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ABSTRACT: 
 
Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-
area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction 
accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the 
number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human 
resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired 
hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to 
instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology 
based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, 
which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem 
by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-
validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of 
spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis 
proves efficiency of fused lasso and image texture in biomass estimation of tropical forests. 
 
 

1. INTRODUCTION 

Tropical rain forests store large amount of carbon in plant 
material and soil (Jaenicke et al., 2008). Disturbance of those 
forest, such as deforestation, forest degradation, forest fire, and 
illegal logging, provides emission of carbon dioxide (CO2) which 
is a major driver of climate changes (Werf et al., 2009; Hansen et 
al., 2013). Especially tropical peatland forest is a notable carbon 
dioxide source, which sinks and stores huge amount of carbon 
consisted of dead and decomposed plant material accumulated 
over thousands of years (Jaenicke et al., 2008). Carlson et al. 
(2012) estimated that peatland carbon emissions amounted to 
35% of gross carbon emissions from 1990 to 2010. Therefore, 
successive monitoring tropical peat forests is important for 
controlling and/or mitigating the global climate changes (DeFries 
et al., 1999; Foster  et al., 2003; Patenaude  et al., 2005; 
Morehouse  et al., 2008). A key driver for those monitoring 
activity is the United Nations Reducing Emissions from 
Deforestation and Degradation (UN-REDD+) programme, which 
needs for the development of robust and replicable methods for 
net accounting of carbon emissions (Cutler et al., 2012). In 
practical cases, government and environmental scientists have 
depended on official forest statistics to calculate the gross 
emission, which has poor temporal coverage and various 
definitions of forest degradation (Grainger, 2010). However, 
those monitoring demands quantifying of the carbon emission 
with accurate and precise methods considering forest carbon 
dynamics (Brown, 2002; Le Toan et al., 2011).  
Forest inventory data, which is one of those quantified data, are 
collected by two types of activity: follow-up surveys of forest 
resources over large areas, such as at the national level, and the 
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accumulation of detailed forest data at the ground level. To 
achieve high accuracy, such detailed information has been 
mainly collected in visual field surveys by experts (Hyyppä, 
2001). However, considering the acquisition of large-area forest 
inventories, these field measurement activities require a large 
amount of time, money, and human resources (Segura et al., 
2005; Seidel et al., 2011; Wang et al., 2011). In contrast, since 
remote sensing data, which is obtained by wide-area observation 
at a single time, has become popular in the last few decades 
(Rosenqvist et al., 2003; Masek et al. 2008), estimating forest 
biomass from remote sensing is expected to contribute the 
monitoring activity. Several studies have already reported the 
benefits of remote sensing data in reducing the total survey cost 
and improving the estimation accuracy by frequent observation 
(Dalponte, 2014).  
Over the last decade, the remote sensing data used in many 
studies on biomass estimation were acquired from multispectral 
sensor, synthetic aperture radar (SAR), and LiDAR (Lu et al., 
2014). In recent years, airborne hyperspectral sensors with 
around 100–200 observation bands and high spatial/spectral 
resolution have become common. Those hyperspectral sensor 
data with continuous spectral information enable detailed 
analysis for distinguishing of tree species (Clark et al., 2005; 
Martin et al., 1998; Dalponte et al., 2009) and biomass estimation 
(Axelsson et al., 2013), with LiDAR data (Anderson et al., 2008; 
Clark et al., 2011; Vaglio et al., 2014). Furthermore, fusion of not 
only those spectral data but also spatial information, such as 
morphological profiles and texture information, has enough 
potential to improve the accuracy in case of non-parametric 
models (Fauvel et al., 2008; Feret et al., 2013; Fauvel et al., 2013). 
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To handle high-dimensional feature spaces of hyperspectral data, 
many studies have used support vector machines (SVM) as a 
classification method (Mountrakis et al., 2011) in the non-
parametric model and Partial Least Squares (PLS) regression  as 
a biomass prediction model (Vaglio et al., 2014); however, there 
is a concern about a small sample size problem which is widely 
exist as overfitting in using high dimensional data where the 
number of training samples is smaller than the dimensionality of 
the samples due to limitation of require time, cost, and human 
resources for field surveys in practical monitoring cases. 
Therefore, the prediction models often result in the poor 
generalization capability (Pappu, 2014). Considering sensor 
mechanism and practical measurement, energy acquired in each 
band is not enough to generate high signal-to-noise ratio (S/N) 
due to the very narrow band interval of typical hyperspectral 
imaging spectrometers (Gao et al., 2013). The noise in the 
hyperspectral data can be categorized in two types: periodic noise 
and random noise. The periodic noise can be removed using 
suitable procedures considering its fixed pattern. However, the 
random noise cannot be removed completely due to 
unpredictable pattern (Landgrebe et al., 1986; Corner et al., 2003) 
Therefore spectral features in hyperspectral imagery can provide 
the poor performance of the prediction model as a result of noise 
influence. Also, mass spectrometry data, in not only remote 
sensing but also other fields, usually have unwanted local or 
global shifts of peaks due to instrumental instability or small 
differences in experimental conditions. This peak shift may 
weaken the strength of rich information from hyperspectral data 
in statistical analyses. 
Our contribution of this study is three-fold: we 1) introduce a 
pixelwise biomass prediction model with hyperspectral data 
which have strength to the small-sample-size problem; 2) 
propose a biomass prediction methodology mitigating the effects 
of noise and peak shift; 3) apply combination of those spectral 
model and spatial information to the prediction models to 
improve the prediction accuracy. These proposed methodologies 
were applied to airborne hyperspectral data collected over 
Hampangen in Central Kalimantan, Indonesia. After pre-
processing consisting of atmospheric correction and mitigation 
of radiometric distortion, the corrected hyperspectral data and 
biomass data from field surveys are subjected to our proposed 
regression models to obtain a pixelwise biomass prediction 
model. To evaluate these performance, we compared the 
prediction accuracy with other ordinary regression model in 5-th 
fold cross-validation. 
 

