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OPTIMAL WEIGHTED NEAREST NEIGHBOUR CLASSIFIERS'

BY RICHARD J. SAMWORTH
University of Cambridge

We derive an asymptotic expansion for the excess risk (regret) of a
weighted nearest-neighbour classifier. This allows us to find the asymptoti-
cally optimal vector of nonnegative weights, which has a rather simple form.
We show that the ratio of the regret of this classifier to that of an unweighted
k-nearest neighbour classifier depends asymptotically only on the dimen-
sion d of the feature vectors, and not on the underlying populations. The
improvement is greatest when d = 4, but thereafter decreases as d — oo.
The popular bagged nearest neighbour classifier can also be regarded as a
weighted nearest neighbour classifier, and we show that its corresponding
weights are somewhat suboptimal when d is small (in particular, worse than
those of the unweighted k-nearest neighbour classifier when d = 1), but are
close to optimal when d is large. Finally, we argue that improvements in the
rate of convergence are possible under stronger smoothness assumptions, pro-
vided we allow negative weights. Our findings are supported by an empirical
performance comparison on both simulated and real data sets.

1. Introduction. Supervised classification, also known as pattern recogni-
tion, is a fundamental problem in Statistics, as it represents an abstraction of the
decision-making problem faced by many applied practitioners. Examples include a
doctor making a medical diagnosis, a handwriting expert performing an authorship
analysis, or an email filter deciding whether or not a message is genuine.

Classifiers based on nearest neighbours are perhaps the simplest and most intu-
itively appealing of all nonparametric classifiers. The k-nearest neighbour classi-
fier was originally studied in the seminal works of Fix and Hodges (1951) [later
republished as Fix and Hodges (1989)] and Cover and Hart (1967), but it retains its
popularity today. Surprisingly, it is only recently that detailed understanding of the
nature of the error probabilities has emerged [Hall, Park and Samworth (2008)].

Arguably the most obvious defect with the k-nearest neighbour classifier is that
it places equal weight on the class labels of each of the k nearest neighbours to the
point x being classified. Intuitively, one would expect improvements in terms of
the misclassification rate to be possible by putting decreasing weights on the class
labels of the successively more distant neighbours.
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The first purpose of this paper is to describe the asymptotic structure of the
difference between the misclassification rate (risk) of a weighted nearest neighbour
classifier and that of the optimal Bayes classifier for classification problems with
feature vectors in R?. Theorem 1 in Section 2 below shows that, subject to certain
regularity conditions on the underlying distributions of each class and the weights,
this excess risk (or regret) asymptotically decomposes as a sum of two dominant
terms, one representing bias and the other representing variance. For simplicity of
exposition, we will deal initially with binary classification problems, though we
also indicate the appropriate extension to general multicategory problems.

Our second contribution, following on from the first, is to derive the vector of
nonnegative weights that is asymptotically optimal in the sense of minimising the
misclassification rate; cf. Theorem 2. In fact this asymptotically optimal weight
vector has a relatively simple form: let n denote the sample size and let w,; denote
the weight assigned to the ith nearest neighbour (normalised so that }"7_, w,; =
1). Then the optimal choice is to set k* = | B*n*/@*% | [an explicit expression for
B* is given in (2.4) below] and then let

1 d d A42/d g 1+2/d
11 |l S st - -
(1.1) Wni = fori=1,..., k%

0, fori =k*+1,...,n.

Thus, in the asymptotically optimal weighting scheme, only a proportion
O (n=4/@+9y of the weights are positive. The maximal weight is almost (1 +d/2)
times the average positive weight, and the discrete distribution on {1, ...,n} de-
fined by the asymptotically optimal weights decreases in a concave fashion when
d =1, in a linear fashion when d = 2 and in a convex fashion when d > 3; see
Figure 1. When d is large, about 1/e of the weights are above the average positive
weight.

Another consequence of Theorem 2 is that k* is bigger by a factor of
{ 2(dd—:;)}d/ (@+4) than the asymptotically optimal choice of k for traditional, un-
weighted k-nearest neighbour classification. It is notable that this factor, which
is around 1.27 when d = 1 and increases towards 2 for large d, does not de-
pend on the underlying populations. This means that there is a natural correspon-
dence between any unweighted k-nearest neighbour classifier and one of optimally
weighted form, obtained by multiplying & by this dimension-dependent factor to
obtain the number k" of positive weights for the weighted classifier, and then using
the weights given in (1.1) with £’ replacing k*.

In Corollary 3 we describe the asymptotic improvement in the excess risk that
is attainable using the procedure described in the previous paragraph. Since the
rate of convergence to zero of the excess risk is O (n=*@+9y in both cases, the
improvement is in the leading constant, and again it is notable that the asymptotic
improvement does not depend on the underlying populations. The improvement
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FIG. 1. Optimal weight profiles at different dimensions. Here, k* = 100, and the figure displays the
positive weights in (1.1), scaled to have the same weight on the nearest neighbour at each dimension.

is relatively modest, which goes some way to explaining the continued popularity
of the (unweighted) k-nearest neighbour classifier. Nevertheless, for d < 15, the
improvement in regret is at least 5%, though it is negligible as d — oo; the greatest
improvement occurs when d = 4, and here it is just over 8%. See Figure 2.
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FIG. 2. Asymptotic ratio of the regret of the optimally weighted nearest neighbour classifier to that
of the optimal k-nearest neighbour classifier, as a function of the dimension d of the feature vectors.
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Another popular way of improving the performance of a classifier is by bag-
ging [Breiman (1996, 1999)]. Short for “bootstrap aggregating”, bagging involves
combining the results of many empirically simulated predictions. Empirical analy-
ses [e.g., Steele (2009)], have reported that bagging can result in improvements
over unweighted k-nearest neighbour classification. Moreover, as explained by
Biau, Cérou and Guyader (2010), understanding the properties of the bagged near-
est neighbour classifier is also of interest because they provide insight into ran-
dom forests [Breiman (2001)]. Random forest algorithms have been some of the
most successful ensemble methods for regression and classification problems, but
their theoretical properties remain relatively poorly understood. When bagging the
nearest neighbour classifier, we can draw resamples from the data either with-
or without-replacement. We treat the “infinite simulation” case, where both ver-
sions take the form of a weighted nearest neighbour classifier with weights decay-
ing approximately exponentially on successively more distant observations from
the point being classified [Hall and Samworth (2005), Biau, Cérou and Guyader
(2010)]. The crucial choice is that of the resample size, or equivalently the sam-
pling fraction, that is, the ratio of the resample size to the original sample size. In
Section 3, we describe the asymptotically optimal resample fraction (showing in
particular that it is the same for both with- and without-replacement sampling) and
compare its regret with those of the weighted and unweighted k-nearest neighbour
classifiers.

In Section 4, we consider the problem of choosing optimal weights without the
restriction that they should be nonnegative. The situation here is somewhat anal-
ogous to the use of higher order kernels for classifiers based on kernel density
estimates of each of the population densities. In particular, subject to additional
smoothness assumptions on the population densities, we find that powers of n ar-
bitrarily close to the “parametric rate” of O (n~') for the excess risk are attainable.
Section 5 presents the results of an empirical performance comparison of different
classifiers studied in the paper, and shows that the asymptotic theory predicts the
empirical performance well. The main steps in the proof of Theorem 1 are given
in the Appendix; the remaining details can be found in the supplementary material
[Samworth (2012)], along with the other proofs and some ancillary material.

