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Abstract— We consider the source-channel separation archi-
tecture for lossy source coding in communication networks. It is
shown that the separation approach is optimal in two general
scenarios and is approximately optimal in a third scenario. The
two scenarios for which separation is optimal complement each
other: the first is when the memoryless sources at source nodes
are arbitrarily correlated, each of which is to be reconstructed
at possibly multiple destinations within certain distortions, but
the channels in this network are synchronized, orthogonal, and
memoryless point-to-point channels; the second is when the
memoryless sources are mutually independent, each of which
is to be reconstructed only at one destination within a certain
distortion, but the channels are general, including multi-user
channels, such as multiple access, broadcast, interference, and
relay channels, possibly with feedback. The third scenario, for
which we demonstrate approximate optimality of source-channel
separation, generalizes the second scenario by allowing each
source to be reconstructed at multiple destinations with different
distortions. For this case, the loss from optimality using the
separation approach can be upper-bounded when a difference
distortion measure is taken, and in the special case of quadratic
distortion measure, this leads to universal constant bounds.

Index Terms— Joint source-channel coding, separation.

I. INTRODUCTION

SHANNON’S source-channel separation theorem asserts
that there is no essential loss asymptotically in point-

to-point communication systems, when the source coding
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component and the channel coding component are designed
and operated separately [1]. This separation architecture
simplifies the overall communication system tremendously,
because the decoupled subsystems are much easier to design
and implement, with the codeword index as the only interface
between the two components. Unfortunately, it has been shown
that the separation approach is not optimal in very simple
multiuser scenarios (e.g., [2]), which suggests that the opti-
mality of source-channel separation may not hold beyond the
conventional point-to-point case.

Because of the clear benefits of the source-channel separa-
tion architecture, it is important to understand the issue better.
In this work, we seek to answer the following sequence of
questions: is there a general class of multiuser communication
systems for which

• The separation approach is optimal?
• If separation is not optimal, then is it at least approxi-

mately optimal?

The difficulty in answering these questions lies in the fact
that in most multiuser communication scenarios, we do not
have explicit characterizations of the rate-distortion regions,
the channel capacity regions, or the joint coding achievable
distortion regions; however, in order to determine whether the
separation approach is optimal, it is natural to first couple
the rate-distortion region and the channel capacity region,
then compare it with the joint coding achievable distortion
region. With at least one region unknown in most cases, it
seems impossible to answer the above questions even in some
of the simplest settings (e.g., communicating sources on an
interference channel), let alone in more complex networks.
In this work, we show that this difficulty in determining
the optimality of source-channel separation can in fact be
circumvented completely in several important settings, and the
answers to the sequence of questions posed earlier are indeed
positive.

More precisely, we show that for lossy coding of mem-
oryless sources in a network, the source-channel separation
approach is optimal for the following two general scenarios:
the first scenario, referred to as distributed network joint
source-channel coding (DNJSCC), is when the sources are
arbitrarily correlated, each of which is to be reconstructed
at possibly multiple destinations within certain distortions,
but the channels between any pair of nodes in this network
are synchronized, orthogonal, and memoryless; the second
scenario, referred to as joint source-channel multiple unicast
with distortions (JSCMUD), is when the sources are mutually
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independent, each of which is to be reconstructed only at one
destination within a certain distortion, but the channels can
be general, including multi-user channels such as multiple
access, broadcast, interference and relay channels, possibly
with feedback.

The third scenario is a natural extension of the second
one by allowing a source to be reconstructed at multiple
destinations with different distortions; this case is referred
to as joint source-channel multiple multicast with distortions
(JSCMMD). For this scenario, the classical example of sending
a Gaussian source over a Gaussian broadcast channel [3]
reveals that the source-channel separation approach is not
optimal in general. Thus we turn our attention to whether the
separation approach is approximately optimal, and show that
under a “difference” distortion measure, it is indeed so in the
sense that the loss from the optimum can be upper-bounded.
In the important special case of quadratic distortion measure,
the upper bound is at most 0.5 bit per (additional) user which
reconstructs the same source.

The optimality of source-channel separation beyond point-
to-point communications has been considered in the past
for more restricted classes of sources and channels [4]–[9],
usually by taking advantage of the problem-specific structures
and applying conventional techniques. The first scenario we
consider, i.e., the DNJSCC problem, is closely related to
the problem treated in [10], where the optimality of the
separation between channel coding and network coding [11]
was established. In fact, our interest in the DNJSCC problem
was motivated by the success in this work, from which
we also borrow the ideas of channel simulation and sample
interleaving; by applying these ideas directly, we obtain a
concise proof for the DNJSCC problem without relying on
the full-fledged stacked network as in [10], and our approach
has the additional benefit of making explicit the underlying
interactive source coding component. The result in [10] was
extended to the DNJSCC scenario in [12] independently from
and concurrently with our work [13]–[15]. Another relevant
work is [16] where the super-channel view similar to what we
use in the JSCMUD problem was applied to non-ergodic point-
to-point channels. Also notable is the “information separation”
discovered by Tuncel [17], which is a notion of separation
weaker than the classical source-channel separation, and thus
not the focus of this work.

The rest of this paper is organized as follows. Examples are
provided in Section II to illustrate the underlying intuitions,
and necessary definitions are given in Section III. The main
results and the proofs on DNJSCC, JSCMUD and JSCMMD
are given in Sections IV, V and VI, respectively. Section VII
finally concludes the paper.

II. THREE EXAMPLES

In this section three examples are discussed in the context of
sending sources on interference channels to provide some intu-
itions for the optimality or approximate optimality of source-
channel separation in DNJSCC, JSCMUD and JSCMMD. The
main results of this work are built on these intuitions, and
Sections IV, V and VI essentially make them more precise

Fig. 1. Transmitting correlated sources on an interference network.

Fig. 2. Extracting a super-source from a joint source-channel code.

and rigorous. For simplicity, the channel bandwidth and the
source bandwidth are assumed to match in this section.

A. An Example for Distributed Network Joint Source-Channel
Coding

Consider the example in Fig. 1, where the discrete-time
finite-alphabet memoryless sources S1 and S2 are corre-
lated. Each discrete-time finite-alphabet memoryless channel
between a transmitter and a receiver is orthogonal to the
other channels: the channel from node i to node j has
transition probability P(Yi, j |Xi, j ) and channel capacity Ci, j ,
and the overall transition probability of the channel network
is

∏
(i, j ) P(Yi, j |Xi, j ). Both node 3 and node 4 require a

lossy reconstruction of source S1, denoted as Ŝ1,3 and Ŝ1,4,
respectively. Node 4 also requires a lossy reconstruction of
source S2, denoted as Ŝ2,4. The rate-distortion region of the
underlying source coding problem is unknown, characterizing
which is at least as difficult as the distributed source coding
problem [18].

Suppose there exists a length-n joint source-channel code
that achieves the distortion triple (D1,3, D1,4, D2,4). The key
observation is the following simple fact: if we fix this joint
source-channel code, then the channel input for any given
channel, for example Xn

1,3, can be viewed as a super (block)
source, independent and identically distributed across blocks;
see Fig. 2. Therefore, we can encode a length-n′ sequence of
such blocks using a “rate-distortion” code of rate per block
slightly exceeding I (Xn

1,3; Y n
1,3), the codewords of which are

generated using the distribution P(Y n
1,3). It follows that with

probability approaching one (as n′ goes to infinity) a Y nn′
1,3

codeword can be found in the codebook that is jointly typical
with a channel input sequence Xnn′

1,3 , i.e., a length-n′ vector of
the super source samples. This lossy source code essentially
simulates the channel output over n′ length-n blocks, and
only the codeword index needs to be known at node 3 to
reconstruct the simulated channel output Y nn′

1,3 . Note that the
rate of this code is I (Xn

1,3; Y n
1,3) ≤ nC1,3; a similar argument
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Fig. 3. Transmitting mutually independent S1, S2, S3 on an interference
channel.

holds for all other links. The original joint source-channel code
decoders can now be applied on the simulated channel outputs
to yield the reconstructions. This intuitively implies that the
underlying source coding problem is guaranteed to achieve the
distortion (D1,3, D1,4, D2,4) at rates (C1,3,C1,4,C2,3,C2,4),
which would further imply the optimality of the separation
approach.

The above observation largely reflects the intuition behind
the proof of source-channel separation for the DNJSCC prob-
lem, however, some technical details (besides the asymptoti-
cally diminishing quantities omitted in the above discussion)
need to be addressed: the main difficulty is that when the
network has relays or cycles, the super source argument given
above does not apply since channel usage constraints prevent
coding over long super-channel blocks directly. The proof
given in Section IV will resolve this difficulty through an
intricate arrangement of channel simulation.

B. An Example for Joint Source-Channel Multiple
Unicast With Distortions

Consider the problem depicted in Fig. 3, where the sources
S1, S2 and S3 are mutually independent; here the interference
channel is more generally given by the transition probability
P(Y3,Y4|X1, X2), where X1, X2 are the channel inputs by
node 1 and node 2, respectively, and Y3,Y4 are the channel
outputs at node 3 and node 4, respectively. Since the capacity
region of the interference channel is unknown, it is infeasible
to explicitly characterize the achievable distortion region of
the separation approach.

