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Abstract. We consider a new class of optimization problems involving stochastic dominance constraints of

second order. We develop a new splitting approach to these models, optimality conditions and duality theory.

These results are used to construct special decomposition methods.
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1. Introduction

In stochastic decision models our decisions affect various random outcomes. There are
different ways to formalize our preferences and our objective involving these outcomes.
Many decision models involve expected values of the random outcomes, or probabilities
of exceeding some threshold values.

One of established ways to formalize preferences among random outcomes is the
relation ofstochastic dominance. We refer to [8] and to [13] for a more general per-
spective. In recent publications [5,6], we have introduced a new stochastic optimiza-
tion model involving stochastic dominance relations as constraints. These constraints
allow us to use random reference outcomes, instead of fixed thresholds. We have dis-
covered the role of utility functions as Lagrange multipliers associated with dominance
constraints.
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In this paper we shall consider the following general problem setting:

max E[H(z)] (1)

subject toGi(z) �(2) Yi, i = 1, . . . ,m, (2)

z ∈ Z. (3)

HereZ is a convex subset of a separable locally convex Hausdorff vector spaceZ, and
Gi, i = 1, . . . ,m, andH arecontinuousoperators fromZ to the space of real random
variablesL1(Ω,F , P ; R). The operatorsGi andH are assumed to be concave in the
following sense: forP -almost allω ∈ Ω the functions[Gi(·)](ω), i = 1, . . . ,m, and
[H(·)](ω) areconcave and continuousonZ.

Relation (2) is the second order stochastic dominance relation between the random
variablesGi(z) andYi. The random variablesYi ∈ L1 play the role offixed reference
outcomes.

The relation of stochastic dominance is defined as follows. For a random variable
X ∈ L1 we consider its distribution function,F (X; η) = P [X ≤ η], and the function

F2(X; η) =
∫ η

−∞
F (X;α) dα for η ∈ R. (4)

As an integral of a nondecreasing function,F2 is a convex function ofη. We say that a
random variableX ∈ L1 dominatesin the second order a random variableY ∈ L1 if

F2(X; η) ≤ F2(Y ; η) for all η ∈ R.

We focus on the second order dominance relation as the most relevant in applications.
Our problem is formulated as a maximization problem with concave functions, because
the stochastic dominance relation is associated with concave nondecreasing utility func-
tions and it usually appears in the context of maximization.

In our earlier paper [6] we have considered a basic version of this problem with
pure dominance constraints and we have developed necessary and sufficient optimality
conditions. Our objective in this paper is to extend this analysis to more involved models
in which our decisions affect in a nonlinear way many random outcomes subjected to
dominance constraints. We develop a new optimality and duality theory which will
allow us to create a decomposition approach to the problem.

In the next section we introduce a split-variable formulation of the problem. Section
3 is devoted to the development of necessary and sufficient optimality conditions. In
Section 4 we present the duality and decomposition theory. Section 5 refines the results
in the finite-dimensional case. In Section 6 we have a numerical illustration on a large
real-world portfolio problem.
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2. The split variable formulation

Let us introduce some notation used throughout the paper. An abstract probability space
is denoted by(Ω,F , P ). The expected value operator is denoted byE. The standard
symbolLp(Ω,F , P ; Rn) (shortlyLn

p ) denotes the space of all measurable mappingsX
from Ω to Rn for which E[|X|p] < ∞. Forp = 0 we shall understand it as the space
of all measurable mappings, and forp = ∞ as the space of all essentially bounded
mappings. If the values are taken inR the superscriptn will be omitted. The space of
continuous functions on[a, b] ⊂ R is denotedC([a, b]).

For a measurable functionf : Rn → R and an elementy ∈ Lp(Ω,F , P ; Rn), we
shall understandf(y) as a real random variablev with realizationsv(ω) = f(y(ω)),
ω ∈ Ω. If ϕ : X → Lp(Ω,F , P ; Rn) then we writeϕ(x)(ω) to denote the realization
of the random vectorϕ(x) at an elementary eventω ∈ Ω.

The notation〈θ, y〉 is always used to denote the value of a linear functionalθ ∈ X ∗

at the pointy ∈ X , whereX ∗ is the topological dual space to the topological vector
spaceX . The symbol‖ · ‖ is used to denote the norm in the corresponding space;
sometimes we use‖ · ‖X to stress the corresponding spaceX .

The extended real lineR∪{+∞}∪{−∞} is denoted byR. For a concave function
f : X → R we use the symbol∂f(x) to denote its subdifferential atx: the set of
θ ∈ X ∗ such thatf(y) ≤ f(x) + 〈θ, y − x〉 for all y ∈ X .

We concentrate on the analysis of a relaxed version of problem(1)–(3):

max E[H(z)] (5)

subject toF2(Gi(z); η) ≤ F2(Yi; η) for all η ∈ [ai, bi], i = 1, . . . ,m, (6)

z ∈ Z, (7)

where [ai, bi], i = 1, . . . ,m, are bounded intervals. If allGi(z), z ∈ Z, have uni-
formly bounded distributions, (6) is equivalent to (2) for appropriately chosenai and
bi. However, if the distributions are not uniformly bounded, (6) is a relaxation of (2).

