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Abstract. We consider a new class of optimization problems involving stochastic dominance constraints of
second order. We develop a new splitting approach to these models, optimality conditions and duality theory.

These results are used to construct special decomposition methods.
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1. Introduction

In stochastic decision models our decisions affect various random outcomes. There are
different ways to formalize our preferences and our objective involving these outcomes.
Many decision models involve expected values of the random outcomes, or probabilities
of exceeding some threshold values.

One of established ways to formalize preferences among random outcomes is the
relation ofstochastic dominancéVe refer to [8] and to [13] for a more general per-
spective. In recent publications [5,6], we have introduced a new stochastic optimiza-
tion model involving stochastic dominance relations as constraints. These constraints
allow us to use random reference outcomes, instead of fixed thresholds. We have dis-
covered the role of utility functions as Lagrange multipliers associated with dominance
constraints.
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In this paper we shall consider the following general problem setting:

max E[H (z)] (1)
subjecttoG(z) =) Vi, i=1,...,m, (2)
z€Z. 3)

Here Z is a convex subset of a separable locally convex Hausdorff vector shaoed
G;,i=1,...,m,andH arecontinuousoperators fromz to the space of real random
variables(, (12, F, P;R). The operatorgs; and H are assumed to be concave in the
following sense: forP-almost allw € (2 the functiongG;(-)](w), 7 = 1,...,m, and
[H(-)](w) areconcave and continuouws 2.

Relation (2) is the second order stochastic dominance relation between the random
variablesG;(z) andY;. The random variables; € £; play the role ofiixed reference
outcomes

The relation of stochastic dominance is defined as follows. For a random variable
X € £, we consider its distribution functio; (X ;) = P[X < 5], and the function

Fg(X;n):/n F(X;a)da forneR. (4)

— 00

As an integral of a nondecreasing functidf, is a convex function of). We say that a
random variableX € £; dominatesn the second order a random variablec £, if

Fy(X;n) < Fy(Y;n) forallneR.

We focus on the second order dominance relation as the most relevant in applications.
Our problem is formulated as a maximization problem with concave functions, because
the stochastic dominance relation is associated with concave nondecreasing utility func-
tions and it usually appears in the context of maximization.

In our earlier paper [6] we have considered a basic version of this problem with
pure dominance constraints and we have developed necessary and sufficient optimality
conditions. Our objective in this paper is to extend this analysis to more involved models
in which our decisions affect in a nonlinear way many random outcomes subjected to
dominance constraints. We develop a new optimality and duality theory which will
allow us to create a decomposition approach to the problem.

In the next section we introduce a split-variable formulation of the problem. Section
3 is devoted to the development of necessary and sufficient optimality conditions. In
Section 4 we present the duality and decomposition theory. Section 5 refines the results
in the finite-dimensional case. In Section 6 we have a numerical illustration on a large
real-world portfolio problem.
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2. The split variable formulation

Let us introduce some notation used throughout the paper. An abstract probability space
is denoted by((2, F, P). The expected value operator is denotedibylhe standard
symbolL,(£2, F, P;R") (shortly £7) denotes the space of all measurable mappiigs
from 2 to R™ for which E[| X |P] < co. Forp = 0 we shall understand it as the space
of all measurable mappings, and fer= oo as the space of all essentially bounded
mappings. If the values are takenlinthe superscript. will be omitted. The space of
continuous functions ofu, b)) C R is denoted’(]a, b]).

For a measurable functiofi: R — R and an elemenj € £, (12, F, P;R"), we
shall understand'(y) as a real random variablewith realizationsv(w) = f(y(w)),
weIfe: X — L,(2,F,P;R") then we writep(z)(w) to denote the realization
of the random vectop(z) at an elementary evente (2.

The notation(d, y) is always used to denote the value of a linear functiénalx*
at the pointy € X, whereX* is the topological dual space to the topological vector
spaceX’. The symbol|| - || is used to denote the norm in the corresponding space;
sometimes we usf- || x to stress the corresponding space

The extended real linR U {+oco} U{—oc} is denoted byR. For a concave function
f : & — R we use the symbadf(z) to denote its subdifferential at: the set of
6 € X* such thatf(y) < f(z) + (§,y — z) forally € X.

We concentrate on the analysis of a relaxed version of problem(1)—(3):
max E[H (z)] (5)

subject toF>(G;(2);n) < Fa(Yy;m) foralln € [a;,b;], i=1,...,m, (6)

z €7, (7)

wherela;, b;], i = 1,...,m, are bounded intervals. If alF;(z), z € Z, have uni-

formly bounded distributions, (6) is equivalent to (2) for appropriately chaseand

b;. However, if the distributions are not uniformly bounded, (6) is a relaxation of (2).
The key constraint is the relation (6). Therefore we start from the characterization

of the setA(Y") of random variables( € £" satisfying:

Fy(Xism) < Fo(Yism) foralln € fa;,bi], i=1,...,m. (8)
Changing the order of integration in (4) we get (see, e.g., [14])
Fp(Xim) =E[(n— Xi)4], i=1,...,m. 9)
Therefore, an equivalent representation of (8) is:
El(n — X;)4]) <E[(n—Y;)y] forallnela;,b;], i=1,...,m. (10)

The following lemma is a slightly modified version of Proposition 2.3 of [6] and its
proof is omitted here.
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Lemma 1.For everyY € LT the setA(Y) is convex and closed. Furthermore, its
recession cone has the form

A®Y)={H e L]": H > 0a.s}.