Classification has been the subject of several book-length treatments, including
Hand (1981), Devroye, Gyorfi and Lugosi (1996) and Gordon (1999). In particular,
classifiers based on nearest neighbours form a central theme of Devroye, Gyorfi
and Lugosi (1996). The review paper by Boucheron, Bousquet and Lugosi (2005)
contains 243 references and provides a thorough survey of the classification lit-
erature up to 2005. More recently, Audibert and Tsybakov (2007) have discussed
the relative merits of plug-in classifiers (a family to which weighted nearest neigh-
bour classifiers belong) and classifiers based on empirical risk minimisation, such
as support vector machines [Cortes and Vapnik (1995), Blanchard, Bousquet and
Massart (2008), Steinwart and Christmann (2008)].
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Weighted nearest neighbour classifiers were first studied by Royall (1966); see
also Bailey and Jain (1978). Stone (1977) proved that if max;<;<, wy; — Oasn —
oo and Z;‘:l wp; — 1 for some k = k,, with k/n — 0 as n — oo, then risk of the
weighted nearest neighbour classifier converges to the risk of the Bayes classifier;
see also Devroye, Gyorfi and Lugosi (1996), page 179. As mentioned above, this
work attempts to study the difference between these risks more closely. Weighted
nearest neighbour classifiers are also related to classifiers based on kernel estimates
of each of the class densities; see, for example, the review by Raudys and Young
(2004), as well as Hall and Kang (2005). The O (n~%@*%) rates of convergence
obtained in this paper for nonnegative weights are the same as those obtained by
Hall and Kang (2005) under similar twice-differentiable conditions with second-
order kernel estimators of the class densities. Further related work includes the
literature on highest density region or level set estimation [Polonik (1995), Rigollet
and Vert (2009), Samworth and Wand (2010)].

Hall and Samworth (2005) and Biau and Devroye (2010) proved an analogous
result for the bagged nearest neighbour classifier to the Stone (1977) result de-
scribed in the previous paragraph. More precisely, if the resample size m = m,,
used for the bagging diverges to infinity, and m/n — 0 as n — 00, then the risk of
the bagged nearest neighbour classifier converges to the Bayes risk. Note that this
result does not depend on whether the resamples are taken with or without replace-
ment from the training data. Biau, Cérou and Guyader (2010) have recently proved
a striking rate of convergence result for the bagged nearest neighbour estimate; this
is described in greater detail in Section 3.

2. Main results. Let (X,Y), (X1, Y1), (X2, Y2), ... be independent and iden-
tically distributed pairs taking values in R¢ x {1, 2}. We suppose that P(Y = 1) =
7 =1—-P =2) for some 7 € (0,1) and that (X|Y =r) ~ P, forr = 1,2,
where P, is a probability measure on R?. We write P = P| + (1 — ) P, for the
marginal distribution of X and let n(x) = P(Y = 1|X = x) denote the correspond-
ing regression function.

A classifier C is a Borel measurable function from RY to {1, 2}, with the in-
terpretation that the point x € R¥ is classified as belonging to class C(x). The
misclassification rate, or risk of C over a Borel measurable set R C R is defined
to be

RR(C) =P[{C(X)£Y}N{X e R}].

We also write R(C) for this quantity when R = R?. The classifier which min-
imises the risk over R is the Bayes classifier, given by
CBayes(x): { L, ifn(x)>1/2,
2, otherwise.
Its risk is

RR(CBayeS)=/Rmin{n(x), 1—n(x)}dP(x).
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For each n € N, let w, = (wy;)?_; denote a vector of weights, normalised
so that " ;wy; = 1. Fix x € R and an arbitrary norm | - || on R4, and
let (X, Yw)),...,(X@), Y@u)) denote a permutation of the training sample
(X1,Y1),...,(Xy, Yy,) such that || X () — x| <--- < [| X — x||. We define the
weighted nearest neighbour classifier to be

n

Lo ity weilgy, =1 > 1/2,
i=1

2, otherwise.

Y (x) =

We also write (A?,‘,’”vl“,ln where it is necessary to emphasise the weight vector, for
example, when comparing different weighted nearest neighbour classifiers. Our
initial goal is to study the asymptotic behaviour of

Rr(CY™) =P[{Cy™(X) # Y }ixer)]-

It will be convenient to define some notation: for a smooth function g: R¢ — R,
we write g(x) for its gradient vector at x, and g;(x) for its jth partial derivative
at x. Analogously, we write g(x) for the Hessian matrix of g at x, and g (x) for
its (j, k)th element. We let Bs(x) = {y € R4 ly — x|| <&} denote the closed ball
of radius & centered at x in the norm || - ||, and let a; denote the d-dimensional
Lebesgue measure of the unit ball By (x). Thus, a; = 291 (1 4+ l/p)d/ ra+d4d/p)
when || - || is the £,-norm. We will make use of the following assumptions for our
theoretical results:

(A.1) Theset R C R is a compact d-dimensional manifold with boundary dR.

(A.2) ThesetS = {x € R:n(x) = 1/2} is nonempty. There exists an open sub-
set Uy of R¥ that contains S and such that the following properties hold: first,
is continuous on U \ Uy, where U is an open set containing R; second, the re-
strictions of P; and P, to Uy are absolutely continuous with respect to Lebesgue
measure, with twice continuously differentiable Radon—-Nikodym derivatives f}
and f>, respectively.

(A.3) There exists p > 0 such that [pa [|x]|° d P(x) < 0o. Moreover, for suffi-
ciently small § > 0, the ratio P(B;s(x)) / (ag8?) is bounded away from zero, uni-
formly for x € R.

(A.4) Forall x € S, we have n(x) £ 0, and for all x € SN IR, we have a'n(x) *
0, where dn denotes the restriction of 1 to dR.

The introduction of the compact set R finesses the problem of performing classi-
fication in the tails of the feature vector distributions. See, for example, Hall and
Kang (2005), Section 3, for further discussion of this point and related results,
as well as Chanda and Ruymgaart (1989). Mammen and Tsybakov (1999) and
Audibert and Tsybakov (2007) impose similar compactness assumptions for their
results. The set R may be arbitrarily large, though the larger it is, the stronger are
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the requirements in (A.2). Although as stated, the assumptions on R are quite gen-
eral, little is lost by thinking of R as a large closed Euclidean ball. Its role in the
asymptotic expansion of Theorem 2 below is that it is involved in the definition
of the set S, which represents the decision boundary of the Bayes classifier. We
will see that the behaviour of f] and f> on the set S is crucial for determining the
asymptotic behaviour of weighted nearest neighbour classifiers.

The second part of (A.3) asks that the ratio of the P-measure of small balls to the
corresponding d-dimensional Lebesgue measure is bounded away from zero. This
requirement is satisfied, for instance, if P; and P, are absolutely continuous with
respect to Lebesgue measure, with Radon—Nikodym derivatives that are bounded
away from zero on the open set U.

The assumption in (A.4) that n(x) # 0 for x € S asks that f; and f>, weighted
by the respective prior probabilities of each class, should cut at a nonzero angle
along S. In the language of differential topology, this means that 1/2 is a regular
value of the function 5, and the second part of (A.4) asks for 1/2 to be a regular
value of the restriction of 1 to 9R. Together, these two requirements ensure that S
is a (d — 1)-dimensional submanifold with boundary of R, and the boundary of
Sis {x € 9R :n(x) = 1/2} [Guillemin and Pollack (1974), page 60].

The requirement in (A.4) that /(x) # 0 for x € § is related to the well-known
margin condition of, for example, Mammen and Tsybakov (1999) and Tsybakov
(2004); when it holds (and in the presence of the other conditions), there exist
¢, C > 0 such that

(2.1) ce <P(In(X)—1/2|<enXeR)<Ce

for sufficiently small ¢ > 0; see Tsybakov (2004), Proposition 1. A proof of this
fact, which uses Weyl’s tube formula [Gray (2004)], is given after the completion
of the proof of Theorem 1 in the supplementary material [Samworth (2012)]. In
this sense, we work in the setting of a margin condition with the power parameter
equal to 1.

We now introduce some notation needed for Theorem 1 below. For 8 > 0, let
Wy, p denote the set of all sequences of nonnegative deterministic weight vectors
w, = (wp;)_, satisfying:

o YIwy =nF;

o n =Y ajwp)? <nF, where o = i'7?/4 — (i — 1)!+2/4; note that this
latter expression appears in (1.1);

o n%/d D iyt Wai/ 2=y diwpi < 1/logn, where ky = ln'=#];

o X7ty Wai/ Xioy wy; < 1/logn;

o Y wl /T w23 < 1/logn.