The key constraint is the relation (6). Therefore we start from the characterization
of the setA(Y ) of random variablesX ∈ Lm

1 satisfying:

F2(Xi; η) ≤ F2(Yi; η) for all η ∈ [ai, bi], i = 1, . . . ,m. (8)

Changing the order of integration in (4) we get (see, e.g., [14])

F2(Xi; η) = E[(η −Xi)+], i = 1, . . . ,m. (9)

Therefore, an equivalent representation of (8) is:

E[(η −Xi)+] ≤ E[(η − Yi)+] for all η ∈ [ai, bi], i = 1, . . . ,m. (10)

The following lemma is a slightly modified version of Proposition 2.3 of [6] and its
proof is omitted here.
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Lemma 1. For everyY ∈ Lm
1 the setA(Y ) is convex and closed. Furthermore, its

recession cone has the form

A∞(Y ) = {H ∈ Lm
1 : H ≥ 0 a.s.}.

Let us consider a split-variable formulation of problem (5)–(7):

max E[H(z)] (11)

subject toF2(Xi; η) ≤ F2(Yi; η) for all η ∈ [ai, bi], i = 1, . . . ,m, (12)

Gi(z) ≥ Xi a.s., i = 1, . . . ,m, (13)

z ∈ Z, Xi ∈ L1, i = 1, . . . ,m. (14)

Introducing the variablesXi ∈ L1 we have separated the dominance constraints from
the nonlinear functionsGi and we have put them in the pure formXi �(2) Yi in [ai, bi].
This has two advantages. First, we can apply and develop the ideas from [6] to pure
dominance constraints. Secondly, the splitting facilitates the decomposition approach of
section 4. On the other hand, constraints (13) cannot be readily handled by the available
optimization theory, because of the empty interior of the nonnegative cone inL1. In the
next section we develop a dedicated approach to overcome this difficulty.

Let us observe that the assumptions thatZ is a convex set andGi andH are concave
a.s., together with Lemma 1, imply that problem (11)–(14) is a convex optimization
problem.

We denoteX = (X1, . . . , Xm) andG(z) = (G1(z), . . . , Gm(z)).

Proposition 1. For every optimal solution̂z of problem(5)–(7) the point(ẑ, G(ẑ)) is
an optimal solution of(11)–(14). For every optimal solution(ẑ, X̂) of (11)–(14), the
point ẑ is an optimal solution of problem(5)–(7).

Proof. Let ẑ be an optimal solution of problem (5)–(7). Then(ẑ, G1(ẑ), . . . , Gm(ẑ))
is feasible for (11)–(14). On the other hand, for any optimal solution(ẑ, X̂1, . . . , X̂m)
of (11)–(14), we have

Gi(ẑ) ≥ X̂i a.s., i = 1, . . . ,m.

ThereforeG(ẑ)− X̂ ∈ A∞(Y ), by virtue of Lemma 1. SincêX ∈ A(Y ) thenG(ẑ) ∈
A(Y ). Consequently,̂z is feasible for (5)–(7). �

3. Optimality

We start our analysis of problem (11)–(14) from a version of necessary and sufficient
conditions of optimality for a special convex stochastic optimization problem.
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Theorem 1.Assume that the functionϕ : Z → Ln
1 is continuous and such that the

functionϕ(·)(ω) is concave and continuous onZ for P -almost allω ∈ Ω. Suppose
that f : Rn → R is concave and monotone with respect to the usual partial order in
Rn, with uniformly bounded subdifferentials. LetZ be a convex set inZ.

A point ẑ is a solution of the problem

max
z∈Z

Ef(ϕ(z)),

if and only if there existsθ ∈ Ln
∞, θ(ω) ∈ ∂f(ϕ(ẑ)(ω)) for P -almost allω ∈ Ω, such

that ẑ is a solution of the problem

max
z∈Z

〈θ, ϕ(z)〉.

Proof. Definel : Z → L1 asl(z) = f(ϕ(z)), and letl̄(z) = E[l(z)]. The functional
l(·)(ω) is concave forP -almost allω ∈ Ω, owing to the monotonicity off , and to the
concavity ofϕ andf . Thusl̄ is concave as well. We have

l(z1)(ω)− l(z2)(ω) = f(ϕ(z1)(ω))− f(ϕ(z2)(ω))

≤ 〈λ(ω), ϕ(z1)(ω)− ϕ(z2)(ω)〉,

whereλ(ω) ∈ ∂f(ϕ(z2)(ω)) a.s.. Taking the expected values we obtain

l̄(z1)− l̄(z2) = E[f(ϕ(z1)(ω))− f(ϕ(z2)(ω))]

≤ E 〈λ(ω), ϕ(z1)(ω)− ϕ(z2)(ω)〉.

By assumption, there existsc such that‖λ(ω)‖Rn ≤ c. Therefore

l(z1)(ω)− l(z2)(ω) ≤ c‖ϕ(z1)(ω)− ϕ(z2)(ω)‖Rn ,

l̄(z1)− l̄(z2) ≤ c‖ϕ(z1)− ϕ(z2)‖Ln
1
.