Let us consider a split-variable formulation of problem (5)—(7):

max E[H (z)] (11)
subject toFy(X;;n) < Fy(Y;;n) forallng € [a;,b;], i=1,...,m, (12)
Gi(z)>X; as, i=1,...,m, (13)

z€Z, X;€Ly, i=1,...,m. (24)

Introducing the variableX; € £, we have separated the dominance constraints from
the nonlinear function&’; and we have put them in the pure foiki =5y Y; in [a;, bs).
This has two advantages. First, we can apply and develop the ideas from [6] to pure
dominance constraints. Secondly, the splitting facilitates the decomposition approach of
section 4. On the other hand, constraints (13) cannot be readily handled by the available
optimization theory, because of the empty interior of the nonnegative cafe In the
next section we develop a dedicated approach to overcome this difficulty.

Let us observe that the assumptions thiés a convex set an@; andH are concave
a.s., together with Lemma 1, imply that problem (11)—(14) is a convex optimization
problem.

We denoteX = (X1,...,X,,) andG(z) = (G1(2),...,Gmn(2)).

Proposition 1. For every optimal solutiort of problem(5)—(7) the point(z, G(2)) is
an optimal solution 0f11)—(14) For every optimal solutior{Z, X) of (11)—(14) the
point 2 is an optimal solution of problerb)—(7).

Proof. Let 2 be an optimal solution of problem (5)—(7). Thei G1(2), ..., Gn(2))
is feasible for (11)—(14). On the other hand, for any optimal solutiorX, ..., X,,)
of (11)—(14), we have

Gi(3)>X; as., i=1,....,m.

ThereforeG(2) — X € A®(Y), by virtue of Lemma 1. Sinc& € A(Y) thenG(%) €
A(Y). Consequently; is feasible for (5)—(7). O

3. Optimality

We start our analysis of problem (11)—(14) from a version of necessary and sufficient
conditions of optimality for a special convex stochastic optimization problem.
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Theorem 1. Assume that the functiop : Z — L7 is continuous and such that the
function o(+)(w) is concave and continuous df for P-almost allw € (2. Suppose
that f : R™ — R is concave and monotone with respect to the usual partial order in
R™, with uniformly bounded subdifferentials. Létbe a convex set iZ.

A pointZ is a solution of the problem

max Ef ((2)),

if and only if there exist8 € L7, 8(w) € df(p(2)(w)) for P-almost allw € {2, such
that 2 is a solution of the problem

max (6, ¢(2))-

Proof. Definel : Z — £, asli(z) = f(p(z)), and letl(z) = E[i(z)]. The functional
I(-)(w) is concave forP-almost allw € {2, owing to the monotonicity of, and to the
concavity ofp and f. Thusl is concave as well. We have

l(z1)(w) = (z2)(w) = f(p(21)(w)) — flep(z2)(w))

< (AW), p(21)(w) = ¢(22) (W),
whereA(w) € 9f(p(22)(w)) a.s.. Taking the expected values we obtain

I(21) = U(22) = E[f (p(21)(w)) = f(p(22)(w))]

< E(Mw), o(21)(w) — o(22)(w)).

By assumption, there existsuch thai| A\(w)||g» < ¢. Therefore

1(z1)(w) = l(z2)(w) < cllo(z1)(w) = p(z2) (W) ]|m,

I(z1) = U(z2) < cllp(21) — p(22)]

n.
Ly

Interchanging the role of; andz; and using the continuity assumptions abputve
conclude that the functionalé-)(w) and((-) are continuous. Therefore, they are sub-
differentiable everywhere (see, e.g, [3, Th. I-27]).

It follows that at the solutiort a subgradient € 9l(%) exists,v € Z*, such that
(v,z—2) <0 forallze Z. (15)

By the generalization of Strassen’s theorem provided in [12, Thm. 1.1], we can inter-
change the subdifferentiation and integration operators in the calculatio(se€ also
[21,3]). It follows that there exists a weaklyneasurable mapping: 2 — Z*, such
that

g(w) € 0l(2)(w) for P-almost allw € 2
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and, for allz € Z,
(v,z—2) =E(g(w), z — 2). (16)

In the formula above the expected value is well-defined for athat is,v is a weak
expected value of. Invoking [4, Thm. 2.3.9] for each, we can represeni(w) as

follows: .
=Y Oi(w)di(w) as,
=1

wheref(w) € 9f(p(2)(w)), andd;(w) € Jp;(2)(w), i = 1,...,n, for P-almost all
w € 2. Herey;(z)(w) is thei-th component ofp(z)(w). Consider the multifunction
M : 2 = R" x (2*)" defined by

n

M(w) = { (r(w), s(@)) € Df(2(2) ) x (X Dpi(2)(w)) : Y ks(w)si(w) = g(w)}.
i=1

It is measurable with respect to the wéabkpology on the target space, and it has

nonempty, convex, and weaklgompact values. Sincg is separable, using [11] we

obtain that)/ admits a weakly measurable selectiq(w), d(w)). The selectior(w)

is measurable, because its values arR'in By the monotonicity off(-), the random

variablesd,; are nonnegative. Since the subgradientg afe bounded} € L7 . Substi-

tuting Y., 0;(w)d;(w) for g(w) in (16) we obtain the equation:

(v,2 = 2) EZQ w),z—%) foral ze2Z. a7)
If follows from the concavity assumptions abauthat the following inequalities

hold for all z and P-almost allw € (2:

pi(2) (W) < p;(B)(w) +{di(w),z—2), i=1,...,n.