Observe that W, g, D W), g, for B1 < B. The first and last conditions ensure that
the weights are not too concentrated on a small number of points; the second
amounts to a mild moment condition on the probability distribution on {1, ..., n}
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defined by the weights. The next two conditions ensure that not too much weight
(or squared weight in the case of the latter condition) is assigned to observa-
tions that are too far from the point being classified. Although there are many
requirements on the weight vectors, they are rather mild conditions when B is
small, as can be seen by considering the limiting case 8 = 0. For instance, for
the unweighted k-nearest neighbour classifier with weights w, = (w;;)?_, given
by wy; = k‘lll{lfifk}, we have that w, € W), g for small 8 > 0 provided that
max(n?, log2 n) < k < min(n1=#4/9 p1=P) Thus for the vector of k-nearest
neighbour weights to belong to W), 4 for all large n, it is necessary that the usual
conditions k — 0o and k/n — 0 for consistency are satisfied, and these conditions
are almost sufficient when 8 > 0 is small. The situation is similar for the bagged
nearest neighbour classifie—see Section 3 below.

The fact that the weights are assumed to be deterministic means that they de-
pend only on the ordering of the distances, not the raw distances themselves (as
would be the case for a classifier based on kernel density estimates of the popu-
lation densities). Such kernel-based classifiers are not necessarily straightforward
to implement, however: Hall and Kang (2005) showed that even in the simple sit-
uation where d = 1 and 7 f] and (1 — ) f> cross at a single point xg, the optimal
order of the bandwidth for the kernel depends on the sign of f1 (x0) fz (x0).

Continuing with our notational definitions, let f = 7 f; + (1 — 7) f». Define

S ejalng () fi @) + (1/2)n (x) £ ()

PREIpET

(2.2) a(x)=

’

where ¢j.a = [,p<1 v]2~ dv. Finally, let

L= %d\/old—l(xo) and

2.3) 8 TR0
By= [ LY (a0 avor' (x),

S Imxo)ll

where Vol“~! denotes the natural (d — 1)-dimensional volume measure that S
inherits as a subset of R?. Note that B; > 0, and B, > 0, with equality if and only
if a is identically zero on S. Although the definitions of Bj and B; are complicated,
we will see after the statement of Theorem 1 below that they are comprised of
terms that have natural interpretations.

THEOREM 1. Assume (A.1), (A.2), (A.3) and (A.4). Then for each B €
0, 1/2),

RR(CY™) — R (CBY) =y, (w) {1 + o(1))
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as n — oo, uniformly for w, € W, g, where

2
-2

i=1 i=1

Theorem 1 tells us that, asymptotically, the dominant contribution to the regret
over R of the weighted nearest neighbour classifier can be decomposed as a sum
of two terms. The two terms, constant multiples of Y""_; w2, and (31— | )%,
respectively, represent variance and squared bias contributions to the regret. It is
interesting to observe that, although the 0-1 classification loss function is quite
different from the squared error loss often used in regression problems, we never-
theless obtain such an asymptotic decomposition.

The constant multiples of the dominant variance and squared bias terms depend
only on the behaviour of f; and f> (and their first and second derivatives) on S,
as seen from (2.3). Moreover, we can see from the expression for B; in (2.3) that
the contribution to the dominant variance term in the regret will tend to be large
in the following three situations: first, when f () is large on S; second, when the
Vol?~! measure of S is large; and third, when [|7(-)|| is small on S. In the first two
of these situations, the probability is relatively high that a point to be classified
will be close to the Bayes decision boundary &, where classification is difficult. In
the latter case, the regression function n moves away from 1/2 only slowly as we
move away from S, meaning that there is a relatively large region of points near S
where classification is difficult. From the expression for B, in (2.3), we see that the
dominant squared bias term is also large in these situations, and also when a(-)? is
large on S. From the proof of Theorem 1, it is apparent that a(x) >, OZ';‘/);" is the
dominant bias term for Sy, (x) = 37| wy; L{y;=1) as an estimator of 1 (x). Indeed,
by a Taylor expansion,

E{S:(x)} = n(x)

=Y wyEn(X) — n(x)
i=1

"’anl (X(l)_x) ﬂ(x) + = Zwm (X(l)_x) ﬁ(x)(X(z)—x)}
1 1

The two summands in the definition of a(x) represent asymptotic approximations
to the respective summands in this approximation.
Consider now the problem of optimising the choice of weight vectors. Let

d/(d+4) d/(d+4)
(2.4) k* = Hd(d_"‘l)} / ( ) / 4/(d+4)J,
2(d +2) B;

and then define the weights wy;, = (w,)?_, as in (1.1). The first part of Theorem 2
below can be regarded as saying that the weights w} are asymptotically optimal.
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THEOREM 2. Assume (A.1)—(A.4), and assume also that By > 0. For any 8 >
0 and any sequence W, = (wy;)}_; € Wy g, we have

R (Cwnn _RR(CBay%)
>

(2.5) liminf 1. W >
n—oo R (Cr\?ilgl*)_RR(CBayes)

Moreover the ratio in (2.5) above converges to 1 if and only if we have both
w2/ Y (wED? = Land Y1 awei ) Yy aiw?; — 1. Equivalently, this
occurs if and only if both

n
p/d+4) Z{wrzu — (w:l)z} —0 and

(2.6) ;
p~8/(d(d+4) Z“i (wpi —wy;) = 0.
i=l1
Finally,
n4/(d+4){RR( Ar\:lré\lzl*) _ RR(CBayes)}
2.7) o

(d +2) @D/ g 4 4/ @HD pH/(d+4) pd/(d+4)
24/(d+4) d L 2 '

Now write Cnn for the traditional, unweighted k-nearest neighbour classifier
(or equlvalently, the weighted nearest neighbour classifier with w,; = 1/k for
i=1,...,k and w,; = 0 otherwise). Another consequence of Theorem 1 is that,
provided (A. 1)-(A.4) hold and B; > 0, the quantity k* defined in (2.4) is larger by
a factor of {2(;—:24)}‘1 /(@+% (up to an unimportant rounding error) than the asymp-
totically optimal choice of k°P* for C k> see also Hall, Park and Samworth (2008).

wnn

We can therefore compare the performance of c ;‘f‘kopl with that of C W

COROLLARY 3. Assume (A.1)-(A.4) and assume also that B, > 0. Then
RR(C}m) — Rp(CBY®) 1 [2d 44\ @44/
R (Ef) — R(CBoves) 40700 ( d+4 )

asn — Q.

(2.8)

Since the limit in (2.8) does not depend on the underlying populations, we can
plot it as a function of d; cf. Figure 2. In fact, Corollary 3 suggests a natural cor-
respondence between any unweighted k-nearest neighbour classifier nnk and the

weighted nearest neighbour classifier which we denote by C won ¥ whose weights
are of the optimal form (1.1), but with k* replaced with

(2.9) (k) = Hz(dd—:;)}d/(dﬂ)kj.
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Under the conditions of Corollary 3, we can compare i and c W“nu(k) , concluding
that for each 8 € (0, 1/2),

RR(CW (k)) — RR(CBayeg) 1 <2d + 4>(2d+4)/(d+4)

2.10
(2.10) RR(Cnnk) — Ry (CBayes) = 4djd+d) d+4

as n — oo, uniformly for nP <k <n'=P. The fact that the convergence in (2.10) is
uniform for k in this range means that the ratio on the left-hand side of (2.10) has
the same limit if we replace k by an estimator k constructed from the training data
(X1,Y1),...,(X,, Y,), provided that k lies in this range with probability tending
to 1.

In a complementary approach to that taken in most of this paper, Audibert and
Tsybakov (2007) study the minimax properties of plug-in classifiers. They show
in particular that a certain classifier obtained by modifying a local polynomial es-
timator of the regression function 7 attains the minimax rate over a set of distribu-
tions P of random vectors (X, ¥) on R? x {1, 2} for which the regression function
belongs to a Holder class, P satisfies a margin condition and the marginal distribu-
tion of X satisfies a so-called strong density assumption. This rate is O (n~=4/(@+4))
when the Holder smoothness parameter is 2, and the margin power parameter is 1.
By adapting their arguments, we are able to show in the supplementary material
[Samworth (2012)] that several weighted nearest-neighbour classifiers (including
the unweighted, optimally weighted and bagged versions of Section 3) can also at-
tain this minimax rate. Such results give reassurance about worst-case behaviour;
however, they do not lead naturally to an optimal weighting scheme or a quantifi-
cation of the relative performance of two weighted nearest neighbour classifiers
attaining the same rate. These are the main goals of this work.