Interchanging the role ofz1 andz2 and using the continuity assumptions aboutϕ we
conclude that the functionalsl(·)(ω) and l̄(·) are continuous. Therefore, they are sub-
differentiable everywhere (see, e.g, [3, Th. I-27]).

It follows that at the solution̂z a subgradientv ∈ ∂l̄(ẑ) exists,v ∈ Z∗, such that

〈v, z − ẑ〉 ≤ 0 for all z ∈ Z. (15)

By the generalization of Strassen’s theorem provided in [12, Thm. 1.1], we can inter-
change the subdifferentiation and integration operators in the calculation ofv (see also
[21,3]). It follows that there exists a weakly∗ measurable mappingg : Ω → Z∗, such
that

g(ω) ∈ ∂l(ẑ)(ω) for P -almost allω ∈ Ω
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and, for allz ∈ Z,
〈v, z − ẑ〉 = E 〈g(ω), z − ẑ〉. (16)

In the formula above the expected value is well-defined for allz, that is,v is a weak∗

expected value ofg. Invoking [4, Thm. 2.3.9] for eachω, we can representg(ω) as
follows:

g(ω) =
n∑

i=1

θi(ω)di(ω) a.s.,

whereθ(ω) ∈ ∂f(ϕ(ẑ)(ω)), anddi(ω) ∈ ∂ϕi(ẑ)(ω), i = 1, . . . , n, for P -almost all
ω ∈ Ω. Hereϕi(z)(ω) is thei-th component ofϕ(z)(ω). Consider the multifunction
M : Ω ⇒ Rn × (Z∗)n defined by

M(ω) =
{

(κ(ω), s(ω)) ∈ ∂f(ϕ(ẑ)(ω))×(
n
×

i=1
∂ϕi(ẑ)(ω))) :

n∑
i=1

κi(ω)si(ω) = g(ω)
}

.

It is measurable with respect to the weak∗ topology on the target space, and it has
nonempty, convex, and weakly∗ compact values. SinceZ is separable, using [11] we
obtain thatM admits a weakly∗ measurable selection(θ(ω), d(ω)). The selectionθ(ω)
is measurable, because its values are inRn. By the monotonicity off(·), the random
variablesθi are nonnegative. Since the subgradients off are bounded,θ ∈ Ln

∞. Substi-
tuting

∑n
i=1 θi(ω)di(ω) for g(ω) in (16) we obtain the equation:

〈v, z − ẑ〉 = E
n∑

i=1

θi(ω)〈di(ω), z − ẑ〉 for all z ∈ Z. (17)

If follows from the concavity assumptions aboutϕ that the following inequalities
hold for allz andP -almost allω ∈ Ω:

ϕi(z)(ω) ≤ ϕi(ẑ)(ω) + 〈di(ω), z − ẑ〉, i = 1, . . . , n.

Multiplying by θi(ω), summing overi, and taking expected values we obtain

〈θ, ϕ(z)〉 ≤ 〈θ, ϕ(ẑ)〉+ E
n∑

i=1

θi(ω)〈di(ω), z − ẑ〉.

Using (17) we get

〈θ, ϕ(z)〉 ≤ 〈θ, ϕ(ẑ)〉+ 〈v, z − ẑ〉 for all z.

By virtue of (15), the point̂z maximizes〈θ, ϕ(z)〉 in Z, as required.
To prove the converse implication, let us assume thatẑ is a maximizer of〈θ, ϕ(z)〉

in Z, with θ(ω) ∈ ∂f(ϕ(ẑ)(ω)), θ ∈ Ln
∞. By the concavity off ,

f(ϕ(z)(ω)) ≤ f(ϕ(ẑ)(ω)) + 〈θ(ω), ϕ(z)(ω)− ϕ(ẑ)(ω)〉

for all z. Taking the expected values we obtain

E[f(ϕ(z))] ≤ E[f(ϕ(ẑ))] + 〈θ, ϕ(z)− ϕ(ẑ)〉.

By assumption, for allz ∈ Z we have〈θ, ϕ(z)〉 ≤ 〈θ, ϕ(ẑ)〉. Thus ẑ maximizes
E[f(ϕ(z))] in Z. �
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We define the setU1([a, b]) of functionsu(·) satisfying the following conditions:

u(·) is concave and nondecreasing;

u(t) = 0 for all t ≥ b;

u(t) = u(a) + c(t− a), with somec > 0, for all t ≤ a.

It is evident thatU1([a, b]) is a convex cone. Moreover, the subgradients of each function
u ∈ U1([a, b]) are bounded for allt ∈ R. We denote byUm

1 the productU1([a1, b1])×
· · · × U1([am, bm]).

Let us introduce the Lagrangian,L : Z × Lm
1 × Um

1 × Lm
∞ → R, associated with

problem (12)-(14):

L(z,X, u, θ) := E
[
H(z) +

m∑
i=1

(
ui(Xi)− ui(Yi) + θi(Gi(z)−Xi)

)]
.

