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Abstract—The combined use of orthogonal frequency-division
multiplexing (OFDM) and wireless multiple-input multiple-
output (MIMO) links is becoming common. For many appli-
cations, such as ad hoc wireless networks, interference is a
significant issue. MIMO links allow for the spatial mitigation of
interference; however, spatial interference mitigation when using
OFDM modulation performs somewhat poorly because of the
relatively limited interference spectral confinement of the Discrete
Fourier Transform. Traditional windowing approaches that min-
imize leakage of the interference into neighboring carriers induce
intercarrier interference. In this paper, a technique is developed
for determining optimal windows that trade off interference
suppression with intercarrier and interframe interference. This
technique assumes channel statistics are known. Optimized win-
dows for various levels of interference, delay spreads, frame
length, and cyclic prefix lengths can be produced.

I. NETWORK INTRODUCTION

With the widespread deployment of IEEE 802.11N [1], [2],

multiple-input multiple-output (MIMO) links [3], [4], [5] that

employ orthogonal frequency-division multiplexing (OFDM)

modulation [6], [7] are becoming common. While current im-

plementations of MIMO do not exploit the innate capability of

MIMO to spatially mitigate interference, theoretically spatial

mitigation is possible [5].

Interference is of concern for ad hoc wireless networks

because by their nature multiple links tend to operate in

proximity to each other. Historically, networks mitigated inter-

ference by employing time-division multiple access (TDMA)

or frequency-division multiple access (FDMA) [6], [7]. These

multiple access schemes reduce the potential network through-

put. While the spatial interference mitigation theoretically

enabled by MIMO cannot completely alleviate the need for

access schemes such as TDMA, spatial interference mitigation

can increase spectral utilization of wireless networks [8], [9].

The advantages of MIMO’s potential spatial interference

mitigation is complicated by interaction with OFDM modu-

lation. The Discrete Fourier Transform (DFT) employed by

OFDM systems provides relatively poor spectral confinement.

Consequently, energy at one frequency is spread across many

frequency bins. In the case of frequency-selective fading, a
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single transmitted signal will occupy multiple eigenvalues

in the receive covariance matrix at a given frequency bin

because contributions from the actual frequency array response

will be present in combination with array responses from

nearby frequencies. When spatial nulling of interference is

attempted, this growth in signal rank can adversely affect

mitigation performance. For OFDM signals this is typically

not a significant issue because orthogonality of carriers is

maintained with the use of a cyclic prefix [6], [7].

The traditional solution to minimizing leakage of energy

into adjacent frequency bins is to employ windows [10], [11].

However, windows can break the orthogonality of OFDM,

inducing intercarrier interference (ICI) between neighboring

carriers. This effect is illustrated in Figure 1. Windowing
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Fig. 1. Windowing ICI – Several unwindowed carriers depicted in gray.
The center unwindowed carrier depicted in blue takes on a value of zero at
the peak location of the other carriers. The center windowed carrier depicted
in red is nonzero at the other carrier centers and thus introduces ICI.

using the optimum Nyquist approach of [12] maintains or-

thogonality; however, in principle there is a trade between

interference mitigation performance and ICI. The window

shape also impacts the amount of interframe interference (IFI)

and the amount of thermal noise. In addition to the rectangular

window, Figure 2 shows examples of a Taylor window and an

optimum Nyquist window.

In this paper, a technique is developed for determining

optimal windows that trade off interference suppression with

ICI and IFI. This technique assumes that statistics of the link

delay spread and interferer are known. By using this technique,

windows for various levels of interference, delay spreads,

frame length, and cyclic prefix lengths can be produced.

For the sake of simplifying the analysis in the paper, inter-
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Fig. 2. Traditional Windowing – Depiction of a rectangular window shown
in black, a Taylor window with parameter -40 dB shown in magenta, and
a trapezoidal window shown in green. The trapezoidal window does not
introduce ICI and satisfies the optimum Nyquist constraints specified in [12].
Here the FFT size N is 128 and the cyclic prefix is equal to 10.

ference is assumed to be rank-one. This rank-one interference

could be due to simple external interference because of the

use of single-input multiple-output (SIMO) links, or because

of the use of a dominant-singular-vector informed-transmitter

MIMO approach [5] in which the channel state information

is known and employed by the transmitter of the interfering

link. Here the interfering transmitter uses only the dominant

(strongest) mode. Even if an uninformed-transmitter MIMO

link is employed, the ICI-interference mitigation trade space

is appropriate for each transmitting antenna.