Finally in this section, we note that the theory presented above can be extended
in a natural way to multicategory classification problems, where the class labels
take values in the set {1, ..., K}. Writing n,(x) =P(Y =r|X =x), let

Srim = {x € R: argmax n,(x) = {r, rz}]
re{l,...,K}
for distinct indices 71,7 € {1, ..., K}. In addition to (A.1) and the obvious ana-
logues of the conditions (A.2), (A.3) and (A.4), we require:

(A.5) For each (r1, rp) # (r3, r4), the submanifolds S, ,, and S, ,, of R9 are
transversal.

Condition (A.5) ensures that S, ,, NS5 -, N (R \ dR) is either empty or a (d —2)-
dimensional submanifold of R? [Guillemin and Pollack (1974), page 30]. Un-
der these conditions, the conclusion of Theorem 1 holds, provided that the con-
stants By and B; are replaced with B1 Z,l#z Bi,,,.,r, and Bz = Zrl;«érz By s
respectively, where each term By, ,, and B> ,, ,, is an integral over S;, ,,. Apart
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from the obvious notational changes involved in converting By and B, to By, r,
and B>, r,, the only other change required is to replace the constant factor 1/4
in the definition of By with n,, , (xo){1 — 0, r,(x0)} Where n,, »,(xo) denotes the
common value that n,, and 7,, take at xo € Sy, r,. This change accounts for the
fact that n,, ,, (xo) is not necessarily equal to 1/2 on S, ,,.

It follows (provided also that B, > 0) that the asymptotically optimal weights
are still of the form (1.1), but with the ratio B/ B, in the expression for k* in (2.4)
replaced with B1/B,. Moreover, the conclusion of Corollary 3 and the subsequent
discussion also remain true.

3. The bagged nearest neighbour classifier. Traditionally, the bagged near-
est neighbour classifier is obtained by applying the 1-nearest neighbour classifier
to many resamples from the training data. The final classification is made by a ma-
jority vote on the classifications obtained from the resamples. In the most common
version of bagging where the resamples are drawn with replacement, and the re-
sample size is the same as the original sample size, bagging the nearest neighbour
classifier gives no improvement over the 1-nearest neighbour classifier [Hall and
Samworth (2005)]. This is because the nearest neighbour occurs in more than half
(in fact, roughly a proportion 1 — 1/¢) of the resamples.

Nevertheless, if a smaller resample size is used, then substantial improvements
over the nearest neighbour classifier are possible, as has been verified empirically
by Martinez-Muifioz and Sudrez (2010). In fact, if the resample size is m, then
the “infinite simulation” versions of the bagged nearest neighbour classifier in the
with- and without-replacement resampling cases are weighted nearest neighbour
classifiers with respective weights

bowith _ = 1\" i\" L
(3.1) w, = |(1- —(1=-=), i=1,...,n
n n

and

(32) wb,w/oz{(;:ll>/<:1>, fori:l,...,n—m—l—l,

ni
0, fori=n—-m+2,...,n.

Of course, the observations above render the resampling redundant, and we re-
gard the weighted nearest neighbour classifiers with the weights above as defining
the two versions of the bagged nearest neighbour classifier. It is convenient to let
q = m/n denote the resampling fraction. Intuitively, for large n, both versions of
the bagged nearest neighbour classifier behave like the weighted nearest neigh-

bour classifier with weights (w,%eo)?:  which place a Geometric(g) distribution
(conditioned on being in the set {1, ..., n}) on the weights

Geo __ Q(l - C])i_l

33 =
G ST
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The reason for this is that, in order for the ith nearest neighbour of the train-
ing data to be the nearest neighbour of the resample, the nearest i — 1 neigh-
bours must not appear in the resample, while the ith nearest neighbour must
appear, and these events are almost independent when n is large; see Hall and
Samworth (2005). Naturally, the parameter g plays a crucial role in the perfor-
mance of the bagged nearest neighbour classifier, and for small 8 > 0, the three
vectors of weights given in (3.1), (3.2) and (3.3) belong to W, g for all large n
if max(ln_(l_ﬂd/4) n~1=28)) < 4 <3n=P. In the following corollary of Theo-
rem 1, we write Cbn; to denote either of the bagged nearest neighbour classifiers
with weights (3.1), (3.2) or their approximation with weights (3.3).

COROLLARY 4. Assume (A.1)-(A.4). For every S € (0,1/2),
RR(CI™) — RR(CP¥*) = 7 (@) {1 + o(D)},
uniformly for n=1=P) < g <n=P where

_ B BI'(2+2/d)?
(@) =54 T A gAd

This result is somewhat related to Corollary 10 of Biau, Cérou and Guyader
(2010). In that paper, the authors study the bagged nearest neighbour estimate 7),, of
the regression function 7. They prove in particular that under regularity conditions
(including a Lipschitz assumption on 7) and for a suitable choice of resample size,

E[{7,(X) — n(X)}*] = 0 (n~@+2)

for d > 3. It is known [e.g., Ibragimov and Khasminskii (1980, 1981, 1982)] that
this is the minimax optimal rate for their problem.

Corollary 4 may also be applied to deduce that the asymptotically optimal
choice of ¢ in all three cases is

qopt _ 8d/(d+4)1'*(2 + 2/d)2d/(d+4) (&)d/(d+4)n4/(d+4)
B '

44/(d+3)

Thus, in an analogous fashion to Section 2, we can consider the performance of

C,'f“nopt relative to that of é:l‘f‘kopt.

COROLLARY 5. Assume (A.1)-(A.4) and assume also that By > 0. Then

RR(CP™,) — RR(CBYS) (24 2/q)2/@+4)
nn _ Bayes - 24/(d+4)
R (CM™ o) — Ry (CBOYeS)

3.4)

as n — o0.
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F1G. 3. Asymptotic ratio of the regret of the bagged nearest neighbour classifier (dashed) to that of
the k-nearest neighbour classifier, as a function of the dimension of the feature vectors. The asymp-
totic regret ratio for the optimally weighted nearest neighbour classifier compared with the k-nearest
neighbour classifier is shown as a solid line for comparison.

The limiting ratio in (3.4) is plotted as a function of d in Figure 3. The ratio is
about 1.18 when d = 1, showing that the bagged nearest neighbour classifier has
asymptotically worse performance than the k-nearest neighbour classifier in this
case. The ratio is equal to 1 when d = 2, and is less than 1 for d > 3. The facts
that the asymptotically optimal weights decay as illustrated in Figure 1 and that the
bagged nearest neighbour weights decay approximately geometrically explain why
the bagged nearest neighbour classifier has almost optimal performance among
nonnegatively weighted nearest neighbour classifiers when d is large.

Similar to the discussion following Corollary 3, based on the expressions for
k°Pt and ¢°P', there is a natural correspondence between the unweighted k-nearest
neighbour classifier CA‘n“/2 with data driven &, and the bagged nearest neighbour

)

classifier C};’an‘, where

/i) 7\ 2d/(d+4) |
3.5 g =2 r{2+- =.
(3.5) q ( + d) P
The same limit (3.4) holds for the regret ratio of these classifiers, again provided
there exists 8 € (0, 1/2) such that P(n? <k <n'=#) — 1.

4. Faster rates of convergence. If we allow negative weights, it is possible to
choose weights satisfying > " o;w,; = 0. This means that we can eradicate the
dominant squared bias term in the asymptotic expansion of Theorem 1. It follows
that, subject to additional smoothness conditions, we can achieve faster rates of
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convergence with weighted nearest neighbour classifiers, as we now describe. The
appropriate variant of condition (A.2), which we denote by (A.2)(r), is as follows:

(A.2)(r) The set S = {x € R:n(x) = 1/2} is nonempty. There exists an open
subset Uy of RY that contains S and such that the following properties hold: first,
n is continuous on U \ Up, where U is an open set containing R; second, the
restrictions of Py and P, to Uy are absolutely continuous with respect to Lebesgue
measure, with 2r-times continuously differentiable Radon—Nikodym derivatives
Jf1 and f>, respectively.