Definition 1. Problem (11)–(14) satisfies theuniform dominance conditionif there ex-
ists a point̃z ∈ Z such that

inf
η∈[ai,bi]

{
F2(Yi; η)− F2(Gi(z̃); η)

}
> 0, i = 1, . . . ,m.

Theorem 2.Assume that the uniform dominance condition is satisfied. If(ẑ, X̂) is an
optimal solution of(11)–(14)then there exist̂u ∈ Um

1 and θ̂ ∈ Lm
∞ such that

L(ẑ, X̂, û, θ̂) = max
(z,X)∈Z×Lm

1

L(z,X, û, θ̂), (18)

E[ûi(X̂i)] = E[ûi(Yi)], i = 1, . . . ,m, (19)

θ̂i(X̂i −Gi(ẑ)) = 0, i = 1, . . . ,m, θ̂ ≥ 0 a.s.. (20)

Conversely, if for some function̂u ∈ Um
1 and for θ̂ ∈ Lm

∞, θ̂ ≥ 0 a.s., an optimal
solution (ẑ, X̂) of (18) satisfies(12)–(13)and (19)–(20), then (ẑ, X̂) is an optimal
solution of(11)–(14).

Proof. Let us define the operatorsΓi : L1 → C([ai, bi]) as

Γi(Xi)(η) := F2(Yi; η)− F2(Xi; η), η ∈ [ai, bi], i = 1, . . . ,m.

Let K be the cone of nonnegative functions inC([ai, bi]). Each operatorΓi is concave
with respect to the coneK, that is, for anyX1

i , X2
i in L1 and for allλ ∈ [0, 1],

Γi(λX1
i + (1− λ)X2

i )− [λΓi(X1
i ) + (1− λ)Γi(X2

i )] ∈ K.
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Furthermore, we define the convex set

C = {(z,X) ∈ Z × Lm
1 : z ∈ Z, Xi ≤ Gi(z) a.s., i = 1, . . . ,m}.

We can rewrite (11)–(14) in the general form:

max E[H(z)]

subject toΓi(Xi) ∈ K, i = 1, . . . ,m,

(z,X) ∈ C.

(21)

By the Riesz representation theorem, the space dual toC([ai, bi]) is the spacerca([ai, bi])
of regular countably additive measures on[ai, bi] having finite variation (see, e.g., [7]).
Let us define the spaceM = rca([a1, b1]) × · · · × rca([am, bm]). We introduce the
LagrangianΛ : Z × Lm

1 ×M→ R,

Λ(z,X, µ) := E[H(z)] +
m∑

i=1

∫ bi

ai

Γi(Xi)(η) dµi(η). (22)

Let us observe that the uniform dominance condition implies that forX̃i = Gi(z̃) the
following generalized Slater condition is satisfied:

Γi(X̃i) ∈ intK, i = 1, . . . ,m.

Moreover,(z̃, X̃) ∈ C. By [2, Prop. 2.106], this is equivalent to the regularity condition:

0 ∈ int
⋃

(z,X)∈C

[Γi(Xi)−K], i = 1, . . . ,m.

Therefore we can use the necessary conditions of optimality for problem (21) (see, e.g.,
[2, Thm. 3.4]). We conclude that there exists a vector of nonnegative measuresµ̂ ∈ M
such that

Λ(ẑ, X̂, µ̂) = max
(z,X)∈C

Λ(z,X, µ̂) (23)

and ∫ bi

ai

[F2(Yi; η)− F2(X̂i; η)] dµ̂i(η) = 0, i = 1, . . . ,m. (24)

We shall derive from these conditions the required relations (18)–(20).
Every measureµ ∈ rca([a, b]) can be extended to the whole real line by assigning

measure 0 to Borel sets not intersecting[a, b]. A functionu : R → R can be associated
with every nonnegative measureµ as follows:

u(t) =


−

∫ b

t

µ([τ, b]) dτ t < b,

0 t ≥ b.
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Sinceµ ≥ 0, the functionµ([·, b]) is nonnegative and nonincreasing, which implies that
u(·) is nondecreasing and concave. Consequently,u ∈ U1([a, b]). We have shown in [5,
6] that for anyX ∈ L1 the functionu defined above satisfies the equation∫ b

a

F2(X; η) dµ(η) = −E[u(X)]. (25)

Thus, the measureŝµi correspond to functionŝui ∈ U1([ai, bi]), i = 1, . . . ,m. Re-
lations (25) forX̂i, µ̂i and ûi and equations (24) imply the complementarity condi-
tion (19).

In a similar manner, our Lagrangian (22) can be expressed as

Λ(z,X, µ) = E
[
H(z) +

m∑
i=1

(
ui(Xi)− ui(Yi)

)]
.

It follows that there existŝu ∈ Um
1 such that the optimal pair(ẑ, X̂) is the solution of

the problem:

max E
[
H(z) +

m∑
i=1

(
ûi(Xi)− ûi(Yi)

)]
subject toXi ≤ Gi(z) a.s., i = 1, . . . ,m,

z ∈ Z, Xi ∈ L1, i = 1, . . . ,m.