Suppose a distortion triple (D1, D2, D3) is achievable
using some joint source-channel code of length-n. The
key observation is now the following simple fact: if we
fix this joint source-channel code, the transition probabil-
ity of P(Ŝn

1 , Ŝn
2 , Ŝn

3 |Sn
1 , Sn

2 , Sn
3 ) can be viewed as that of

an alternative super interference channel with three users.
On this super channel, the individual mutual information
guarantee I (Sn

i ; Ŝn
i ) ≥ n Ri (Di ) holds for i = 1, 2, 3,

due to the conventional rate-distortion theorem [19]. Thus
intuitively, this super channel is “good” since the mutual
information I (Sn

i ; Ŝn
i ) terms are lower bounded, and the rate

triple (n R1(D1), n R2(D2), n R3(D3)) should be in its capacity
region, which would further imply that the achievable dis-
tortion triple (D1, D2, D3) is achievable by the separation
approach.

In order to show that the super interference channel can
indeed support the rate triple (n R1(D1), n R2(D2), n R3(D3)),
we essentially need to construct (random) codes over large
super-channel blocks, and prove that the error probability can
be made small, just as in conventional channels. The proof

Fig. 4. Transmitting mutually independent S1, S2, S3 on an interference
channel to multiple destinations, i.e., source S1 is required at both destination
node 3 and node 4.

in Section V follows this approach and makes the above
intuitive argument more rigorous.

C. An Example for Joint Source-Channel Multiple
Multicast With Distortions

Consider the problem depicted in Fig. 4, which is only
slightly different from that in Fig. 3 in that source S1 is to be
reconstructed at both node 3 and node 4, denoted as Ŝ1,3 and
Ŝ1,4, respectively; the reconstruction of source S3 at node 3 is
denoted1 as Ŝ3,3 and the reconstruction of source S2 at node 4
is denoted as Ŝ2,4. Taking a similar view as in the previous
example, the abstracted channel now has transition probability
P(Ŝn

1,3, Ŝn
1,4, Ŝn

2,4, Ŝn
3,3|Sn

1 , Sn
2 , Sn

3 ). However, the mutual infor-
mation bounds by the conventional rate-distortion theorem
cannot be directly used as in the previous case. A moment of
thought should convince the readers that the broadcast nature
of the marginal transition probability P(Ŝn

1,3, Ŝn
1,4|Sn

1 ) is the
culprit, and some additional coding component is needed.

A natural separation architecture here is to use a successive
refinement source code [20] to produce descriptions satisfying
the distortion requirements for each destination and couple it
to a superposition broadcast code [19] to deliver reliably these
messages in the degraded message set [21]. More precisely,
in the example of Fig. 4, assume without loss of generality
that the distortion for source S1 at node 3 is greater than
that at node 4. A successive refinement code for S1 can be
used to produce messages (W1,1,W1,2) such that W1,1 is to be
delivered to node 3 and both (W1,1,W1,2) are to be delivered
to node 4. Node 1 also produces a message W3,1 to encode
source S3, and node 2 produces a message W2,1 to encode
source S2. The messages (W1,1,W3,1) need to be reliably
transmitted to node 3, and the messages (W1,1,W1,2,W2,1)
to node 4.

Let us for the moment isolate source S1 and focus on
the super block broadcast channel P(Ŝn

1,3, Ŝn
1,4|Sn

1 ) with the
messages (W1,1,W1,2), since it is the main difficulty in gener-
alizing the proof approach for JSCMUD. We can show that this
broadcast channel can support a certain rate pair for degraded
message set broadcast, by introducing an additional auxiliary
random variable. The same auxiliary random variable is also
used to construct successive refinement source code for S1.
The afore-mentioned broadcast channel code rates are however
insufficient to support this successive refinement source code;
nevertheless, the shortfall can be upper-bounded by comparing
the channel code rates and the source code rates. This upper

1The notation used here may seem unnatural initially, however it will
become clear that this notation is convenient when generalizing to more
complex networks.
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bound implies the approximate optimality of source-channel
separation in JSCMMD.

III. NOTATION AND DEFINITIONS

In this section, notation and necessary definitions are pro-
vided. The notation would become rather unwieldy if a unified
framework were used for all the problems treated in this work,
therefore we forgo this ambitious goal and define the problems
separately. We focus on the problems with discrete-time finite-
alphabet memoryless sources, discrete-time finite-alphabet
memoryless channels and bounded distortion measures, unless
stated otherwise explicitly. It should be noted that it is often
assumed that the sources are independent of the channels
in such separation problems, which is also assumed in this
work; this is because otherwise, even if the encoding and
the decoding functions are designed separately, the inherent
dependence between the source and the channel will render
such a separation rather meaningless even in a point-to-point
setting.

A. Definitions for the Distributed Network Joint
Source-Channel Coding Problem

For this case, the network with a total of N nodes can be
conveniently written as a directed graph G = (V, E), where
V = {1, 2, . . . , N} is the set of nodes, and E is the set of
edges between any two nodes; from here on, for any positive
integer M , we use IM to denote the set {1, 2, . . . ,M}.

Each edge e = (i, j) ∈ E is associated with a channel,
whose transition probability is given as P(Yi, j |Xi, j ) with input
alphabet Xi, j and output alphabet Yi, j where the input and
the output are not always independent, i.e., the capacity of the
channel on this link is non-zero; these channels are assumed
to be synchronized. Each node i has a source Si , distributed
in the alphabet Si , and the collection of the sources are dis-
tributed according to the joint distribution P(S1, S2, . . . , SN )
at each time instance. We have inherently assumed these
sources are synchronized for simplicity, and thus the notation
P(S1, S2, . . . , SN ) is meaningful. A length-n vector of a
source Si is written as Sn

i , and the t-th symbol in this vector
is written as Si (t); i.e., Sn

i = (Si (1), Si (2), . . . , Si (n)). A set
of sources {Si , i ∈ A} may be written as SA; similarly,
{Xi, j , (i, j) ∈ A} may be written as XA. Upper case is used
for random variables, and lower case for their realizations. For
any set S, its r -th order product set is written as Sr .

For each source, a distortion measure is defined as d :
Si × Ŝi → [0,∞) where Ŝi is the reconstruction alphabet.
Nodes that are interested in a given source Si may use different
reconstruction alphabets and distortion measures, however, we
do not distinguish them for notational simplicity. A node j
may be interested in only a subset of the sources {Si , i ∈ IN };
notationally, the set of sources that node j is interested in is
written as T j . The class of codes being considered for the
distributed network source coding problem are conventional
block codes defined below.

Definition 1: An (m, n, {dk, j , k ∈ T j }) distributed network
joint source-channel code on a joint source-channel network

(V, E, {T j , j ∈ IN }, P(S1, S2, . . . , SN ),
∏
(i, j )∈E P(Yi, j |Xi, j ))

consists of the following components:

• At each transmitter node i , for each j such that (i, j) ∈ E ,
an encoding function for time instance t

φ
(t)
i, j : Sm

i ×
∏

(k,i)∈E
Y t−1

k,i → Xi, j , t = 1, 2, . . . , n. (1)

• At each receiver node j , for each source k ∈ T j , a
decoding function

ψk, j :
∏

(i, j )∈E
Yn

i, j × Sm
j → Ŝm

k . (2)

The encoding and the decoding functions induce the distor-
tions

dk, j = 1

m

m∑

t=1

�d(Sk(t), Ŝk, j (t)),

j = 1, 2, . . . , N, and k ∈ T j ,

where Ŝk, j is the reconstruction of source Sk at node j .
Here m is the source block length and n is the channel block

length, which imply that there is a source-channel bandwidth
mismatch factor of κ = n/m (channel uses per source sample).
If a node is not interested in a certain source, the distortion of
the reconstruction at this node can simply be assumed to be
large. Thus we can write a distortion matrix, whose element
dk, j is the distortion associated with the reconstruction of
source Sk at node j . Without loss of generality,2 let the element
di,i = 0 and define di, j = dmax

i for i /∈ T j , where dmax
i is the

distortion achievable at rate zero for source Si . The region of
achievable distortion matrices can be defined as follows.

Definition 2: A distortion matrix �D is achievable for
distributed network joint source-channel coding with
bandwidth mismatch factor κ on a joint source-channel
network (V, E, {T j , j ∈ IN }, P(S1, S2, . . . , SN ),

∏
(i, j )∈E

P(Yi, j |Xi, j )), if for any ε > 0 and sufficiently large m,
there exist an integer n ≤ κm and an (m, n, {dk, j , k ∈ T j })
distributed network joint source-channel code, such that
di, j ≤ Di, j + ε, i, j = 1, 2, . . . , N . The collection of all
such distortion matrices is the distributed network joint
source-channel coding achievable distortion region, denoted
as Ddis .

To discuss source-channel separation, it is important to
define the source coding problem and the channel coding prob-
lem that are being separated into. The channel coding problem
in DNJSCC is simply the point-to-point channel capacity
problem. The source coding problem is more complex, which
requires the incorporation of interactive coding.