Multiplying by 6;(w), summing ovei, and taking expected values we obtain

(0,0(2)) < (0,0(2)) + E Z 0i(w)(di(w), z — 2).

Using (17) we get

0,0(2)) <0, p(2)) + (v,z— 2) forall z.

By virtue of (15), the poinE maximizes(f, ¢(z)) in Z, as required.
To prove the converse implication, let us assume thata maximizer of(d, ¢(z))
in Z, with6(w) € 9f(¢(2)(w)), 0 € LL,. By the concavity off,

fle(2)(W)) < fp(2)(w)) + (B(w), p(2)(w) — (%) (w))
for all z. Taking the expected values we obtain
E[f((2))] < E[f(@(2))] + (0, ¢(2) — ©(2)).

By assumption, for alk € Z we have(f, ¢(z)) < (0,¢(2)). Thus Z maximizes
E[f(¢(2))]in Z. U
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We define the sét; ([a, b]) of functionsu(-) satisfying the following conditions:

u(-) is concave and nondecreasing
u(t) =0forallt > b;

u(t) = u(a) + ¢(t — a), with somec > 0, for all ¢ < a.

Itis evident that/; ([, b]) is a convex cone. Moreover, the subgradients of each function
u € U ([a, b]) are bounded for all € R. We denote by/[" the product/; ([ai, b1]) x
o X Up ([ams bin))-

Let us introduce the Lagrangiah,: Z x L* x U™ x L7 — R, associated with
problem (12)-(14):

L(z X, u,0) :=E [H(z) + i (ui(XZ-) — wi(Y;) + 0:(Gi(z) — Xi))} .

Definition 1. Problem (11)—(14) satisfies tlmiform dominance conditioifithere ex-
ists a pointz € Z such that

inf {FQ(Y;;n)—FQ(Gi(é);n)}>O7 i=1,...,m.

n€lai,b;]

Theorem 2. Assume that the uniform dominance condition is satisfie, IX) is an
optimal solution o{11)—(14)then there exist € U]” andd € L7 such that

L(2, X,4,0) = L(z,X,a,0 18
(2,X,4,0) T (z,X,4,0), (18)
Eli;(X;)] = E[a:(Y;)], i=1,...,m, (19)

0:(X; —Gi(2)=0, i=1,....m, 6>0 as. (20)

Conversely, if for some functioia € 47" and ford e £7,0 > 0 a.s., an optimal
solution (2, X) of (18) satisfies(12)—(13)and (19)—(20) then (2, X) is an optimal
solution of(11)—(14)

Proof. Let us define the operatofs : £, — C([a;, b;]) as

Let K be the cone of nonnegative functiongif{a;, b;]). Each operatof’; is concave
with respect to the con&, that is, for anyX}, X? in £, and for allX € [0, 1],

LX)+ (1= NX) - \O(XH + (1= (XD € K.
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Furthermore, we define the convex set
C={(z,X)€eZx LT :2z€Z, X; <Gi(z)as,i=1,...,m}.

We can rewrite (11)—(14) in the general form:
max E[H (z)]
subjecttol}(X;) e K, i=1,...,m, (21)

(z,X)eC.

By the Riesz representation theorem, the space ddd[dg, b;]) is the spaceca([a;, b;])
of regular countably additive measures|en b;] having finite variation (see, e.g., [7]).
Let us define the spac® = rca([a1,b1]) X - -+ X rca([am, by]). We introduce the
Lagrangiand : Z x L x M — R,

m b;
A X0 = BIH() + 3 [ LX) ) dist). @2)

Let us observe that the uniform dominance condition implies thakfor G;(Z) the
following generalized Slater condition is satisfied:

Fi(Xi)EintK, 1=1,....,m.
Moreover,(%, X) € C. By [2, Prop. 2.106], this is equivalent to the regularity condition:
Oeint | J [M(X:) K], i=1,...,m.
(z,X)eC

Therefore we can use the necessary conditions of optimality for problem (21) (see, e.g.,
[2, Thm. 3.4]). We conclude that there exists a vector of nonnegative meagsdres
such that

A, X, Q) = Az, X, i 23
(2, X, ) A (z, X, 1) (23)

and )
/[F2(Yi§77)_F2(Xi§77)]dﬂi(77):Oa i=1,...,m. (24)

We shall derive from these conditions the required relations (18)—(20).

Every measure € rca([a, b]) can be extended to the whole real line by assigning
measure 0 to Borel sets not intersectjagh]. A functionu : R — R can be associated
with every nonnegative measytieas follows:

b
. —/t w([m b)) dr t<b,

0 t>0b.
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Sincep > 0, the functionu([-, b]) is nonnegative and nonincreasing, which implies that
u(+) is nondecreasing and concave. Consequenttyl/ ([a, b]). We have shown in [5,
6] that for anyX € L£; the functionu defined above satisfies the equation

b
[ Ea(xim) dun) = ~Elu(x)). (25)
Thus, the measurgs; correspond to functions; € Ui (las, b)), 1 = 1,...,m. Re-
lations (25) forX;, j1; and4; and equations (24) imply the complementarity condi-

tion (19).
In a similar manner, our Lagrangian (22) can be expressed as

Az X, ) = E[H(2) + f: (X0 = w:(19)) .
i=1

It follows that there exist& € U] such that the optimal paiE, X) is the solution of
the problem:

m

max E [H(Z) + Z (ai(Xi) - ﬁz(Yz)ﬂ

=1

subjecttoX; < G;(z) as, i=1,...,m, (26)

ze€Z, X,ely, i=1,...,m.

