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Optimal wave-front reconstruction strategies for
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We propose an optimal approach for the phase reconstruction in a large field of view (FOV) for multiconjugate
adaptive optics. This optimal approach is based on a minimum-mean-square-error estimator that minimizes
the mean residual phase variance in the FOV of interest. It accounts for the Cn

2 profile in order to optimally
estimate the correction wave front to be applied to each deformable mirror (DM). This optimal approach also
accounts for the fact that the number of DMs will always be smaller than the number of turbulent layers, since
the Cn

2 profile is a continuous function of the altitude h. Links between this optimal approach and a tomog-
raphic reconstruction of the turbulence volume are established. In particular, it is shown that the optimal
approach consists of a full tomographic reconstruction of the turbulence volume followed by a projection onto
the DMs accounting for the considered FOV of interest. The case where the turbulent layers are assumed to
match the mirror positions [model-approximation (MA) approach], which might be a crude approximation, is
also considered for comparison. This MA approach will rely on the notion of equivalent turbulent layers. A
comparison between the optimal and MA approaches is proposed. It is shown that the optimal approach pro-
vides very good performance even with a small number of DMs (typically, one or two). For instance, good
Strehl ratios (greater than 20%) are obtained for a 4-m telescope on a 150-arc sec 3 150-arc sec FOV by using
only three guide stars and two DMs. © 2001 Optical Society of America
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1. INTRODUCTION
Atmospheric turbulence severely limits the angular reso-
lution of ground-based telescopes. Adaptive optics
(AO)1–3 is a powerful technique to overcome this limita-
tion and to reach the diffraction limit of large telescopes.
AO compensates, in real time, for the random fluctuations
of wave fronts induced by the turbulent atmosphere.
The turbulent wave front is measured by a wave-front
sensor (WFS) using a guide star (GS) and optically cor-
rected by a deformable mirror (DM) located in a pupil con-
jugate plane. This compensation allows the recording of
long-exposure images with a resolution close to the dif-
fraction limit. Because of anisoplanatism, the correction
is efficient in only a limited field of view (FOV) (the so-
called isoplanatic field) around the GS. This effect origi-
nates from the fact that turbulence is distributed in the
volume above the telescope; then the wave fronts, coming
from angularly separated points, are degraded differently.
In the visible, the isoplanatic field is approximately a few
arc seconds.4 Beyond this FOV, the correction degrades.5

Recently, a postprocessing method has been proposed to
deal with the spatial variation of such an AO point-spread
function.6 This method gives very good results, but it is
limited by the decrease of the correction degree in the
FOV, which leads to a decrease of the signal-to-noise ratio
(SNR) in the corrected image. Classical AO therefore
gives poor high-resolution performance in the case of
large FOV. Improved performance is, however, expected
with multiconjugate AO (MCAO).7,8 It consists in using
several DMs conjugated at different heights in the atmo-
sphere (see Fig. 1). With such a system, the turbulence
effects are corrected not only on the telescope pupil but
also in the turbulence volume; hence the increase of the
correction field. Generally, several GSs are used to sense
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the perturbation in different FOV positions and to control
these mirrors. The choice of the number of GSs9–12 and
DMs10,11,13,14 is crucial for the design of such systems. It
is related to the turbulence profile Cn

2(h), the telescope
diameter, and the observation goals. Note that, in this
paper, we consider only natural GSs, but all the theoreti-
cal development could be extended to the case of laser
GSs provided that all their specificities are taken into ac-
count (analysis geometry, cone effect, tip–tilt measure-
ment problems).

We believe that one of the key issues is the phase re-
construction in MCAO. It is linked to the capability of
the phase reconstruction algorithm to find the best defor-
mation to apply on each DM from a set of WFS measure-
ments, in order to obtain the best correction in a given
FOV of interest. Since the minimization of the residual
phase variance maximizes the image quality in the con-
sidered direction, we derive a minimum-mean-square-
error (MMSE) estimator that minimizes the mean re-
sidual phase variance in the FOV of interest.15 It
accounts for the Cn

2 profile in order to optimally estimate
the correction wave front to be applied to each DM. This
optimal approach also accounts for the fact that the num-
ber of DMs will always be smaller than the number of tur-
bulent layers, since the Cn

2 profile is a continuous function
of the altitude h. Links between this MMSE approach
and a tomographic reconstruction of the turbulence vol-
ume are established. In particular, it is shown that the
MMSE approach consists of a full tomographic recon-
struction of the turbulence volume followed by a projec-
tion onto the DMs accounting for the considered FOV of
interest.

The case where the turbulent layers are assumed to
match the mirror positions, which might be a crude ap-
2001 Optical Society of America
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Fig. 1. Concept of a MCAO system. Several DMs are conjugated to different heights in the atmosphere. The wave-front analysis is
made on several GSs located in the FOV.
proximation, is also considered for comparison. This
model-approximation (MA) approach will rely on the no-
tion of equivalent turbulent layers.10 In both ap-
proaches, the regularization of the ill-posed problem for
the phase reconstruction is studied carefully, and the
prior knowledge available both on turbulence and on
noise statistics has been incorporated into the reconstruc-
tion. Note that, in the paper, we consider only open-loop
conditions; that is, all the wave-front statistics are de-
rived from the Kolmogorov or the von Kármán theory.
No temporal behavior is considered. This open-loop hy-
pothesis is more restrictive than the study performed by
Ellerbroek15 but allows us to obtain simple analytical for-
mulas and to propose physical interpretations of the re-
sults.

The theoretical development of the optimal approach
for large-FOV phase reconstruction is proposed in Section
2. The crude model approximation where the turbulence
is assumed to match the DM position, is considered in
Section 3. A comparison of the performance of different
phase reconstruction approaches [conventional truncated
singular value decomposition (SVD), optimal approxima-
tion, and model approximation] is then proposed in Sec-
tion 4. We study the influence of a well-chosen regular-
ization (Kolmogorov statistics) on the phase recon-
struction for a large FOV. The appeal of the optimal
phase estimation approach, and then the need of accurate
Cn

2 measurements during the observing runs, is demon-
strated.

2. OPTIMAL APPROACH FOR LARGE-
FIELD-OF-VIEW PHASE RECONSTRUCTION
The concept of MCAO has been studied in the last ten
years by many authors.7–20 The goal of MCAO is to com-
pensate well for the turbulent wave fronts not only in one
direction but also in a specified FOV of interest $a%FOV
(larger than the classical isoplanatic patch4).

Let us assume that the turbulent atmosphere is com-
posed of a discrete sum of thin turbulent layers located at
different heights.21 In the near-field approximation,21

the resulting phase F(r, a) in the telescope pupil is given,
for a sky direction a, by

F~r, a! 5 (
j51

Nt

f j~r 1 hja!, (1)

where r is the pupil coordinate and f j(rj) are the phase
perturbations in the jth atmospheric turbulent layer lo-
cated at the altitude hj . Nt is the number of turbulent
layers.
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The wave front is measured in the telescope pupil for
the discrete set of GS directions $ai%GS . The correction is
computed by using all these measurements
@$Fm(r, ai)%GS# and considering several DMs located at
different heights. Therefore the key points for the design
of a MCAO system are the number and the position of
DMs and GSs and, of course, the phase reconstruction
method that gives the correction phase for the different
DMs. In the present paper, we focus on this phase esti-
mation algorithm, since the MCAO performance with re-
spect to the DM and GS number and positions has al-
ready been studied.10–13 The main result of these
previous works is that for telescope diameters of 4–8 m
and for K-band (2.2-mm) imaging, only a small number of
DMs and GSs is needed to obtain quasi-uniform correc-
tion in a large FOV (typically larger than 1 arc min).

A. Position of the Problem
The goal of our approach is to minimize the residual
phase variance in a specified FOV of interest, that is, to
derive a MMSE estimator.15 This phase estimator is de-
fined as the one that minimizes a quadratic distance av-
eraged on the FOV of interest $a%FOV between the result-
ing true and correction phases:

e 5 K E
$a%FOV

iF̂(r, a) 2 F(r, a)i2 daL
F,noise

, (2)

where ^ • &F,noise stands for a mathematical expectation
on both turbulence and WFS noise outcomes, i • i2 de-
notes the spatial variance in the telescope pupil, F(r, a) is
the true phase in a given direction a in $a%FOV , and
F̂(r, a) is the estimated correction phase in that direction
a. The problem is to estimate F̂(r, a) under the con-
straint that it will be generated by a finite number of
DMs, using not only the WFS measurements but also a
priori information that we have on the turbulent wave
front in the atmospheric volume.

Let us consider that we have NGS GSs, i.e., NGS WFS
measurements. For each WFS, we assume that the mea-
sured phase can be expressed as

Fm~r, ai! 5 F~r, ai! 1 ni~r!, (3)

where ai is the angular position of the ith GS. For the
sake of simplicity, Eq. (3) assumes that the WFS directly
gives phase map measurements and that ni follows
Gaussian statistics (central limit theorem). We suppose
here that Fm(r, ai) is measured on a basis with an infi-
nite number of modes. The measurements are limited
only by the noise. Indeed, this noise on slope measure-
ments given by a Shack–Hartmann (SH) WFS is given by
the sum of several pixels in the calculation of the center of
gravity and through the reconstruction; the noise on the
phase results from a large number of subaperture contri-
butions. To account for the noise propagation through
the reconstruction from SH data, we color this Gaussian
noise ni(r) with, in the Fourier domain, a power spectral
density following an f 22 law.22 The turbulent phase on
the telescope pupil is given by the sum of all the turbulent
layer contributions [see Eq. (1)]; then Eq. (3) can be re-
written as
Fm~r, ai! 5 (
j51

Nt

f j~r 1 hjai! 1 ni~r!. (4)

The unknowns of the problem are the correction phases
f̂k to be estimated for each DM so as to minimize the cri-
terion defined in Eq. (2). Of course, for practical reasons,
the DM number (NDM) will always be smaller than the
number of turbulent layers (Nt). In that case, we have,
for a given direction a,

F̂~r, a! 5 (
k51

NDM

f̂k~r 1 hka!. (5)

The DM positions hk are, for instance, computed as pre-
sented in Refs. 10, 11, and 13 by using an average Cn

2 pro-
file. Then Eq. (2) becomes

e 5 K E
$a%FOV

I (
k51

NDM

f̂k~r 1 hka!

