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ABSTRACT

In the last decade, the growth of the micro-industry in urban areas has produced an increase in the

frequency of xenobiotic polluting discharges in drainage systems. Wastewater treatment plants are

usually characterized by low removal efficiencies in respect of such pollutants, which may have an

acute or cumulative impact on environmental and public health. To facilitate the early isolation of

illicit intrusions, this study aims to develop an approach for positioning water quality sensors

based on the Bayesian decision network (BDN). The analysis is focused on soluble conservative

pollutants, such as metals. The proposed methodology incorporates several sources of information,

including network topology, flows and non-formal ‘grey’ information about the possible locations

of contamination sources. The methodology is tested using two sewer systems with increasing

complexity: a literature scheme from the Storm Water Management Model (SWMM) manual and a

real combined sewer in Italy. In both cases, the approach identifies the optimal sensor location

gaining advantage from additional information, which reduces the computational effort needed to

obtain the solution. In the real case, the application of the method yielded a better solution with

regards to the real position of the implemented sensor network.
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INTRODUCTION

Wastewater quality and monitoring needs

In both water distribution systems and sewer systems, the

monitoring of water quality is very important for preserving

resources and public health. Monitoring physical, chemical

and biological parameters increases the possibility of early

detection of water quality deterioration and individuation

of pollution sources. The quality of wastewater impacts the

proper functioning of a sewer system and a wastewater treat-

ment plant (WWTP) and the receiving water body in the

case of combined sewer overflow (CSO) activation (Even

et al. ). CSOs, which contain untreated domestic and

industrial waste, toxic materials and debris, impact the phys-

icochemical, biological, hydraulic and aesthetic status of

receiving water bodies. For example, overflows can cause

oxygen depletion, increased turbidity and higher concen-

trations of micropollutants, heavy metals and pathogenic

and faecal organisms in surface waters (Passerat et al.

). Xenobiotic substances, unlike organic substances, are

only slightly affected by biological degradation processes.

Metals often show a remarkable tendency for bio-accumu-

lation and are unaffected by wastewater treatment and/or

dangerous for common plant technologies.

Since the adoption of the Water Framework Directive

2000/60/EC, Member States in EU countries must apply

local measures to address the pollution that affects their sur-

face waters; thus, decreasing the occurrence of overflows

and improving discharged water quality are important
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parts of pollution-reducing strategies. Models for the charac-

terization of the wastewater quality have been extensively

investigated to assess the pollution load that is overflowed

and/or transferred to WWTP. Boenne et al. () showed

that the contribution of WWTP overflows due to just two

events of a few hours can produce an increase up to 22%

of the measured nutrient load in a river. Jiang et al. ()

asserted that the identification of polluting sources after

river spill is critical to improving decision-making about

the emergency response.

For these reasons, the implementation of a monitoring

network is crucial for an efficient contamination prevention

strategy in urban drainage systems, which involves the

identification and elimination of illicit polluting discharges.

Monitoring systems and polluting sources identification

The problem of polluting source identification was primarily

investigated for pressurized distribution networks as a drink-

ing water contamination event determines an immediate

alarm for public health (Di Cristo & Leopardi ; Lifshitz

& Ostfeld ). An abnormal polluting discharge into a

sewer system usually has a lower impact on the general

public even if it has a relevant impact in the environment.

The collection and the analysis of real data are indispen-

sable to control wastewater quality and to identify the

origin of the pollution. Montserrat et al. () developed a

methodology to evaluate the performance of combined

sewer systems (CSSs) using low-cost monitoring to reduce

the number and the impact of overflows. Using the measure-

ments of various quality parameters, Srinivas et al. ()

developed an approach for identifying the major sources

of pollution in rivers using advanced hierarchical clusters

and multivariate statistical analysis.

The development of specific sensors (Qin et al. )

facilitated online and real-time measurement of wastewater

quality. Boenne et al. () employed online high-frequency

continuous measurements to assess the impact of waste-

water quality downstream from a treatment plant on the

receiving water body. They demonstrated that continuous

in situ monitoring can furnish important information

about pollution sources, even if the cost of the monitoring

setup is higher than that of traditional sampling. Troutman

et al. () presented a data-driven identification/learning

toolchain to manage a large number of measurements for

dynamic modelling and prediction of a combined sewer

functioning. They identify a near-optimal time record for

which measurements must be available to ensure an

acceptable forecasting performance.