Thus condition (A.2)(1) is identical to (A.2). Note that we are still in the setting
of a margin condition with power parameter equal to 1. Let S denote the set of
multi-indices s = (s1,...,84), S0 s is a d-tuple of nonnegative integers. For s €
S, we write |s| =s1 4+ -+ + 54, and for v = (vq, oot e RY, we write v° =

vl1 véz vf;’. Now, for s € S, let ¢4 = f”v”<1 v¥dv. It is convenient here to use

.. . o . Is|
multi-index notation for derivatives, so we write gy(x) = P e Xla Py g(x). Now let
Xy

S, =1{(s',s?) e S x S:|s!| + 5% =
and let

),

a(r)(x) —

1 Z Cslﬂ,z’dn“(x)f_sz(x)‘

1+2r/d 7 14+2r/d g2 ’
ag f('x) +ar/ (s1,52)€eS, |S ||S |

thus a (x) = a(x). Further, let

g — &(r) 2 1ol (xa).
2 /Sllﬁ(m)lla (o) @Wot(x0)

For ¢ € N, define ai(z) = 1+26/d _ (j —1)1+2t/d We consider restrictions on the set
of weight vectors analogous to those imposed on rth order kernels in kernel den-

sity estimation. Specifically, we let WJ p.» denote the set of deterministic weight
vectors W, = (wp;)7_, satisfying:

o Y wy = 1, n¥AYI, oz )Wy i /ntd loz()wm < 1/logn for
L=1,...,r—1;
Sy wey <n

—4r/d(z (r)wni)z < n—ﬁ.
e there exists k2 < |n'~#] such that n?/4 o fo+1 lwail/ 27
and such that 21—1 oc(r)wm > ,Bkzr/d
Syt Wai/ iy wyy < 1/logn;
o Xl lwnil/(Cie wy)¥? < 1/logn.
Finally, we are in a position to state the analogue of Theorem 1 for weight vectors
in W' . for

(r)wm <1/logn



2748 R.J. SAMWORTH

THEOREM 6. Assume (A.1), (A.2)(1), (A.3) and (A.4). Then for each B €
0,1/2),

(4.1) R (CY™) — R (CBY*) = ) (w,) {1 4 o(1)}
as n — 00, uniformly for w, € WJ’ﬂ’r, where
n n O[_(r)w ) 2
42) il (W) = B1 3wy + By (Z el
i=1 i=1

A consequence of Theorem 6 is that we can construct weighted nearest neigh-
bour classifiers which, under conditions (A.1), (A.2)(r), (A.3) and (A.4), and pro-
vided that Bér) > (, achieve the rate of convergence O (n—4/Gr+d)y for the re-
gret. To illustrate this, set k*() = | B*"p#/(Gr+d) | “and in order to satisfy the
restrictions on the allowable weights, consider weight vectors with w;,; = 0 for
i =k*") 4 1,..., n. Then, by mimicking the proof of Theorem 2 and seeking to
minimise (4.2) subject to the constraints Zfi(l) wy; =1 and Zfi(;) ozl-(e)wm- =0 for
£=1,...,r — 1, we obtain minimising weights of the form

1
43) w' = W(b0+b1afl)+---+bro¢f’)), fori=1,...,k*®,
: ni

0, fori =k*") 4+ 1,...,n.

The equations !, w, = 1 and Z;’=1ai(£)wni =0 for ¢=1,....,r — 1 for

weight vectors of the form (4.3) yield r linear equations in the r + 1 unknowns
bo, b1, ..., by-. Although these equations can be solved directly in terms of bg say,
simpler expressions are obtained by solving asymptotic approximations to these
equations. In particular, since it is an elementary fact that for nonnegative inte-
gers £1 and ¢,

k
d+2€1)(d +2¢
Zal@l)al@:( +26)(d + 2)k1+2(e1+z2>/d{1+O(k_z)}
Pt d(d + 201+ 265)

as k — oo, we can just deal with the dominant terms. As examples, when r =1,
we find

1

bl = W(l _b())a

and when r = 2, we should take

1 {(d+4)2 _2(d+4)

b 1 —by— (k*@)?p,
P e @)2d | d+2

bo} and by = )

Under the conditions of Theorem 6, and provided Bg) > 0, these weighted near-
est neighbour classifiers achieve the O (n~%/# +4)) convergence rate. The choice
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of bg involves a trade-off between the desire to keep the remaining squared bias
term Bér) (Zf:;) %)2 small, and the need for it to be large enough to re-
main the dominant bias term. This reflects the fact that the asymptotic results of
this section should be applied with some caution. Besides the discomfort many
practitioners might feel in using negative weights, one would anticipate that rather
large sample sizes would be needed for the leading terms in the asymptotic expan-
sion (4.1) to dominate the error terms. This is also the reason why we do not pursue
here methods such as Lepski’s method [Lepskii (1991)] that adapt to an unknown

smoothness level around S.

S. Empirical performance study. In this section, we assess the relative em-
pirical performance of the k-nearest neighbour classifier, the optimally weighted
nearest neighbour classifier of Section 2 and the bagged nearest neighbour classi-
fier of Section 3 on simulated and real data sets. We consider four general simula-
tion settings, designed to exhibit different distributional characteristics:

Setting 1: f is the density of d independent components, each having a standard
Laplace distribution, and f; is the density of the N4(6, I) distribution, where 0
denotes a d-vector of ones.

Setting 2: f1 is the density of d independent components, each having the mix-
ture of normals distribution %N O, 1)+ %N (3, 2). Likewise, f> is the density of d
independent components, each having a %N (1.5,1)+ %N (4.5, 2) distribution.

Setting 3: For d > 2, let £ denote the d x d Toeplitz matrix whose jth entry of
its first row is 0.6/ 1. Set /1 to be the density of the %Nd(O, )+ %Nd(?)@, 23)
distribution, and f> to be the density of the %Nd 36/2,%)+ %Nd (96/2,2%) dis-
tribution.

Setting 4: Both fj and f, are densities of independent components. For fi,
each component has a standard Cauchy density. For f>, the first |d /2| components
also have a standard Cauchy density, while the last d — |d/2] components have a
standard Laplace density.

Setting 1 is a relatively benign classification problem. Setting 2 explores the ef-
fect of bimodality, and setting 3 combines bimodal marginals with dependence
between the components. Setting 4 combines heavy-tailed distributions, a lack
of location difference and introduces components which are irrelevant for clas-
sification as nuisance variables. For each setting, we examined the three sample
sizes n € {50, 200, 1000}, five dimensions d € {1, 2, 3, 5, 10} (except for setting 3,
where the d = 1 case was omitted as it is covered in setting 1) and two prior prob-
abilities w € {1/2,2/3}. Thus there were 114 simulation scenarios in total, and we
used the Euclidean norm for computing distances throughout.

In each scenario, we took R = R¢ and computed the Bayes risk by Monte
Carlo integration. For each data set of size n drawn from the relevant popula-
tions, we used a slight variant of a 5-fold cross validation algorithm to compute k,
the number of neighbours used by the k-nearest neighbour classifier. Specifically,
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we assigned each observation independently and uniformly at random to one of
five groups, and found the minimiser, denoted Ig, of the cross-validation risk over a
grid of 21 equally spaced points (up to integer rounding) from 5 to n/2. The variant
arises from the observation that this minimiser targets the optimal value of k for a
data set of size 4n/5. Bearing in mind the expression for the optimal k* in (2.4),
we therefore set k = (%)4/ (d+4k as an appropriate choice for a data set of size n.
The number of positive weights for the optimally weighted classifier was then cho-
sen to be ,u(lz); cf (2.9). For the bagged nearest neighbour classifier, we used the
“geometric” weights given in (3.3), with ¢ given by ¢ in (3.5). For each data set,
we computed the proportion of misclassifications of ny g = 1000 independent test
points drawn from the appropriate distribution, and each simulation was repeated
1000 times to yield estimates of the risks of each of the three classifiers.

It is computationally convenient to evaluate the distance matrix between all
ny =n + neg points at the outset (even though some distances will not be used),
and this takes O(n%rd) operations when || - || is an £,-norm. It then takes a fur-

ther O (nynlogn) operations to choose k and classify the test points. In particular,
the computational requirements are of the same order of magnitude for both the
unweighted and weighted nearest neighbour classifiers.

An alternative to using a cross-validation method for choosing k, as pointed out
by an anonymous referee, is to estimate the constants By and B; in (2.4) directly
using a plug-in approach. We discuss this approach in the supplementary material
[Samworth (2012)] following the proof of Theorem 6, but conclude that it seems
awkward to propose a satisfactory algorithm for estimating By and B; directly, and
do not pursue it further here.

Our simulation results are presented in Tables 1 and 2. To save space, we have
omitted the results for 7 = 2/3, which were qualitatively similar. As well as the
risks for the three classifiers, we present in the final two columns estimates of the
regret ratios

R(é:/:;l'(,;)) — R(CBayeS) R(éyt;np) _ R(cBayeS)
(5.1) e and S ,
R(C,l;nlg) _ R(cBayes) R(C:;n]E) _ R(cBayes)

respectively. Standard errors for these estimates are also given, and were obtained
using the delta method.

In 54 of the 57 scenarios in Tables 1 and 2, the risk of the optimally weighted
nearest neighbour classifier is smaller than that of the k-nearest neighbour clas-
sifier. In one of the three exceptional cases, the difference is so small that it can
easily be explained by the Monte Carlo error. The other cases are in setting 1 with
d =10 and n = 50, 200. Here it seems that in this relatively large dimension for
nonparametric inference, these sample sizes are not large enough for the asymp-
totics to provide a good approximation.
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The estimated risks (multiplied by 100) of the Bayes, k-nearest neighbour, optimally weighted
nearest neighbour and bagged nearest neighbour classifiers in settings 1 and 2. The final two

columns give the regret ratios defined in (5.1). Standard errors are given in small script

d Bayes n knn risk ownn risk bnn risk ownn rr bnn rr
Setting 1
1 30.02 50 33.930.14 33.770.14 3471014 0.969.050 1.209.057
200 31.530.066 31.470.067 31.729.075 0.969.061 1.109.071
1000 30.720.046 30.700.046 30.720.046 0.970.093 1.009.094
2 2421 50 28.770.11 28.580.11 28.920 11 0.960 034 1.009 035
200 26.500.055 26.420 056 26.510.058 0.979.034 1.009.035
1000 25.670.046 25.620.046 25.600.046 0.969.044  0.950.044
31937 50 25.350.10 25.030.098 25.230.097 0.950.0203  0.980.023
200 22.820.052 22.690.053 22.720.053 0.960 021 0.970.021
1000 21.54¢ 045 21.44¢ 045 21.43¢.046 0.950.029  0.950.029
5 13.17 50 20.370.093 20.260.095 20.400.093 0.980.018 1.009.018
200 17.74¢.049 17.540.050 17.55¢.050 0.969015 0.969.015
1000 16.21¢.041 16.039.042 16.07¢.044 0949019  0.969019
10 5.592 50 13.899.10 14.599.12 14.63¢.11 1.109.019 1.109.019
200 11.350.050 11.700.051 11.720 050 1.109.013 1.109.013
1000 9.9770.033 9.796¢.033 99119033 0960010 0.980.011
Setting 2

1 34385 50 38.960.14 38.780.13 39.019.11 0.960 046 1.009.043
200 36.760.073 36.630.073 36.830.075 0.930.052 1.009.056

1000 35.34¢.052 35.300.052 35.350.052 0.91¢.14 1.009.15
2 26.83 50 34.360.13 33.530.13 33.430.12 0.890.023  0.880.022
200 30.000.070 29.630.068 29.660.070 0.880.0209  0.890.030
1000 27.569.050 27.480.050 27.490.050 0.890.091 0.900.091
3 21.73 50 31.079.11 30.070.11 30.019.11 0.899.016  0.890.016
200 26.440.063 25.990.063 25.960.065 0.900.018  0.909.018
1000 23.199.045 23.040.046 23.03¢.046 0.900.042  0.909.042
5 15.23 50 25.72¢.12 24.880.11 25.12p.11 0920015 0.940.015
200 21.519.055 20.920. 054 20.930.055 0919012 0919012
1000 18.69¢.045 18.340.046 18.330.047 0.900.018  0.909.018
10 7.146 50 16.87¢.099 16.57¢.10 16.880.10 0.979.014 1.009.015
200 13.009.048 12.779.051 12.87¢.051 0.969012  0.980.012
1000 11.570.034 11.419.033 11.44¢ 034 0.960 011 0.970.011

The extent of the improvement of the optimally weighted nearest neighbour

classifier is generally in close agreement with that predicted by the theory of Corol-
lary 3 and the paragraph which follows it, even for small sample sizes. This theory
tells us that the first regret ratio in (5.1) converges to 0.943, 0.924, 0.919, 0.920
and 0.936 in dimensions d = 1, 2, 3, 5, 10, respectively. Note that a few of the re-
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TABLE 2
The estimated risks (multiplied by 100) of the Bayes, k-nearest neighbour, optimally weighted
nearest neighbour and bagged nearest neighbour classifiers in settings 3 and 4. The final two
columns give the regret ratios defined in (5.1). Standard errors are given in small script

d Bayes n knn risk ownn risk bnn risk ownn rr bnn rr
Setting 3
2 32.45 50 37.910.13 37.400.12 37.540.11 0.910.030 0.930.030

200 35.080.065 34.96 065 35.050.068 0.950.034 0.990.036
1000 33.700.052 33.650.051 33.670.051 0.960 057 0.980.057

3 30.00 50 36.560.13 35.940.11 36.000.11 0.910.004 0.910.004
200 33.610.065 33.520.066 33.580.067 0.970.025 0.999.026
1000 32.030.052 31.96¢.052 31.94¢.052 0.96¢.036 0.96¢.036

5 26.13 50 34.100.14 33.41¢.12 33.470.11 0.91¢.021 0.92¢.021

200 30.270.068 30.169 070 30.260 070 0.970.023 1.000 024
1000 28.410.051 28.230.051 28.250.052 0.92¢.030 0.930.031

10 18.26 50 27.030.13 26.500.11 26.590.11 0.940 019 0.950.019
200 22.860.067 22.900.070 23.019.071 1.009.021 1.009.022
1000 21.079.046 20.91¢.046 20.920 046 0.940.022 0.950.023

Setting 4
1 41.95 50 47.730.099 47.499.10 47.080.094 0.969.024 0.890.022

200 45.64¢ 078 45.450 077 45.240 072 0.950.029 0.890.027
1000 43.380.061 43.280.060 43.320.061 0.930.058 0.960 059

2 41.96 50 48.369.079 48.05¢.083 47.850.081 0.950.017 0.920.017
200 46.390.074 46.050.072 45.96¢.070 0.920.022 0.900.022
1000 44.130.060 43.910.060 43.860.060 0.909.037 0.880.037

3 36.37 50 46.320.10 45.73¢.10 45.509.10 0.949.014 0.920.014
200 42.920.083 42.380.081 42.290.078 0.920.017 0.900.017
1000 39.360.058 39.04¢.057 39.039.058 0.890.026 0.890.026

5 32.00 50 45.660.10 44.800.11 44.570.11 0.940011 0.920.010
200 40.899.085 40.230.080 40.220 078 0.930.013 0.930p.012
1000 36.900.056 36.450.056 36.449.056 0.910.015 0.910.015

10 25.40 50 45.270.099 44.21¢.10 43.970.098 0.950.0069 0.930.0068
200 39.519.078 38.840.073 38.830.073 0.950.0074 0.950.0074
1000 36.030.053 35.61¢.053 35.76¢.054 0.96¢.0069 0.970.0070

gret ratio estimates, particularly in settings 1 and 2 with small d and large n, have
larger standard errors. This is caused by the fact that in these scenarios, the risks
of all three classifiers are very close to the Bayes risk. In the more complex sit-
uations, the risks of the empirical classifiers are further from the Bayes risk, and
the regret ratios can be estimated more precisely. The situation is similar for the
bagged nearest neighbour classifier, whose relative performance also matches that
predicted by the theory of Section 3 quite well.
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TABLE 3
The estimated risks (multiplied by 100) of the Bayes, k-nearest neighbour, optimally weighted
nearest neighbour and bagged nearest neighbour classifiers on three UCI repository data sets.
Standard errors are given in small script. Recall here that K is the number of categories for the

response Y

Data set Distance n d K knn risk ownn risk bnn risk
Glass Ly 163 9 2 23.260.15 20.870.15 20.36¢.15
Glass L2 163 9 2 26.210.15 23.430.14 23.050.14
Yeast Ly 1136 8 3 40.66¢ 059 39.710.062 39.780.063
Yeast Ly 1136 8 3 40.91¢ 057 39.900.058 39.999.059
Segmentation Ly 2310 19 7 12.049.051 10.05¢.043 9.8820.041
Segmentation Ly 2310 19 7 15.800.062 12.92¢.049 12.67¢.049

We also applied all three classifiers to three benchmark data sets, referred to
below as Glass, Yeast and Segmentation, from the UCI repository [Frank and
Asuncion (2010)]. Detailed information on these data sets can be obtained from
http://archive.ics.uci.edu/ml/datasets.html, but summary information is provided
in Table 3. Following Athitsos and Sclaroff (2005), in each case we scaled each
component of the covariates to have unit Euclidean length, and explored both the
£ and £, norms for computing distances between observations. For the Glass and
Yeast data sets, we randomly assigned each observation to a training or test set,
each with probability 1/2, while for the Segmentation data set, these probabili-
ties were 1/11 and 10/11, respectively, since the original data were divided into
a training and test set with these proportions. We then applied the same modified
cross-validation algorithm as for the simulated data to choose the tuning parame-
ters of the respective procedures. To estimate the risks of the three classifiers, we
computed the proportion of misclassifications on the test set, and averaged these
proportions over 1000 repetitions of the random assignment process.

The results are given in Table 3. In all cases, the optimally weighted nearest
neighbour classifier outperforms the k-nearest neighbour classifier. Since the di-
mensions for the three data sets are d =9, 8 and 19, it is not a surprise to see
that the bagged nearest neighbour classifier also performs comparably well. The
choice of distance appears to make little difference to the relative performance of
the classifiers.

APPENDIX

PROOF OF THEOREM 1. The proof is rather lengthy, so we briefly outline the
main ideas here. Write P° = P; — (1 — ) P, and observe that

Rr (é’\;vnn) — Ry (CBayes)

(A.1) = /R 7 [P{CN™ (x) =2} — Lyenayes r)—2) ] d P1 (x)


http://archive.ics.uci.edu/ml/datasets.html

2754 R.J. SAMWORTH

+ /R(l — [P{CY™(x) = 1} — LycBayes (r)=1y ] d P2 (x)

n 1
= /76{]}”(2 Wni Ly =1} < 5) - ]l{n(x)<l/2}} dP°(x).
i=1

For ¢ > 0, let

(A.2) S% =[x e R?:n(x) = 1/2 and dist(x, S) < ¢},
where dist(x, §) = infy cs [|x — xol|. Moreover, let
1(x0)
Sez{ +t : 6868,|t|<8}.
lI7(xo) -

The dominant contribution to the integral in (A.1) comes from RNS?, where ¢, =
n—P/4 _Since the unit vector 1(xg)/||71(xo)| is orthogonal to the tangent space of
S at xo, we can decompose the integral over R N S®" as an integral along S and an
integral in the perpendicular direction. We then apply a normal approximation to
the integrand to deduce the result. This normal approximation requires asymptotic
expansions to the mean and variance of the sum of independent random variables
in (A.1), and these are developed in step 1 and step 2 below, respectively. In order
to retain the flow of the main argument, we concentrate on the dominant terms
in the first five steps of the argument, simply labelling the many remainder terms
as Rp, Ry, .... The sizes of these remainder terms are controlled in step 6 in the
supplementary material [Samworth (2012)], where we also present an additional
side calculation.

Step 1: Let S, (x) = Z” | Wiy =1, let pa (x) = E{S, (0)}, let &, = n=P/4

and write t, =n—2/4 _ 1 ojwy;. We show that

sup |Mn (x) = n(x) — a(®)tax| = o(ty),

xesen

uniformly for w, = (wy;)]_; € Wy g, where a is given in (2.2).
By a Taylor expansion,

M (X) _anl 77(X(z))}

i=1
ko

(A3) =) + > wi E{(X i) — 1) i(x))}
i=1

+ = Zwm {(Xay —0TH0) X gy —x)} + Ry,

where we show in step 6 that

(A4) sup |Ri| = o(tn),

xeSsen
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uniformly for w, € W), g. Writing p; = p;(x) =P(|| X — x|| <), we also show in
step 6 that for x € S and i < k», the restriction of the distribution of Xy — x to
a sufficiently small ball about the origin is absolutely continuous with respect of
Lebesgue measure, with Radon-Nikodym derivative given at u = (uy, ..., uq)"
by
N7 n—1Y i1, n—i
f(z)(”) =nf(x+u) i—1 Dy (1 Pllull)
(A.5) _ ol
=nf@x+uwpy, (-1,
say, where py,, (i — 1) denotes the probability that a Bin(n — 1, pj,) random
variable is equal to i — 1. Let 8, = (k»/n)'/??. By examining the argument leading
to (0.7) in the supplementary material [Samworth (2012)], we see that we can
replace § there with §,, to conclude that for all M > 0,
sup sup E{IX) — xIIPLx—x=5,} = O (™).
xe8&n 1<i<kp
It follows that

E{(Xi —x)1n
A6 {(Xa—0)"n(x)}

— A un{ f(x +u) = FO}plil i = Ddu+0n™M),

lluell <8n
uniformly for x € §%" and 1 <i < ky. Similarly,
E{(X@) — )i (x) (X ) — x))
(A7)
= " iun f(x +u)plt i — Ddu+ 0n™M),

llull <6

uniformly for x € S and 1 <i < k». Let k; = [n#/*], and let Aw,; = w,; —
Wp.i+1 With w, ,4+1 = 0 (where we introduce the comma here for clarity). By a
Taylor expansion, we have

ko
ani/
i=1 |

lull <6,

[f;(x)Tun{f(x +u)— f(x)}

+ %u%(x)unf(x + u)}pﬁ';”‘ (i = Ddu
(A.8)

ko d
={l+o(D)} ZnAwniZ/“ 1< {Uj(x)uifj(x)
j:1 Ul|<on

i=ki
1 2 7 n—1,. d
+ Enjj(x)ujf(x)}q”u” (i)du,

uniformly for x € §* and w,, € W), g, where qﬁ’u_nl (i) denotes the probability that
a Bin(n — 1, py,) random variable is less than i. Now, qﬂﬂl (i) is decreasing in
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ull and is close to 1 when [u|| is small and close to zero when [[u|| is large.
To analyse this more precisely, note that pj, = Faglul4{1 + 0_(||u||2)} as
u — 0, uniformly for x € §%, so it is convenient to let b, = (w)l/ 4 and
set v = b, u. Then there exists ng such that for n > ng, we have for all x € §%, all
vl € (0,1 —2/logn] and all k| <i < k» that

i
i —(n—1 p—
i = =Dpjip, = logn
Thus by Bernstein’s inequality [Shorack and Wellner (1986), page 440], for each
M > 0 and for n > ny,

1. ky _
(A.9) sup sup {1 — ‘Iﬁlvnl/bn 0} < exp<—3172> =0 M),
lvl|9e(0,1-2/logn] k1 <i<ks ogn
Similarly, for n > no,
1. ki _
(A.10) sup sup qﬁ‘v”l/bn ) < exp(—31 5 ) =0(n M).
lvll9e[142/logn,b,8,] k1 <i<kz ogn
We deduce from (A.6)—(A.9) and (A.10) that

ko
Y wnE{(X o) — )T H(x)}
i=1

1 &
+ 5 2 wnB{ (X — 070 Xy — )}
i=1

(A1) ={1+0(1)}

" nAwy & _ 1 _
XY~ {nj(x)fj(x) + —njj(x)f(x)}/
— b — 2 I
i=1 n j=1
= a(x)ty + o(ty),
uniformly for x € §* and w, € W, g. Combining (A.3), (A.4) and (A.11), this
completes step 1.
Step 2: Let onz(x) = Var{S, (x)} and let s,% =37, wf”.. We claim that

vjz-dv
v||<I

=o(s2).

1
sup o200~ 52| = ol

xeSsen

uniformly for w,, € W, g. To see this, note that

or () =Y wiEnXe){l —n(Xe)}]+ Y wi; Varn(X i)
i=1 i=1

=Y wi[En(Xa) — {En(X@)}]
i=1
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But by a simplified version of the argument in step 1, we have

sup sup |En(X) —n(x)| — 0.
xeSen 1<i<kn
It follows that
n 5 1 9
sup Z w; En(X i) — Es"
xe8&en |1
ko
< sup Zwﬁimn(x(i)) —n(x)|
xeSen i=1

n
+ Z w%i +53 sup |n(x) —1/2]
i=ky+1 xesn

= 0(s2),

n

uniformly for w, € W), g. Similarly,

S w En(Xa)) —

1,
n
i=1 4

S
ko

<Y wi [En(X @) — n()|[En(X)) +n(x)|
i=1

n
+2 ) wp +spn)* —1/4]
i=ky+1
=o(s3).

uniformly for x € S and w, € W), g. This completes step 2.
Step 3: For xg € S and t € R, we write x(’) = x0 + t7(x0)/|In(x0)|| for brevity.

Moreover, we write ¥ = f; — (1 — ) f> for the Radon—Nikodym derivative with

respect to Lebesgue measure of the restriction of P° to S® for large n. We show
that

/Rmsw [P{Sn(x) <1/2} — Liyy<1/23] d P°(x)
w12 = [ [ ePS ) < 172)

— 1y=0y] dt dVol' " (xp) {1 + 0(1)},
uniformly for w, € W, g. Recalling the definition of S*" in (A.2), note that for

large n, the map
1(x0) ;
¢><x0,l . ) =X
o/~
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is a diffeomorphism from {(xo, #(xg)/||n(x0)|l) : x0 € S&*", |t| < &,} onto S
[Gray (2004), pages 32—-33]. Observe that

(A.13)  [x eR?:dist(x,S) < &,} €S C {x e R? :dist(x, S) < 2¢,).

Moreover, for large n and |f| < &,, we have sgn{n(x(’)) —1/2} = sgn{w(xé)} =
sgn(t). The pullback of the d-form dx is given at (xq, £17(x0)/||7(x0)|]) by

1n(x0)
177 (xo)
where the error term is uniform in (xq, 117(xg)/||7(x0)||) for xo € S and |t| < &j,.
It follows from the theory of integration on manifolds, as described in Guillemin

and Pollack (1974), page 168 and Gray (2004), Theorems 3.15 and 4.7 [see also
Moore (1992)], that

detd;(xo,t )dt dVol'=! (xo) = {1 + o(1)} dt dVol’~! (xo),

/SS [P{Sn(x) < 1/2} = Lipy<1/2]d P (x)

(A.14) :fs /_8 ¥ (<) [P{Sa (x5) < 1/2)
— Ly<o]dt dVol!™ (xp) {1 + o(1)},

uniformly forw, € W,, g. But S\ R C {x € R? : dist(x, dS) < €,}, and this latter
set has volume 0(8%) by Weyl’s tube formula [Gray (2004), Theorem 4.8]. Thus
the integral over S® in (A.14) may be replaced with an integral over R N S®»
and, similarly, the integral over S%*®» may be replaced with an integral over S,
without changing the order of the error term in (A.14). Thus (A.12) holds, and this
completes step 3.

Step 4: We now return to the main argument to bound the contribution to the
risk (A.1) from R \ §%. In particular, we show that

(A.15) sup []P’{Sn (x) < 1/2} — 1{n(x)<1/2}] dP°(x) = O(n_M)
weWy g R\S#n

for all M > 0. To see this, recall that |[n(x) — 1/2| is assumed to be bounded away
from zero on the set R \ §¢ (for fixed ¢ > 0), and ||77(x)|| is bounded away from
zero for xg € S. Hence, by (A.13) in step 3, there exists ¢; > 0 such that, for
sufficiently small & > 0,

A.16 inf —1/2| > ce.

(A.16) xel;g\sgln(X) /2| =z cie

We also claim that p,(x) = E{S,(x)} is similarly bounded away from 1/2 uni-
formly for x € R \ S%. In fact, we have by Hoeffding’s inequality that

P X ) — Il > £0/2) =g, jp(ka) < e~ /WPanp=ha),
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It follows that

1

sup  p(x) — =

XER\S®n ; 2
nx)<1/2

ka
(A.17) < sup {aniP(Y(i)zlﬂllX(kz)—xH58,,/2)
XeR\S: |1
n(x)<1/2
U mepap—t? | ¥
——+€ en/2 2 _|_ Z Wi

2 i=ky+1

ko
1 C18n> 1 —2 — )2 _ Clén
A.18 < § : Y - 2/n)(npey, j2—k2) B < _
( ) _iZIwm<2 2 2+e +n "< 4

for sufficiently large n. Similarly,

1
inf ~p,(x) — 3

xeR\Sen : 2
n(x)=1/2
ko 1
A19) = _inf ;me(Ym = 101X = xl =ea/2) = 5
nw=1/2 "7
_ 1 ce, _ N2 1 e,
= (1 — P2 (_ _)1_ @/ ey p—k?y _ L o
== )\ g+ - ) =327

for large n.
Now we may apply Hoeffding’s inequality again, this time to S, (x), to deduce
that

[Py () < 1/2) = Lyoy<1/y| < 200712005 = 0 (n =)

foreach M > 0, uniformly for w, € W,, g and x € R\ S*", using (A.17) and (A.19)
and the fact that s,% <nPforw, e Wi, g. This completes step 4.
Step 5. We now show that

L[ vl ed) <172}~ ol aravor'= o

= Bis2 4 Bat2 +o(s2 +12),

uniformly for w, € W, g, where By and B, were defined in (2.3). When combined
with (A.1) and the results of step 3 and step 4 [in particular, (A.12) and (A.15)],
this will complete the proof of Theorem 1.
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First observe that

/S‘/'j" W (x)[P{Sn (xg) < 1/2} = ]1{;<0}]dl‘dV01d_1(x0)

(A20) = fs /_ " o) | [P{Sn (x) < 1/2)
— y<0y] dt dVol'" (x0) {1 4+ o(1)}.

Now, S, (x) is a sum of independent, bounded random variables, so by the nonuni-
form version of the Berry—Esseen theorem, there exists C; > 0 such that for all
y € R,

sup sup
X0ES te[—ey,8n]

IP( Sn (x(t)) — HMn (x(t))
t
On (x())

< y) - <I>(y)‘

Ci
<—7
a2+ yl?)

where @ denotes the standard normal distribution function. Thus

/S /_ |9 (x0) [{P{ S (xb) < 1/2} = 141 <0)} dr dVol? ! (x)

—f/_S”’|W(x0)||{ <1/2 n(u:)(xo))

— 1{,<0}} dr dVol1(x) + Ra,
where we show in step 6 that
(A.21) IRy =o(s? +12),

uniformly for w;,, € W), g. Moreover, by a Taylor expansion and step 1 and step 2,

172 =, B
/ f t||1//(x0)||{ (/ (“ )(XO))—JL{,<0}}dthold ! (x0)
—&n on (X

B /s /_ Ao {¢<—2t "”(xo)yn— Za(xo)tn>

~ Le<op | drdVol' = ) + R,

where we show in step 6 that

(A22) IR3| =o(s? +12),
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uniformly for w,, € W,, g. Finally, we can make the substitution r = /s, to con-
clude that

/S/_e: Aol {®<—2tllﬁ(xo)|| - 2“(x0)l"> _ 1{,<0}} dt dVol‘=! (xo)

Sn

[ ali ol o(—ulico] - 22202)

— Liu<o) } du dVol?™! (x0) + R4

= BlS,f + th,% + Ry,

where By and B, were defined in (2.3). Here, we have used the fact that
1 (xo) |l /I (x0) || = 2.f (x0) for xg € S in the final step of this calculation. Once
we have shown in step 6 that

(A.23) |R4| = o(s2),

n

uniformly for w, € W), g, this will complete Step 5 and hence the proof of Theo-
rem 1. [
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal weighted nearest neighbour classifiers” (DOI:
10.1214/12-A0S1049SUPP; .pdf). We complete the proof of Theorem 1, and give
the proofs of the other results in the paper. We also discuss minimax properties of
weighted nearest neighbour classifiers and a plug-in approach to estimating k*.
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