2. STUDY SITE AND MATERIALS 

2.1 Study Area 

The study area is located in Hampangen in Central Kalimantan, 
Indonesia (113º 30’ 18” E, 2º 6’ 43” S) (see Figure 1), which has 
typical and many kinds of peat swamp forests. Hampangen also 
has disturbed forests damaged by wild fire in multiple years, 
especially in 1997 and 2002 when forest fire on a broad scale was 

occurred. The north part of Hampangen still has large non-
damaged forest area with high biomass in which many trees 
diameter at breast height (DBH) are much large-size with more 
than 50 cm. 
 
2.2 Remote Sensing Data 

Hyperspectral data were obtained by HyMAP on July 16th 2011. 
The HyMAP sensor comprised 124 bands covering wavelengths 
of 436–2485 nm, with average spectral resolutions of 15 nm 
(436–1313 nm), 13 nm (1409–1800 nm) and 17 nm (1953– 2485 
nm). The ground sampling distance (GSD) was 4.5 m. Figure 2 
shows an enlarged RGB image from the hyperspectral data. The 
study site was covered by five image strips. 
 
2.3 Field Survey Data 

Field surveys were conducted in the study area in 2011 and 2012 
to assist with the gathering of training and validation data for the 
biomass prediction. 31 plots were selected for survey of tree 
species, tree stem diameter at breast height (DBH), and tree 
height for every tree inside a small quadrat which has a 20m 
square. Coordinates of each quadrat were determined with a 
handheld Global Positioning System (GPS) unit. 
The total above biomass (t/ha) of each tree was estimated with 
using those observations, specific density of each tree species (S, 
g cm-3), and the appropriate moist life zone allometric equation 
provided by (Brown et al, 1989) as  
 𝑌 = exp{−3.3012 + 0.9439 ln(𝐷2𝐻)}, (1) 
 
where 𝑌 (kg/tree) is biomass, 𝐷(cm) is DBH, and 𝐻(m) is tree 
height.  
 