By the monotonicity ofi;(-), the point? is also the solution of

z€EZ

max E [H(z) > (ﬂi(Gi(z)) - a,;(y,-,))} .
We can now invoke Theorem 1 with
‘P(Z) = (H(Z)’ Gl(z)’ ) Gm(z))’

m
F@Wosyns - ym) =0+ Y ti(ys).
=1

Sincedf/dy, = 1, we conclude there there exigtss £ , § > 0 a.s., such that the
point Z is a solution of the problem

I;leaéiE [H(z) + ; QiGi(z)} . (27)
Moreoverd; € 8i;(G;(2)) a.s.i=1,...,m.

Let us consider problem (26) for a fixed= Z. It splits into independent problems:

Ela;(X;)], i=1,...,m. 28
x, 2na Bl (X:), m (28)
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The pointsX; are their solutions. The monotonicity &f(-) implies that the points
G;(%) are optimal as well. Therefore

4i(X;) = 1:(Gi(2)) as, i=1,...,m.
For any othetX;, by the concavity ofi; and by the definition of;,
i(X;) < ai(Gi(2)) + 0;(X; — Gi(2))  as.
Thus, foreach = 1,...,m,
wi(X;) — 0:X; < 65(Gi(2)) — 0:G4(2) < 4:(X;) — 0:X;  as.

Therefore the poinf; maximizes the expression at the left hand side, Fealmost
all w € (2. At this point the last displayed inequalities are satisfied as equations and
therefore the second group of complementarity conditions hold true:

0:(Gi(2) — X;] =0 as, i=1,...,m.

If follows that each poinX;, i = 1,...,m, is a maximizer of the corresponding prob-
lem:

Putting together (27) and (29) we conclude that the p?a'uf() maximizes
=1

Therefore the paifz, X) is the solution of (18).
Let us now prove the converse.df € U ([a;, b;]) then the left derivative of;,
()" (t) = tianfu; (£) — wi(7)]/(t = 7),
is well-defined, nonincreasing and continuous from the left. By the classical result (see,
e.g., [7, Thm 3.1.3]), after an obvious adaptation, there exists a unique regular nonneg-

ative measurg; satisfying
pi([t,0]) = (i) (2).

Thus the correspondence between nonnegative measutes([n, b]) and functions in
U, ([a, b]) is a bijection and formula (25) is always valid. For evefy satisfying (12)
we obtain

b

b; i
Elui(Xi)] — E[ui(Y3)] = */ Fo(Xi3m) dpi(n) +/ Fa(Yisn) dpi(n) = 0.

i a;

Thus, at every(z, X), which is feasible for (11)—(14), and for evety € U™ and
6e L, 0>0a.s., we have
Lz X, u,0) = E[H(z) + Y (wi(X) = wi(Y2) + 0:(Gi(2) = X)) | = E[H(2)],

i=1
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If the maximizer(Z2, X) of the Lagrangian is feasible, and complementarity conditions
(19)—(20) are satisfied, we obtain

E[H(2)] = L(2, X,u,0) > L(z, X, u,0) > E[H(z)],

for any feasiblg z, X ). Consequently, the poirig, X) is optimal for the original prob-
lem (11)—(14). O

4. Duality and Decomposition

Let us define the dual functional : 4" x L™ — R associated with problem (11)-(14)
as follows:

D(u,0):= sup L(z,X,u,0)
ez, XeLm

= sup E{H(z) + Z (ul(XZ) —uy(Y;) + 60;(Gi(z) — Xl))}

2€Z,XELT

We also define the dual problem:
min {D(u,0) :uw e U”, 0 € LT, § > 0a.s}. (31)

As a direct consequence of Theorem 2 we obtain the duality theorem.

Theorem 3. Assume that the uniform dominance condition is satisfied. If profiléijs
(14) has an optimal solution, then the dual probl€dd) has an optimal solution and the
optimal values of both problems coincide. Furthermore, for every solitiof)) of the
dual problem, any optimal solutioft, X) of (18) satisfying(12)—(13)and (19)—(20)
is an optimal solution of the primal proble(h1)—(14)
Proof. At every (z, X), which is feasible for problem (11)—(14), and for evéry 6)
feasible for problem (31), we have

Lz X,u,0) = E[H(2) + Y (w(X) = ui(¥:) + 0:(Gil2) = X)) | = E[H(2)]

i=1

Therefore the weak duality relation holds:
D(u,6) > E[H(=)].

Let (E,X) be an optimal solution of the primal problem. It follows from Theorem 2
that there exist, #), which are feasible for (31), such that

D(a,6) = E[H(2)).