II. CHANNEL

In networks with SIMO links or dominant-singular-vector

informed-transmitter MIMO, the input-output relationship be-

tween the receiver and the rank-one transmitted signal can be

viewed as

xp = gp ∗ s + νp, (1)

where xp ∈ C
N̄×1 is the complex received signal at antenna

p, N̄ is the length of the received signal, s ∈ C
N̄+M−1×1

is the transmitted time series, gp ∈ C
M×1 the linear channel

between the rank-one transmitter and receiver p, M is the

length of the longest channel response, ∗ denotes linear

convolution defined as

gp ∗ s =
M−1∑
m=0

gp[m]s[n − m], (2)

and νp ∈ C
N̄×1 is Gaussian zero mean thermal noise with

variance σ2
ν . Vectors are written in lowercase bold (a), while

matrices are written in uppercase bold (A). The individual

elements of the vector xp can be accessed using the notation

xp[n] for values of n ∈ [0, N̄ − 1]. Under this notation, the

functions are defined to be zero for values of n outside the

specified interval. The individual elements of the vector s can

be accessed by using the notation s[n] for values of n ∈ [1−
M, N̄ − 1]. Similarly, the values of gp can be accessed by

using the notation gp[n] for n ∈ [0, M − 1].

A. Delay Spread

For this analysis, the channel g is defined to be an expo-

nential channel satisfying the relationship

E[|g[n]|2] = E[|g[0]|2] exp−
nTs

τ , (3)

with delay spread τ and sampling interval Ts. These tech-

niques can be generalized to other channel models.

III. INTERFERENCE

Interference can be added to the model in Equation (1)

xp = gp ∗ s + hp ∗ j + νp, (4)

where j ∈ C
N̄+M−1×1 is the transmitted interfering time

series and hp ∈ C
M×1 is the linear channel between the rank-

one interferer and receiver p. In this setting, the interferer is

treated as if it is not synchronized with the signals of interest.

The unsynchronized signal of interest leads to a lack of cyclic

prefix that eliminates the orthogonality condition.

IV. OPTIMAL APPROACH

In this section, a method is introduced for the determination

of windows that optimally trade interference mitigation with

the combined effects of intercarrier interference, interframe in-

terference, and thermal noise. The method solves for windows

that maximize the expression

Φ(w) = Int(w) − β(ICI(w) + IFI(w) + TN(w)), (5)

where w ∈ C
N̄×1 is the choice of window with w[n] nonzero

over the interval [0, N̄ − 1], β is a coefficient proportional

to the expected signal-to-interference ratio (SIR), Int(w) is

a measure of interference mitigation, ICI(w) is the intercar-

rier interference, IFI(w) is the interframe interference, and

TN(w) is the thermal noise. Gradient descent is used to solve

the Euler-Lagrange equation,

∂wΦ(wopt) = 0, (6)

for the best window wopt. The actual gradient used in the

descent is provided in the Appendix. Figure 3 provides a

family of windows that is parameterized by β.
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Fig. 3. Family of Windows – A set of optimal windows parameterized
by the value of β. A large value of β corresponds to a flat window, while
small values of β correspond to a more peaked window. Here the FFT size
N is 128, N̄ is 138, the delay spread is 600 nanoseconds, and the sampling
interval is 100 nanoseconds.
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The remainder of this section provides expressions for each

of the contributing terms in the objective function in Equation

(5).

A. Interference Mitigation

For a particular receiver p, the windowed version of the

received interference is

zp = w � (hp ∗ j), (7)

where � denotes the Hadamard or pointwise product between

two vectors. Taking the DFT, the received OFDM bins are

written as

ẑp = F{w � (hp ∗ j)}, (8)

where F is the N point DFT of a vector of length N̄ defined

as

F{x} =
N̄−1∑
n=0

e
2πink

N x[n]. (9)

This definition of the DFT follows the treatment in [13].

The spatial covariance between receive antenna p and q for

the kth carrier frequency can be written as

Rp,q[k] = E[ẑ†pẑq] (10)

= σ2
j (hk

p)†Ahk
q , (11)

where (·)† denotes the Hermitian transpose, the interfering

signal has an autocorrelation of a unit impulse times σ2
j , Am,m̃

is the cross correlation of the window

Am,m̃ =
N̄−1∑
n=0

w[n]w[n + m̃ − m], (12)

and the channel for a particular carrier k is

hk
p = hp � v−k

N , (13)

with the corresponding phase ramp

v−k
N =

⎡
⎢⎢⎢⎣

e( 2πik
N )·0

e( 2πik
N )·1
...

e( 2πik
N )·(N̄−1)

⎤
⎥⎥⎥⎦ . (14)

By stacking the P channel impulse responses hk
p into the

matrix Hk, the final covariance matrix can be written as

R[k] = σ2
j (Hk)†AHk. (15)

B. Channel Whitening

In the analysis in the previous section, it was implicitly

assumed that the channels were white, i.e., E[(Hk)†Hk] =
IP , where IP is the identity matrix of size P × P . When

the channels are in fact not white, the performance of the

filters will be suboptimal. To combat this, Hk is replaced with

H̃k = Λ−1/2
H Hk in Equation (15),

R[k] = σ2
j (H̃k)†Λ1/2

H AΛ1/2
H H̃k, (16)

where ΛH = E[Hk(Hk)†].

