuffling of the solution sets in each complex was 

performed after 100, 200, 300, 400, and 500 generations (iterations of the model).  The 

model was run for a total of 1000 generations (iterations).  Separate models were 

evaluated for each of the three DO standards (4, 5, and 6 mg/L).  For each DO standard, 

the model was run for individual constraints (DO impairment days) ranging from 0 to 10 

impairment days.  The results of the Shuffled-Box Complex-based optimal management 
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model for the Beargrass Creek watershed for the three DO standards (4, 5, and 6 mg/L) 

are summarized in Figure 7-19 and Tables 7-12 through 7-15. 
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Figure 7-19.  Optimal Cost of Management Strategies using Shuffled Box  
Complex-based Optimization 

 
 
 

Table 7-12.  Optimal Management Costs for Beargrass Creek Watershed  
(Water Quality-based Optimization using Shuffled Box Complex) 

# of 
Violations 

Optimal Cost 
for 4 mg/L  

(M$) 

Optimal Cost 
for 5 mg/L  

(M$) 

Optimal Cost  
for 6 mg/L 

(M$) 
0 150 220 343 

1 131 198 332 

2 121 191 332 

3 99 144 246 

4 99 144 181 

5 99 113 181 

6 100 111 145 

7 79 111 145 

8 32 83 145 

9 32 83 145 

10 21 30 106 
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Table 7-13.  Optimal Management Costs for South Fork Sub-Watershed 
(Water Quality-based Optimization using Shuffled Box Complex) 

#  
of 

Violations 

South Fork  
Point 

Source 
Costs 
(M$) 

South Fork  
Non-Point 

Source 
Costs 
(M$) 

South Fork 
Unknown 

Source 
Costs 
(M$) 

South  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

South  
Fork  
Costs 
( % of  
Total ) 

0 
0 
0 

48.04 
55.85 
137.40 

0.09 
8.05 
8.88 

11.94 
12.15 
11.51 

60.07 
76.05 
157.80 

149.40 
219.50 
342.90 

40 
35 
46 

1 
1 
1 

17.54 
61.07 
125.00 

2.81 
0.09 
1.23 

13.00 
10.10 
11.27 

33.35 
71.26 
137.50 

130.50 
197.10 
331.20 

26 
36 
42 

2 
2 
2 

20.31 
66.82 
125.00 

0.24 
8.88 
1.23 

12.21 
11.43 
11.27 

32.75 
87.13 
137.50 

121.00 
191.00 
331.20 

27 
46 
42 

3 
3 
3 

0.00 
54.98 
76.03 

0.69 
3.72 
8.87 

9.41 
12.54 
12.23 

10.10 
71.24 
97.12 

98.28 
144.00 
245.10 

10 
49 
40 

4 
4 
4 

0.00 
54.98 
63.45 

0.69 
3.72 
8.87 

9.41 
12.54 
12.50 

10.10 
71.24 
84.83 

98.28 
144.00 
181.00 

10 
49 
47 

5 
5 
5 

0.00 
0.00 
63.45 

0.69 
0.25 
8.87 

9.41 
12.63 
12.50 

10.10 
12.88 
84.83 

98.28 
112.20 
181.00 

10 
11 
47 

6 
6 
6 

22.68 
59.36 
57.21 

0.29 
0.00 
0.34 

11.65 
12.53 
11.62 

34.62 
71.88 
69.17 

99.36 
110.70 
145.00 

35 
65 
48 

7 
7 
7 

0.95 
59.36 
57.21 

0.00 
0.00 
0.34 

11.02 
12.53 
11.62 

11.97 
71.88 
69.17 

78.95 
110.70 
145.00 

15 
65 
48 

8 
8 
8 

0.00 
42.16 
57.21 

8.88 
0.20 
0.34 

8.52 
12.96 
11.62 

17.40 
55.32 
69.17 

31.66 
82.14 
145.00 

55 
67 
48 

9 
9 
9 

0.00 
42.16 
57.21 

8.88 
0.20 
0.34 

8.52 
12.96 
11.62 

17.40 
55.32 
69.17 

31.66 
82.14 
145.00 

55 
67 
48 

10 
10 
10 

0.06 
0.00 
64.35 

0.11 
0.61 
0.68 

9.21 
13.00 
11.79 

9.39 
13.61 
76.83 

20.26 
29.56 
105.70 

46 
46 
73 
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Table 7-14.  Optimal Management Costs for Middle Fork Sub-Watershed 
(Water Quality-based Optimization using Shuffled Box Complex) 

#  
of 

Violations 

Middle Fork  
Point 

Source 
Costs 
(M$) 