(26)

By the monotonicity of̂ui(·), the pointẑ is also the solution of

max
z∈Z

E
[
H(z) +

m∑
i=1

(
ûi(Gi(z))− ûi(Yi)

)]
.

We can now invoke Theorem 1 with

ϕ(z) = (H(z), G1(z), . . . , Gm(z)),

f(y0, y1, . . . , ym) = y0 +
m∑

i=1

ûi(yi).

Sincedf/dy0 = 1, we conclude there there existsθ̂ ∈ Lm
∞ , θ̂ ≥ 0 a.s., such that the

point ẑ is a solution of the problem

max
z∈Z

E
[
H(z) +

m∑
i=1

θ̂iGi(z)
]
. (27)

Moreover,θ̂i ∈ ∂ûi(Gi(ẑ)) a.s.,i = 1, . . . ,m.
Let us consider problem (26) for a fixedz = ẑ. It splits into independent problems:

max
Xi≤Gi(ẑ) a.s.

E[ûi(Xi)], i = 1, . . . ,m. (28)
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The pointsX̂i are their solutions. The monotonicity of̂ui(·) implies that the points
Gi(ẑ) are optimal as well. Therefore

ûi(X̂i) = ûi(Gi(ẑ)) a.s., i = 1, . . . ,m.

For any otherXi, by the concavity of̂ui and by the definition of̂θi,

ûi(Xi) ≤ ûi(Gi(ẑ)) + θ̂i(Xi −Gi(ẑ)) a.s..

Thus, for eachi = 1, . . . ,m,

ui(Xi)− θ̂iXi ≤ ûi(Gi(ẑ))− θ̂iGi(ẑ) ≤ ûi(X̂i)− θ̂iX̂i a.s..

Therefore the point̂Xi maximizes the expression at the left hand side, forP -almost
all ω ∈ Ω. At this point the last displayed inequalities are satisfied as equations and
therefore the second group of complementarity conditions hold true:

θ̂i[Gi(ẑ)− X̂i] = 0 a.s., i = 1, . . . ,m.

If follows that each pointX̂i, i = 1, . . . ,m, is a maximizer of the corresponding prob-
lem:

max
Xi∈L1

E
[
ui(Xi)− θ̂iXi − ûi(Yi)

]
. (29)

Putting together (27) and (29) we conclude that the pair(ẑ, X̂) maximizes

E
[
H(z) +

m∑
i=1

(
ûi(Xi) + θ̂i(Gi(z)−Xi)− ûi(Yi)

)]
,

Therefore the pair(ẑ, X̂) is the solution of (18).
Let us now prove the converse. Ifui ∈ U1([ai, bi]) then the left derivative ofui,

(ui)′−(t) = lim
τ↑t

[ui(t)− ui(τ)]/(t− τ),

is well-defined, nonincreasing and continuous from the left. By the classical result (see,
e.g., [7, Thm 3.1.3]), after an obvious adaptation, there exists a unique regular nonneg-
ative measureµi satisfying

µi([t, b]) = (ui)′−(t).

Thus the correspondence between nonnegative measures inrca([a, b]) and functions in
U1([a, b]) is a bijection and formula (25) is always valid. For everyXi satisfying (12)
we obtain

E[ui(Xi)]− E[ui(Yi)] = −
∫ bi

ai

F2(Xi; η) dµi(η) +
∫ bi

ai

F2(Yi; η) dµi(η) ≥ 0.

Thus, at every(z,X), which is feasible for (11)–(14), and for everyu ∈ Um
1 and

θ ∈ Lm
∞, θ ≥ 0 a.s., we have

L(z,X, u, θ) = E
[
H(z) +

m∑
i=1

(
ui(Xi)− ui(Yi) + θi(Gi(z)−Xi)

)]
≥ E[H(z)].
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If the maximizer(ẑ, X̂) of the Lagrangian is feasible, and complementarity conditions
(19)–(20) are satisfied, we obtain

E[H(ẑ)] = L(ẑ, X̂, u, θ) ≥ L(z,X, u, θ) ≥ E[H(z)],

for any feasible(z,X). Consequently, the point(ẑ, X̂) is optimal for the original prob-
lem (11)–(14). �

4. Duality and Decomposition

Let us define the dual functionalD : Um
1 ×Lm

∞ → R associated with problem (11)-(14)
as follows:

D(u, θ) := sup
z∈Z,X∈Lm

1

L(z,X, u, θ)

= sup
z∈Z,X∈Lm

1

E
[
H(z) +

m∑
i=1

(
ui(Xi)− ui(Yi) + θi(Gi(z)−Xi)

)]
.

(30)

We also define the dual problem:

min {D(u, θ) : u ∈ Um
1 , θ ∈ Lm

∞, θ ≥ 0 a.s.}. (31)

As a direct consequence of Theorem 2 we obtain the duality theorem.