3. METHODOLOGY 

3.1 Pre-processing 

The image strips acquired by HyMAP were atmospherically and 
geometrically corrected. The atmospheric correction was carried 
out using ATCOR-4 (Richter et al., 2002), which is based on 
MODTRAN code (Berk, 1989). However, there are still 
radiometric distortions along cross-track direction because of a 
sun-sensor-target geometry and airborne sensor with wide field 
of view, which can cause classification error and poor prediction 
in building statistical model (Galvão et al., 2013). There are some 
researches that solve the distortion (Müller et al., 1990). In this 
study, our proposed methods based on the former method 
(Palubinskas, 2003) combined with supervised classification. In 
a general radiation theory, the total radiance detected at sensor is 
shown as 

Figure 1. Location of test site 
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Figure 2. RGB image of test site from HyMAP data 
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 L𝑠(𝜑) = 𝑇𝜑𝐿𝐺 + 𝐿𝑝(𝜑),    (2) 

 
where L𝑠(𝜑) is the total radiance at sensor, 𝐿𝐺  is the radiance of 
the target, which is not depend on the view angle 𝜑 and is based 
on Lambertian surface, 𝑇𝜑 is an atmospheric transmittance and 𝐿𝑝(𝜑) is the path radiance between the target and the sensor. 
In our assumptions, the equation (2) is valid in all classes (e.g. 
forest, bare soil) and the coefficient is depend on the each class. 
To normalize the radiance at the various viewing angles 𝜑 to the 
radiance at the reference angle 𝜑0 , the following equation is 
applied to the image shown as 
 

L𝑠(𝜑0) = 𝑚(𝜑, 𝜑0)𝐿𝑠(𝜑) + 𝑏(𝜑, 𝜑0),             (3) 
 
where 𝑚 and 𝑏 are unknown coefficients to be estimated. The 
equation (3) describes the linear dependence at some viewing 
angle. Since the coefficients are different between each class, we 
use supervised or unsupervised classification to the radiance 
image before finding out coefficients of each class. In 
considering capture condition from an airplane, nadir angle from 
the sensor position is not suffer from the radiometric distortion. 
Therefore, we assume that the reference angle 𝜑0 is set to nadir 
direction. Based on these theoretical conditions, we build the 
empirical image-based radiometric normalization method for 
correcting the radiometric distortion from sensor viewing angle 
effects and BRDF effects. 
This correction of the radiometric distortions consists of several 
steps. Firstly, support vector machine (SVM) is applied to the 
atmospheric corrected data for extracting only forest area which 
is our main target of the following statistical analysis. Then, both 
an average line profile and a variance line profile were calculated. 
Two polynomial regressions were built for fitting the average line 
profile and the variance line profile based on the equation (3). 
Acquired correction formula is applied to the atmospheric 
corrected data for mitigating radiometric distortion.  
 
3.2 Biomass Estimation 

3.2.1 Texture Information: Existing researches (Lu 2005; 
Fauvel et al., 2008; Feret et al., 2013; Fauvel et al., 2013) show 
that combination of spectral data and spatial data is effective for 
high accurate forest classification models and biomass prediction 
models. In this study, texture information from the HyMAP data 
is calculated with Grey Level Co-occurrence Matrix (GLCM) 
texture measures (Haralick et al., 1973) describing spatial 
dependences in which two neighboring pixels separated by a 
given distance and a given angle occur within a moving window. 
We select 9 x 9 pixels as window size for the GLCM and 8 kinds 
of GLCM (Mean, Variance Homogeneity, Contrast, 
Dissimilarity, Entropy, Second Moment, and Correlation) are 
applied to the first principal component of all the hyperspectral 
bands. 
 
3.2.2 Lasso Regression for Small-Sample-Problem: While 
high dimensionality of hyperspectral data includes a large 
amount of rich information for biomass estimation, the small 
sample size problem due to the limited number of field survey 
plots results in risk of estimation model being overfitted to the 
training data. The common approach to solving this problem is to 
reduce the dimensionality of the dataset. Several techniques have 
been proposed to reduce the number of dimensions high-
dimensional data, such as transformation of the dimensionality, 
compression, or feature selection maintaining original 
dimensional space. As the predictors for feature transformation, 
PLS regression has been previously used in spectral analysis of 

tropical forest for biomass estimation (Peerbhay et al., 2013). In 
contrast, band selection as a method of feature selection 
maintaining original dimensional space is preferable owing to not 
only avoiding the overfitting but also its interpretability from the 
view point of end-users. In this study, lasso regression 
(Tibshirani, 1996) as the band selection method is applied as a 
pixelwise biomass prediction model owing to its robust and 
accurate model as well as its interpretability.  
Given a set of training data 𝑫 = {(𝑥𝑖𝑗 , 𝑦𝑖), 𝑖 = 1,2, ⋯ , 𝑛, 𝑗 =1,2, ⋯ 𝑝},  where x are spectral data, y are value of biomass 
acquired from field survey in this study, n is the number of bands, 
and p is the number of training data in this study. The ordinary 
least-squares (OLS) method is used to minimize the empirical 
error in the following least-squares to estimate the coefficient 
vector w: 
 minimize𝑤  12 ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗𝑝

𝑗=1 )2𝑛
𝑖=1 .                 (4) 

 
To decrease the dimensionality and obtain an interpretable model 
without sacrificing the prediction accuracy, sparse regularization 
is applied to the solution of the least-squares problem in (4) with 
a L1 penalty term attached as shown in (5), which is called lasso 
regression: 
 minimize𝑤  12 ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗𝑝

𝑗=1 )2𝑛
𝑖=1 + 𝜆 ∑|𝑤𝑗|𝑝

𝑗=1 .      (5) 

 
Here 𝜆 is a non-negative trade-off parameter, and w is coefficient 
vector. The L1 penalty term, the second term in (5), introduces 
sparsity to the optimal coefficient w, where the increasing 𝜆 
shrinks the coefficient w towards zero. 
 
3.2.3 Fused Lasso Regression for Noise and Peak Shift: 
The lasso regression can select the limited number of important 
spectral bands for biomass prediction by increase coefficients as 
zero. Although those selected bands with sparsity have strength 
to the small-sample-size problem, the random noise due to the 
very narrow bandwidth of the hyperspectral sensor negatively 
affects to the prediction model. One simple noise estimation 
algorithm uses the mean of standard deviations of several 
visually homogeneous regions as noise estimate (Gao et al., 
2013). However, the homogeneous areas within an image need to 
be manually selected in this method. This is not suitable for large 
images, such as remote sensing data. In contrast, reflectance of 
neighbour bands can be distinguished as homogeneous spectral 
value in the same pixel because each bandwidth of hyperspectral 
data is very narrow. As another problem, peak shift due to 
instrumental instability or small differences in experimental 
conditions may have a risk of poor prediction performance in the 
case that the selected bands by lasso regression don’t cover the 
shifted peaks. Therefore, selecting successive bands for the 
biomass prediction have potential for contributing to increasing 
S/N and avoiding poor prediction from peak shift.  
In this study, fused lasso regression is applied for the prediction 
model to select those successive bands which has sparsity in both 
the coefficients and their successive differences (Tibshirani et al., 
2005). Also, the fused lasso regression simultaneously selects a 
group of strongly correlated adjacent covariates. In this fused 
lasso, sparse regularization is applied to the solution of the least-
squares problem:  
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-8, 2016 

XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 

doi:10.5194/isprsannals-III-8-101-2016

 

103



minimize𝑤  12 ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑥𝑖𝑗𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆1 ∑|𝑤𝑗|𝑝
𝑗=1  

+𝜆2 ∑|𝑤𝑗 − 𝑤𝑗−1|𝑝
𝑗=2 .      (6) 

 
Here 𝜆1 is a non-negative trade-off parameter for L1 penalty term, 
and 𝜆2 is also a non-negative trade-off parameter for selecting 
groups of strongly correlated adjacent coefficient w and 
encouraging sparsity in differences of the coefficient w, in the 
third term of in (6). 
 

4. RESULTS AND DISCUSSION 

4.1 Preparation of Training and Validation Data 

Estimated biomass from field inventory measures in 31 field 
survey plots ranged from 11.57 to 349.69 t/ha. Since band 121-
124 of acquired hyperspectral data contained much noise, we 
used band 1-120 for our study. Figure 3 shows the comparison 
between without and with correction of radiometric distortion by 
our proposed method. The corrected image shows the enough 
performance for following processing. 
 