Middle Fork 
Non-Point 

Source 
Costs 
(M$) 

Middle Fork 
Unknown 

Source 
Costs 
(M$) 

Middle  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

Middle 
Fork  
Costs 
( % of  
Total ) 

0 
0 
0 

0.00 
10.73 
43.21 

0.05 
8.69 
7.56 

7.29 
8.68 
10.68 

7.34 
28.09 
61.45 

149.40 
219.50 
342.90 

5 
13 
18 

1 
1 
1 

1.51 
7.93 
29.12 

2.25 
8.35 
8.43 

7.11 
8.87 
8.37 

10.86 
25.15 
45.91 

130.50 
197.10 
331.20 

8 
13 
14 

2 
2 
2 

0.40 
0.04 
29.12 

0.02 
0.00 
8.43 

6.23 
10.16 
8.37 

6.66 
10.20 
45.91 

121.00 
191.00 
331.20 

6 
5 
14 

3 
3 
3 

0.06 
2.38 
23.95 

0.18 
0.38 
8.68 

6.06 
10.40 
8.40 

6.30 
13.16 
41.03 

98.28 
144.00 
245.10 

6 
9 
17 

4 
4 
4 

0.06 
2.38 
16.74 

0.18 
0.38 
8.70 

6.06 
10.40 
10.49 

6.30 
13.16 
35.92 

98.28 
144.00 
181.00 

6 
9 
20 

5 
5 
5 

0.06 
0.00 
16.74 

0.18 
0.59 
8.70 

6.06 
10.36 
10.49 

6.30 
10.95 
35.92 

98.28 
112.20 
181.00 

6 
10 
20 

6 
6 
6 

0.01 
0.23 
0.12 

5.37 
0.35 
0.52 

6.74 
8.93 
10.35 

12.12 
9.51 
10.99 

99.36 
110.70 
145.00 

12 
9 
8 

7 
7 
7 

0.00 
0.23 
0.12 

8.70 
0.35 
0.52 

5.66 
8.93 
10.35 

14.36 
9.51 
10.99 

78.95 
110.70 
145.00 

18 
9 
8 

8 
8 
8 

0.00 
0.00 
0.12 

0.49 
8.02 
0.52 

7.15 
9.44 
10.35 

7.64 
17.46 
10.99 

31.66 
82.14 
145.00 

24 
21 
8 

9 
9 
9 

0.00 
0.00 
0.12 

0.49 
8.02 
0.52 

7.15 
9.44 
10.35 

7.64 
17.46 
10.99 

31.66 
82.14 
145.00 

24 
21 
8 

10 
10 
10 

0.55 
0.00 
0.03 

0.08 
0.00 
0.45 

6.11 
10.70 
7.83 

6.74 
10.70 
8.32 

20.26 
29.56 
105.70 

33 
36 
8 
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Table 7-15.  Optimal Management Costs for Muddy Fork Sub-Watershed 
(Water Quality-based Optimization using Shuffled Box Complex) 

#  
of 

Violations 

Muddy Fork  
Point 

Source 
Costs 
(M$) 

Muddy Fork 
Non-Point 

Source 
Costs 
(M$) 

Muddy Fork 
Unknown 

Source 
Costs 
(M$) 

Muddy  
Fork  
Total 
Costs 
(M$) 

Beargrass 
Creek 
Total  
Costs 
(M$) 

Muddy 
Fork  
Costs 
( % of  
Total ) 