Theorem 3.Assume that the uniform dominance condition is satisfied. If problem(11)–
(14)has an optimal solution, then the dual problem(31)has an optimal solution and the
optimal values of both problems coincide. Furthermore, for every solution(û, θ̂) of the
dual problem, any optimal solution(ẑ, X̂) of (18) satisfying(12)–(13)and (19)–(20),
is an optimal solution of the primal problem(11)–(14).

Proof. At every (z,X), which is feasible for problem (11)–(14), and for every(u, θ)
feasible for problem (31), we have

L(z,X, u, θ) = E
[
H(z) +

m∑
i=1

(
ui(Xi)− ui(Yi) + θi(Gi(z)−Xi)

)]
≥ E[H(z)].

Therefore the weak duality relation holds:

D(u, θ) ≥ E[H(z)].

Let (ẑ, X̂) be an optimal solution of the primal problem. It follows from Theorem 2
that there exist(û, θ̂), which are feasible for (31), such that

D(û, θ̂) = E[H(ẑ)].

This proves the equality of the optimal values of both problems.
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Let (û, θ̂) be a solution of the dual problem and(ẑ, X̂) be the corresponding maxi-
mizer of the Lagrangian. If the complementarity conditions (19)–(20) are satisfied, we
obtain

E[H(ẑ)] = L(ẑ, X̂, u, θ) ≥ L(z,X, u, θ) ≥ E[H(z)],

for any feasible(z,X). Consequently, if the point(ẑ, X̂) is feasible, it is optimal for
the primal problem (11)–(14). �

It follows from (30) that the dual functional can be decomposed into the sum

D(u, θ) = D0(θ) +
m∑

i=1

Di(ui, θi), (32)

where the functionsD0 : Lm
∞ → R andDi : U1([ai, bi])× L∞ → R are defined as

D0(θ) := sup
z∈Z

E
[
H(z) +

m∑
i=1

θiGi(z)
]
, (33)

and
Di(w, ζ) := sup

X∈L1

E
[
w(X)− w(Yi)− ζX

]
, i = 1, . . . ,m. (34)

The functionD0 has the structure of the dual function associated with the standard
Lagrangian,

L0(z, θ) = E
[
H(z) +

m∑
i=1

θiGi(z)
]
,

for a stochastic optimization problem with almost sure constraints. Under the assump-
tions of Theorem 3,D0(·) is a proper convex function. Moreover, if for a givenθ a
solutionẑ(θ) of the problem at the right hand side of (33) exists, then the random vec-
tor

g = (G1(ẑ), . . . , Gm(ẑ))

is a subgradient ofD0 atθ. By the definition of the operatorsGi, we haveg ∈ Lm
1 .

Let us concentrate on the properties of the functionsDi, i = 1, . . . ,m. For a con-
cave functionv : R → R we define its Fenchel conjugate in a symmetrical fashion to
the conjugate of a convex function:

v∗(ξ) = inf
t

[ξt− v(t)].

Alternatively, we could work with the usual definition of a conjugate of a convex func-
tion−v. The results would be the same but with less convenient notation.

As before, for a real random variableζ we shall understandv∗(ζ) as a random
variable inR with realizationsv∗(ζ(ω)), ω ∈ Ω.

Theorem 4.For everyv ∈ U1([a, b]) and everyζ ∈ L∞ the following formula holds
true:

Di(v, ζ) = −E [v∗(ζ) + v(Yi)].
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Proof. For a functionv ∈ U1([a, b]) andζ ∈ L∞ let us consider the problem

sup
X∈L1

E [v(X)− ζX].

Suppose thatP [ζ < 0] = ε > 0. ChoosingXM = M1l{ζ<0} and noting thatv(t) → 0
ast →∞ by definition, we see that

E[v(XM )− ζXM ] = (1− ε)v(0) + εv(M)−Mε E[ζ|ζ < 0] M→∞−−−−→∞.

Suppose now thatP [ζ > v′−(a)] > 0. ChoosingXM = −M1l{ζ>v′−(a)} for M → ∞
we obtain an infinite limit again.

It remains to consider the case when0 ≤ ζ ≤ v′−(a) a.s.. In this case the function
v(t)− ζt has a maximizer in[a, b], a.s.. By [18, Thm. 14.60] we have

sup
X∈L1

E [v(X)− ζX] ≤ sup
X∈L0

E [v(X)− ζX] = E sup
t∈R

[v(t)− ζ(ω)t]

= E sup
t∈[a,b]

[v(t)− ζ(ω)t] = −E [v∗(ζ)].

Since the maximizerX is bounded a.s., it is an element ofL1. Thus all relations above
are equalities and our assertion is true in this case. Moreover, we have shown that

dom Di = {(v, ζ) : 0 ≤ ζ ≤ v′−(a) a.s.}

Outside of the domain the asserted formula remains valid as well, because both sides
are equal to+∞. �

The proof of the theorem shows that the dual functionalsDi(ui, θi) are finite when-
ever0 ≤ θi ≤ (ui)′−(ai) a.s.. We shall show that they are subdifferentiable and we
shall find a representation of some of their subgradients.