Regarding sewers, illicit discharges can easily enter

systems via intentional or accidental damping or spills as

the networks are geographically dispersed and have mul-

tiple access points. For this reason, many countries have

implemented regulations and projects to support actions

for illicit discharge individuation in sewer systems (Irvine

et al. ). Recently, Banik et al. (a) proposed a

methodology for identifying an illicit intrusion in a sanitary

or combined sewer system using online pollutant concen-

tration measurements.

Optimization of sensor location

The approaches proposed for illicit discharge individuation

require the deployment of sensors. However, installing and

operating measurement devices in sewers is expensive and

limited by many constraints. The installation and maintenance

costs can be reduced by optimizing the position of the sensors

while simultaneously obtaining a reliable and inexpensive

monitoring infrastructure. The sensor placement problem

has been extensively investigated to design contamination

warning systems in drinking water distribution networks

(Rathi & Gupta ) and to monitor rivers (Lee et al. ).

Few studies address the sampling design in sewer

systems. Kim et al. () aimed their study at developing a

decision-support model for identifying the location of the

pathogenic intrusion in a real gravity sewer system as a

means of facilitating rapid isolation and efficient contain-

ment using artificial neural networks (ANNs). The results

showed that ANNs identified the location of the injection

sites with 57% accuracy. Increasing the number of available

sensors within the basin significantly improved the accuracy

of the simulation results (from 57% to 100%). Recently,

Banik et al. (b) developed and compared different

multi- and single-objective optimization procedures to

optimally locate sensors to detect illicit intrusion in sewer

systems with objective functions expressed by the par-

ameters entropy, detection time and reliability. The results

show that the obtained sensor displacement in all cases is
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more efficient than the existing displacement established

without any optimization. In Banik et al. (c), the optimal

placement of wastewater monitoring sensors that was

formulated as a single objective optimization problem is

solved using greedy algorithms. The results indicate the

robustness of the methodology with respect to the detection

of contaminants, the excellent performance of the single

fitness function and the better efficiency of the greedy

algorithm with respect to the genetic algorithm.

Many of the literature sensor location procedures

assume that any node of a network can be a source with

equal probability. Weickgenammt et al. () presented an

importance-based sampling method for selecting dangerous

scenarios for a sensor location problem in a water

distribution system. In this study, contaminant inputs in

nodes located in highly populated areas are considered to

be ‘more important scenarios’. Tinelli et al. () proposed

a procedure based on practical considerations of network

topology and operations for sampling the most representa-

tive contamination events in the sensor location problem

of water distribution systems. The results indicate that the

optimal sensor placement does not vary when only the

selected sampled events are considered.

Yazdi () proposed a methodology based on entropy

theory and employed the differential evolution algorithm

for identifying the best monitoring locations for detecting

wastewater quality changes in sewers. The results indicate

that the method improves the level of information with a

limited number of sensors.

Vonach et al.() presented a heuristic method for

measurement site selection in a sewer system to obtain an

efficient calibration of the hydrodynamic model.

Bayesian decision networks

When optimal solutions are needed in an uncertain system,

Bayesian approaches can be useful to make decisions

(in this case for identifying the best sensor network) and

assimilate information from the system in an upgradable

and updatable way (in this case, gaining information from

numerical simulations and data from the real system).

Bayesianism is the philosophy that asserts that to under-

stand human problems while constrained by ignorance and

uncertainty, the probability calculus is the single most

important tool for representing appropriate strengths of

belief. The probability calculus enables us to represent the

interdependencies that other systems require and enables

the representation of any dependencies.

A Bayesian decision network (BDN), or Bayesian

network, is an acyclic graphical structure that enables us

to represent an uncertain domain and the conditional

dependencies between independent variables and depen-

dent variables in a probabilistic way. Bayesian networks

are ideal for considering an event that occurred and predict-

ing the likelihood that any one of several possible known

causes was the contributing factor. The nodes represent a

set of random variables from the domain (X¼X1,…,Xn),

while a set of directed arcs connects the pairs of nodes

(Xi→Xj) for representing the direct dependencies among

the variables. At least three distinct forms of uncertainty,

with which an intelligent system that operates in the real

world shall need to cope, exist: ignorance the limits of

our knowledge, which cause us to be uncertain about many

things; physical randomness or indeterminism and vagueness.

The BDN is a very robust and particularly useful method

for assessing risk and uncertainty that provides a complete

framework for analysing all cause and effect relationships

(Korb & Nicholson ).

Few applications of BDN, which are related to urban

water systems, are included in recent technical literature.

These applications are aimed at guiding technical choices

in uncertain domains to incorporate different sources of

information into the decision. Phan et al. () presented

some applications of BDN to water resources with respect

to spatial factors, water domains and the consideration of

climate change impacts to guide management decisions.

Kabir et al. () applied BDN to identify water system

main failures considering the vulnerability and sensitivity of

the system to failure and the global risk. In this case,

collected data about failure were progressively incorporated

in the Bayesian method to improve the selection.

Freni & Sambito () proposed a probabilistic

approach to the positioning of water quality sensors in

urban drainage networks for identifying an illicit intrusion,

which shows the progressive increase in the identification

probability obtained by the Bayesian approach. In this

work, the implementation of the pre-conditioning approach

proposed by Banik et al. (), essentially depending on the
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network topology, produced an improvement in term of

computational efforts.

Aim of the research

This study presents a methodology for solving a sensor

location problem and individuating the source of an illicit

intrusion in a sewer system. It is aimed at solving a sensor

location problem, in which the positioning of fixed-type

sensors is assumed. The analysis is performed with the

hypothesis that each node of the network has the same

probability of being the polluting source. Successively, the

hypothesis that some nodes can be more frequently polluted

than others is introduced. The different probabilities of a

node of the contamination source are derived by the knowl-

edge of the system topology, flows and possible polluting

activities based on the grey information about the served

area in terms of commerce and industry data. In this

application, the capacity for incorporating all available

information, to individuate the more risky scenarios,

represents the main original aspect of the proposed method-

ology. Contrary to previous studies, the proposed approach

considers the inclusion in the network of several sensors,

taking into account the interaction and correlation among

their responses. The preliminary analysis presented in

Sambito et al. () is completed.

The methodology is applied to two different networks

with increasing size and complexity: the literature network

Example 8 of the Storm Water Management Model

(SWMM) application manual (Gironás et al. ), in

which the contamination was analysed in wet weather con-

ditions, and the real test case represented by the sewer

system of Massa Lubrense (Italy), which was analysed in

dry weather conditions. The paper is organized as follows.

First, the sensor location problem formulation is presented,

and the Bayesian approach that is employed to solve the pro-

blem is described. Second, the test cases are discussed, and

the results are presented. Last, some conclusions are formed.

MATERIALS AND METHODS

In the proposed methodology, the sensor location problem

is solved using a Bayesian approach. The new information

from the analysis enables the operator to gain insight into

the system once new contamination events are detected

and identified. In this way, the approach is suitable for

solving problems, in which data are initially collected and

the operator plans to improve the monitoring strategy.

To solve the sensor location problem, two main com-

ponents are required: a calibrated model for hydraulic and

water quality simulations in sewer systems and a Bayesian

solver for likelihood estimation and probability updating.

Numerical simulation model

The EPA SWMM (5.022 version) was employed to simulate

the urban drainage network and the propagation of contami-

nants in a sewer system. This model enables the user to

select different mathematical models to describe the runoff

formation and propagation in sewer systems (Gironás

et al. ). The complete 1D Saint-Venant equations were

applied to simulate the flow propagation into a sewer

system by adopting an iterative explicit mathematical solver.

Water quality routing within conduit links assumes that

the conduit behaves as a continuously stirred tank reactor

(CSTR). Although a plug flow reactor assumption may be

more realistic, the differences will be small if the travel

time through the conduit is on the same order as the routing

time step. The concentration of a constituent that exits

the conduit at the end of a time step is obtained by integrat-

ing the conservation of mass equation and using average

values for quantities that may change over the time step,

such as flow rate and conduit volume. The quality of the

water that exits the node is the mixture concentration

of all water that enters the node. Water quality modelling

within storage unit nodes and manholes follows the

approach used for conduits.

The considered contaminant is assumed to be a soluble

conservative xenobiotic, such as some heavy metals or

soluble ionic compounds. This hypothesis was introduced

as the intrusion of a conservative pollutant represents a

more dangerous scenario.

The proposed sensor location approach has to be tested

as polluting events occur. Considering that the position,

magnitude and duration of contamination can be uncertain,

each model application is given by a random simulation in

which the contamination parameters are randomly set up
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in terms of the contaminant mass, contamination duration

and contamination node. The contaminant mass is ran-

domly set between 0.01 kg and 0.5 kg; the contamination

duration is randomly set between 0.25 hour and 3 hours.

As mentioned in the Introduction, in Freni & Sambito

(), all network nodes were considered to have the

same probability to host the contamination event, while

different probabilities were established in this analysis based

on the information about the system and the served area.

Each sensor network configuration was investigated by

1,000 random contamination events, and its efficiency was

evaluated by the uncertainty and isolation likelihood D,

i.e., the probability of the sensor network to detect the pres-

ence and the origin of the contamination. The isolation

likelihood is evaluated as the ratio between the number of

events in which the network sensor was able to locate the con-

tamination node and the total number of tested contamination

events. The uncertainty is summarized by the probability that

the sensor network is able to detect the contamination but

unable to locate the source node. In the analysis, the likeli-

hood and the reliability/uncertainty functions were slightly

adapted from those presented in Preis & Ostfeld () to

comply with sewer networks instead of water distribution net-

works. According to Preis & Ostfeld (), the isolation

likelihood F1 and detection reliability or redundancy F2 are

expressed by the following equations:

F1 ¼

1

S

XS

i¼1

dr (1)

F2 ¼

1
PS

i¼1 dr

XS

i¼1

Rr (2)

where S is the total number of analysed contamination

events; dr is 1 if the contamination was identified by the

sensor network and is 0 otherwise; and Rr is 1 if the con-

tamination was detected by at least two sensors and is

equal to 0 otherwise. The indicator F1 (Equation (1)) pro-

vides information on the ability of the sensors’ network to

locate the contamination source, while F2 (Equation (2))

indicates the reliability of the sensor network (more than

one sensor) in detecting an event. If the contamination is

not confirmed by more than one sensor in the system,

false positives may be present.

Bayesian network approach for sensor location

As discussed in the Introduction, the BDN is used to

guide decisions in an uncertain domain progressively incor-

porating information in the process. In this framework, in

the present study:

• the upstream (independent) nodes of the BDN are related

to contamination factors (position, magnitude, duration

and starting time) and external factors, such as network

characteristics, dry weather flows and wet weather flows;

• the intermediate nodes are related to the distribution of

the contaminant concentrations and are connected

to the upstream nodes by probabilistic arches depending

on the model results, which are subjected to uncertainty;

• the downstream nodes are related to the likelihood of

sewer manholes to be a suitable location for sensors

alone and in combination with others and are connected

to the intermediate nodes by probabilistic arches that

express the detectability of the contamination and the

reliability of the sensors.

Bayesian approaches start with the formulation of

prior knowledge in terms of the probability of events to be

representative of the truth (in this case, the probability that

a sensor or group of sensors to be correctly located to

identify the source of contamination). The system is solicited

and investigated to obtain a series of events that can confirm

or deny prior assumptions (in this case, a set of simulated

events of contamination in which sensors were in place;

each event was based on the probability distribution of the

contamination in nodes). The number of events considered

to be sufficient to verify and update prior knowledge (popu-

lation of the update) is a parameter in the Bayesian

approach. After this number is attained, the posterior

probability is calculated by incorporating new information

from the series of events in prior knowledge by the

application of Bayes’ theorem. The number of updates

for which additional information does not significantly

implement previous knowledge represents the efficiency of

the approach in terms of rapid convergence to a stable

sensor configuration. Once this asymptotical condition is

satisfied, the sensor network can be evaluated in terms

of the isolation likelihood and uncertainty. The maximum

number of updates, robustness and uncertainty of the
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approach depend on the complexity of the analysed

problem.

This study investigated the effect of applying the pre-

screening procedure by Banik et al. () in reducing the

number of nodes that should be considered as a possible

source. In Freni & Sambito (), all nodes had an equal

chance to be the origin of the contamination. In this study,

the probability that the nodes are the source is assumed to

be different using information about the system. This infor-

mation is used to implement a pre-conditioning approach

to assigning a prior sensor probability distribution to the

BDN approach. Two different pre-conditioning strategies

are implemented. The prior probability in the BDN analysis

is assumed to be proportional to the wastewater volumes, or

alternatively, proportional to the contaminant mass passed

through each node.

If the pre-conditioning approach is efficient, the BDN

approach convergence to a stable sensor configuration

may be faster (and reduce computational efforts), and the

isolation likelihood may increase. After the prior sensor

probability distribution is defined, the application of the

BDN approach is affected by the population of events

(in this case, the number of simulated contamination

events) that is employed for each Bayesian update. A large

number of events requires greater computational effort, but

the information is used to update the probability distri-

butions only if it is verified several times. A small number

is required to achieve faster updates and possibly faster

convergence to an asymptotic solution but introduces the

risk that unreliable information may be used to update prob-

ability distributions. In this study, the tests are performed

considering the following approaches (Prior A, B, C, D) to

compare the results:

• Prior A: no pre-screening procedure and no prior

knowledge (each node has an equal initial probability

to be the location of a sensor).

• Prior B: no prior knowledge and pre-screening procedure

based on network topology.

• Prior C: pre-screening procedure and prior knowledge

based on water fluxes.

• Prior D: pre-screening procedure and prior knowledge

based on the mass of contaminant that potentially

passed through each node.

The results of the Bayesian approach are also compared

with the results obtained by Banik et al. (b, c) using

the NSGA-II and the greedy algorithms. In the real case

study, the efficiency of sensor disposition obtained through

the Bayesian approach has been compared with the one of

the real monitoring network.

CASE STUDIES

The literature example, i.e., network Example 8 presented in

the EPA SWMM reference manual, involves a combined

sewer network that serves an area of 0.12 km2 and consists

of 31 nodes, 29 pipes and a pump (Figure 1). The network is

characterized by two outfalls: the WWTP and the overflow.

The nodes downstream of commercial/industrial activities

are assumed to have a greater probability of being subject

to an illegal spill of contaminants into the sewers. The prob-

ability distribution function of contamination, as reported

in Figure 2, is not considered to be uniform. Three nodes

(J4, J10 and JI18) are hypothetically considered to host

industrial activities, and a double probability of illicit con-

tamination is estimated with respect to the other nodes.

This hypothesis does not modify the general applicability

of the method in the cases in which industrial nodes may

Figure 1 | Example 8 network scheme: Jx and JIx (where x represents a sequential

number) represent junctions (only Aux3 has a different name as dry weather

and wet weather flows are split); Cx and Ix represent conduits of the com-

bined system and dry weather main to the WWTP; and Ox are outflows to the

river and the WWTP.
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change with regards to number, contamination probability

or location.

The real case study involves the sewer of Massa

Lubrense (Figure 3), which is a town located near Naples,

Italy. The sewer is a combined sewer system that covers a

predominantly hilly area of 19.71 km2 with a mean altitude

of 121 m with respect to sea level. The system is divided into

12 subcatchments that serve 7,452 users who correspond to

a population of 14,087 (2011).

The length of the network is 72 km, and the network

consists of 1,909 circular conduits that connect 1,902 junc-

tions, 14 pumps, 14 storage units and 1 treatment plant.

The pipes have different cross sections and materials but

approximately 80% of them are circular with diameters

Figure 2 | Probability density function of contamination in the nodes: three nodes have a double probability of contamination.

Figure 3 | Massa Lubrense network; the area with a double probability that it is the source of contamination is indicated by a circle. The dots represent the current location of 12 existing

sensors that are used to calibrate the model.
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that vary between 80 mm and 1,000 mm. Due to the variable

altimetry of the area, 15 pumping stations exist, 15 outflows

are located along the pipes and 10 outflows convey wastewater

to the sea, while 5 outflows direct the flow into another pipe.

The wastewater is carried to the treatment plant, which rep-

resents the final output. All geometric data, which are

available on the website htttp://www.progettosimona.it, have

been included in the SWMM input file. The daily average

values of the dry weather flows in the 1,866 input nodes are

estimated considering the population connected to each

flow. The input file for the SWMM model has been calibrated

using discharge measurements. The system has already

installed 12 monitoring stations; their displacements were

determined on the basis of practical considerations without

any sensor location analysis. Similar to the literature example,

the analysis was performed with the hypothesis that the circled

area in Figure 3 has a double probability that it will be

subjected to more contamination than any other node in the

network: 45 nodes have a contamination probability of

approximately 0.1%, and the other 1,857 nodes have a

contamination probability of approximately 0.05%.

ANALYSIS OF RESULTS

The Bayesian analysis is initially performed by assuming

that any node in the network has the same probability that

it will be the location of a sensor (Prior A). Prior B was per-

formed by applying the methodology proposed in Banik

et al. (). In a second step, other prior knowledge scen-

arios are applied, in which a different contamination

probability is assigned to the nodes. In Prior C and Prior

D, a preliminary analysis is performed by Monte Carlo simu-

lations, in which a single source of contamination is located

in one of the nodes of the network according to the contami-

nation probability that was previously assigned. In 50

random simulations, the average water and contaminant

fluxes through nodes are calculated to assign the prior

probability of sensor location to the BDN analysis.

Example 8 network

The Bayesian analysis is performed for the Example 8

network considering the possible implementation of one,

two or three sensors. As denoted in Banik et al. (b),

with more than three sensors, the correlation among the

measurements increases with a small increase in the infor-

mation content.

Figure 4 shows the prior sensor location distribution for

the BDN analysis in the case of a single sensor configuration

for the Example 8 network for all performed tests. Relevant

differences between non-informative distribution (Prior A)

and the other distributions are observed, which highlights

Figure 4 | Prior sensor location distribution in Example 8 network for the different approaches and one sensor.
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the importance of a prior discrimination of the possible

solutions in the application of the Bayesian approach.

Sensors placed in the upper nodes of the network have a

smaller probability of detecting contamination as the

majority of contamination episodes occur in nodes located

downstream of the sensors. Applying the pre-screening pro-

cedure based on the topological approach (Prior B), the

prior sensor distribution probability is significantly different

with respect to that of Prior A. The procedure is limited

when several possible paths to the system outflow are pre-

sent. In these cases, the flow dividers and their efficiencies

in the separation of wet weather flows and polluting loads

affect the ability of the sensors to detect the presence of con-

tamination. Nodes JI10, JI11, JI12 and JI13 are located on

the connection between the network and the WWTP and

they are topologically located in the most downstream

part of the network. The presence of dividers conveys

only a small part of water volumes to these nodes, which

renders them less relevant according to the Prior C

approach. Comparing Prior C and Prior D, Prior C tends

to overestimate the importance of nodes that receive com-

bined sewer overflows (such as J12 and J13) and are

characterized by larger volumes but usually small contami-

nant concentrations.

As indicated in Table 1, in other tests, the magnitude

of the event population of each Bayesian update is modified

to understand its impact on the analysis, especially with

respect to the minimum number of simulations, and high-

light the most efficient configuration of the sensors. The

modification also explains how the value of this BDN par-

ameter can affect the selection of the most relevant nodes

for sensor placement and the number of model simulations

that are needed to obtain a stable configuration.

As an example, Figure 5 shows a comparison of the use

of Prior A and Prior D for the placement of one sensor by

adopting an event magnitude of ten for each update. Figure 6

shows the same comparison of adopting 25 events for each

update. To make the graphs comparable, the analysis was

stopped after 100 simulations, which corresponds to ten

updates and four updates in the first case and second case,

respectively.

Figure 5 shows some interesting results:

• The analyses do not differ in terms of selection of the

best sensor location, which demonstrates that prior

knowledge does not affect the final decision but affects

the computational resources and data that are needed

to attain the final stable distribution of likelihood.

• Using Prior D, after only two updates (20 simulations),

the nodes with the highest likelihood of being selected

(JI10) as a sensor location, are identified, and the

selection does not change until the end of the analysis.

• Using Prior A, six updates (60 simulations) are necessary

to achieve the same results obtained for Prior D after

20 simulations. Prior B and Prior C (not reported)

performed equally well and obtained the same selection

after four updates (40 simulations).

The comparison between Figures 5 and 6 shows that,

even if the number of simulations is identical, the aggregation

in the Bayesian update process produces some differences:

• The final selection is not affected by either of the adopted

prior distributions. In both cases, three updates (75 simu-

lations) are necessary to identify a stable candidate node

for the best sensor location.

• Posterior distributions are affected by a large variability

after four updates, which requires a larger number of

simulations to obtain a robust solution.

Table 1 reports the results of other tests that were per-

formed considering a maximum of three sensors and

varying the event magnitude for each update from 10 to

Table 1 | Results in terms of Bayesian probability after 1,000 simulations

Example 8 network

No. of

sensors

No. of

updates

Event pop.

of updates

Highest sensor

posterior

probability

Prior probability of

each sensor

combination

1 10 100 0.1315 0.034

2 10 100 0.0076 0.0025

3 10 100 0.00068 0.00027

1 40 25 0.16 0.034

2 40 25 0.0085 0.0025

3 40 25 0.00075 0.00027

1 100 10 0.178 0.034

2 100 10 0.0085 0.0025

3 100 10 0.00077 0.00027
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100. The results indicate that, for the Example 8 network,

the BDN configuration that enables a more efficient selec-

tion of (in terms of Bayesian probability) sensors’ location

refers to the use of Bayesian updates with small populations

(ten events). With ten events after ten updates (100 simu-

lations) to a maximum of 100 updates (1,000 simulations),

the improvement is observed (not reported) to be limited,

and the posterior distribution attains a stable configuration

with very small variations independently from prior knowl-

edge. This behaviour confirms that the Bayesian methods do

not retain the memory of the initial assumptions if the

number of performed updates is sufficiently large.

Figure 5 | Prior and posterior distribution after two, six and ten updates. Event population for each update¼ 10: (a) Prior A and (b) Prior D.
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All applied approaches, independently from selected

prior knowledge and the population of updates, attained

the same final selection for the analysed network:

• 1 sensor: node JI10,

• 2 sensors: nodes J11 and JI11,

• 3 sensors: nodes J11, JI5 and JI10.

Starting from this result, the probability that the sensors

positioned in these junctions will be able to identify the con-

tamination source (isolation likelihood F1) is 47% with one

sensor, 78% with two sensors and 84% with three sensors.

With one sensor, 24% of the contamination events are

undetected and 29% are detected; however, the origin of

the contaminant is not discovered. With two sensors, only

Figure 6 | Prior and posterior distribution after two, three and four updates. Event population for each update¼ 25: (a) Prior A and (b) Prior D.
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11% of the events are not detected and an additional 11% of

the events are detected without identifying the source. With

three sensors, only 6% of the events are undetected even if

10% of the events are detected without identifying the

source. Sensor network reliability F2 is relatively low with

two and three sensors reaching 17% and 33%, respectively,

which shows that the most relevant part of the contami-

nation events was detected by a single sensor.

The use of a non-uniform informative a priori sensor

location distribution reduces the simulation time. The use

of distributions based on contaminant mass perform better

than other methods, but the simple topological approach

(obtained without the use of any additional simulation)

can reduce the computational effort by one-third.

Considering the positioning of three sensors, two of the

three selected nodes coincide with the ones individuated

by two different procedures in Banik et al. (b). This

comparison confirms the validity and robustness of the

presented methodology.

Massa Lubrense network

The BDN approach is successively applied to the real

network of Massa Lubrense (Italy) considering three

sensor configurations that involve 6, 12 (actual number of

implemented monitoring stations for model calibration)

and 18 sensors.

The analysis is performed to analyse the impact of

the BDN update population and the ability of the best

possible sensor locations. To reduce computational time,

the analysis was performed starting from the informative

distribution Prior D based on 100 random contamination

simulations.

Table 2 reports the results in terms of the Bayesian prob-

ability in the various considered BDN configurations. In this

case, the best sensor configuration and the efficiency of the

sensor network in identifying the polluting source depend

on the number of events and the number of procedure

updates. The complexity of the analysed network considers

that the best strategy is to increase the number of Bayesian

updates, which reduces the population of each update: the

use of 40 updates with 25 simulations each provides better

results than the use of 10 updates with 100 simulations

each. This finding can be explained by the complexity of

the system and the number of possible sensor combinations

that should be considered.

Positively, the different analyses converge on the same

set of sensor locations, which confirms the robustness of

the proposed approach. Analysing the three configurations

(6, 12 and 18 sensors), the probability that the sensors inter-

cept the contamination (isolation likelihood F1) is 58% with

6 sensors, 81% with 12 sensors and 92% with 18 sensors.

Detection reliability F2 is substantially higher in the real

case due to the higher number of sensors: 68% of the

detected events are reported by two or more sensors in the

first configuration (6 sensors) and the probability increases

to 77% and 86% with 12 sensors and 18 sensors, respectively.

A significant number of events remained undetected: 27%

with 6 sensors, 6% with 12 sensors and 4% with 18 sensors.

Figure 7 shows the location of 12 sensors according to

the proposed methodology (triangles). Comparing the

obtained locations with the actual configuration of the

monitoring network (large circles), some considerations

can be obtained:

• The optimal configuration of sensors in the downstream

part of the network (upper part of the figure) is consistent

with the existing configuration with three sensors that are

actually located in their optimal positions and two sen-

sors that are only a few nodes from their optimal position.

• In the western part of the network, the methodology pro-

vided the same sensor locations of the real network,

Table 2 | Results in terms of the Bayesian probability in various BDN configurations

(Massa Lubrense)

Massa Lubrense network

No.

sensors

No. of

Bayes

updates

Event pop.

of updates

Highest sensor

posterior

probability

Prior probability of

each sensor

combination

6 10 100 0.003 5.26 × 10�4

12 10 100 2.45 × 10�8 1.53 × 10�17

18 10 100 6.44 × 10�16 2.21 × 10�31

6 40 25 0.046 5.26 × 10�4

12 40 25 3.23 × 10�4 1.53 × 10�17

18 40 25 4.32 × 10�10 2.21 × 10�31

6 100 10 0.026 5.26 × 10�4

12 100 10 6.65 × 10�6 1.53 × 10�17

18 100 10 2.15 × 10�13 2.21 × 10�31
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while a difference was observed in the central and

eastern parts of the system; these differences can be

primarily connected to the fact that the real sensor

location was determined by simple geometric consider-

ations for the network without integrating an analysis

by numerical models and optimization methods.

CONCLUSIONS

The contamination of surface waters represents one of the

most important aspects of urban management for environ-

mental and sanitary implications and social-economic

issues that may arise. The goal of this study is to develop a

decision-support approach for identifying the location of

the water quality sensors and illicit intrusions in sewers.

The study focuses on soluble conservative pollutants, such

as heavy metals.

The analysis was based on a Bayesian approach to

introduce data assimilation and identification probability

in the procedure. The system was simulated by SWMM for

different random contamination scenarios. Progressive

updates were performed considering contamination events

and the need to evaluate the probability that the contami-

nation source will be identified with the sensors located in

a specific node. The proposed methodology showed a pro-

gressive increase in the identification probability obtained

by the Bayesian update. Appropriate pre-screening and/or

pre-conditioning approaches are relevant in terms of early

identification of the most suitable sensor locations.

The following conclusions were obtained from the

analyses:

• The value of the Bayesian probability of identifying the

contamination source tends to increase as the number

of Bayesian updates increase. However, the number of

simulations in each update should be based on the

complexity of the problem to be solved to ensure that

more complex problems need a larger population for

each update.

• As the number of updates increases, with the same

number of sensors, the maximum value of the Bayesian

Figure 7 | Massa Lubrense network with the indication of the best location for 12 sensors (triangles) according to the methodology and compared with the actual position of the

monitoring stations (large circles).
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probability increases. However, the marginal increments

are progressively lower.

• The use of a pre-screening procedure and/or the

inclusion of knowledge about the system characteristics

enables convergence towards an optimal solution in

less time and with smaller computational resources.

Even if this fact may be negligible for a small network,

the impact on larger networks is relevant, which enables

the same optimal configuration and half of the required

number of simulations.

• The sensor locations obtained with the proposed

methodology are able to identify a large number of

contamination events: maximum of 84% events in

Example 8 case with three sensors and maximum of

92% events in Massa Lubrense with 18 sensors.

• Even if a high number of sensors is required to obtain a

high probability of contamination source identification,

the BDN approach enables a progressive implementation

of the sensor network depending on the water manager

budget limitations. The comparison with the real

configuration of the monitoring network in Massa

Lubrense demonstrates that the methodology is also

informative, which helps the water manager to under-

stand the dynamics of the network and highlights the

areas that require better monitoring.

The analysis shows the potential impact of the proposed

methodology. However, further developments are needed

to take into account non-conservative pollutants, such as

biological contaminants that can have a large impact on

the environment and public health. The methodology

should be upgraded and tested to take into account the

presence of multiple contamination sources and the possi-

bility of deploying Lagrangian sensors carried by the

flow. Additionally, the comparison with fault isolation

approaches (Blanke et al. ) may be interesting from the

perspective of transferring fault mode and effect analysis

(FMEA)-type approaches to the water industry.
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