0 
0 
0 

75.01 
108.50 
112.60 

1.06 
0.99 
4.42 

5.95 
5.91 
6.65 

82.03 
115.40 
123.70 

149.40 
219.50 
342.90 

55 
53 
36 

1 
1 
1 

76.52 
93.21 
141.00 

4.42 
0.95 
1.51 

5.32 
6.51 
5.26 

86.26 
100.70 
147.80 

130.50 
197.10 
331.20 

66 
51 
45 

2 
2 
2 

76.62 
88.28 
141.00 

0.51 
0.61 
1.51 

4.50 
4.76 
5.26 

81.63 
93.65 
147.80 

121.00 
191.00 
331.20 

67 
49 
45 

3 
3 
3 

75.13 
51.01 
96.67 

0.93 
4.18 
4.41 

5.82 
4.42 
5.83 

81.88 
59.60 
106.90 

98.28 
144.00 
245.10 

83 
41 
44 

4 
4 
4 

75.13 
51.01 
53.84 

0.93 
4.18 
0.16 

5.82 
4.42 
6.26 

81.88 
59.60 
60.26 

98.28 
144.00 
181.00 

83 
41 
33 

5 
5 
5 

75.13 
83.37 
53.84 

0.93 
0.29 
0.16 

5.82 
4.71 
6.26 

81.88 
88.36 
60.26 

98.28 
112.20 
181.00 

83 
79 
33 

6 
6 
6 

44.95 
20.24 
56.00 

4.42 
4.33 
3.86 

3.25 
4.77 
5.01 

52.61 
29.34 
64.87 

99.36 
110.70 
145.00 

53 
27 
45 

7 
7 
7 

42.31 
20.24 
56.00 

4.42 
4.33 
3.86 

5.89 
4.77 
5.01 

52.62 
29.34 
64.87 

78.95 
110.70 
145.00 

67 
27 
45 

8 
8 
8 

0.00 
0.10 
56.00 

0.00 
4.40 
3.86 

6.62 
4.86 
5.01 

6.62 
9.36 
64.87 

31.66 
82.14 
145.00 

21 
11 
45 

9 
9 
9 

0.00 
0.10 
56.00 

0.00 
4.40 
3.86 

6.62 
4.86 
5.01 

6.62 
9.36 
64.87 

31.66 
82.14 
145.00 

21 
11 
45 

10 
10 
10 

0.00 
0.10 
13.90 

0.46 
0.43 
0.58 

3.67 
4.79 
6.09 

4.13 
5.25 
20.57 

20.26 
29.56 
105.70 

20 
18 
19 

 

 

 



 248 

Figures 7-20 and 7-21 provide an analysis of the allocation of total costs by sub-

watershed and by pollution types respectively for a specified number of violations 

allowed in the DO simulation.  Figure 7-22 provides the allocation of the number of total 

violation days allowed between the three sub-watersheds.  Figure 7-23 through 7-25 

provides the allocation of total costs in each sub-watershed by pollution type for a 

specified number of violations allowed in the DO simulation.  The results given in 

Figures 7-20 through 7-25 corresponds to a DO standard of 5 mg/L. 
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Figure 7-20.  Allocation of Total Costs by Sub-watershed in the  
Shuffled Box Complex-based Model 
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Allocation of Total Costs by Pollution Type in all Sub-

Watershed (DO Standard = 5 mg/L)
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Figure 7-21.  Allocation of Total Costs by Pollution Type in the  
Shuffled Box Complex-based Model 
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Figure 7-22.  Allocation of Total Violation Days in the Shuffled Box  
Complex-based Model 
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Allocation of Total Costs by Pollution Type in South Fork 

Sub-Watershed (DO Standard = 5 mg/L)
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Figure 7-23.  Allocation of Total Cost in South Fork by Pollution Type  
in the Shuffled Box Complex-based Model 
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Sub-Watershed (DO Standard = 5 mg/L)
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Figure 7-24.  Allocation of Total Cost in Middle Fork by Pollution Type  
in the Shuffled Box Complex-based Model 
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Allocation of Total Costs by Pollution Type in Muddy Fork 
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Figure 7-25.  Allocation of Total Cost in Muddy Fork by Pollution Type  
in the Shuffled Box Complex-based Model 

 
 

 

7.4.5.3 Discussion of Results from Water Quality-based Model 

The results of the water quality-based optimal management model can be summarized as 

follows: 

• As expected, the model is sensitive to the DO standard enforced in the simulation 

model.  In general, as the DO standard is made more stringent (from 4 to 6 mg/L), 

the greater it costs to improve water quality in the sub-watersheds. 

• The cost of improvements is greater in South and Muddy fork sub-watersheds for a 

given scenario (i.e. number of DO violations allowed and corresponding DO 

standard in the simulation model).  This is justified by the fact that these two 

watersheds have proportionally more impairments than the Middle fork sub-

watershed. 

• Generally speaking, in the South fork sub-watersheds, the number of impairment 

days are driven by the point sources and leaking sewers.  In the Middle fork sub-

watershed, the number of impairment days are driven by non-point sources and 
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leaking sewers.  Finally, in the Muddy fork sub-watershed, the number of 

impairment days is driven by a combination of all the three sources of pollution. 

• The performance of the Shuffled Box Complex method is superior to GA in the 

optimal management model in regard to identifying least-cost solutions for a given 

scenario.  Shuffled Box Complex method has the advantage of handling the 

inequality constraints explicitly in the formulation and do not require penalty 

functions.  GAs, on the other hand, requires quite a bit of fine tuning in adjusting 

the parameters of the penalty functions used to handle infeasible solutions.  It is 

possible that by further fine tuning and optimizing the penalty functions, GAs 

would be able to further improve in identifying the least-cost solutions. 