The key element of the analysis is the functional

f(v, ζ) = −E v∗(ζ). (35)

The specificity here is thatv is considered as an argument and therefore we need an
appropriate functional space for this argument off . It is convenient to consider the
spaceLip(R) of Lipschitz continuous functions onR, equipped with the norm

‖v‖Lip = |v(0)|+ sup
t6=s

|v(t)− v(s)|
|t− s|

.

We shall treat the functionalf as defined onLip(R) × L1. It is obvious thatU1([a, b])
is a subset ofLip(R).

Recall that ifv ∈ U1([a, b]) andζ satisfies0 ≤ ζ ≤ v′−(a) a.s. then there exists a
measurable selectionX such that

X(ω) ∈ argmax
t

[v(t)− ζ(ω)t] for P -almost allω

(see e.g. Theorem 14.37, [18]). Moreover,X ∈ [a, b] a.s.. We use the symbolPX to
denote the probability measure onR induced by the random variableX.
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Theorem 5.For every v̄ ∈ U1([a, b]) and everyζ̄ ∈ L1 such that0 ≤ ζ̄ ≤ v̄′−(a)
a.s., the functionalf(v, ζ) = −E v∗(ζ) is subdifferentiable at(v̄, ζ̄). Moreover, for
every measurable selectionX(ω) ∈ argmaxt[v̄(t) − ζ̄(ω)t], the pair(PX ,−X) is a
subgradient off at (v̄, ζ̄), that is, the inequality

f(v, ζ) ≥ f((v̄, ζ̄) +
∫

(v(t)− v̄(t)) dPX(t)− E [X(ζ − ζ̄)].

holds true for all(v, ζ) ∈ Lip(R)× L1.

Proof. Given v̄, andζ̄ and a selectionX satisfying the assumptions, we have for every
(v, ζ) ∈ Lip(R)× L1 and for everyω ∈ Ω:

−v∗(ζ(ω)) = sup
t

[v(t)− ζ(ω)t] ≥ v(X(ω))− ζ(ω)X(ω)

= v̄(X(ω))− ζ̄(ω)X(ω) + v(X(ω))− v̄(X(ω))−X(ω)(ζ(ω)− ζ̄(ω))

= −v̄∗(ζ̄(ω)) + v(X(ω))− v̄(X(ω))−X(ω)(ζ(ω)− ζ̄(ω)).

Taking the expected value of both sides we obtain:

f(v, ζ) ≥ f(v̄, ζ̄) + E[v(X)− v̄(X)]− E [X(ζ − ζ̄)]

= f(v̄, ζ̄) +
∫

[v(t)− v̄(t)] dPX(t)− E [X(ζ − ζ̄)],

which is the required inequality. The selectionX is included in[a, b] a.s.. ThusX ∈ L∞
andX is a continuous linear functional onL1.

It remains to prove that the measurePX is a continuous linear functional on the
spaceLip(R). For anyv ∈ Lip(R), denoting bycv its Lipschitz constant, we obtain

∫
|v(t)| dPX(t) ≤

∫
(|v(0)|+ cv|t|) dPX(t)

= |v(0)|+ cvE[|X|] ≤ ‖v‖(1 + E[|X|]).

SinceE[|X|] is finite, the functionalPX is continuous. This proves that the functionf
is subdifferentiable and(PX ,−X) is a subgradient. �

Our analysis shows that the calculation of the dual functionalD(u, θ) and of its
subgradient splits into separate maximization problem with respect toz and with respect
to Xi(ω), ω ∈ Ω, i = 1, . . . ,m. This is crucial for the development of decomposition
methods for solving dominance-constrained stochastic optimization problems.
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5. Discrete Distributions

Let us now consider the case when the underlying probability space is finite,Ω =
{ω1, . . . , ωn}, with probabilitiespj = P ({ωj}), j = 1, . . . , n. Let J = {1, . . . , n},
I = {1, . . . ,m}. For the split-variable problem (11)–(14) we introduce the following
notation forj ∈ J andi ∈ I:

hj(z) = H(z)(ωj), gij(z) = Gi(z)(ωj), yij = Yi(ωj), xij = Xi(ωj).

For eachi the function (4) has the form

F2(Xi; η) = E[(η −Xi)+] =
n∑

j=1

pj(η − xij)+,

and the dominance constraints (12) can be expressed as

n∑
j=1

pj(η − xij)+ ≤
n∑

j=1

pj(η − yij)+, for all η ∈ [ai, bi], i ∈ I. (36)

Lemma 2. Assume thatai ≤ yij ≤ bi for all i ∈ I andj ∈ J . Then inequalities(36)
are equivalent to

n∑
j=1

pj(yik − xij)+ ≤
n∑

j=1

pj(yik − yij)+, i ∈ I, k ∈ J. (37)

Proof. It is sufficient to consider a fixedi. Let yi,[j], j ∈ J , be ordered realizationsyij ,
that is,yi,[1] ≤ yi,[2] ≤ · · · ≤ yi,[n]. It is sufficient to prove that (37) imply that

F2(Xi; η) ≤ F2(Yi; η) for all η ∈ [ai, bi].

The functionF2(Yi; ·) is piecewise linear and has break points atyi,[j], j ∈ J . Let us
consider three cases, depending on the value ofη.