4.2 Comparison between Biomass Estimation Models 

Optimal band selection in lasso regression needs to be fix the 
parameter λ  in equation (5). 5th fold cross-validation was 
conducted to estimate optimal λ value. The effect of λ value on 
the overall prediction accuracy is shown in Figure 4(a), and the 
number of selected bands in each λ value shown in Figure 4(b). 
The minimum root-mean-square error (RMSE) was 68.24 t/ha 
when λ=2.57×10-4  was used. In that case, 13 bands were 
selected for the prediction model by the lasso regression. Table 1 
shows a comparison of the prediction performances between the 
lasso regression, multiple regression analysis (MRA) and PLS 
regression. The lasso regression provides much higher accuracy 
than other two methods, which confirms that the method of 
selecting bands have high performance in this case under the 
small-sample-size problem. 
To assess the selected spectral bands for biomass prediction 
model, we counted their appearances derived from the lasso 
regression in 50 times 5th fold cross-validation. Figure 5 shows 
the accumulated selected number of each band by the lasso 
regression in the 50 times cross-validation. Those selected bands 
had sparsity and the number was limited. This result indicates 
that the important bands for the prediction are limited and have 
sparsity. These sparsity has strength to the small-sample-size 
problem; however, it is susceptible to the effects of the peak shift 
and doesn’t have strength to the random noise. 
 
4.3 Successive Band Selection for the Biomass Estimation 

In the process of fused lasso regression for optimal band 
selection, the parameters 𝜆1 and 𝜆2 are necessary to be fixed to 
minimize the RMSE between prediction value and validation 
data value in equation (6). 5th fold cross-validation was 
conducted to estimate optimal 𝜆1 and 𝜆2 value. The effect of 𝜆1 
and 𝜆2  values on the overall prediction accuracy is shown in 
Figure 6(a), and the number of selected bands in each 𝜆1 and 𝜆2 
value shown in Figure 6(b). The minimum RMSE was minimum 
66.16 t/ha when λ1=2.68×10-4  and λ2=1.89×10-4  were used. In 
that case, 29 bands were selected for the prediction model by the 
fused lasso regression. The prediction performance of the fused 
lasso was higher than other methods, as shown in Table 1. This 

 
Figure 3. Reflectance data in this study site 

(a) without, and (b) with correction of radiometric distortion 
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Figure 4. Comparison of the results in lasso regression (a) 
effect of lambda on the overall prediction accuracy, (b) the 

number of selected bands in each lambda value 
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Figure 5. Accumulated selected number of each band by the 

lasso regression in 50 times cross-validation 
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Table 1 Comparison of prediction accuracy in 50 times cross-
validation 

 MRA PLS Lasso 
Fused 
lasso 

RMSE (t/ha) 204.96 121.20 68.24 66.16 
 

 
Figure 6. Comparison of the results in fused lasso regression  

(a) effect of 𝜆1 and 𝜆2 on the overall prediction accuracy,       
(b) the number of selected bands in 𝜆1 and 𝜆2 
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results proved that the fused lasso can provide high accurate 
biomass prediction model in considering practical use under the 
effects of the small-sample-size problem, the random noise, and 
peak shift. Figure 7 shows the accumulated selected number for 
the biomass prediction model in the 50 times cross-validation by 
the fused lasso to assess the selected bands. Comparing with that 
of the lasso regression, the selected bands by the fused lasso are 
successive and the values of coefficients are stable in neighbor 
bands. 
 
4.4 Comparison between Estimated Biomass Maps 

We evaluated the estimated biomass maps by applying our 
proposed methods with all the 31 samples to the hyperspectral 
data. Figure 8 shows the coefficient values of selected band by 
the lasso and the fused lasso regression, and Figure 9 is the 
estimated biomass map by each method (PLS, lasso, and fused 
lasso). Since this study site had limited area with very high 
biomass over 300 t/ha, the estimated map by PLS (Figure 9 (a)) 
is not reflected from local conditions. In contrast, the maps by 
lasso (Figure 9 (b)) and fused lasso (Figure 9 (c)) regression are 
very similar and describe the local condition accurately. 
Figure 10 shows spectral curves acquired from all the 31plots by 
the field survey plotted on spectral ranges of selected bands by 
the fused lasso and spectral bands of existing multispectral 
sensors. Although spectral ranges of the existing multispectral 
sensor don’t match the selected wavelength by the fused lasso, 
some spectral bands cover those selected wavelength excepting 
in 1200-1600nm. Therefore, the comparison of the prediction 
performance between the existing sensor and the fused lasso is 
important as the next steps. Qualifying the effect of absence of 
1200-1600nm for biomass estimation is also necessary for the 
future practical use with existing multispectral sensors. 
 