• In terms of computational savings, the Shuffled Box Complex method in general 

performs better than the GA method in achieving the optimal solution in a shorter 

period of time.  A graph of solution convergence performance (time it takes to 

achieve the optimal solution) for the two optimization methods is given in Figure 7-

26. 

• In general, the shuffling operation in the Shuffled Box Complex method helps in 

achieving the optimal solution quicker when compared to a model in which no 

shuffling is performed.  When run for an extended period of time, the two models 

(one with the shuffling and one without the shuffling) converge to the same optimal 

solution.  A graph of the performance of the two models for a total of 1000 

generations for the water quality-based management model (DO standard of 5.0 

mg/L) is given in Figure 7-27.  

• The optimal management model was successful in identifying optimal management 

strategies that could lead to improving the DO in the streams of the Beargrass 

Creek watershed.   
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Figure 7-26.  Performance of the two Optimization Methods in the Water Quality-
based Management Model 
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Figure 7-27.  Performance of the Shuffled Box Complex Method in the Water 
Quality-based Management Model 
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7.5 Budget-based Optimal Management Model  

In the budget-based formulation, the objective is to minimize the number of impairment 

days (i.e. DO violation days) while not exceeding a prescribed project budget.  In such a 

formulation, the total cost of the management strategy evaluated is a constraint while the 

number of water quality violations constitutes the objective function.  The objective 

function and associated constraints are given as follows in Equations 7-18 through 7-22.  

 

7.5.1 Objective Function 

The objective function for a budget-based formulation is to minimize water quality 

violations while satisfying the cost constraints as prescribed by a project budget.  The 

decision variables that constitute a management strategy in the optimization framework 

are the same as described in the water quality-based optimal management formulation 

above.  Mathematically, the objective function is expressed as given in Equation (7-18). 
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Where η is the number of water quality impairment days,  w is the index for sub-

watersheds, t is the daily time step used in the model, i is the index for point sources of 

pollution, j is the index for non-point sources of pollution, k is the index for other 

unknown or undetermined sources of pollution, Xi,w is the decision variable for point 

source control in each sub-watershed, Yj,w is the decision variable for non-point source 

control in each sub-watershed, Zk,w is the decision variable for unknown or undetermined 

source control in each sub-watershed.  All decision variables are defined in Figure 7-7. 

 

7.5.2 Constraints 

The objective function as described in (7-18) above is subject to three types of 

constraints: 1) a set of implicit system constraints, 2) a set of implicit bound constraints, 

and 3) a set of explicit decision variable bound constraints. 
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7.5.2.1 Implicit System Constraints 

Similar to the water quality-based formulation described above, the inverse loading 

simplified deductive BOD model developed for the Beargrass Creek watershed (also 

described in Chapter 5) was used to represent the implicit system constraints in the 

budget-based optimal management model.  This simple deductive model is based on the 

classic Streeter-Phelps (Streeter and Phelps, 1925) dissolved oxygen deficit equation.  

The decision variables (as given in Figure 7-7) from the optimization model (Xi,w, Yj,w, 

and Zk,w) are passed on to this simulation model which in turn calculates the effective 

BOD concentration (Lo) for each of the three sub-watersheds.  The effective BOD 

concentration (Lo) calculated for each sub-watershed is then used in the forward DO 

model to compute a corresponding time series of DO.  The mechanism of how a 

particular set of decision variables constituting a management strategy translates into a 

modified effective BOD load and subsequent DO time series is explained in detail in the 

water quality-based formulation in the previous section.   

 

 

7.5.2.2 Implicit Bound Constraints 

The implicit bound constraints include the total cost of a management strategy for the 

watershed under study.  Since this optimal management model is budget based, an upper 

bound on total project budget is prescribed and the goal of the optimal management 

model is to select a management strategy that maximizes the water quality benefits (i.e. 

minimizes the number of DO impairment days) while keeping within the prescribed 

project budget.  This may be expressed as given in Equation (7-19) as follows: 
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Φ is the prescribed total project budget to be spent in all sub-watersheds that should not 

be exceeded while maximizing the water quality benefits for the watershed, w is the 

index number for sub-watersheds, i is the index for point sources of pollution,  j is the 
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index for non-point sources of pollution, k is the index for other unknown or 

undetermined sources of pollution,  n is the number of unknown or undetermined sources 

of pollution in each sub-watershed, Xi,w is the decision variable for point source control in 

each sub-watershed, Yj,w is the decision variable for non-point source control in each sub-

watershed, Zk,w is the decision variable for unknown or undetermined source control in 

each sub-watershed, C(Xi,w) is the cost of point source control decision variable in a sub-

watershed, C(Yj,w) is the cost of non-point source control decision variable in a sub-

watershed, and C(Zk,w) is the cost of unknown or undetermined source control decision 

variable in a sub-watershed. 