Case 1:If η ≤ yi,[1] we have

0 ≤ F2(Xi; η) ≤ F2(Xi; yi,[1]) ≤ F2(Yi; yi,[1]) = 0.

Therefore the required relation holds as an equality.

Case 2:Let η ∈ [yi,[k], yi,[k+1]] for somek. Since, for anyX, the functionF2(X; ·) is
convex, inequalities (37) fork andk + 1 imply that for allη ∈ [yi,[k], yi,[k+1]] one has

F2(X; η) ≤ λF2(X; yi,[k]) + (1− λ)F2(X; yi,[k+1])

≤ λF2(Yi; yi,[k]) + (1− λ)F2(Yi; yi,[k+1]) = F2(Yi; η),

whereλ = (yi,[k+1] − η)/(yi,[k+1] − yi,[k]).
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Case 3:Forη > yi,[n] we have

F2(Yi; η) = F2(Yi; yi,[n]) + η − yi,[n]

≥ F2(X; yi,[n]) +
∫ η

yi,[n]

F (X;α) dα = F2(X; η),

as required. �

In fact, we have proved that inequalities (37) are equivalent to (36) for arbitrary
[ai, bi] covering the realizations ofYi. Thus, they are equivalent to the dominance rela-
tion enforced on the entire real line.

It follows that in the case of finite distributions, problem (11)–(14) with sufficiently
large intervals[ai, bi] is equivalent to the following nonlinear programming problem

max
n∑

j=1

pjhj(z) (38)

subject to
n∑

j=1

pj(yik − xij)+ ≤
n∑

j=1

pj(yik − yij)+, i ∈ I, k ∈ J, (39)

xik ≤ gik(z), i ∈ I, k ∈ J, (40)

z ∈ Z. (41)

In addition, suppose for simplicity thatZ ⊆ RN . Let us observe that for the smallest
realizationyi,k∗(i) = yi,[1] of Yi the corresponding dominance constraint becomes

n∑
j=1

pj(yi,k∗(i) − xij)+ ≤
n∑

j=1

pj(yi,k∗(i) − yij)+ = 0.

The uniform dominance condition (Definition 1) cannot be satisfied, unlessai > yi,k∗(i).
Fortunately, the left hand sides of the dominance constraints (39) are convex polyhedral
functions ofx. The existence of Lagrange multipliers is guaranteed under the standard
Slater condition: there exist̃z ∈ relint Z andX̃i, i ∈ I, such that

x̃ik < gik(z̃), i ∈ I, k ∈ J,

and the dominance constraints (39) are satisfied (see [16, Thm. 28.2]).
The setVi ⊂ U1([ai, bi]) of utility functions corresponding to theith group of

dominance constraints in (39) contains all concave nondecreasing functionsu(·) which
are piecewise–linear with break points atyik, k ∈ J , and which satisfyu(yi,[n]) = 0.

The Lagrange multipliersθi corresponding to the splitting constraints (40) are non-
negative vectors inRn.
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The Lagrangian takes on the form

L(z,X, u, θ) =
n∑

j=1

pj

[
hj(z) +

m∑
i=1

θijgij(z)
]

+
m∑

i=1

n∑
j=1

pj

[
ui(xij)− ui(yij)− θijxij

]
.

(42)

The optimality conditions can be formulated as follows.

Theorem 6.Assume that problem(38)–(41)satisfies the Slater constraint qualification
condition. If (ẑ, X̂) is an optimal solution of(38)–(41), then there exist̂ui ∈ Vi and
nonnegative vectorŝθi ∈ Rn, i = 1, . . . ,m, such that

L(ẑ, X̂, û, θ̂) = max
(z,X)∈Z×Rmn

L(z,X, û, θ̂), (43)

n∑
j=1

pj [ûi(x̂ij)− ûi(yij)] = 0, i ∈ I, (44)

θ̂ij(x̂ij − gij(ẑ)) = 0, i ∈ I, j ∈ J. (45)

Conversely, if for some functionŝui ∈ Vi and nonnegative vectorŝθi ∈ Rn, i ∈ I,
an optimal solution(ẑ, X̂) of (43) satisfies(39)–(40)and (44)–(45), then(ẑ, X̂) is an
optimal solution of(38)–(41).

Proof. Let us introduce Lagrange multipliersµik, i ∈ I, k ∈ J , associated with con-
straints (39). The standard Lagrangian takes on the form:

Λ(z,X, µ, θ) =
n∑

j=1

pj

[
hj(z) +

m∑
i=1

θij(gij(z)− xij)
]

+
m∑

i=1

n∑
k=1

µik

[ n∑
j=1

pj(yik − yij)+ −
n∑

j=1

pj(yik − xij)+
]
.

Rearranging the last sum we notice that

n∑
k=1

µik

n∑
j=1

pj(yik − xij)+ =
n∑

j=1

pj

n∑
k=1

µik(yik − xij)+ = −
n∑

j=1

pjui(xij),

where

ui(t) = −
n∑

k=1

µik(yik − t)+. (46)

Substituting this into the LagrangianