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Abstract
Policy gradient (PG) methods are among the most effective methods in challenging reinforcement
learning problems with large state and/or action spaces. However, little is known about even their
most basic theoretical convergence properties, including: if and how fast they converge to a globally
optimal solution (say with a sufficiently rich policy class); how they cope with approximation
error due to using a restricted class of parametric policies; or their finite sample behavior. Such
characterizations are important not only to compare these methods to their approximate value
function counterparts (where such issues are relatively well understood, at least in the worst case),
but also to help with more principled approaches to algorithm design.

This work provides provable and comprehensive characterizations of computational, approxima-
tion, and sample size issues with regards to policy gradient methods in the context of discounted
Markov Decision Processes (MDPs). We focus on both: 1) “tabular” policy parameterizations,
where the optimal policy is contained in the class and where we show global convergence to the
optimal policy, and 2) restricted policy classes, which may not contain the optimal policy and where
we provide agnostic learning results. In the tabular setting with exact gradients, our main results
for the softmax policy parameterization show: asymptotic convergence to the global optimum; a
polynomial convergence rate provided an additional KL-based entropy regularizer is used; and a
dimension-free, “fast-rate” convergence to the global optimum using the Natural Policy Gradient
(NPG). With regards to function approximation, we further analyze NPG with inexact gradients,
where the policy parameterization may not contain the optimal policy. Under certain smoothness
assumptions on the policy parameterization, we establish rates of convergence in terms of the quality
of the initial state distribution and the quality of a certain compatible function approximation. One
insight of this work is in formalizing how a favorable initial state distribution provides a means to
circumvent worst-case exploration issues. Overall, these results place PG methods under a solid
theoretical footing, analogous to the global convergence guarantees of iterative value function based
algorithms1.

1. Extended abstract. Full version appears as [arXiv:1908.00261, v2].
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