Definition 3: An (m, l, {Li, j , (i, j) ∈ E}, {dk, j , k ∈ T j })
distributed network source code with a total of l
sessions on a source communication network
(V, E, {T j , j ∈ IN }, P(S1, S2, . . . , SN )) consists of the
following components:

• At each (transmitter) node i , for each j such that
(i, j) ∈ E , an encoding function for transmission session

2Without loss of generality, we can always assume the minimum distortion
for a given distortion measure is zero; see [22].
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t = 1, 2, . . . , l,

φ̃
(t)
i, j : Sm

i ×
∏

(k,i)∈E
I t−1

Lk,i
→ ILi, j , (3)

where Li, j and Lk,i ’s are positive integers.
• At each receiver node j , for each source k ∈ T j , a

decoding function

ψ̃k, j :
∏

(i, j )∈E
Il

Li, j
× Sm

j → Ŝm
k . (4)

The encoding functions and the decoding functions induce the
distortions

dk, j = 1

m

m∑

t=1

�d(Sk(t), Ŝk, j (t)),

j = 1, 2, . . . , N, and k ∈ T j ,

where again Ŝk, j is the reconstruction of source Sk at node j .
Definition 4: A rate-distortion-matrix tuple ({Ri, j , (i, j) ∈

E}, �D) is achievable on a source communication network
(V, E, {T j , j ∈ IN }, P(S1, S2, . . . , SN )), if for any ε > 0,
there exists an integer l, such that for any sufficiently large m,
there exists an (m, l, {Li, j , (i, j) ∈ E}, {dk, j , k ∈ T j }) distrib-
uted network source code such that

Ri, j + ε ≥ l

m
log Li, j , (i, j) ∈ E

di, j ≤ Di, j + ε, i, j = 1, 2, . . . , N. (5)

The collection of distortion matrices �D for which the rate-
distortion-matrix tuple ({Ri, j , (i, j) ∈ E}, �D) is achievable
for a given rate vector {Ri, j , (i, j) ∈ E} is denoted3 as
Ddis({Ri, j }(i, j )∈E).

Note that in the above definition, m grows to infinity
for any fixed value of l. One may alternatively define the
region to allow m and l to grow in a more general manner.
However, this alternative definition will only enlarge the region
Ddis({Ri, j }(i, j )∈E), and thus does not affect the optimality
result. In other words, the separation result we shall present
is in fact stronger with the restrictions in Definitions 3 and 4
than that under a more general version of these definitions.

Roughly speaking, 1
m log Li, j is the rate of the noiseless

channel on edge (i, j) per source symbol in each session.
There are a total of l sessions, and on each edge the same
rate is used in all sessions. At the end of each session,
the index w j,k ∈ IL j,k in this session becomes available at
destination node k, which can be used by node k in the next
session. In other words, the encoding functions observe the
causality constraints on the session level. Note that the region
Ddis({Ri, j }(i, j )∈E) is convex by a time-sharing argument.
Definitions 3 and 4 specify a special class of interactive source
coding problem, which appears particularly important given
the result presented in this work.

We can now combine the source codes together with the
capacity-achieving channel codes for each channel on the
original communication network. More precisely, we can

3Ddis has already been used in the joint coding problem, and here
we slightly abuse the notation by using Ddis ({Ri, j }(i, j)∈E ) to denote the
distortion-rate function in the source coding problem.

define the achievable distortion region using such a separation
approach as

D∗
dis = Ddis({κCi, j }(i, j )∈E), (6)

where Ci, j is the channel capacity between node i and node j ,
sometimes written as Ce with e = (i, j) ∈ E .

B. Definitions for Joint Source-Channel Multiple Unicast and
Multiple Multicast With Distortions

There are M mutually independent sources, denoted as Si ,
distributed in the alphabet Si according to some distribution
P(Si ), i = 1, 2, . . . ,M; note that the index i here is not
related to the index of the node, unlike in Section III.A.
For simplicity, we assume all the sources are synchronized.
The distortion measures are defined similarly as in the last
subsection, however we do not allow the existence of multiple
distortion measures for the same source. Let the number of
nodes be N . For simplicity we treat the overall communi-
cation network as a single memoryless channel, with inputs
(X1, X2, . . . , X N ) over the alphabets X1 ×X2 ×· · ·×XN and
outputs (Y1,Y2, . . . ,YN ) over the alphabets Y1×Y2×· · ·×YN ,
and transition probability given by P(Y N

1 |X N
1 ); Xi and Yi are

the channel input and output at node i , respectively.
Each source Si can be present at several nodes, and for each

node j ∈ IN , we denote the sources present at node j as S j .
The receiver demands are defined as follows:

• Joint source-channel multiple unicast with distortions:
each source is to be reconstructed at a single destination.
Again denote for receiver node j the set of the sources it
is interested in as T j , then T j ∩ Tk = ∅ for any j �= k.

• Joint source-channel multiple multicast with distor-
tions: each source is to be reconstructed at multiple
destinations, i.e., it is possible that T j ∩ Tk �= ∅.

Definition 5: An (m, n, d1, d2, . . . , dM ) JSCMUD
code on a source-channel communication network
({S j , j ∈ IN }, {T j , j ∈ IN },∏M

i=1 P(Si ), P(Y N
1 |X N

1 ))
consists of the following components:

• At each transmitter node j , an encoding function for
(time) index t

φ
(t)
j :

∏

i∈S j

Sm
i × Y t−1

j → X j , t = 1, 2, . . . , n. (7)

• At each receiver node j , for each source k ∈ T j , a
decoding function

ψk, j : Yn
j ×

∏

i∈S j

Sm
i → Ŝm

k . (8)

The encoding functions and decoding functions induce the
distortion

dk = 1

m

m∑

t=1

�d(Sk(t), Ŝk(t)), k = 1, 2, . . . ,M,

where Ŝk(t) is the reconstruction of source Sk at a node j
such that k ∈ T j .

Definition 6: A distortion vector (D1, D2, . . . , DM ) is
achievable for JSCMUD on a source-channel communication
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network ({S j , j ∈ IN }, {T j , j ∈ IN },∏M
i=1 P(Si ),

P(Y N
1 |X N

1 )) with a bandwidth mismatch factor κ , if for any
ε > 0 and sufficiently large m, there exist an integer n ≤
κm and an (m, n, d1, d2, . . . , dM ) JSCMUD code, such that
di ≤ Di + ε, i = 1, 2, . . . ,M . The collection of all such
distortion vectors is the achievable JSCMUD distortion region,
denoted as Duni .

Next we define the source coding problem and the channel
coding problem that are being separated into. For the JSCMUD
problem, the source codes are conventional lossy source codes.
The channel coding problem is more involved: each source
Si is replaced with a message Wi of cardinality Li with a
uniform distribution; moreover, these messages are mutually
independent. The precise channel code definition is as follows.

Definition 7: An (n, L1, L2, . . . , L M , Perr ) multiple uni-
cast channel code on a channel communication network
({S j , j ∈ IN }, {T j , j ∈ IN }, P(Y N

1 |X N
1 )) consists of the

following components:

• At each transmitter node j , an encoding function for
(time) index t

φ̃
(t)
j :

∏

i∈S j

ILi × Y t−1
j → X j , t = 1, 2, . . . , n. (9)

• At each receiver node j , for each message Wk where
k ∈ T j , a decoding function

ψ̃k, j : Yn
j ×

∏

i∈S j

ILi → ILk . (10)

Denote the decoded message as Ŵi at node j where i ∈ T j .
The encoding functions and decoding functions induce the
average decoding error probability

Perr = Pr(
M⋃

i=1

Wi �= Ŵi ). (11)

Definition 8: A rate vector (R1, R2, . . . , RM ) is achievable
for multiple unicast channel coding on a channel communi-
cation network ({S j , j ∈ IN }, {T j , j ∈ IN }, P(Y N

1 |X N
1 )),

if for any ε > 0 and sufficiently large n, there exists an
(n, L1, L2, . . . , L M , ε) multiple unicast channel code, such
that Ri ≤ 1

n log Li + ε, i = 1, 2, . . . ,M . The collection of
such achievable rate vectors is the achievable capacity region
of the network, denoted as Cuni .

Using conventional rate-distortion codes on each source and
then combining it with the above defined multiple unicast
channel codes, an achievable distortion region is immediate,
which will be denoted as D∗

uni . More precisely, we can write

D∗
uni =

⋃

(R1,R2,...,RM )∈Cuni

⎧
⎨

⎩

(D1, D2, . . . , DM ) :
Di ≥ Di (κRi ),
i = 1, 2, . . . ,M

⎫
⎬

⎭
(12)

where Di (·) is the distortion-rate function of the source Si .
In the case of JSCMMD, a source is to be reconstructed

with possibly different distortions at multiple destinations.
The JSCMMD codes are defined in the same manner as in the
case of JSCMUD, and thus the detailed definitions are omitted
here. The achievable distortion matrix and the achievable
distortion region Dmul can also be defined accordingly.

The source-channel separation scheme for JSCMMD is
slightly more involved. Consider first source Si , and assume
it is to be reconstructed in a lossy manner at nodes in the set
Qi = { j : i ∈ T j }. The source codes we shall consider are
successive refinement codes [20], and source Si is encoded
in |Qi | stages, where the operator | · | denotes the cardinality
of a set. For the channel codes in the separation approach,
we consider the degraded message set problem [21]. More
precisely, in the given communication network, fix an order
Oi for the elements in the set Qi for each i = 1, 2, . . . ,M .
The source Si is replaced with a total of |Qi | messages,
denoted as Wi, j , whose rate is Ri,Oi ( j ), j = 1, 2, . . . , |Qi |,
where Oi ( j) is the j -th element in the order Oi . The k-th
node in this given order Oi is required to reconstruct the
first k messages, Wi, j , j = 1, 2, . . . , k. We can now define
the achievable capacity region Cmul(O1, O2, . . . , OM ) for this
degraded message set problem, which depends on the set of
orders �O = (O1, O2, . . . , OM ); see the JSCMMD example
in Section II-B, where Q1 = {3, 4} and the specific order
discussed is O1 = (3, 4).

The degraded message set problem naturally sets the stage
for the successive refinement source codes, and by combining
these two components, we arrive at an achievable distortion
region using the separation appraoch for a given set of
orders �O. We shall denote this achievable region as D∗

mul(
�O).

IV. OPTIMALITY OF SEPARATION FOR DISTRIBUTED

NETWORK JOINT SOURCE-CHANNEL CODING

Our first main result formally states the optimality of source-
channel separation in the DNJSCC problem. Recall Ddis and
D∗

dis given in Definition 2 and Eqn. (6), respectively.
Theorem 1: Ddis = D∗

dis .
The uniform Markov lemma [23], [24] is needed in the proof

of this theorem, which is an alternative version of the Markov
lemma in [18], [25]. It is rewritten below using notation more
convenient to us.

Lemma 1: Let X ↔ Y ↔ Z be a Markov string
in finite alphabets. For any fixed strongly jointly typi-
cal sequence pair (xn, yn), let Zn be chosen uniformly
at random from the set which consists of all sequences
that are strongly typical with yn . Let Q(·) be the prob-
ability measure induced by this random choice. Then
limn→∞ Q((xn, yn, Zn) are not strongly jointly typical) = 0,
and the convergence is uniform over the set of strongly jointly
typical (xn, yn) sequence pairs.

Proof of Theorem 1:
Proof for the direction Ddis ⊇ D∗

dis : To prove this direction,
it suffices to show

Ddis ⊇
⋃

{Ri, j :(i, j )∈E}:Ri, j<κCi, j

Ddis({Ri, j }(i, j )∈E). (13)

This is because the achievable distortion region Ddis is closed,
and the distortion-matrix-rate function Ddis({Ri, j }(i, j )∈E ) is
continuous in the relative interior of the non-negative quadrant
(implied by its convexity), from which it follows that the
condition Ri, j < κCi, j can be replaced by Ri, j ≤ κCi, j

in (13), implying that Ddis ⊇ D∗
dis where D∗

dis is defined
in (6).
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To show (13), let ε > 0 be some quantity such that

ε ≤ min
(i, j )∈E

(κCi, j − Ri, j ) (14)

for any chosen set of {Ri, j , (i, j) ∈ E} such that Ri, j < κCi, j ,
(i, j) ∈ E . For any distortion vector {Dk, j , k ∈ T j } ∈
Ddis({Ri, j }(i, j )∈E), since it is achievable with {Ri, j ,
(i, j) ∈ E}, there exists an l such that for any sufficiently large
m, there exists an (m, l, {Li, j , (i, j) ∈ E}, {Dk, j + 1

4ε, k ∈ T j })
distributed network source code (see Definition 3) with a total
of l sessions, where

Ri, j + ε

4
≥ l

m
log Li, j . (15)

We utilize this source code together with a good channel
code for each channel in the original network. More precisely,
there are at least a total of κm − 1 channel uses available,
and we shall partition them into l channel sessions, each
with at least

⌊
κm−1

l

⌋
channel uses. Thus the channel on edge

(i, j) in each session can support a message of cardinality⌊

2

⌊
κm−1

l

⌋
(Ci, j − 1

4 ε)
⌋

, with maximum error probability (among

all messages for each channel code) less than ε, by choosing m
sufficiently large. Each session of the pure source code has a
message output of cardinality no larger than Li, j . Thus as long
as

Li, j ≤
⌊

2
⌊
κm−1

l

⌋
(Ci, j − 1

4 ε)
⌋
, (16)

we can use the digital channel codes to transmit the source
code indices with vanishing error probability. It follows that
for any ε > 0, there exists a sufficiently large m such that the
total error probability over l-sessions is less than l|E |ε in this
network. For (16) to hold under the condition (15), it suffices
to have

2
m
l (Ri, j + 1

4 ε) ≤ 2(
κm−1

l −1)(Ci, j − 1
4 ε) − 1. (17)

Eqn. (14) implies that for any ε > 0, (17) is true for any
sufficiently large m and the fixed l afore-mentioned in the
(m, l, {Li, j , (i, j) ∈ E}, {Dk, j + 1

4ε, k ∈ T j }) distributed
network source code, and subsequently (16) holds. Thus for
any ε > 0, by choosing m sufficiently large, the separation
based scheme is able to achieve the distortion vector {Dk, j +
ε, k ∈ T j } for any {Dk, j , k ∈ T j } ∈ Ddis({Ri, j }(i, j )∈E) with
probability greater than or equal to (1 − l|E |ε), and distortion
Dmax with probability less than or equal to l|E |ε, for any Ri, j

such that κCi, j − Ri, j > ε, (i, j) ∈ E , where Dmax is the
maximum distortion value for all the finite-alphabet sources in
the network. Since ε can be made arbitrarily small and Dmax
is finite, and moreover Ddis is a closed set, (13) is indeed true.
Proof for the direction Ddis ⊆ D∗

dis : We wish to show that if
a distortion matrix �D is achievable in the joint coding problem
� j (Definitions 1 and 2), then the rate distortion matrix pair
({κCe}, �D) is also achievable in the source coding problem
�s (Definitions 3 and 4). For this purpose, we construct an
n-session distributed network source code for �s that operates
on a source sequence of length mn′ from a joint coding code.
For any achievable distortion matrix �D and any ε > 0, there
exists an (m, n, {Dk, j + ε, k ∈ T j }) distributed network joint

source-channel code (see Definitions 1 and 2), where n ≤ κm.
Let us fix this joint coding code, and use it to construct a
source code for �s .

First partition the source sequence Smn′
i , i = 1, 2, . . . , N ,

into n′ disjoint block components, each of length m. The v-th
block component of Smn′

i is written as Sm
i 〈v〉, i.e.,

Sm
i 〈v〉�

(

Si ((v−1)m+1), Si((v−1)m+2), . . . , Si (vm)

)

,

v = 1, 2, . . . , n′.

To make this partition explicit, Smn′
i is written in the sequel

as Sm,〈n′ 〉
i .

Codebook generation: For each (i, j) ∈ E and each
session t = 1, 2, . . . , n, a source coding codebook C(i, j ),t of
size 2n′(I (Xi, j (t);Yi, j (t))+δ) is generated by choosing from the
strongly typical set of the random variable Yi, j (t) uniformly
at random with replacement, where δ > 0 is a small quantity
δ → 0 as n′ → ∞. This codebook is revealed to both the
encoder and the decoder on edge (i, j) in the problem �s .

Encoding and decoding: For session t = 1 at any given
edge (i, j) ∈ E , we first apply the chosen joint source channel
encoding function φ(1)i, j on each block component Sm

i 〈v〉, v =
1, 2, . . . , n′; denote the output φ(1)i, j (s

m
i 〈v〉) as xi, j (1, 〈v〉). The

following length-n′ vector is formed by concatenating them

x 〈n′〉
i, j (1) � (xi, j (1, 〈1〉), xi, j (1, 〈2〉), . . . , xi, j (1, 〈n′〉)). (18)

For each (i, j) ∈ E , if x 〈n′〉
i, j (1) is strongly typical, we find

a codeword y〈n′〉
i, j (1) in C(i, j ),1 such that x 〈n′〉

i, j (1) and y〈n′〉
i, j (1)

are strongly jointly typical with respect to P(Xi, j (1),Yi, j (1));
if there does not exist such a codeword, an error is declared.
Denote the index of this chosen y〈n′〉

i, j (1) codeword as wi, j (1);

the v-th location in the vector y〈n′〉
i, j (1) is written as yi, j (1, 〈v〉).

The encoding functions φ̃(1)i, j for �s are given by

φ̃
(1)
i, j

(
sm,〈n′ 〉

i

)
= wi, j (1), (i, j) ∈ E . (19)

In the t-th session, for any given edge (i, j) ∈ E , the chosen
joint source-channel encoding function φ(t)i, j is applied, and the
outputs are concatenated (see Fig. 5), i.e.,

x 〈n′〉
i, j (t) =

(

φ
(t)
i, j (s

m
i 〈1〉, {yt−1

k,i 〈1〉, (k, i) ∈ E}),
φ
(t)
i, j (s

m
i 〈2〉, {yt−1

k,i 〈2〉, (k, i) ∈ E}), . . . ,
φ
(t)
i, j (s

m
i 〈n′〉, {yt−1

k,i 〈n′〉, (k, i) ∈ E})
)

, (20)

where

yt−1
i, j 〈v〉� (yi, j (1, 〈v〉), yi, j (2, 〈v〉), . . . , yi, j (t−1, 〈v〉)). (21)

For any (i, j) ∈ E , if x 〈n′〉
i, j (t) is strongly typical, find a

codeword y〈n′〉
i, j (t) in C(i, j ),t such that x 〈n′〉

i, j (t) and y〈n′〉
i, j (t)

are strongly jointly typical with respect to P(Xi, j (t),Yi, j (t));
if there does not exist such a codeword, an error is declared.
The index of the chosen codeword y〈n′〉

i, j (t) in C(i, j ),t is
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Fig. 5. Coding operation of �s in session t + 1 for node i with an incoming link (k, i) and an outgoing link (i, j). Each narrow horizontal box represents
a vector; the vectors yt

k,i 〈v〉’s and yt+1
i, j 〈v〉’s are shaded partially because at this point, the later parts have not been generated. Each component of the lossy

encoder output, i.e., yi, j (t + 1, 〈v〉), is appended to the existing yt
i, j 〈v〉 to form yt+1

i, j 〈v〉.

denoted as wi, j (t), and thus the encoding functions φ̃(t)i, j for
�s are

φ̃
(t)
i, j

(
sm,〈n′〉

i , {wt−1
k,i , (k, i) ∈ E}

)
= wi, j (t), (i, j) ∈ E . (22)

After n sessions of encoding, at node j ∈ V , the chosen
joint source-channel decoding function ψk, j is applied to

reconstruct the v-th block component of source sm,〈n′ 〉
k , k ∈ T j ,

i.e.,

ŝm
k, j 〈v〉 = ψk, j (s

m
j 〈v〉, {yn

i, j 〈v〉, (i, j) ∈ E}), v = 1, 2, . . . , n′,
(23)

which are then concatenated to form ŝm,〈n′〉
k, j , i.e., the length-

mn′ reconstruction of source k at node j . Thus the decoding
functions ψ̃k, j for �s are given as

ψ̃k, j (s
m,〈n′〉
j , {wn

i, j , (i, j) ∈ E}) = ŝm,〈n′ 〉
k, j , k ∈ T j . (24)

Error probability and distortion analysis: There are three
kinds of error events in session-t

• E (1)t : (sm,〈n′ 〉
V , xt,〈n′〉

E , yt−1,〈n′〉
E ) are not strongly jointly

typical with respect to P(Sm
V , Xt

E ,Y t−1
E );

• E (2)t,(i, j ): for an edge (i, j) ∈ E , given x 〈n′〉
i, j (t) is strongly

typical, there does not exist any codeword in C(i, j ),t such

that it is strongly jointly typical with x 〈n′〉
i, j (t) with respect

to P(Xi, j (t),Yi, j (t));

• E (3)t : (sm,〈n′〉
V , xt,〈n′〉

E , yt−1,〈n′〉
E ) and y〈n′〉

E (t) are not
strongly jointly typical with respect to P(Sm

V , Xt
E ,Y t

E ).
Note E (3)0 is the event that sm,〈n′〉

V is not strongly jointly
typical. The overall error event is given as

En′ =
n⋃

t=1

(E (1)t ∪
⋃

(i, j )∈E
E (2)t,(i, j ) ∪ E (3)t )

=
n⋃

t=1

(

E (3)t−1 ∩ E (1)t

)

∪
(

E (1)t ∩
⋃

(i, j )∈E
E (2)t,(i, j )

)

∪
(

E (1)t ∪
⋃

(i, j )∈E
E (2)t,(i, j ) ∩ E (3)t

)

, (25)

where S is the complement of S.
By the union bound, we have

Pr(En′) ≤
n∑

t=1

Pr(E (3)t−1 ∩ E (1)t )

+
n∑

t=1

Pr

(

E (1)t ∩
⋃

(i, j )∈E
E (2)t,(i, j )

)

+
n∑

t=1

Pr

(

E (1)t ∪
⋃

(i, j )∈E
E (2)t,(i, j ) ∩ E (3)t

)

. (26)

Next we show that Pr(En′) → 0 as n′ → ∞. Firstly,
Pr(E (3)0 ) → 0 by the basic properties of the strongly jointly

typical sequences ([19], pp. 358-362). Since x 〈n′〉
E (1) is a

deterministic function of sm,〈n′ 〉
V , Pr(E (3)0 ∩ E (1)1 ) → 0, and

similarly Pr(E (3)t−1 ∩ E (1)t ) → 0 for t = 2, 3, . . . , n. For the
second summation in (26),

n∑

t=1

Pr

(

E (1)t ∩
⋃

(i, j )∈E
E (2)t,(i, j )

)

≤
n∑

t=1

∑

(i, j )∈E
Pr(E (1)t ∩ E (2)t,(i, j )), (27)

by the union bound. Since E (1)t implies that x 〈n′〉
i, j (t) is

strongly typical, Pr(E (1)t ∩ E (2)t,(i, j )) → 0 for any t and
(i, j) ∈ E , by the properties of the strongly typical sequences
([19], Lemma 13.6.2), and the fact that the number of code-
words in C(i, j ),t is 2n′(I (Xi, j (t);Yi, j (t))+δ).

To bound the third summation in (26), let us fix an arbitrary
order for the edges in the set E , and write it as e1, e2, . . . , e|E |.
Define E (3)t,k as the event that (sm,〈n′〉

V , xt,〈n′〉
E , yt−1,〈n′〉

E ) and

(y〈n′〉
e1 (t), y〈n′〉

e2 (t), . . . , y〈n′〉
ek (t)) are not strongly jointly typical.
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We can then rewrite

E (1)t ∪
⋃

(i, j )∈E
E (2)t,(i, j ) ∩ E (3)t

=
|E |⋃

k=1

E (1)t ∪
⋃

(i, j )∈E
E (2)t,(i, j ) ∪ E (3)t,k−1 ∩ E (3)t,k �

|E |⋃

k=1

E (3)∗t,k , (28)

where E (3)t,0 � ∅. To bound Pr(E (3)∗t,k ), observe that
(

Sm
V , Xt−1

E , XE\ek (t),Y t−1
E ,Ye1,e2,...,ek−1(t)

)

↔ Xek (t) ↔ Yek (t) (29)

is a Markov string. Invoking Lemma 1 gives that
Pr(E (3)∗t,k ) → 0, for any t and k, as n′ → ∞.

There are a total of n terms in the first summation of
(26), n|E | terms in the second, and n|E | terms in the third.
Since n and |E | are fixed here, and each term can be
made arbitrarily small by making n′ sufficiently large, we
have Pr(En′) → 0 as n′ → ∞. This implies that the
sequences (sm,〈n′〉

V , xm,〈n′〉
E , ym,〈n′〉

E ) are strongly jointly typical
with respect to the original distribution P(Sm

V , Xn
E ,Y n

E ) with
probability arbitrarily close to one as n′ → ∞. This further
implies that sm,〈n′〉

k and ŝm,〈n′ 〉
k, j are strongly jointly typical with

respect to P(Sm
k , Ŝm

k, j ), and the new code induces a distortion
Dk, j + ε + δ′, where δ′ → 0 as n′ → ∞.

Rate analysis: In the chosen (m, n, {Dk, j + ε, k ∈ T j })
joint source-channel code for � j , for each link e = (i, j) ∈ E ,
the conventional channel coding theorem implies

I (Xe(t); Ye(t)) ≤ Ce, t = 1, 2, . . . , n, (30)

where Ce is the capacity of the channel on edge e. Thus the
cardinality of above-constructed source code for �s in each
session associated with any given link e is bounded as

2n′(I (Xe(t);Ye(t))+δ) ≤ 2n′(Ce+δ), t = 1, 2, . . . , n. (31)

It follows according to Definition 4 that the following rate is
achievable in problem �s

Re = n

mn′ log 2n′(Ce+δ) ≤ κ(Ce + δ). (32)

Finishing the proof Ddis ⊆ D∗
dis : We have shown that by

utilizing a chosen joint source-channel code (m, n, {Dk, j +
ε, k ∈ T j }) for � j , the constructed sequence of source codes
for �s can operate at the rate-distortion-matrix tuple ({Ri, j =
κ(Ci, j + δ), (i, j) ∈ E}, �D + ε + δ′), where δ and δ′ can be
made arbitrarily small by letting n′ → ∞. Since the achievable
rate-distortion-matrix region for �s is a closed set, the tuple
({Ri, j = κCi, j , (i, j) ∈ E}, �D + ε) is achievable in �s . Since
the distortion matrix �D is achievable in � j , for any ε > 0,
there exists an (m, n, {Dk, j + ε, k ∈ T j }) joint source-channel
code, where n ≤ κm by choosing n sufficiently large. Thus for
any ε > 0, ({Ri, j = κCi, j , (i, j) ∈ E}, �D + ε) is achievable
in �s . Again by the fact that the achievable rate-distortion-
matrix region for �s is closed, the tuple ({Re = κCe, e ∈
E}, �D) is achievable for �s . Applying (6) now completes the
proof for Ddis ⊆ D∗

dis .

V. OPTIMALITY OF SEPARATION FOR JOINT

SOURCE-CHANNEL MULTIPLE UNICAST

WITH DISTORTIONS

The following theorem formally states that source-channel
separation is optimal in the JSCMUD problem. Recall Duni

and D∗
uni given in Definition 6 and Eqn. (12), respectively.

Theorem 2: Duni = D∗
uni .

Proof of Theorem 2: The direction Duni ⊇ D∗
uni is rather

obvious except one technicality. The channel coding problem
given in Definitions 7 and 8 has an error probability defined
as averaged over all messages. However, the codeword indices
for the source codes may not have a uniform distribution, and
thus the overall error probability by combing the source code
and the channel code may be larger if the mapping between the
source code indices and the channel code indices are chosen
poorly. This however can be resolved using a standard random
coding argument [19] over all possible one-to-one mappings,
and the detail is thus omitted.

We next focus on the other direction Duni ⊆ D∗
uni . For

any achievable distortion vector (D1, D2, . . . , DM ), and any
ε > 0, there exists an (m, n, D1 + ε, D2 + ε, . . . , DM + ε)
JSCMUD code, where n ≤ κm (see Definitions 5 and 6).
The sources and the above given block code induce a joint
distribution

M∏

i=1

P(Sm
i ) · P

(

Ŝm
1 , Ŝm

2 , . . . , Ŝm
M

∣
∣
∣
∣S

m
1 , Sm

2 , . . . , Sm
M

)

, (33)

and the second term can be viewed as the transition proba-
bility of a block-level interference channel, which has input
alphabets Sm

1 × Sm
2 × · · · × Sm

M , and output alphabets Ŝm
1 ×

Ŝm
2 × · · · × Ŝm

M . Moreover, by the conventional rate-distortion
theorem [19],

I (Sm
i ; Ŝm

i ) ≥ m Ri (Di + ε), i = 1, 2, . . . ,M, (34)

where Ri (·) is the rate-distortion function for source Si .
This super interference channel operates in the same man-
ner as a memoryless interference channel, however on a
block level (Sm

1 , Sm
2 , . . . , Sm

M ) → (Ŝm
1 , Ŝm

2 , . . . , Ŝm
M ), instead

of on a single time instance level (X1, X2, . . . , X N ) →
(Y1,Y2, . . . ,YN ).

Next we show that if a distortion vector
(D1, D2, . . . , DM ) is achievable on the joint coding
problem � j (Definitions 5 and 6), then the rate vector
(R1(D1), R1(D1), . . . , RM (DM )) is achievable on the channel
coding problem �c (Definitions 7 and 8). For this purpose,
we construct a multiple unicast channel code for �c using the
afore-mentioned (m, n, D1 + ε, D2 + ε, . . . , DM + ε) joint
source-channel code for � j . The coding scheme for �c can
be formally described as follows.

Codebook generation: For each source Si , 2mn′(Ri (Di+ε)−δ)
codewords of length-(mn′) are generated independently,
according to the mn′-th product distribution of P(Si ); denote
this codebook as Ci . The codebooks are revealed to all the
nodes.

Encoding: To encode for �c, for a message wi , choose the
wi -th codeword smn′

i (wi ) in the Ci codebook generated above.
Each codeword is partitioned into n′ blocks of equal length,
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and denote the v-th block as sm
i (wi , 〈v〉); to emphasize this

partition, we also write smn′
i (wi ) as sm,〈n′〉

i (wi ). For a fixed v,
the blocks (sm

1 (w1, 〈v〉), sm
2 (w2, 〈v〉), . . . , sm

M (wM , 〈v〉)) from
the chosen codewords at all the nodes can be viewed as the
length-m source vectors in � j , and thus the chosen (m, n, D1+
ε, D2 + ε, . . . , DM + ε) JSCMUD encoding functions and
decoding functions can be used on them. This results in a set
of reconstruction sequences (ŝm

1 〈v〉, ŝm
2 〈v〉, . . . , ŝm

M 〈v〉). At the
end of n′ blocks, we concatenate the reconstruction for each
source block as ŝmn′

i = ŝm,〈n′ 〉
i = (ŝm

i 〈1〉, ŝm
i 〈2〉, . . . , ŝm

i 〈n′〉).
Mathematically, let the chosen joint source-channel encod-

ing function and decoding function at node j be φ(t)j and ψk, j ,
respectively. Similarly as the notation of sm

i (wi , 〈v〉), the v-th

length-n block of yn,〈n′〉
i is written as yn

i 〈v〉, and the first t
symbols of the block yn

i 〈v〉 is written as yt
i 〈v〉. Then the new

channel code encoding function φ̃(t
′)

j is given by

φ̃
((v−1)n+t)
j

(

{wi , i ∈ S j }, y(v−1)n+t−1
j

)

= φ
(t)
j

(

{sm
i (wi , 〈v〉), i ∈ S j }, yt−1

j 〈v〉
)

,

v = 1, 2, . . . , n′, t = 1, 2, . . . , n. (35)

The reconstructions are

ŝm
j 〈v〉 = ψk, j

(

{sm
i (wi , 〈v〉), i ∈ S j }, yn

j 〈v〉
)

, k ∈ T j . (36)

Decoding: At node j , for which k ∈ S j , find a unique code-
word in the codebook Ck such that it is (weakly) jointly typical
[19] with ŝm,〈n′ 〉

k according to the distribution P(Sm
k , Ŝm

k ),
i.e., the marginal from (33). If there is a unique one, the
corresponding message w∗

k is declared; otherwise an error is
declared.

Error probability analysis: There are three kinds of errors

• E (1): (sm,〈n′〉
1 (w1), sm,〈n′ 〉

2 (w2), . . . , sm,〈n′〉
M (wM )) are not

jointly typical with respect to (33);
• E (2): (sm,〈n′ 〉

1 (w1), sm,〈n′ 〉
2 (w2), . . . , sm,〈n′ 〉

M (wM ),

ŝm,〈n′ 〉
1 , ŝm,〈n′ 〉

2 , . . . , ŝm,〈n′ 〉
M ) are not jointly typical with

respect to (33);
• E (3)i : for a given message wi , there is more than one

codeword in Ci that is jointly typical with ŝm,〈n′ 〉
i (wi ),

with respect to the marginal of (33).

By the union bound, the overall error probability can be
bounded as

Pr(En′) ≤ Pr(E (1))+ Pr(E (1) ∩ E (2))

+
M∑

i=1

Pr(E (2) ∩ E (3)i ). (37)

Since all the codewords are generated according
to P(Si )’s independently, by the basic properties of
the jointly typical sequences ([19], Theorem 14.2.1),
Pr(E (1)) → 0 as n′ → ∞. This implies that the
reconstructions {ŝm,〈n′〉

i , i = 1, 2, . . . ,M} are jointly

typical with {sm,〈n′ 〉
i (wi ), i = 1, 2, . . . ,M} with probability

approaching one, i.e., Pr(E (1) ∩ E (2)) → 0 as n′ → ∞.

It follows that Pr(E (2) ∩ E (3)i ) → 0 as n′ → ∞, by (34)
and the basic property of the jointly typical sequences ([19],
Theorem 14.2.1 and Theorem 14.2.2), and the fact that the
number of codewords in Ci is 2mn′(Ri (Di+ε)−δ). Since there
are a total of M + 2 terms in (37), Pr(En′) → 0 as n′ → ∞.

Finishing the proof Duni ⊆ D∗
uni : We have shown that

by fixing a joint source-channel code (m, n, D1 + ε, D2 +
ε, . . . , DM + ε) for � j , the constructed sequence of channel
codes can operate at rate tuple (R1(D1 + ε) − δ, R2(D2 +
ε) − δ, . . . , RM (DM + ε) − δ) for �c, where δ can be made
arbitrarily small by letting n′ → ∞. Since the set Cuni is
closed, the rate tuple (R1(D1+ε), R2(D2 +ε), . . . , RM (DM +
ε)) ∈ Cuni . Since the rate-distortion functions Ri (·)’s are
continuous and the capacity region Cuni is closed, we have
(R1(D1), R2(D2), . . . , RM (DM )) ∈ Cuni . It follows that
(D1, D2, . . . , DM ) ∈ D∗

uni by the definition of D∗
uni in (12),

and thus Duni ⊆ D∗
uni . This completes the proof.

VI. APPROXIMATE OPTIMALITY OF SEPARATION FOR

JOINT SOURCE-CHANNEL MULTIPLE MULTICAST

WITH DISTORTIONS

In this section the third scenario where there could be
multiple receivers interested in the same source at different
distortion levels is examined. We limit ourselves to a set of
distortion measures referred to as the “difference” distortion
measures, whose properties play an important role in the proof.
More precisely, X̂ = X in this class of distortion measures,
where X is an Abelian group with a proper addition operation;
furthermore, the distortion mapping d(x, x̂) is a function of
x − x̂ , and we shall write it as d(x, x̂) = d(x − x̂).

Some necessary definitions are quoted next from [26]. For
random variables N and X in the alphabet X , the capacity of
the additive noise channel X → X + N , under a d(·) distortion
constraint is defined as

C(D, N) = sup
X :X⊥N,�d(X)≤D

I (X; X + N). (38)

The addition + is in the Abelian group X (e.g., real addi-
tion, modulo addition or finite field addition), and ⊥ stands
for independence. The minimax (or worst noise) capacity is
defined as

CX (D) = inf
�d(N)≤D

C(D, N). (39)

CX (D) can be interpreted as the capacity at equilibrium in
a mutual information jammer game, played over an additive-
noise channel, in which both the expected noise and expected
input are limited to within D in terms of d(·). The quantity
CX (D) is a function of D in general, however simplification
is possible in some cases. Particularly, when the distortion is
the mean squared error, CX (D) is always 0.5 bit [26].

Our approximation result is in a genie-aided form, where
additional communication links with bounded capacities are
provided by a genie. We show that a separation-based approach
using the original communication network together with the
additional genie-provided communication links can achieve
any distortion matrix �D that is achievable in the original
communication network with arbitrary joint coding schemes.
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It will become clear in the proof that if the reconstructions
of Si at multiple destinations in the set Qi are required to be
at the same distortion level a priori, then these destinations
can be viewed as a single super-destination, and the problem
can be reduced; therefore, without loss of generality they are
assumed to be at different distortion levels.

The decreasing sequence of distortions for the elements
on the i -th row in the distortion matrix specifies an order
Oi of the set Qi ; let Oi ( j) be the j -th element in the set
of Qi according to the order Oi . We require these genie-
provided links to support degraded message set broadcast
from source Si to the nodes in the set Qi for each i where
|Qi | > 1: for such a source Si , for each j ∈ I|Qi |, there is a
common link of capacity Ri,Oi ( j ) per source sample4 from
Si to all the nodes Oi ( j), Oi ( j + 1), . . . , Oi (|Qi |). These
rate entries are collected and written together as the rate
matrix �R. Consider adding these genie-provided links on top
of the original source communication network, and denote the
achievable distortion region using a separation approach of
successive refinement coupled with superposition channel code
on this new communication network as D∗∗

mul(
�O, �R).

Example: Consider the example given in Fig. 4. The sets
Qi ’s are

Q1 = {3, 4}, Q2 = {4}, Q3 = {3}. (40)

The orders when the distortion of Ŝ1,3 is larger than Ŝ1,4 are

O1 = (3, 4), O2 = (4), O3 = (3). (41)

The rate matrix of the genie-provided links has the form

�R =
⎡

⎣
� � R1,3 R1,4
� � � �

� � � �

⎤

⎦ (42)

where � at row-i and column- j means that the genie does
not provide any additional communication capability from
source Si to node j , thus Ri, j is not defined. The new
network consisting of the additional genie-provided links on
top of the original source communication network is given in
Fig. 6.

The following theorem is our first result on general network
multicast.

Theorem 3: Let �D be an achievable distortion matrix by
joint source-channel coding, for which �O is the corresponding
orders induced by �D. For any random variable Ui, j in the
Abelian group Xi , j = 1, 2, . . . , |Qi |, such that

Ui,Oi (|Qi |) = Vi,Oi (|Qi |) (43)

Ui,Oi ( j ) = Ui,Oi ( j+1) + Vi,Oi ( j ), (44)

where Oi ( j) is the j -th node index in the set of Qi according
to the order Oi , and Vi, j ’s are mutually independent such that
�d(Ui,Oi ( j )) ≤ Di,Oi ( j ), let the genie-provided links support

4If Si is present at more than one node, i.e., |{k : i ∈ Sk}| > 1, then
Ri,Oi ( j) should be the sum rate per source sample of such common links
from each of the node in {k : i ∈ Sk} to all the nodes Oi ( j),Oi ( j +
1), . . . , Oi (|Qi |).

Fig. 6. The example in Fig. 4 with the additional genie-provided links, which
are drawn in dashed lines. The region D∗∗

mul (
�O, �R) is the achievable distortion

region using a separation-based scheme on this joint network.

the rate matrix �R �O whose elements are

R∗
i,Oi ( j ) =

{
C(Di,Oi ( j ),Ui,Oi ( j )) j ≤ |Qi |, |Qi | > 1

� otherwise.
(45)

Then we have �D ∈ D∗∗
mul(

�O, �R∗).
Remark: This theorem also implies

⋃
�O D∗

mul(
�O) ⊆ Dmul ⊆

⋃
�O D∗∗

mul(
�O, �R∗). It in fact provides more than one outer

bound, one for each set of Vi, j random variables, resulting in a
rather powerful bounding tool. The auxiliary random variables
Uk’s are used in constructing the channel code and the source
code, and thus the genie-provided links are also parametrized
by these random variables.

For certain distortion measures, significant simplifications
can be made. The next result states that a separation-based
scheme is approximately optimal, universally across all dis-
tortion values, for the quadratic distortion measure where the
source alphabet and the reconstruction alphabet are reals.5

Note that the sources need not be Gaussian.
Theorem 4: Let �D be an achievable distortion matrix, for

which �O is the corresponding orders induced by �D. Let the
sources Si ’s satisfy the condition that for all letters ŝi ∈ Ŝi ,
�(Si − ŝi )

2 < ∞. Let the genie-provided links support the rate
matrix �R �O whose elements are

R∗
i,Oi ( j ) =

{
1/2 bit j ≤ |Qi |, |Qi | > 1

� otherwise
. (46)

We have �D ∈ D∗∗
mul(

�O, �R∗) under the mean squared error
distortion measure.

In the simplest case where a single node broadcasts a
Gaussian source to a set of receivers, this result essentially
reduces to Corollary 1 given in [28]. The intuitive translation
of the above result is that when a genie helps the separation-
based scheme by providing half a bit information for each
receiver, and at the same time, all the receivers with better
quality reconstructions receive this information for free, then
the genie-aided separation-based scheme is as good as the
optimal ones. For any fixed network, the approximation in
Theorem 4 holds regardless of the quality of the channel. As
such, this result is more useful in the high resolution regime
for large networks, when the genie-provided links become
negligible compared to the original communication network.

5Our proofs for the JSCMUD and JSCMMD problems rely only on weak
typicality instead of strong typicality, thus the result can be extended to the
continuous sources and channels with continuous alphabets and unbounded
distortion measures under the technical condition that for each source Si ,
for all letters ŝi ∈ Ŝi , �d(Si , ŝi ) < ∞. This “bounded expected distortion”
condition [27] assures that the asymptotically small decoding error probability
does not cause significant change in the distortion behavior.
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In the remainder of the section we focus on the proof of
Theorem 3, since Theorem 4 can be directly obtained by using
Gaussian auxiliary random variables V ’s in Theorem 3.

Proof of Theorem 3: To simplify the notation, let us first
consider a single source S; assume for the time-being that
the joint source-channel encoding procedure is still performed
on other sources. Without loss of generality, assume the
destination nodes of source S are 1, 2, . . . , K ; moreover, the
distortions, which are achieved by this given source-channel
joint code, are ordered as D1 ≥ D2 ≥ · · · ≥ DK .

A set of auxiliary random variables are chosen in the
alphabet S such that,

UK = VK , Uk = Uk+1 + Vk, k = 1, 2, . . . , K − 1, (47)

where Vk’s are random variables in the alphabet S, inde-
pendent of everything else; furthermore, they have to satisfy
�d(Uk) ≤ Dk .

Consider a joint source-channel code which induces the
distortion vector (D1, D2, . . . , DK ) for source S, whose
reconstructions are Ŝm

1 , Ŝm
2 , . . . , Ŝm

K . The transition probability
P(Ŝm

1 , Ŝm
2 , . . . , Ŝm

K |Sm) can be viewed as a broadcast channel,
denoted as Pbc. We need the following lemma, whose proof
will be given shortly. The asymptotically small quantities δ,
ε are omitted in the sequel, which are inconsequential.

Lemma 2: The following degraded message set broadcast
rates can be (asymptotically) supported on Pbc

Rc
1 = I (Sm + Um

1 ; Sm)− mC(D1,U1)

Rc
k = I (Sm + Um

k ; Sm |Sm + Um
k−1)− mC(Dk ,Uk),

k = 2, 3, . . . , K . (48)

Moreover, these rates can be achieved by a random superpo-
sition code based on the joint distribution P(Sm + Um

1 , Sm +
Um

2 , . . . , Sm + Um
K−1, Sm).

Though this lemma is regarding the channel Pbc, in a
manner similar to the proof for general network unicast,
we can conclude that on the original network, when all the
other encoders still perform the original joint source-channel
encoding, the communication channel from source S to its
destinations can support these rates per m source samples. This
is because the broadcast channel Pbc is simply the original
communication channel with certain additional operations on
the block level. Thus together with the genie-provided links,
we can send messages from source Si to its destinations at
rates

R(m)1 = I (Sm + Um
1 ; Sm)

R(m)k = I (Sm + Um
k ; Sm |Sm + Um

k−1), k =2, 3, . . . , K . (49)

The rates (R(m)1 , R(m)2 , . . . , R(m)K ) are exactly the (asymptotic)
source coding rates per m-samples in a successive refine-
ment random code [20] constructed using the distribution
P(Sm + Um

1 , Sm + Um
2 , . . . , Sm + Um

K ). Thus the distortion
�d(S + Uk − S) = �d(Uk) ≤ Dk is achievable using
the separation approach in this genie-aided network, if this
successive refinement source code is used.

It remains to argue that if all the users simultaneously
replace the original joint source-channel codes with the newly

constructed channel codes, the rates that can be supported
are still the same. This is indeed true, because in Lemma 2,
we only rely on the joint typicality on the block level when
the channel input is of distribution P(Sn). This however
does not change if all the users replace the joint source-
channel codes with their newly constructed channel codes,
since these superposition channel codes preserve the joint
typicality according to P(Sm

1 , Sm
2 , . . . , Sm

K ). This completes
the proof, except for Lemma 2.

To prove Lemma 2, we first give an auxiliary lemma.
Lemma 3: Let Sm , Um

i and Ŝm
i be specified as earlier, then

we have for i = 1, 2, . . . , K

I (Sm + Um
1 ; Sm)− I (Sm + Um

1 ; Ŝm
i )

≤ mC(Di ,U1), (50)

I (Sm +Um
k ; Sm |Sm +Um

k−1)− I (Sm + Um
k ; Ŝm

i |Sm + Um
k−1)

≤ mC(Di ,Uk), k = 2, . . . , K − 1, (51)

I (Sm + Um
K ; Sm |Sm + Um

K−1)− I (Sm ; Ŝm
i |Sm + Um

K−1)

≤ mC(Di ,UK ). (52)
Proof of Lemma 3:
We can write I (Sm + Um

1 ; Ŝm
i , Sm) in two ways

I (Sm + Um
1 ; Ŝm

i , Sm)

= I (Sm + Um
1 ; Ŝm

i )+ I (Sm + Um
1 ; Sm |Ŝm

i ), (53)

I (Sm
i + Um

1 ; Ŝm
i , Sm)

= I (Sm + Um
1 ; Sm)+ I (Sm + Um

1 ; Ŝm
i |Sm)

= I (Sm + Um
1 ; Sm), (54)

where I (Sm + Um
1 ; Ŝm

i |Sm) = I (Um
1 ; Ŝm

i |Sm) = 0, because
the construction of the auxiliary random variable U1 ensures
that Um

1 is independent of (Ŝm
i , Sm), as seen in (47). Thus we

have

I (Sm + Um
1 ; Sm)− I (Sm + Um

1 ; Ŝm
i )

= I (SmUm
1 ; Sm |Ŝm

i )

(a)= H (Sm + Um
1 |Ŝm

i )− H (Um
1 )

≤ H (Sm − Ŝm
i + Um

1 )− H (Um
1 )

≤
m∑

j=1

H (S( j)− Ŝi ( j)+ U1( j))− H (U1( j))

=
m∑

j=1

I (S( j)− Ŝi ( j); S( j)− Ŝi ( j)+ U1( j))

≤ mC(Di ,U1), (55)

where (a) follows again since Um
1 is independent of (Ŝm

i , Sm),
and the last step follows the concavity of I (X; Y ) as a function
of the marginal distribution. This proves (50).

Note further that for k = 2, 3, . . . , K , we have

I (Sm + Um
k ; Sm, Ŝm

i |Sm + Um
k−1)

= I (Sm + Um
k ; Sm |Sm + Um

k−1)

+I (Sm + Um
k ; Ŝm

i |Sm, Sm + Um
k−1)

= I (Sm + Um
k ; Sm |Sm + Um

k−1),
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as well as

I (Sm + Um
k ; Sm, Ŝm

i |Sm + Um
k−1)

= I (Sm + Um
k ; Ŝm

i |Sm + Um
k−1)

+I (Sm + Um
k ; Sm |Ŝm

i , Sm + Um
k−1).

It follows that

I (Sm + Um
k ; Sm |Sm + Um

k−1)

−I (Sm + Um
k ; Ŝm

i |Sm + Um
k−1)

= I (Sm + Um
k ; Sm |Ŝm

i , Sm + Um
k−1). (56)

Thus we have

I (Sm + Um
k ; Sm |Ŝm

i , Sm + Um
k−1)

(b)= H (Sm|Ŝm
i , Sm + Um

k−1)− H (Sm|Ŝm
i , Sm + Um

k )

≤ H (Sm|Ŝm
i )− H (Sm|Ŝm

i , Sm + Um
k )

= I (Sm; Sm + Um
k |Ŝm

i )

= H (Sm + Um
k |Ŝm

i )− H (Um
k )

≤ H (Sm − Ŝm
i + Um

k )− H (Um
k )

≤ mC(Di ,Uk), (57)

where (b) is due to the Markov string Sm + Um
k−1 ↔ Sm +

Um
k ↔ Sm ↔ Ŝm

i . This proves (51).
Because of the Markov string Ŝm

i ↔ Sm ↔ Sm + Um
K ↔

Sm + Um
K−1, we have

I (Sm; Ŝm
i |Sm + Um

K−1)− I (Sm + Um
K ; Ŝm

i |Sm + Um
K−1)

= H (Ŝm
i |Sm + Um

K−1, Sm + Um
K )

−H (Ŝm
i |Sm + Um

K−1, Sm )

= H (Ŝm
i |Sm + Um

K )− H (Ŝm
i |Sm)

= H (Ŝm
i |Sm + Um

K )− H (Ŝm
i |Sm, Sm + Um

K )

= I (Ŝm
i ; Sm |Sm + Um

K ) ≥ 0, (58)

and it follows that

I (Sm + Um
K ; Sm |Sm + Um

K−1)− I (Sm ; Ŝm
i |Sm + Um

K−1)

≤ I (Sm + Um
K ; Sm |Sm + Um

K−1)

−I (Sm + Um
K ; Ŝm

i |Sm + Um
K−1)

≤ mC(Di ,UK ). (59)

This proves (52).
Proof of Lemma 2:
We shall use the distribution P(Sm + Um

1 , Sm +
Um

2 , . . . , Sm +Um
K−1, Sm) to construct superposition broadcast

channel code on the broadcast channel Pbc for a degraded
message set. The rates (per length-m block) for these messages
within the degraded message set are (asymptotically)

Rc
1 = I (Sm + Um

1 ; Sm)− mC(D1,U1), (60)

Rc
i = I (Sm + Um

i ; Sm |Sm + Um
i−1)− mC(Di ,Ui ),

i = 2, 3, . . . , K , (61)

which need to be shown to be indeed achievable on Pbc.
Since this channel itself is not degraded, we have to show

that the superposition coding scheme succeeds for all the

receivers. To see this, observe that for the i -th receiver, we
have

I (Sm + Um
1 ; Sm)− I (Sm + Um

1 ; Ŝm
i ) ≤ mC(Di ,U1), (62)

by Lemma 3. It follows that

I (Sm + Um
1 ; Ŝm

i )− Rc
1

= I (Sm + Um
1 ; Ŝm

i )− I (Sm + Um
1 ; Sm)+ mC(D1,U1)

≥ mC(D1,U1)− mC(Di ,U1) ≥ 0, (63)

where the last inequality is straightforward by noticing

C(D, N) ≥ C(D′, N), (64)

when D ≥ D′. Thus the i -th receiver, i ≥ 1, can indeed
decode the first message.

Similarly, we have for i ≥ k

I (Sm + Um
k ; Ŝm

i |Sm + Um
k−1)− Rc

k

= I (Sm + Um
k ; Ŝm

i |Sm + Um
k−1)

−I (Sm + Um
k ; Sm |Sm + Um

k−1)+ mC(Dk ,Uk)

≥ mC(Dk,Uk)− mC(Di ,Uk) ≥ 0, (65)

and thus we conclude the i -th receiver can decode the mes-
sages 1, 2, . . . , i . The K -th receiver does not pose any addi-
tional difficulty. Thus indeed the rates specified in (60)-(61)
can be supported on Pbc, and the proof is complete.

VII. CONCLUSION

We considered the optimality of the source-channel separa-
tion architecture in networks, and showed that the separation
approach is optimal for the problems of distributed network
joint source-channel coding and joint source-channel multiple
unicast with distortions. Moreover, the separation approach is
also approximately optimal for the problem of joint source-
channel multiple multicast with distortions under certain dis-
tortion measures. The results in this work are obtained without
explicit characterizations of the underlying regions. The source
coding problem extracted from the distributed network source
coding scenario implies that the interactive coding aspect
needs to be carefully incorporated, which suggests a distinct
line of research direction into network source coding.

For notational and conceptual simplicity, we made many
assumptions which are not strictly necessary. We believe the
results can be extended to more general cases with some
minimal efforts.

• Distributed network joint source-channel coding:
The synchronization requirement among sources can be
removed, i.e., the source bandwidths do not have to be the
same throughout the whole network. The reconstructions
of a source Si can be under different distortion measures;
in fact the distortion measures can be defined on multiple
sources, such as to reconstruct (S1 − S2). The restriction
on the sources and the channels being finite-alphabet may
be relaxed using the techniques in [29].

• Joint source-channel multiple unicast with distortions:
The synchronization requirement among sources and
channels can be removed and the memoryless require-
ment on the channel can be relaxed to channels with
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finite memory (see [15] for an outline). As mentioned,
the restriction on the finite alphabets can be relaxed.
The condition that each source is to be reconstructed
at one destination can be relaxed to some extent: when
each source is to be reconstructed at multiple destinations
but at the exact same distortion, then the source-channel
separation architecture is still optimal.

• Joint source-channel multiple multicast with distor-
tions: Similar to the JSCMUD case, the synchronization,
the memoryless channel, and the finite-alphabet require-
ment can be relaxed. The condition that each source is to
be reconstructed under the same distortion measure can
be relaxed to different distortion measures. If some of
the reconstructions of a source Si are specified to have
the same distortion a priori, then the approximation upper
bound can be improved.

In the point-to-point setting, the source and the channel are
specified by their statistical behaviors alone; however in the
network setting, the new components of the connectivity struc-
ture among nodes and the source-demand coding requirements
are introduced. Our result in DNJSCC treats the source statis-
tics and these network components as a whole, and the channel
statistics as the other, resulting in the separation between a
complex network source coding problem and multiple con-
ventional point-to-point channel coding problems. In contrast,
the result in JSCMUD treats the channel statistics and the
network components as a whole, and the source statistics as the
other, resulting in the separation between a complex network
channel coding problem and multiple conventional point-to-
point source coding problems. These separations are not the
only possibilities, and one can choose to separate in a different
manner. In this work we have not considered transmitting
generally correlated sources over a general channel network,
and it is unclear whether there exist scenarios for which a
separation architecture is optimal or approximately optimal.
Thus the problem of source-channel separation is by no means
solved, and it in fact calls for further investigation.
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