 

 

7.5.2.3 Explicit Decision Variable Bound Constraints 

The final set of bound constraints consists of explicit bounds on the decision variables in 

the optimization model.  Mathematically, this may be expressed as given in Equations 7-

20 through 7-22 as follows: 

 

wiXX iw ,0 max ∀≤≤   (7-20) 

wjXX jw ,0 max ∀≤≤   (7-21) 

wkXX kw ,0 max ∀≤≤   (7-22) 

 

Where w refers to a sub-watershed and i, j, k refers to the three types of pollution sources. 

 

 

7.5.3 Solution Methodology 

The optimal management model is used to evaluate multiple management strategies 

comprising of different combinations of the 16 decision variables.  The effect of these 

strategies is evaluated on the watershed response via the macro-level deductive dissolved 

oxygen (DO) simulation model. The objective of the model is to search for the optimal 

management strategy that minimizes the number of DO impairment days while not 

exceeding the specified project budget.  As in the case of the water quality-based 
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formulation, two different optimization models are used to solve the budget-based 

optimal management problem.  These include the GA-based optimization model and the 

Shuffled Box Complex-based optimization models. 

 

 

7.5.4 Results of the Budget-Based Optimal Management Model 

 

7.5.4.1 Results of the Genetic Algorithm-based Model 

The objective of the budget-based optimal management model was to minimize the 

number of DO impairment days in the Beargrass Creek watershed while satisfying a 

prescribed project budget.  Three different project budgets were evaluated in this 

management model namely $100M, $200M, and $300M.  The GA-based management 

model was run for these project budgets to select the optimal management strategy that 

minimizes the number of violations.  The results of the optimal management model for 

these three project budgets are summarized in Figure 7-28 and Table 7-16. 

  

Table 7-16.  Optimal Management Costs for Beargrass Creek Watershed  
(Budget-based Optimization using GA) 

Project 
Budget 
(M$) 

DO Impairment 
for 4 mg/L  
(# of days) 

DO Impairment 
for 5 mg/L  
(# of days) 

DO Impairment 
for 6 mg/L  
(# of days) 

100 8 11 45 

200 3 6 16 

300 0 2 3 
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Figure 7-28.  Optimal Number of Violations using GA-based Optimization 

 

 

7.5.4.2 Results of the Shuffled Box Complex-based Model 

The objective of the budget-based optimal management model was to minimize the 

number of DO impairment days in the Beargrass Creek watershed while satisfying a 

prescribed project budget.  Three different project budgets were evaluated in this 

management model namely $100M, $200M, and $300M. The optimal management 

model for the Beargrass Creek watershed was run per the solution methodology for the 

Shuffled Box Complex-based optimization model.  The management model utilizes the 

inverse-loading macro-level model for simulating the DO response in the watershed. A 

total of 100 feasible solutions sets are sequentially generated to form the initial 

complexes in the optimization model.  These were partitioned into 5 different complexes, 

each complex consisting of 20 solution sets (vertices of the complex).  The shuffling of 

the solution sets in each complex was performed after 100, 200, 300, and 400 generations 

(iterations of the model).  The model was run for a total of 1000 generations (iterations).  

Separate models were evaluated for each of the three DO standards (4, 5, and 6 mg/L) 

and corresponding project budgets ($100M, $200M, $300M). The results of the Shuffled-

Box Complex-based optimal management model for the Beargrass Creek watershed are 

summarized in Figure 7-29 and Table 7-17. 
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Table 7-17.  Optimal Management Costs for Beargrass Creek Watershed  
(Budget-based Optimization using Shuffled Box Complex) 

Project 
Budget 
(M$) 

DO Impairment 
for 4 mg/L  
(# of days) 

DO Impairment 
for 5 mg/L  
(# of days) 

DO Impairment 
for 6 mg/L  
(# of days) 

100 5 6 10 

200 0 1 6 

300 0 0 0 
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Figure 7-29.  Optimal Number of Violations using Shuffled Box  
Complex-based Optimization 

 

 

7.5.4.3 Discussion of Results from Budget-based Model     

The results of the budget-based management model can be summarized as follows: 

• The budget-based management model is sensitive to the DO standard enforced in 

the simulation model as was the case with the water quality-based management 

model.  The number of violations increase for a prescribed budget as the DO 

standard is made more stringent. 