The matrix R is similar to the matrix Λ1/2
H AΛ1/2

H and

therefore shares the same eigenvalues. In order to maximize

interference suppression, the objective is to concentrate the

energy in the largest eigenvalue. This is accomplished when

the choice of w maximizes the ratio between the largest

eigenvalue and the sum of the eigenvalues. This sum of the

eigenvalues is equal to the trace of the matrix, which is simply

proportional to a constant times A0,0 or w†w = 1.

The optimal window can be found through the joint opti-

mization of the functional

F (w,x) =
x†Λ1/2

H AΛ1/2
H x

w†w
(17)

subject to the constraint

x†x = 1, (18)

where x ∈ C
M̄×1 is an arbitrary vector with Euclidian norm

one. Because this optimization is convex, the optimization can

be performed for w and x separately while the other is held

fixed. This process is repeated until F (w,x) converges to the

maximum value.

The two optimizations can be written as

xopt = argmax
x

F (wopt,x) (19)

and

wopt = argmax
w

F (w,xopt). (20)

The value of xopt in Equation (19) is equal to the eigenvec-

tor corresponding to the largest eigenvalue of the matrix A.

For a particular choice of the window w, the metric for the

interference mitigation is given by

Int(w) = max
x

F (w,x). (21)

C. Intercarrier Interference

In addition to mitigating interference, the use of windows

can degrade the signal of interest s through the introduction

of ICI. The contribution of the signal of interest at a particular

receiver can be written as

t = w � (g ∗ s). (22)

The power of ICI for carrier k is simply the sum of the received

power contributed by all of the other subcarriers. In this

section, s[n] is periodic with period N, i.e., s[n] = s[(n)N ],
where (·)N returns the argument modulo N . The expression

for the expected power of ICI is

ICI(w) = N2σ2
sσ2

g

N−1∑
n=0

⎛
⎝� N̄

N �∑
n̄=0

w[n + n̄N ] − 1†w
N

⎞
⎠
2

, (23)

where �·� indicates the ceiling operation.
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D. Interframe Interference

In cases where the cyclic prefix is not longer than the delay

spread of the channel, IFI is introduced. The linear convolution

can be broken up into a circular convolution plus an adjustment

term that contributes to the IFI,

t[n] = w[n]
(
(g N©s)[n]+

M−1∑
m=n+Cp+1

g[m](s[n − m] − s[(n − m)N ])
)

, (24)

where n ∈ [0, N̄) and N© denotes the periodic convolution

defined as

(g N©s)[n] =
M−1∑
m=0

g[m]s[(n − m)N ]. (25)

This can be time aliased to a vector of length N ,

t[n] =
� N̄

N �∑
ñ=0

w[n + ñN ]

(
M−1∑
m=0

g[m]s[(n + ñN − m)N ]+

M−1∑
m=n+Cp+1

g[m](s[n + ñN − m] − s[(n + ñN − m)N ])

)
,

(26)

where n ∈ [0, N). Simplifying the expression further,

t[n] = (g N©s)[n]
� N̄

N �∑
ñ=0

w[n + ñN ]+

w[n]
M−1∑

m=n+Cp+1

g[m]
(
s[n − m] − s[(n − m)N ]

)
. (27)

In the case with no ICI and a sufficiently long cyclic prefix,

the received signal of interest can be written as

t̂[n] = (g N©s)[n]. (28)

The error term can then be written as ||t − t̂||22. By using

Parseval’s theorem, the power of the ICI plus IFI penalty is

ICI(w) + IFI(w)=N2σ2
sσ2

g

N−1∑
n=0

⎛
⎝� N̄

N �∑
ñ=0

w[n + ñN ]−1

⎞
⎠
2

+

Nσ2
s

M−Cp−2∑
n=0

2w[n]

⎛
⎝1 −

� N̄
N �∑

ñ=1

w[n + ñN ]

⎞
⎠ M−1∑

m=n+Cp+1

σ2
g [m], (29)

where σ2
g =

∑M−1
m=0 σ2

g [m]/N .

E. Thermal Noise

In addition to ICI and IFI, the shape of the window also

impacts the effect of the thermal noise. Thermal noise can be

added to the model in Equation (22)

y = t + w � ν, (30)

where ν[n] is zero mean Gaussian noise with variance σ2
ν .

The contribution of the ν[n] term to the overall noise level

is uncorrelated to the other terms so it can be examined

separately. The expected power contribution of the noise in

the expression is

TN(w) = N

N−1∑
n=0

⎛
⎝� N̄

N �∑
ñ=0

w[n + ñN ]ν[n + ñN ]

⎞
⎠
2

(31)

= Nσ2
νw

†w. (32)

V. PERFORMANCE

The ratio of the first eigenvalue to the second eigenvalue

is used as a metric of interference suppression. It measures

how well the interference is confined to a single degree of

freedom for the carrier of interest. In Figure 4, the amount

of interference suppression the windows of interest provide

is plotted versus the combined effects of ICI, thermal noise,

and IFI. The rectangular window has the least amount of

interference suppression and the least contribution from the

other three terms. The Nyquist window has similar amounts

of interference mitagation to the third optimum window, but

performs worse in the other metrics. The Taylor window does

a good job at mitigating interference, but it does the worst on

the combined term. Lastly, the family of windows provides

the best performance for each level of interference mitigation.
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Fig. 4. ICI Interference Trade-off – The trade-off provided by the various
windows between the interference mitigation (ratio of the 1st eigenvalue
and the 2nd) with the combined effects of ICI, thermal noise, and IFI. The
windows considered are those depicted in the family of windows shown in
Figure 3 and the traditional windows of Figure 2.

The measures of the interference suppression along with the

other terms are useful, but the ultimate goal is to maximize the

channel capacity of the resulting windowed OFDM sequence.

Figure 5 shows the measured capacity for the bank of windows

for various SIR levels, while Figure 6 shows the ratio of the

capacity curve for each window with the capacity curve for

the rectangular window. Each data point was determined using

a Monte Carlo simulation of ten thousand trials.

The optimum 1 window has the best performance for the

low SIR case, the optimum 2 window is best in the SIR range

from -22 dB to -11 dB, and the optimum 3 window is best in
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the SIR range from -11dB to 6dB (not shown in figure), where

the optimum 4 window takes over. The Taylor window is a

strong performer for low SIR levels, but its performance versus

the other windows drops off rapidly at higher SIR levels. The

Nyquist window is similar to the optimum 3 window and is a

strong performer at higher SIR levels. Finally, the rectangular

window is dominated by the optimum 4 window. The optimum

4 window does well at high SIR levels and the worst at low

SIR levels.
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Fig. 5. Capacity – The capacity of the MIMO channel for each of the
specified windows over a wide range of signal to interference ratios.
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Fig. 6. Relative Capacity – The ratio of the capacity of the MIMO
channel for each of the specified windows to the capacity obtained using
the rectangular window over a wide range of signal-to-interference ratios.

VI. CONCLUSION

A new method for designing windows for various levels

of interference, delay spreads, frame length, and cyclic prefix

lengths is presented. These windows optimally trade off in-

terference suppression with intercarrier and interframe inter-

ference. The windows achieve superior capacity to traditional

windows in the presence of a wide range of interference levels.
The implementation of these windows is computationally

simple. Furthermore, the windows can be precomputed for a

range of SIR levels and delay spreads. In the example, only

three windows are needed (optimum 1, 2, and 3) to achieve a

hybrid window that performs well over a wide range of SIR

levels. Because of these properties, the windows can be easily

implemented in real systems.
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VIII. APPENDIX

The first variation of Equation (5) is

∂w(Φ) =∑M−1
m=0

∑M−1
m̃=0 x[m]x[m̃]Λ

1
2
H[m]Λ

1
2
H[m̃]w[n − (m − m̃)]∑N̄−1

ñ=0 w[ñ]2
−

x†Λ
1
2
HAΛ

1
2
Hx

A[0]2
w[n] − β

σ2
gN2SNR

w[n]−

β
M−1∑

m=n+Cp+1

σ2
g [m]
Nσ2

g

(1 − ∑� N̄
N �

ñ=1 w[n + ñN ])
N

(1 − u[n − N ])+

β
w[(n)N ]

N

M−1∑
m=(n)N+Cp+1

σ2
g [m]
Nσ2

g

u[n − N ], (33)

where β = MN3σ2
gSIR, SIR = σ2

s

σ2
j

, and SNR = σ2
s

σ2
ν

.
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