This proves the equality of the optimal values of both problems.
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Let (4, ) be a solution of the dual problem afgl X) be the corresponding maxi-
mizer of the Lagrangian. If the complementarity conditions (19)—(20) are satisfied, we
obtain

E[H(2)] = L(2, X,u,0) > L(z, X, u,0) > E[H(z)],

for any feasiblg(z, X). Consequently, if the poir(z, X) is feasible, it is optimal for
the primal problem (11)—(14). O

It follows from (30) that the dual functional can be decomposed into the sum

m

D(u,0) = Do(0) + Y _ Di(u;, 0:), (32)
i=1

where the function®, : L7 — R andD; : U ([a;, b;]) x Lo, — R are defined as

Do(6) := iggﬂa[mz) n ;&Gi(z)], (33)
and
D;(w,¢) := sup E[w(X)—w(Y,;)—CX}, i=1,...,m. (34)

XeL,

The functionD, has the structure of the dual function associated with the standard
Lagrangian,

Lo(2,0) = E[H(z) + i_n: @Gi(z)] ,

for a stochastic optimization problem with almost sure constraints. Under the assump-
tions of Theorem 3Dy(+) is a proper convex function. Moreover, if for a givéra
solutionz(0) of the problem at the right hand side of (33) exists, then the random vec-
tor

g=(G1(2),...,Gn(2))

is a subgradient ab, at6. By the definition of the operators,;, we havey € L7".

Let us concentrate on the properties of the functibnsi = 1,...,m. For a con-
cave functionv : R — R we define its Fenchel conjugate in a symmetrical fashion to
the conjugate of a convex function:

v (€) = inflét — (1)),

Alternatively, we could work with the usual definition of a conjugate of a convex func-
tion —v. The results would be the same but with less convenient notation.

As before, for a real random variablewe shall understand*(¢) as a random
variable inR with realizations* (¢ (w)), w € 2.

Theorem 4.For everyv € U;([a,b]) and every € L., the following formula holds
true:

Di(v,¢) = =E[v"(C) + v(Y3)]-
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Proof. For a functionv € U;([a, b]) and¢ € L, let us consider the problem

sup E[v(X) — (X].

XeL,
Suppose thaP[( < 0] = ¢ > 0. ChoosingX s = M. .o; and noting thab(t) — 0
ast — oo by definition, we see that

Efo(Xar) — (Xar] = (1 — €)v(0) + ev(M) — MeE[¢|¢ < 0] 22225 00

Suppose now thaP[¢ > v’ (a)] > 0. ChoosingX s = —MTy¢s, (q)y fOr M — oo
we obtain an infinite limit again.

It remains to consider the case wher< ¢ < v’ (a) a.s.. In this case the function
v(t) — ¢t has a maximizer ife, b], a.s.. By [18, Thm. 14.60] we have

sup E[o(X) = (X] < sup E[o(X) — (X] = E sup[u(t) — ()]
XeLl, XeLy teR

=E sup [v(t) — ((w)t] = —E[v*({)].
t€la,b]
Since the maximizeK is bounded a.s., it is an element®f. Thus all relations above
are equalities and our assertion is true in this case. Moreover, we have shown that

dom D; = {(v,{) : 0 < ¢ <’ (a) a.s}

Outside of the domain the asserted formula remains valid as well, because both sides
are equal tot-oo. O

The proof of the theorem shows that the dual functiofiala:;, 6;) are finite when-
ever0 < 6; < (u;)_(a;) a.s.. We shall show that they are subdifferentiable and we
shall find a representation of some of their subgradients.

The key element of the analysis is the functional

f(v,¢) = —Ev™(¢). (35)

The specificity here is that is considered as an argument and therefore we need an
appropriate functional space for this argumentfoflt is convenient to consider the
spacelip(R) of Lipschitz continuous functions dR, equipped with the norm

ol = fo(0)] + sup =)
t£s [t —s|
We shall treat the functiongl as defined ofLip(R) x £;. It is obvious that{; ([a, b])
is a subset oLip(R).
Recall that ifv € U;([a, b]) and( satisfiedd < ¢ < v’ (a) a.s. then there exists a
measurable selectiol such that

X (w) € argmax [v(t) — ((w)t] for P-almost allw
t

(see e.g. Theorem 14.37, [18]). Moreov&r, € [a,b] a.s.. We use the symbdty to
denote the probability measure Brinduced by the random variahble.
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Theorem 5.For everys € Uy ([a,b]) and every( € £ such thatd < ¢ < ¥’ (a)
a.s., the functionalf (v, () = —Ewv*(¢) is subdifferentiable atv, (). Moreover, for

every measurable selectiofi(w) € argmax,;[v(t) — ((w)t], the pair (Px,—X) is a
subgradient off at (v, ¢), that is, the inequality

F0.0) > F(@.0) + / (v(t) — () dPx (1) — E[X(C — O)].
holds true for all(v, ¢) € Lip(R) x L;.

Proof. Givens, and¢ and a selectioX satisfying the assumptions, we have for every
(v,¢) € Lip(R) x £4 and for everyw € (2:

Taking the expected value of both sides we obtain;

F(0,) > £(2,8) + E[o(X) - 0(X)] ~E[X(C - O)
— @0+ / [w(t) — o(t)] dPx () — E[X(C — O],

which is the required inequality. The selectiinis included infa, b] a.s.. ThusX € L
and X is a continuous linear functional afy.

It remains to prove that the measuPy is a continuous linear functional on the
spacelip(R). For anyv € Lip(R), denoting by, its Lipschitz constant, we obtain

/ w(t)] dPy () < / (0(0)] + c.lt]) dPx (1)
— 0(0)] + ¢, E[1X]] < [[o]|(1 + E|X]).