• The performance of the two optimization methods differs in terms of allocating the 

prescribed budgets in contributing sub-watersheds for minimizing the total number 

of violations.  In the case of Shuffled Box Complex method, the management 
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model is able to consume the entire budget resulting in a lower number of DO 

violations for the three prescribed budgets and associated DO standard.  In the GA 

method of optimization, the management model fails to consume the entire budget 

resulting in a higher number of violations for the three prescribed budgets and 

associated DO standard. 

• Overall, the results of the two budget-based optimal management models reveal that 

the model can be successfully applied to a watershed for allocating load reduction 

strategies while not exceeding a prescribed budget and minimizing the number of 

water quality violations.  Such a model can be very beneficial for watershed 

managers since in most real world scenarios, it is not possible to seek a no-violation 

solution due to budgetary constraints and often it is required to implement capital 

improvement projects on priority basis as monetary funds become available.  In 

such cases, the proposed management model can be effectively used to identify 

management strategies that maximize the benefits and minimize water quality 

violations. 
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CHAPTER 8 

RESEARCH CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Research Summary 

This research was motivated by the challenges posed by urban watershed management 

due to the various sources of pollution that are responsible for impairing the water bodies.  

Modeling the processes occurring in such a complex watershed can also be challenging 

and there is a need for optimal management models for use by watershed managers to 

evaluate water quality management strategies leading to the selection of optimal 

strategies and subsequent improvement of water quality.  Consequently, a comprehensive 

integrated watershed management methodology is developed in this research that will 

assist watershed managers to model and manage water quality in urban watersheds.  The 

proposed optimal management model can be effectively used as a screening tool to 

evaluate least cost water quality management strategies for multiple pollution sources and 

sub-watersheds in an urban watershed.  The computational tool is based on integration of 

principles from disciplines such as water quality modeling, operations research, artificial 

intelligence, statistics, and computer programming. 

 

The computational methodology developed in this research consists of two major inter-

connected components namely 1) a macro-level water quality simulation model, and 2) 

an efficient optimization model linked to the simulation model.  The rationale to use 

macro-level simulation models in the optimal management model in this research can be 

justified by its benefits in a watershed management framework.  Complex watersheds 

often require a series of deductive models to simulate the multiple processes occurring in 

the watershed.  While such models can be expected to better reflect the true dynamics of 

the process or processes being modeled, such models do possess limitations. For 

example, such models frequently require extensive knowledge of the process being 

modeled, require significant efforts in calibration and verification, and can be 

computationally very expensive.  In addition, it may be practically impossible to link 

such models with an optimization model in the context of a more comprehensive optimal 

management framework.  Macro-level models on the other hand can be more manageable 
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computationally and depending on the type of modeling approach used may provide 

accuracies and precisions that approach more comprehensive deductive models. The 

research thus recommends that such macro-level models can be effectively incorporated 

into a nonlinear optimization framework for water quality management.  Three different 

types of macro-level models were suggested for use in such a formulation and these 

include 1) an implicit inductive model, 2) an explicit inductive model, and 3) a simplified 

deductive model.  Example applications were provided for two of these types: the explicit 

inductive and simplified deductive macro-level simulation models.  The choice of a 

particular type depends on the particular application, available data, and the complexity 

of process or processes being modeled.   

 

In the context of developing inductive models (explicit or implicit), a new mathematical 

technique based on genetic algorithms was developed in this research.  This method is 

called FFSGA (Fixed Functional Set Genetic Algorithm) approach to function 

approximation.  FFSGA can be used to develop macro-level inductive simulation models 

for water quality management and has the added benefit of resulting in a simple, 

compact, and easy to use empirical functional form for the process being modeled.  

FFSGA was successfully applied to a range of practical problems in water resources 

engineering and was found to compete favorably with other complex and nonlinear 

inductive modeling techniques such as genetic programming (GP) and artificial neural 

networks (ANNs). 

 

Another significant component of the optimal management model developed in this 

research includes the optimization model.  Two different optimization techniques were 

investigated for use in developing an optimization algorithm that is linked to the macro-

level simulation model in the proposed watershed management framework.  These 

include 1) an evolutionary method called the genetic algorithms, and 2) a modified direct 

search method of constrained optimization called the Shuffled Box Complex method.  

The use of two different classes of optimization techniques (evolutionary and direct 

search methods) provided a basis for testing the utility of these types of methods for use 

in a linked computational methodology for urban watershed management.   
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Lastly, the optimal management model developed in this research was tested on a real 

world complex urban watershed (Beargrass Creek watershed, Louisville, Kentucky) that 

has multiple sub-watersheds where each sub-watershed is impaired due to multiple 

sources of pollution.  The watershed has multiple stream segments that are listed on the 

State’s 303(d) list of impaired water bodies for pathogens and low dissolved oxygen 

and/or nutrient enrichment. A pathogen and dissolved oxygen (DO) TMDL (total 

maximum daily load) is currently under development for the watershed.  The proposed 

optimal management model was applied to this watershed to evaluate water quality 

management strategies for improving the DO in the impaired streams.  The optimal 

management model resulted in identifying the least cost management strategies to 

allocate water quality reductions due to point, non-point, and other unknown sources.  

Two different formulations of the optimal management model were applied to the 

Beargrass Creek watershed.  These included 1) a water quality-based formulation in 

which the objective was to minimize costs of management strategies while satisfying 

prescribed water quality constraints, and 2) a budget-based formulation in which the 

objective was to minimize the number of water quality impairment days while not 

exceeding a prescribed project budget.  The water quality-based management model was 

able to identify least cost management strategies that would need to be implemented in 

order to achieve all water quality goals.  The budget-based approach is also beneficial 

since most capital improvement projects undertaken in an urban watershed rely on the 

capital budgets that may be available.  Such a formulation would allow watershed 

managers strive to implement optimal management strategies while not exceeding the 

capital budgets available for use. 

 

 

8.2 Major Conclusions of the Research 

The major conclusions of this research are summarized as follows: 

 

• A comprehensive optimal management model for integrated watershed 

management has the potential to assist in identifying optimal water quality 

management strategies for complex watersheds impaired by multiple sources of 
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pollution including point and non-point sources.  Such a model can be constructed 

by linking a simulation model with an optimization model. 

• A comprehensive optimal management model for integrated watershed 

management can be used as a practical screening tool in evaluating cost effective 

water quality strategies for urban watersheds.  

• While deductive models may be preferred owing to their ability to better reflect the 

true dynamics of the process modeled, there are scenarios where this is not 

possible such as 1) computational expense is an issue, 2) extensive knowledge of 

the process being modeled is not known, 3) significant efforts are required in 

calibration and validation of deductive models, 4) it may not be feasible and/or 

practical to link such a model to an optimization model for use in an optimal 

management model.  In such scenarios, macro-level simulation models can be 

effectively used in lieu of complex deductive models to represent the hydrologic 

and water quality processes occurring in a complex watershed and for subsequent 

use in the optimal management model.   

• Macro-level simulation models provide an effective way to overcome some of the 

shortcomings of using deductive or process-based models in an optimal 

management model.  Deductive models frequently require extensive knowledge of 

the process being modeled, require significant efforts in calibration and 

verification, and can be computationally very expensive.  It may be practically not 

possible to link such models in a comprehensive watershed management 

framework.  Macro-level models are relatively quick and simple and are more 

favorable for integration into an optimal management model.   

• In theory, three different types of macro-level models can be constructed for use in 

the optimal management model.  These include 1) an implicit inductive model, 2) 

an explicit inductive model, and 3) a simplified deductive model.  Three different 

types of inductive model building techniques can be used to develop macro-level 

inductive simulation models.  These include 1) regression, 2) artificial neural 

networks, and 3) genetic functions based on genetic algorithms.  The flexibility 

and diversity of the different types of macro-level models as well as the underlying 
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model construction techniques makes them favorable for linkage with an 

optimization model in the optimal management model.   

• A new genetic algorithm-based technique for function approximation called 

FFSGA (fixed functional set genetic algorithm) is developed in this research.  

FFSGA can be effectively used to develop macro-level inductive simulation 

models for water quality management and has the added benefit of resulting in a 

simple and compact empirical functional form for the process being modeled.  The 

successful application of FFSGA to problems in water resources engineering 

supports that it can compete favorably with other complex and nonlinear inductive 

modeling techniques such as genetic programming (GP) and artificial neural 

networks (ANN). 

• Given limited raw data, inductive models may be limited in their ability to 

adequately represent the cause-and-effect relationship between model inputs and 

outputs.  For instance, the ANN-based Dissolved Oxygen (DO) model identified 

that such a cause-and-effect relationship between nutrients and DO could not be 

established.  However, even in such scenarios, application of inductive models 

yields important information about the process or system being modeled. 

• Inductive watershed models can be beneficial as they provide an insight into the 

effect of model inputs on model outputs and their relative sensitivity.  For instance, 

the ANN-based DO model identified that nutrients were not the main cause of DO 

impairment. 

• The simple deductive inverse loading model developed to simulate the dissolved 

oxygen (DO) and biochemical oxygen demand (BOD) dynamics in an urban 

watershed has the capability to model the cause and effect relationship between 

DO deficit and potential sources of pollution.  This inverse loading model is based 

on the Streeter-Phelps equation (Streeter and Phelps, 1925) for modeling dissolved 

oxygen deficit in a water column.  This novel approach is simple and the fact that 

it is calibrated with observed DO data makes it an effective approach.  Such a 

model is particularly suited in scenarios where other modeling approaches fail to 

establish a reasonable cause-and-effect relationship between model inputs and 

output.  An added advantage of this inverse load model is that it uses actual stream 
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flows and thus eliminates the use of a rainfall-runoff model.  The use of rainfall-

runoff models can result in a model error of 15-20%. 

• A new optimization method based on modification to the Box Complex (Box, 

1965) method of constrained optimization is developed called the Shuffled Box 

Complex method of constrained optimization.  This new method introduces the 

concept of multiple complexes and random shuffling in the original Box Complex 

method and an example application to a real world complex urban watershed 

demonstrates that it can be successfully applied to watershed management 

problems with performance equal or superior to that of genetic algorithms.  Like 

GAs, this new method is robust and diverse in its search process.  The advantage 

of using Shuffled Box Complex over GA is that it is relatively simple and it 

eliminates the use of penalty functions to handle inequality constraints in the 

optimal management model.  The use of penalty functions in using GAs for 

constrained optimization can be considered as a drawback as they can require 

extensive fine tuning and parameter estimation. 

• The shuffling operation in the new Shuffled Box Complex method of optimization 

method generally helps in reaching the optimal solution quickly when compared to 

multiple complex evolutions without shuffling.  When used in an optimal 

management model, the Shuffled Box Complex method results in significant 

computational savings when compared to the GA-based optimal management 

model due to its simple solution methodology and limited number of function calls 

to the simulation model. 

• The proposed optimal management model provides useful insights into the 

dominant type of pollution sources in different sub-watersheds of a complex 

watershed.  The management model also provide insights into pollution trade-offs 

between contributing watersheds and sources of pollution.  The model can be 

effectively used to analyze the relationship between optimal cost of improvements 

in the watershed and the corresponding magnitude of water quality impairment in 

contributing watersheds.  Such an analysis can be very beneficial in selecting 

optimal management strategies and can lead to significant cost savings. 
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Additionally, the proposed optimal management model provide many other added 

advantages and benefits for use as a management and modeling tool by watershed 

managers.  These include the following: 

 

• The proposed optimal management model can be effectively used to determine 

total maximum daily loads (TMDLs) for specified pollutants by providing for an 

evaluation of least-cost water quality management strategies in urban watersheds 

while maintaining the required water quality conditions.   

• The proposed optimal management model can be used in evaluating cost effective 

water quality strategies for urban watersheds leading to the development of a Long 

Term Control Plan (LTCP) as required by EPA.  Alternatively, the model can be 

used to support the recommendations of a LTCP. 

• The proposed optimal management model can result in significant cost savings to 

urban communities both in watershed modeling process as well as in the 

identification of cost effective strategies of watershed management. 

 

 

8.3 Recommendations for Future Work 

With regard to the optimal management model developed in this research, the author 

specifically recommends the following: 

 

• The research did not evaluate the use of implicit inductive models due to the 

unavailability of a calibrated deductive model for the watershed.  Once such a 

model or suite of models are available for the Beargrass Creek watershed, it is 

recommended that implicit inductive models are developed based on the output of 

the calibrated deductive model and its utility in an optimal management framework 

be investigated. 

• The optimal management model developed in this research provides a screening 

tool to evaluate management strategies for water quality management.  Once a set 

of management strategies are selected using the model, these can be verified using 

a comprehensive process-based (deductive) model.  It is recommended that once 



 268 

the Beargrass Creek watershed water quality models are calibrated, the optimal 

management strategies identified in the example application should be verified 

using the calibrated deductive model(s). 

• It is recommended that the simplified deductive dissolved oxygen model for 

Beargrass Creek watershed be enhanced by further refinement of the stream 

reaches.  This can be achieved by segmenting each of the tributary stream reaches 

into multiple reaches for modeling the DO deficit in the watershed. 

• The new Shuffled Box Complex method of constrained optimization showed great 

potential and promise in the example application.  It is recommended that this new 

method be used in other applications to validate its utility as a useful tool for 

constrained optimization problems. 

• It is recommended that the proposed Fixed Functional Set Genetic Algorithm 

(FFSGA) approach of function approximation be further enhanced as an inductive 

modeling methodology.  In particular, the method should be enhanced to make it 

efficient for modeling functions involving a large number of inputs.  The proposed 

method should be validated by application to problems related to hydrology and 

water quality management. 

• Lastly, the proposed optimal management model should be applied to other complex 

urban watersheds for evaluating optimal water quality management strategies to 

validate its utility in such applications. 
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