2 (
j51

Nt

f j~r 1 hja!I 2

daL
f,noise

. (6)

For the sake of clarity, let us rewrite all the equations
defined above in a matrix form. Equations (1), (4), and
(5) become, respectively,

F~r, a! 5 Ma
Ntf, (7)

Fm~r, ai! 5 Mai

Ntf 1 ni , (8)

F̂~r, a! 5 Ma
NDMf̂, (9)

where Ma
Nt and Ma

NDM are the matrices that perform the
sum of the contributions of each wave front f j(rj) and
f̂k(rk) on the telescope pupil for a given direction a. f

and f̂ are defined as

f 5 S f1

]

fj

]

fNt

D , f̂ 5 S f̂1

]

f̂k

]

f̂NDM

D . (10)

The criterion to be minimized is then

e 5 K E
$a%FOV

iMa
NDMf̂ 2 Ma

Ntf i2 daL
f,noise

. (11)

B. Optimal Solution
In general, the calculation of the MMSE estimator is not
tractable unless the estimator is assumed to be linear
with respect to the data (linear MMSE estimator). It is
important to note that in the case of joint Gaussian sta-
tistics for the noise and the turbulence (which is the case
in our problem), this linear estimator is identical to the
true MMSE estimator.23

We can therefore seek the MMSE solution in the form

f̂ 5 WFm with Fm 5 MNGS

Nt f 1 n, (12)
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where the new unknowns are the elements of the matrix
W. MNGS

Nt , Fm, and n are matrices and vectors defined as

MNGS

Nt 5 ~Ma1

Nt ,..., Mai

Nt ,..., MaNGS

Nt !, (13)

Fm 5 S Fm~r, a1!

]

Fm~r, ai!

]

Fm~r, aNGS

D , n 5 S n1~r!

]

ni~r!

]

nNGS
~r!

D . (14)

W is the reconstruction matrix

W 5 S W1

]

Wj

]

WNDM

D ,

so that

f̂j 5 WjF
m. (15)

Putting Eq. (12) in Eq. (11) yields

e 5 E
$a%FOV

^iMa
NDM~WMNGS

Nt f 1 Wn!

2 Ma
Ntf i2&f,noise da. (16)

This equation must be minimized with respect to W. The
explicit minimization of Eq. (16) is presented in Appendix
A. The final result is

W 5 F E
$a%FOV

~Ma
NDM!TMa

NDM daG1

3 F E
$a%FOV

~Ma
NDM!TMa

Nt daG
3 Cf~MNGS

Nt !T@MNGS

Nt Cf~MNGS

Nt !T 1 Cn#21, (17)

where Cf and Cn , defined in Appendix A, are the generali-
zation for several layers and several GSs of the classical
turbulence and noise covariance matrices. The T and 1
superscript symbols denote the transpose and the gener-
alized inverse matrix, respectively. Reintroducing Eq.
(17) into Eq. (16), we can easily obtain an analytical ex-
pression of the MCAO error as a function of FOV angle.24

The true model derived above assumes an infinite number
of modes to describe the turbulent phase and its correc-
tion. For practical reasons and for purposes of limiting
the numerical calculations, the number of modes is, how-
ever, limited. This undermodeling in the direct problem
induces correction errors. It is important to account for
these errors, which is easily done by using a Monte Carlo
simulation (that is, we simulate turbulent wave fronts,
and we apply a correction derived by using W). Further-
more, such a simulation allows us to account for slight
discrepancies from the true turbulence model. For in-
stance, the wave fronts are simulated with von-Kármán
statistics (finite outer scale), while the reconstruction ma-
trix uses a Kolmogorov regularization.

When Ma
NDM 5 Ma

Nt, that is, when the DMs are exactly
located on the turbulent layers, Eq. (17) simply reads as
WNDM5Nt
5 Cf~MNGS

Nt !T@MNGS

Nt Cf~MNGS

Nt !T 1 Cn#21.
(18)

Equation (11) then becomes

e 5 K E
$a%FOV

iMa
Nt~f̂ 2 f !i2 daL

f,noise

. (19)

In that case, it can be shown that the minimization of the
residual phase variance in the telescope pupil e is equiva-
lent to the minimization of

e8 5 ^if̂ 2 f i2&f,noise , (20)

that is, to the minimization of the residual phase variance
in each layer (whatever the FOV of interest). Our esti-
mator is therefore equivalent, in that case, to that of a to-
mographic approach.19 In particular, there is no depen-
dence on the field angle. Such a DM correction
minimizes the phase residual variance whatever the FOV
position. But this case is only idealistic. In fact, the
number of DMs will always be smaller than the number
of turbulent layers. It is, however, interesting to note
that in the general case, the solution given in Eq. (17) ac-
tually consists of this tomographic reconstruction on all
turbulent layers corresponding to Eq. (18) followed by a
projection onto the solution space (corresponding to the
small number of altitudes where the DMs are located).
The projection operator is therefore

PNDM ,Nt
5 F E

$a%FOV

~Ma
NDM!TMa

NDM daG1

3 F E
$a%FOV

~Ma
NDM!TMa

Nt daG . (21)

This projection matrix is directly linked, through the in-
tegral in a, to the FOV of interest $a%FOV , where the cor-
rection is optimized. Indeed, when the mirror positions
do not match the turbulent layers (NDM , Nt), an overall
correction in the FOV is not possible. Optimizing for a
particular FOV position may degrade the correction in
other positions. Trade-offs have to be made for a speci-
fied set of FOV positions. The projection PNDM ,Nt

per-
forms optimally these trade-offs.

One can also show from Eq. (16) that, whatever the po-
sition in the FOV, the residual phase variance is minimal
for one DM per layer (NDM 5 Nt). However, we will see
in Section 4 that this ultimate performance is almost
reached with a small number of DMs when considering a
reasonable FOV of interest.

Note that there is an analogy between the MCAO cor-
rection of the turbulence volume with a finite number of
DMs, as presented here, and the correction of the turbu-
lent phase in classical AO with a finite number of actua-
tors, as proposed by Wallner.25 In both cases, the correc-
tion space is smaller than the unknown space (number of
DMs smaller than the number of layers or the number of
actuators smaller than the number of turbulent modes).
This leads to a similar form of the reconstruction: first, a
‘‘full’’ reconstruction, followed by a projection onto the
finite-space solution.

With the matrix W, one can compute f̂ 5 W Fm, which
gives the estimated correction phase on each DM that en-
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sures a minimal residual phase variance for all the direc-
tions of the specified FOV $a%FOV . Of course, the compu-
tation of Eq. (17) requires the knowledge of the
turbulence profile for the computation of Ma

Nt and Cf . A
real-time measurement of the Cn

2 profile can, for instance,
be obtained with a generalized SCIDAR.26 In Section 3,
a second approach, based on a cruder turbulence model, is
presented.

3. MODEL-APPROXIMATION APPROACH
In this approach, we assume that all the turbulence is lo-
cated on the DMs. The Cn

2 profile is modeled only by a
small number (NEL) of turbulent layers, called equivalent
layers (ELs), in which are located the NDM 5 NEL DMs.
The computation of the EL position and strength is done
by a sampling of the Cn

2 profile into NEL slabs.10,11

Using this simplified turbulence model, one can esti-
mate the correction phase with the approach proposed in
Subsection 2B. All the equations remain valid, with Nt
and NDM replaced by NEL . Therefore the direct problem
can be rewritten as

Fa~r! . (
j51

NEL

f j~r 1 hja!,

Fai

m~r! . (
j51

NEL

f j~r 1 hjai! 1 ni~r!. (22)

Consequently, the reconstruction matrix is deduced from
Eq. (18):

WMA 5 Cf~MNGS

NEL!T@MNGS

NELCf~MNGS

NEL!T 1 CN#21. (23)

The reconstruction phases are therefore given by f̂
5 WMAFm.

This MA solution has already been derived in a previ-
ous paper10,11 following a maximum a posteriori approach.
But MMSE and maximum a posteriori estimators are, in
any event equivalent23 here on account of the Gaussian
statistics of the noise and the turbulence.

Now let us compare the two approaches and discuss
their similarities and differences. They are both derived
from the same theoretical development based on the
MMSE criterion. The only (but important) difference is
that the model approximation uses a simplified direct
problem, which leads to a suboptimal solution.

4. RESULTS AND PERFORMANCE
A. Simulation Tool
Let us consider a modal decomposition of the wave fronts
onto the Zernike basis. The phase screen on each turbu-
lent layer j becomes

f j~rj! 5 (
l52

`

al, jZl, j~rj!, (24)

where Zl, j(r) is the lth Zernike polynomial defined on a
metapupil of diameter Dj depending on the telescope di-
ameter D, the layer altitude hj , and the maximal FOV
angle amax considered:

Dj 5 D 1 2hjamax . (25)

Of course, all the equations presented above are still
valid in this basis. In particular, one can note that in
Eqs. (10) the the fj and the f̂k are simply vectors of
Zernike coefficients al, j and al,k ; Cf is therefore a gener-
alization of the Zernike covariance matrix given by Noll.27

The measured phase is also decomposed onto the
Zernike polynomial basis. Noise is added on each
Zernike coefficient by using a noise covariance matrix Cn .
The SH WFS is not really simulated but its characteristic
noise propagation is accounted for through the use of Cn ,
which considers that we measure Zernike polynomial
derivatives.28

For a direction a i , only a part of the metapupil associ-
ated with the layer j is viewed: a disk of diameter D cen-
tered on hjai . In this particular basis, MNGS

NEL, MNGS

Nt ,

Ma
Nt, and Ma

NEL are computed as presented in Ref. 11. It
consists of the decomposition of each decentered Zernike
polynomial @Zl, j(r 1 ahj)# onto a Zernike basis defined
on the telescope pupil (see Fig. 2). Ragazzoni et al.20

have shown that the number of modes required for such a
decomposition is given by the number l of the metapupil
Zernike polynomial. This result is important, since it en-
sures that the dimension of each matrix M will be linked
only to the number of Zernike polynomials considered in
each (turbulent or DM) layer. For example, in the case of
a two-DM system, where 66 Zernike modes are sought on
the first DM and 135 are sought on the second DM, the
dimension of the matrix Ma

NDM will be only 135 3 (66
1 135).

Ideally, the number of Zernike modes must be infinite,
but for practical reasons (computation time, matrix sizes),
only a finite number of Zernike modes is considered both
for the measured phases and for the DMs.

B. Simulation Parameters
Let us consider a four-layer profile defined as follows:

No. Position (km) Strength (%)

1 0 25
2 2.5 25
3 5 25
4 7.5 25

Fig. 2. Decentered part of the metapupil associated with the al-
titude hj . The variable vector r is defined on the telescope pu-
pil. The zone of interest is centered on hja i .
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The phase screens on each turbulent layer are simulated
by McGlamery’s method.29 The simulated phase screens
are large enough with respect to the telescope pupil to en-
sure that L0 /D . 4, where L0 is the outer scale of the
turbulence. The total r0 is equal to 0.1 m at 0.5 mm.
This leads to an isoplanatic angle u0 (defined with the
Fried formula4) equal to 1.44 arc sec at 0.5 mm and 8.52
arc sec at 2.2 mm. We consider a 4-m telescope, and sev-
Fig. 3. (a) Turbulence (four layers) and DM (one, two, and four) repartition for the four systems presented in Subsection 4B. (b) Geo-
metrical repartition of the GS pupil projection and FOV on the highest layer (h 5 7.5 km). The physical size of the DM is equal to the
physical size of the layers.
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eral MCAO systems are presented in Fig. 3.
The several MCAO systems are constructed as follows:

a. One GS on the optical axis and one DM (with 135
corrected modes) conjugated at 3.75 or 6.5 km (Subsection
4.D.1).

b. One GS on the optical axis and four DMs (with, re-
spectively, 66, 120, 135, and 230 corrected modes) conju-
gated on the four turbulent layers (tomographic recon-
struction) (Subsection 4.D.1).

c. Three GSs located at the vertices of an equilateral
triangle with a separation equal to 70 arc sec and two
DMs (with, respectively, 66 and 135 corrected modes) con-
jugated at 1.25 and 6.25 km (Subsections 4.C and 4.D.2).

d. Three GSs located at the vertices of an equilateral
triangle with a separation equal to 70 arc sec and four
DMs (with, respectively, 66, 120, 135, and 230 corrected
modes) conjugated on the four turbulent layers (tomogra-
phic reconstruction) (Subsection 4.D.2).

Ideally, a large number of the Zernike modes should be
used, but for practical reasons the number of modes per
DM considered here is quite reasonable.

First, it is important to note that in cases b and d the
number of DMs is equal to the number of true layers;
therefore these two cases can be seen as the ultimate per-
formance of cases a and c, as mentioned in Subsection 2B.

The first two cases (a and b) correspond to the first step
of a MCAO system, since they are composed of one or sev-
eral conjugated DMs, but they still only use one GS.
Therefore all the information on the off-axis phases is
given only by the prior information that we have on the
turbulence volume (the Cn

2 repartition and the Kolmog-
orov statistics of the phase). An example of such a sys-
tem (case a) is under construction for the 8-m Gemini-
North telescope.30 This AO system (Altair) can be seen
as the first order of a MCAO system. In our case, we
have considered a 4-m telescope, but all the results can
easily be extended to the 8-m case by a simple scaling of
the FOV $a%FOV by the diameter ratio and the number of
corrected modes by the square of this ratio.

Cases c and d represent more complex systems, since
they are composed of both several GS directions and sev-
eral conjugated DMs.

The Cn matrix is obtained by considering SH WFSs
that measure the wave front in each GS direction. The
SNR on each SH (defined as the ratio between the turbu-
lence variance and the noise variance) is computed for a
7 3 7 subaperture SH and is equal to 10. It roughly cor-
responds to an 11th-magnitude GS. For each system, the
maximal considered FOV (which defines the physical size
of each DM; see Fig. 3) is equal to 150 arc sec.

The performance of the different methods is evaluated
in terms of a Strehl ratio (SR) approximated by
exp@2sres

2 (a)#, which is valid for good corrections.
sres

2 (a) is computed by

sres
2 ~a! 5 ^iF~r, a! 2 F̂~r, a!i2&, (26)

where ^ • & is an average on 100 decorrelated simulated
phases.

First, a study of the gain brought by the regularization
term (Kolmogorov regularization) in Eq. (17) and (18),
compared with a more classical approach based on a
least-squares minimization, is performed in Subsection
4.C.

C. Influence of the Kolmogorov Regularization
Let us consider the three-GS and two-DM system (case c)
presented in Subsection 4.B. The classical approach to
inverting the ill-posed problem of the phase correction es-
timation in each DM is to use a least-squares
minimization,18 that is, to consider a truncated singular
value decomposition (SVD). With our notation, this
wave-front estimator is therefore given by the following
well-known relation:

f̂ 5 @~MNGS

NEL!TMNGS

NEL# 1 ~MNGS

NEL!TF m, (27)

where MNGS

NEL is the interaction matrix between the DMs

and the WFSs. Because (MNGS

NEL)TMNGS

NEL is an ill-
conditioned matrix (see Fig. 4), the inversion is made by
using a SVD in which the lower-value modes are set to 0
in order to avoid the noise amplification. Of course, this
truncation can be seen as a crude regularization, and it is
easy to show that this approach is less optimal than the
use of a well-chosen regularization term (the Kolmogorov
statistics in our case), as shown for various turbulence-
related applications in Refs. 10, 23, 31, and 32.

One can see in Fig. 5 that the use of a Kolmogorov
regularization [model approximation, Eq. (23)], where Cf

is computed by assuming that all the turbulence is
equally distributed on the two DMs, gives better results
than the classical truncated SVD [Eq. (27)] whatever the
chosen truncation threshold (note that the optimal choice
of this threshold is one of the major problems of the SVD
approach).

For the optimal SVD threshold (lmax/50 here), only 72
modes are corrected from the available 199 modes of the
system (the piston is not considered). This optimal
threshold is chosen as the one that gives the minimal
mean residual variance in the whole FOV of interest
(150 arc sec3150 arc sec).

The great advantage of the well-chosen regularization
(as derived from a MMSE approach) is that one does not
have to adjust any parameters, since the optimal regular-
ization is directly derived from the noise and turbulence
(on each EL) statistics.

It seems clear, in this example, that an adequate regu-
larization of the inverse problem is required in a large
FOV to obtain good performance. This Kolmogorov regu-
larization avoids the noise amplification but also allows a
good phase extrapolation where the phase is not mea-
sured or only partially measured.

Now let us compare the optimal approach defined in
Eq. (17) and the MA approach defined in Eq. (23). In
Subsection 4.D.1, the one-GS and one-DM system (case a)
is studied. In Subsection 4.D.2, the three-GS and two-
DM system (case c) is considered. Note that for each GS
configuration the best possible performance is obtained,
as explained in Section 2, with one DM per turbulent
layer, that is, four DMs here (cases b and d).
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D. Comparison of the Optimal and
Model-Approximation Approaches
We have just shown that a well-chosen Kolmogorov regu-
larization always gives better results than a simple trun-
cated SVD approach. Let us now compare the two phase
estimation methods presented in Sections 2 and 3 by us-
ing this regularization. More precisely, let us show the
gain brought by the optimal phase estimation approach in
which the prior information on the turbulence profile is
more precise and for which an optimization in a given
FOV of interest $a%FOV is performed.

1. Mono-Guide-Star and Mono-Deformable-Mirror
System
Let us first consider the simple but illustrative case of a
system composed of only one GS and one conjugated DM
(case a). In such a configuration, two different cases can
be studied.

• Case of a well-placed DM with respect to the turbu-
lence profile (Fig. 6).

Fig. 4. Singular value of the systems versus mode number.
The different considered thresholds are plotted. The optimal
threshold (optimal result) is chosen as the one that gives the
minimal residual variance in the whole FOV of interest
(150 arc sec 3 150 arc sec), as shown in Fig. 5.

Fig. 5. Comparison between the Kolmogorov regularization
(solid curve) and a SVD using different thresholds. The SR ver-
sus the FOV position is plotted for the x axis defined in Fig. 3(b).
The DM is located at 3.75 km (center of gravity of the
Cn

2 profile). If we use the MA method (all the turbulence
supposed to be on the DM), then because the DM position
is well chosen, a good extrapolation is possible. Indeed,
as shown in Fig. 6, a quasi-optimal (close to the ultimate
four-DM performance) SR is obtained in a
20-arc sec 3 20-arc sec FOV. Beyond, if the science ob-
ject is far from the optical axis (typically, 50 arc sec), the
degradation of the extrapolation between one and four
DMs becomes important (SR 5 3% for one DM and 8%
for four DMs).

Now we take into account the knowledge of the true Cn
2

profile for the optimization of the DM correction in the
science object direction. In our example, we consider a

Fig. 6. Comparison of the optimal phase estimation and MA ap-
proaches in the case of a one-GS (on the optical axis) and one-DM
(conjugated at 3.75 km) system. In each case, an X cut of the
FOV is presented. These simulation are made for a four-layer
Cn

2 profile and a 4-m telescope. We plot the tomographic recon-
struction (four DMs located on each turbulent layer) for compari-
son.

Fig. 7. Comparison of the optimal phase estimation and MA ap-
proaches in the case of a one-GS (on the optical axis) and one-DM
(conjugated at 6.5 km) system. Note that the DM is misplaced
with regard to the Cn

2 profile. In each case, an X cut of the FOV
is presented. These simulations are made for a four-layer Cn

2

profile and a 4-m telescope. We plot the tomographic recon-
struction (four DMs located on each turbulent layer) for compari-
son.
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Fig. 8. Upper plots: comparison of iso-SR maps between the MA approach (two DMs) and the tomographic case (four DMs). Lower
plots: iso-SR maps computed by using the optimal approach in the case of a two-DM and 3-GS system (case c). Three optimized FOVs
are considered: 20, 60, and 120 arc sec. Note that, in all maps, only SR > 10% are plotted. Black corresponds to 10%, and the suc-
ceeding levels (dark to light) are 20%, 30%... .
5-arc sec 3 5-arc sec FOV around a 5 50 arc sec. The
optimal approach given by Eq. (17) is then used, and we
obtain with only one DM nearly the same results as those
for four DMs (the difference is only approximately 0.1% in
SR) in this particular portion of the FOV.

Fig. 9. Comparison of the optimal and MA approaches is for two
DMs and a four-layer atmospheric profile. The FOVs of interest
are, for the optimal approach, 20, 60, and 120 arc sec. The MA
approach (in which the results are independent of a given FOV)
is plotted as a dotted curve. The tomographic phase estimation
(four DMs in the four turbulent layers) is plotted (solid curve) for
comparison. All these curves are, in fact, an X cut (at Y 5 0) of
each corresponding iso-SR map presented in Fig. 8.
• Case of a misplaced DM with respect to the turbu-
lence profile (Fig. 7).

The atmospheric conditions are the same as those in
the case above; the only difference is in the DM position.
Here the DM is misplaced with respect to the turbulence
profile (DM located at 6.5 km). Of course, the model ap-
proximation gives a poor extrapolation, considering that
to regard all the turbulence as being concentrated at 6.5
km is a bad approximation. In Fig. 7, the MA results
(dashed curve) are strongly degraded compared with
those in Fig. 6. But it is shown that the optimal
reconstruction approach still gives good results, similar
to the well-placed DM case, in the specified 5-arc sec
3 5-arc sec FOV around a 5 50 arc sec. Since we have
taken into account the true Cn

2 profile, the optimal ap-
proach is able to find the best DM deformation to optimize
the correction in the direction of the science object, even if
the DM position is far from the optimum.

To summarize, even if we have only one GS, the best
way to optimize the correction in a large FOV is to have
the same number of DMs as the number of turbulent lay-
ers. Of course, this is impossible for practical reasons;
we have then shown that the use of the information on
the true Cn

2 profile in the reconstruction process yields im-
pressive results even if we have only one DM. This ap-
proach could therefore be used in conventional AO sys-
tems (case of one DM at 0 km; that is, in the pupil plane)
to increase their performance in the field when the Cn

2

measurements are available.
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However, high and quasi-uniform correction quality in
the whole FOV cannot be achieved with only one GS, and
in Subsection 4.D.2 three-GS configurations are studied.

2. Multi-Guide-Star and Multi-Deformable-Mirror
System
Now let us consider a more complex MCAO system (case c
of Subsection 4.B) composed of two DMs and three GSs lo-
cated on the vertices of an equilateral triangle (GS
separation 5 70 arc sec). For the two-DM system, we
plot in Figs. 8 and 9 a comparison between the optimal
reconstruction method (for different FOVs of interest:
20, 60, and 120 arc sec) and the MA reconstruction
method. The best-performance case, obtained with four
DMs conjugated in the four turbulent layers (case d), is
also plotted for comparison.

Figures 8 and 9 show the appeal of the optimal phase
reconstruction approach, which allows an optimal recon-
struction in the FOV of interest $a%FOV . For example, let
us consider a FOV of interest centered on the optical axis
and having a size of 20, 60, or 120 arc sec. With only two
DMs, the correction is nearly the same as the best perfor-
mance obtained with the four-DM system. The correc-
tion at the center of the FOV, which is equal only to 31%
(in terms of SR) with the MA approach, is equal to 49.3%
for the 20-arc sec 3 20-arc sec optimized area, 48.5% for
the 60-arc sec 3 60-arc sec optimized area, and 47% for
the 120-arc sec 3 120-arc sec optimized area. The SR for
the limit case of four DMs is equal to 49.6%. We note the
significant increase of the SR when using the true Cn

2 pro-
file in the optimal approach. A very slow decrease of on-
axis performance with increasing FOV of interest is ob-
served.

Note that in both the full tomographic and the MA case
the best reconstruction is achieved in the GS directions.
Of course, it is important that the FOV of interest be well
specified, since outside this region of interest the SR de-
creases quickly. This is a consequence of the tight com-
promise performed in the optimal estimation.

Fig. 10. Comparison of the optimal (dashed curve) and the MA
(dotted curve) approach for two DMs and a four-layer atmo-
spheric profile. The FOV of interest is, for the optimal ap-
proach, two areas of 5-arc sec diameter located at 260 and 60 arc
sec. The tomographic phase estimation (four DMs in the four
turbulent layers) is plotted (solid curve) for comparison.
Another example is presented in Fig. 10, where the op-
timized FOV consists of two areas located at 260 and 60
arc sec (the size of each area is only 5 arc sec in diameter).
In that case, for the 260-arc sec position the SR goes from
7.2% (two-DM MA reconstruction) to 23% (two-DM opti-
mal reconstruction), and for the 60-arc sec position the
corresponding SR goes from 27% to 44%. Of course, we
have globally lost in the 150-arc sec 3 150-arc sec FOV,
but we have optimized the correction in the two areas of
interest.

5. CONCLUSION
In this paper, we have presented an optimal phase recon-
struction for MCAO systems. This optimal approach de-
rives from a MMSE estimator that minimizes the mean
residual phase variance in the FOV of interest. This op-
timal approach accounts for the fact that the number of
DMs is always smaller than the number of atmospheric
layers. It is shown to correspond to a full tomographic
reconstruction of the turbulence volume followed by a pro-
jection on the DMs. This optimal approach requires a
good knowledge of the Cn

2 profile, and therefore a gener-
alized SCIDAR must be coupled to the MCAO system.
Even if the mirror positions are not well adapted to the
current Cn

2 profile, the knowledge of this profile is incor-
porated into our estimator, which therefore provides a
quasi-ultimate performance in the FOV of interest.

For comparison, we show the result obtained with a
cruder approach. An equivalent Cn

2 profile composed of a
small number of ELs (equal to the number of DMs) is
computed, and we assume that each DM matches an EL.
This can be an interesting alternative when only a crude
Cn

2 profile knowledge is available.
In both cases, great care has been taken to regularize

the inverse problem. This well-chosen regularization
brings a nonnegligible gain in the phase reconstruction
for a large FOV, compared with that from a classical least-
squares estimation using a truncated SVD. To achieve a
given performance, a system using an optimized approach
will need fewer GSs and hence will gain in terms of sky
coverage (if natural GSs are used) or system complexity
(if laser GSs are used). Of course, high SRs in a large
FOV require a larger number of GSs and a slight increase
of DM number. However, even in such demanding condi-
tions, the optimized reconstructor still limits the increase
of the system complexity.

In the present paper, we consider only an open-loop
case (which allows us to use the turbulent phase covari-
ance matrix), but future work should include a complete
closed-loop modeling.

APPENDIX A: MINIMUM-MEAN-SQUARE-
ERROR SOLUTION
1. Matrix Differentiation
Let us first recall some important results, used in the pa-
per, on the theory of matrix differentiation.33 Let us con-
sider two matrices A and B and define the first derivative
of A with respect to B as follows:
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]A
]B 5 F ]A

]B11

¯

]A
]B1n

] ]

]A
]Bm1

¯

]A
]Bmn

G . (A1)

Now let us suppose that A, B, and C are real matrices and
that x is a vector. Then the following properties hold:

• ]A/]BT 5 (]AT/]B)T.
• (]/]B)@trace(BA)# 5 (]/]B)@trace(ATB)# 5 (]/]B)

3 @trace(AB)# 5 AT.
• (]/]B)@trace(BTA)# 5 (]/]B)@trace(BAT# 5 A.
• (]/]B)@trace(ABC)# 5 ATCT.
• (]/]B)@trace(BAB)T)] 5 2BA.
• (]/]B)(xTBABTx) 5 2xxTBA, which leads to (]/]B)

3 @trace(CTBABTC)# 5 2CTCBA.

2. Optimal Minimum-Mean-Square-Error Solution
The goal is to derive the MMSE criterion defined in Eq.
(16) with respect to W. First, let us recall that for a given
matrix A and a given vector v, we have the following re-
lation: iAvi2 5 trace@Av(Av)T#. Then, assuming that
the noise and turbulent phase statistics are independent,
Eq. (16) becomes

e 5 E $a%FOV
trace@~Ma

NELWMNGS

Nt 2 Ma
Nt!

3 ^ ff T&~Ma
NELWMNGS

Nt 2 Ma
Nt!T

1 Ma
NELW^nnT&~Ma

NtW!T#da. (A2)

^ ff T& (^nnT&) are denoted Cf (Cn) and defined as

Cf 5 F ^ f1f1
T& 0 0 0 0

0 � 0 0 0

0 0 ^ f jf j
T& 0 0

0 0 0 � 0

0 0 0 0 ^ fNt
fNt

T &

G ,

Cn 5 F ^n1n1
T& 0 0 0 0

0 � 0 0 0

0 0 ^nini
T& 0 0

0 0 0 � 0

0 0 0 0 ^nNGS
nNGS

T &

G , (A3)

which can be seen as an Nt-layer (NGS-GS) turbulence
(noise) covariance matrix. Note that each ^ f jf j

T& is the
Kolmogorov covariance matrix defined for the jth layer.
Note that we have assumed that all the turbulent layers
are statistically independent,21 as well as the noise on
each GS measurement. Finally, the criterion to be mini-
mized with respect to W is
e 5 E
$a%FOV

trace@Ma
NtCf~Ma

Nt!T

1 Ma
NELWMNGS

Nt Cf~MNGS

Nt !TW T~Ma
NEL!T

2 2Ma
NtCf~MNGS

Nt !TW T~Ma
NEL!T

1 Ma
NELWCnW T~Ma

NEL!T#da. (A4)
Using the formulas of the matrix differentiation described
in Appendix A.1, we obtain

]e

]W 5 E
$a%FOV

@~Ma
NEL!TMa

NELWMNGS

Nt Cf~MNGS

Nt !T

2 ~Ma
NEL!TMa

NtCf~MNGS

Nt !T

1 ~Ma
NEL!TMa

NtWCn#da 5 0, (A5)
where 0 is the null matrix (matrix with all elements equal
to 0). Equation (A5) leads to the final result:

W 5 F E
$a%FOV

~Ma
NEL!TMa

NEL daG1F E
$a‰FOV

~Ma
NEL!TMa

Nt daG
3 Cf~MNGS

Nt !T@MNGS

Nt Cf~MNGS

Nt !T 1 Cn# 2 1, (A6)

where A1 denotes the generalized inverse of the matrix
A.
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