SinceE[| X|] is finite, the functionalPx is continuous. This proves that the functiin
is subdifferentiable an@Px , — X)) is a subgradient. O

Our analysis shows that the calculation of the dual functidngt, ) and of its
subgradient splits into separate maximization problem with respectrid with respect
to X;(w), w € £2,4 = 1,...,m. This is crucial for the development of decomposition
methods for solving dominance-constrained stochastic optimization problems.
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5. Discrete Distributions

Let us now consider the case when the underlying probability space is fihite,
{w1,...,wy,}, with probabilitiesp; = P({w;}), 7 = 1,...,n. LetJ = {1,...,n},

I = {1,...,m}. For the split-variable problem (11)—(14) we introduce the following
notation forj € J andi € I:

hj(z) = H(2)(w;), gij(2) = Gi(2)(w;), yij = Yi(w;), ©ij = Xi(w;).

For each the function (4) has the form
Fy(Xiim) =E[(n — Xi)4] = Xn:pj(n — Tij)+,
j=1
and the dominance constraints (12) can be expressed as
ipj(n — i)+ < Zn:Pj(Tl —yij)y, forallnefa;,b], i€l  (36)
j=1 j=1

Lemma 2. Assume that; < y;; < b; forall i € I andj € J. Then inequalitie$36)
are equivalent to

n n
> vy —wig)y <Y 0wk —vig)s, i€, ke (37)
j=1 j=1

Proof. Itis sufficient to consider a fixed Lety; |;, j € J, be ordered realizations;,
thatis,y; 1] < vi,2) < -+ < v, [n)- Itis sufficient to prove that (37) imply that

Fy(Xy5m) < Fa(Yism) foralln € [ay, b;).

The functionF,(Y;; -) is piecewise linear and has break pointgat;, j € J. Let us
consider three cases, depending on the valug of

Case 1if n < y; ;1) we have
0 < Fa(Xi3m) < Fa(Xis i) < Fa(Yis i) = 0.

Therefore the required relation holds as an equality.

Case 2:Letn € [y;, k), ¥i,(k+1]) for somek. Since, for anyX,, the functionF;(X;-) is
convex, inequalities (37) foe andk + 1 imply that for alln € [y; (1], ¥i,[xk+1)] One has

Fo(X5n) < AN (X594,k) + (1= N F2 (X594 (41))

<A (Y i) + (1= N Fa (Y i eg1) = Fa(Yism),

whereA = (yi,x+1) — 1)/ (Yi, k+1) — Yi,[x])-
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Case 3:Forn > y; ,) we have

Fy(Yisn) = Fo(Yi; yiym)) + 1 — Yiin)

n
> Fo (X5 94,m)) +/ F(X;a)da = F>(X;n),

Yi,[n]

as required. O

In fact, we have proved that inequalities (37) are equivalent to (36) for arbitrary
[a;, b;] covering the realizations df;. Thus, they are equivalent to the dominance rela-
tion enforced on the entire real line.

It follows that in the case of finite distributions, problem (11)—(14) with sufficiently
large intervalda;, b;] is equivalent to the following nonlinear programming problem

max ijhj(z) (38)
j=1
subject 10> " p;(yik — wij)+ < > _pi(Yin —vij)1, i€, kel (39)
j=1 j=1
z € Z. (41)

In addition, suppose for simplicity that C R”. Let us observe that for the smallest
realizationy; ;- ;) = y;,1) of Y; the corresponding dominance constraint becomes

n

> piWike) — i)+ < > 0i(Wike ) — Vis)+ = 0.

J=1 Jj=1

The uniform dominance condition (Definition 1) cannot be satisfied, unlessy; ;.- ().
Fortunately, the left hand sides of the dominance constraints (39) are convex polyhedral
functions ofz. The existence of Lagrange multipliers is guaranteed under the standard
Slater condition: there existe relint Z andX;, i € I, such that

jzk<g7k(2)7 7:6[, kEJ,

and the dominance constraints (39) are satisfied (see [16, Thm. 28.2]).

The setV;, C U ([as, b;]) of utility functions corresponding to th&h group of
dominance constraints in (39) contains all concave nondecreasing funetiomghich
are piecewise—linear with break pointsygt, & € J, and which satisfy.(y; ,,)) = 0.

The Lagrange multiplierg; corresponding to the splitting constraints (40) are non-
negative vectors ifR".
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The Lagrangian takes on the form
(2, X, u,0) ij[ )+Z&jgij(z)}
=1
+ Z ij [Ui(xij) — ui(yij) — 9@'%} :

i=1j=1

(42)

The optimality conditions can be formulated as follows.

Theorem 6. Assume that problei(38)—(41)satisfies the Slater constraint qualification
condition. If (2, X) is an optimal solution of38)—(41) then there existi; € V; and

nonnegative vector, € R, i = 1,...,m, such that
L(¢,X,4,0) = L(z,X,0,0 4
(2, X,8,0)=  moax . L% 80), (43)
Z [(4) — @i(yi))] =0, i€l (44)
élj(‘ilj — gl](?:‘)) = 0, 7 c I, j c J (45)

Conversely, if for some functionis € V; and nonnegative vectoé € R" i€,
an optimal solution(z, X') of (43) satisfieq39)—(40)and (44)—(45) then(2, X) is an
optimal solution 0{38)—(41)

Proof. Let us introduce Lagrange multipliefs,, i € I, k € J, associated with con-
straints (39). The standard Lagrangian takes on the form:

Alz, X, p, 0 ij[ Zeij(gij(Z) —xij)}
i=1
+ZZM[ZP; Yik — Yij)+ ij (yir — ij) ]
=1 k=1 j=1