4.5 Fusion of Spectral and Spatial Data 

We carried out the fusion of spectral and spatial data for 
improving the performance of biomass prediction. GLCM 
indexes was applied to the hyperspectral images for calculating 
spatial information, and 5th fold cross-validation in 50 times was 
conducted for the prediction performance assessment. In case of 
the lasso regression, 120 spectral bands and 8 GLCM indexes 
were used as training and validation data. Figure 11 shows the 
accumulated selected number in each band and GLCM index. 
This result shows “Variance”, “Mean”, “Correlation”, and 
“Contrast” of GLCM indexes are important for biomass 
prediction. In the procedure of the fused lasso regression, the 
selected bands by the fused lasso with only spectral data shown 
in Figure 8(b) and the selected GLCM indexes by the lasso 
regression shown in Figure 11(b) were applied to MRA as 
training and validation data. 
Table 2 shows comparison of prediction performances between 
each method with fusion of spectral and texture information. This 
result proves the fused lasso with spectral and spatial information 
has enough potential to provide most accurate biomass prediction 
model. 
 

 
 

 
Figure 7. Accumulated number of each spectral bands selection 

in 50 times cross-validation by fused lasso regression 
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Figure 8. Coefficient values of selected band by (a) lasso and 
(b) fused lasso 
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Figure 9. Estimated biomass maps by (a) PLS, (b) lasso, and (c) fused lasso 
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Figure 10. Spectral curves acquired from all the field survey 

plots with spectral ranges of selected bands by fused lasso and 
spectral bands of existing multispectral sensors 
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5. CONCLUSIONS 

We presented the efficiency of the fused lasso regression for 
forest biomass prediction with spectral and spatial information 
from hyperspectral data. MRA, PLS, and lasso regression were 
used for comparison of prediction performance. The 
hyperspectral data were captured over the Hampangen in Central 
Kalimantan, Indonesia, which has typical and many kinds of peat 
swamp forest and diversity of forest biomass caused from 
disturbance by forest fire, logging, etc. Our results indicated that 
the lasso regression and the fused lasso regression had a high 
accuracy and generalization performance without overfitting 
from the small-sample-size problem. Especially the fused lasso 
proved most accurate prediction performance, which has strength 
against random noise and peak shift on hyperspectral data in 
considering practical use. The estimated biomass map by the 
fused lasso proved the high prediction performance and high 
consistency with local condition.  Moreover, addition of spatial 
information by GLCM to spectral data improved the prediction 
accuracy in all the methods. Especially, the performance of the 
fused lasso with combination of spectral data and GLCM indexes 
achieved highest accuracy (RMSE=62.62 t/ha).  
The number of samples acquired from the field survey in this 
study may not be enough for existing biomass prediction 
methods; however, our proposed method proved high 
performance under this condition. It seems that the prediction 
accuracy can be improved depending on the increasing the 
number of samples from field survey. Since hyperspectral data 
and field survey data may contain potential problems as 
discussed above for practical forest monitoring, the high biomass 
prediction methodology as shown in this study considering 
practical monitoring conditions has enough potential to be used 

widely for future monitoring activity of tropical rain forest and 
contribution to the REDD+ activities. 
Those selected bands by the fused lasso have some similarity to 
the sensor bands of WorldView-3 and other kinds of existing 
sensors. Therefore, fusion of those sensors and upcoming sensors 
may have possibility to provide high performance models for 
biomass estimation. Furthermore, the selected successive bands 
by the fused lasso can be important information for designing 
spectral configuration of new type multispectral sensors focusing 
on biomass estimation with limited number of spectral bands. 
Since this small number of spectral bands contributes to 
decreasing the total size and weight of sensor devices, it may 
enable to be mounted on small- and/or nano-satellites and light 
weight unmanned aerial vehicles (UAVs). The use of those 
satellites and UAVs with the new sensors, designed based on the 
information from the fused lasso focusing on biomass estimation, 
facilitates forest monitoring in terms of cost and accuracy. 
Therefore this high accurate monitoring method and devices can 
be deployed and used widely for contribution to conservation of 
forest condition. 
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