Rearranging the last sum we notice that

n n n n n
D omie Y vy —wig)r = >y > mak(yak — i) = — Y pyuilwy),
=1 =1 =1 k=1 j=1

where

- Z ik (Yie — )+ (46)
k=1

Substituting this into the Lagrangiafi(z, X, u, 6) yields (42). Applying (46) to the
standard complementarity conditions for the problem (38)—(41) we obtain the condi-
tions (44)—(45). Consequently, our conditions follow from standard necessary optimal-
ity conditions for problem (38)—(41) (see, e.g., [16, Cor. 28.3.1]).
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In order to show that the standard sufficient optimality conditions follow from con-
ditions (43)—(45), we shall establish a correspondence between Lagrange multipliers
wik, k € J, and concave nondecreasing utility functionsyin We have shown that
the Lagrange multipliers generate a utility function. Conversely, let us consider a utility
functionv € V;, and lett; < t5 < --- < tg be its break points. We can define

Z/k:UL(tk)—’U:r(tk), kzl,...,K.

Foreveryk =1,..., K we defineJ(k) = {j € J : y;; = tx}. By the definition of);,
the sets/ (k) are nonempty and constitute a partition of the.5eTherefore, for every
j € J, thereis uniqué = 1,..., K with j € J(k), and we can define:

wij = vi/|J (k)]

where|J(k)| denotes the cardinality of (k). It is a routine check to see that theg;

satisfy the equation (46). Thus, substitutingt) in (42) yields the standard Lagrangian

A(z, X, u, 6). Similarly, we can transform the complementarity conditions.
Consequently, our conditions are equivalent to the standard necessary and sufficient

optimality conditions for problem (38)—(41). O

The dual functionab : 7>T<11Vi x R™" — R associated with problem (38)-(41) has

K2

the form:

D(u,0) = sup  L(z,X,u,0) 47
2€7,X cRmn
n m

sup Yy p; [hj(z) +> (Ui(%‘ij) — wi(yij) + 0i(9i5(2) — %‘ij))] :

z€Z,XeRmn = =

The dual problem reads:
min {D(u,0) :u e x V;, § € R™ 9 >0} (48)
=1

As a direct consequence of Theorem 6 we obtain the duality theorem.

Theorem 7. Assume that the Slater condition is satisfied. If prob{88)—(41)has an
optimal solution then the dual proble(8) has an optimal solution and the optimal
values of both problems coincide. Furthermore, for every solutia) of the dual
problem, any optimal solutiofg, X) of (43) satisfying(39)—(40)and (44)—(45) is an
optimal solution of the primal probleif38)—(41)

The dual functional (47) can be decomposed into the sum

m

D(u,0) = Do(6) + Y Di(ui, 0), (49)
=1
where the function®, : R™" — R andD, : V; x R® — R are defined as follows:

Do(0) = sup > p; [hi(2) + D 011 (2)] (50)
j=1 i=1
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and

wC—suprj[ w(yij) — ijj}, 1=1,...,m. (51)

rER™ J

The functionD, has the structure of the dual function associated with the standard

Lagrangian,
0)=> p; [hj(z) +> 91‘1‘91‘]'(2)} :
j=1 i=1

Under the assumptions of TheoremZ¥;(-) is a proper convex function. Moreover, if
for a givend a solutionz(#) of the problem at the right hand side of (50) exists, then
the matrixZ"(2) with entries

is a subgradient oD, at 6. If, additionally, the setZ is compact, then we have (see,
e.g.,[4, Thm. 2.8.2])

9Do(8) =T {I'(2) : Lo(2,6) = Do(6)}.

Hereco A denotes the closed convex hull of the det

Now we shall describe the subdifferential of the functidns For this purpose let
us introduce the spacéy.; of piecewise linear functions froR to R having break
points aty;x, k € J. They are, clearly, finite dimensional.

We can represent the functiofy as follows:

Q)= ij sub [w(l"j) — w(yij) ijj} = Zpa ij (W, )
j=1 °

J

where
dij(w, (;) = w* () + w(yij)-
Let us observe that
domd;; = {(w,{) : 0 < ¢ <w' (yipy), j € J}
By the definition of the sey;, the following equation holds
:JLL% [w(;vj) —w(yij) — ijg} = I,?Ga}( [w(yzk) —w(yij) — ijik} (52)
wheneved, ; (w, ¢;) is finite. The subdifferential of;; can be characterized as follows.

Lemma 3. The functiond;; is a convex polyhedral function dnip(R) x R. Assume
that (w, () € domd,; and letJ* = {j : d;;(w,(;) = w(yir) — ©(yi;) — iy} The
functiond;; is subdifferentiable afw, ¢) and

CO{ U (6yik - 6yij’ _ylk)} - 8dij('w7 6)7
keJ*

whered; is the Dirac measure at Moreover, if0 < {; < @’ (y;, r)) then the above
formula is satisfied as equality.
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Proof. Since for any fixed the left derivativew’ (¢) is a bounded linear functional
on Lip(R), the domain ofd;; is determined by finitely many linear inequalities. As
shown in (52), the functiow;;(w, ¢;) is the maximum of finitely many linear func-
tions of (w, ¢;) in its domain. Thereford;;(w, ¢;) is a convex polyhedral function. Its
subdifferential contains the convex hull of the gradients of the functions

diy(w, G) = wlyaw) — w(yiy) — Gy, k€ J*

SinceVdfj (w,(;) = (8y,, — Oy,,» —yix) We obtain the required result.
At the boundary points of the domain @f;, when(; = 0 or ¢; = @’_(y; 1)), the
subdifferential contains also all elements of the normal cone to the domain. O

6. Numerical Example

It follows from our analysis that the dual functional can be expressed as a weighted sum
of mn + 1 convex nonsmooth functions:

D(u,0) = Do(0) + Y > pidi(wi, 0:5), (53)

i=1 j=1

whose domains are known, and whose subgradients can be readily calculated. Further-
more, the functiond;; are polyhedral. All these facts can be used for efficient numerical
solution of the problem. The regularized decomposition method, which was developed
in [19] for a similar purpose, can be adapted to this problem as well. It is a special-
ized bundle method [9, 10] which takes advantage of representation (53) to increase the
efficiency and the numerical stability of the algorithm.

In order to apply any numerical method we need to decide about a finite dimensional
representation of the utility functions, : = 1, ..., m. We shall represent each function
u; by its slopes. Let us denote the values.pht its break points by

w; =ui(yi;), j=1,...,n
According to Lemma 3, a subgradientdyf within the domain is given by the formula
(O — 65, —Yik~)
wherek* is the maximizer of
Uik — Uiy — O3k, k=1,...,n,

andé; denotes thgth unit vector inR”.
Let us now consider the ordered realizations;; < ;2 < - < ¥ [n). We
introduce the variables

Sik = (Ui)/_(yi7[k]), k=1,...,n.
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The vectors, € R™ is nonnegative and;;; > s;x+1, ¥ = 1,...,n — 1. With this

re-ordering of coordinates we can calculate the ordered valugsasf follows
i = i (Wi w) = — Y sie(Vi o) — Yije—1))-
0>k

A subgradient of the functiod;; with respect tds;, 6;,) can be calculated accordingly:

(— Z Se(Yi, i — Yijje—1)) + Z Se(Yi, i — Yi,je—1)s _yi,[k*])a

£>k* Yi,[0) >Yij
wherek* is the index at which the maximum of
ui,[k] — Uqy _eljyl,[k]a k= 1)"'7”7

is attained. The domain of the dual problem is defined by:

0<0;; <s;1, i=1

and it can be directly taken into account within the method.

We tested our dual approach on the following financial optimization example. We
have N assets with random returd®,, ..., Q. If z1,..., zy are the fractions of the
initial capital invested in assets. .., N, then the portfolio return has the form:

G(2) = Q121+ +Qn2N.
The set of feasible allocations is defined as the simplex
Z={zeRN:zi+ - +2y=1,2>0k=1,...,N}.

LetZ € Z represent a reference portfolio and¥et= G(Z). We consider the following
problem

max E[G(z)]
subject toG(z) =2 Y,

z € Z.

In our experiment we have assumed that the returns of the assets have a discrete dis-
tribution with n realizations. Let us observe that the geis a convex polyhedron.
Furthermore, the functiory is linear, and the dominance constraint becomes a con-
vex constraint involving a polyhedral function, as discussed in section 5 for problem
(38)—(41). Therefore we do not need to verify the Slater condition here.

Our calculations were carried out for a baskeT o real-world assets, and 616
possible realizations of their joint returns [20]. Historical data on weekly returns in the
12 years from Spring 1990 to Spring 2002 were used as equally likely realizations.
More specifically, if¢;, denotes the historical return of aséein weekj, the vector
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(gj1,---,qjn), whereN = 719, is considered as thgh realization of the vector of

returns. Therefore
N
z) = Z qjkZk
k=1

is the jth realization of the portfolio return, attained with probability= 1/n, where
n = 616.
Function (50) has the form

n

N
Dy(0) —supr] (140;)g,(= —supZZp] (14 6;)gjkzk
ZGZ] 1 ZGZJ:lk:l

n

= max ij (1+6;)gjk.

In the last expression we have used the fact that a linear form attains its maximum over a
simplex at one of the vertices. The valuelaf can be easily calculated by enumeration,
and a subgradient with respectdds given by the vector” with coordinatesy; =
pigik+, j = 1,...,n, with £* representing the best vertex.

The dual problem of minimizing (53) hd$35 decision variables: the utility func-
tion u, represented by the vector of slopes R, and the multiplie? € R". The
number of functions in (53) equals 617. It is a rather hard nonsmooth optimization
problem, for present standards. As indicated earlier, we have used for its solution a new
version of the regularized decomposition method of [19]. After the soIL(ﬁQé) of
the dual problem is found, the optimal solution of the primal problem can be recovered
from the subgradients of the dual function satisfying the optimality conditions.

We have selected as the reference portfolio the equally weighted portfolio of the
200 fastest growing companies in this 12-year period. The expected weekly return of
this portfolio equals 0.0071. Of course, it has been selestaabst but our objective
here is just to illustrate the effect of the dominance constraint.

The method solved the problem in 163 iterationscin 38 min CPU time on a
personal computer having a 1.6 GHz clock. The optimality conditions were satisfied
with the accuracy of0~8.

The optimal portfolio contains 22 assets with weights ranging from 0.00095 to
0.0922. Its expected return equals 0.0116, as compared to 0.0164 of the fastest growing
asset. It is interesting to note that the fastest growing asset participates in the optimal
portfolio with the weight of 7% only.

The optimal utility function associated with the dominance constraint is illustrated
in Figure 1. The data points in the figure are the points at which the slope of the utility
function changes.

AcknowledgementsThe authors are indebted to the two Referees for their very insightful comments.
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Fig. 1. The optimal utility function.
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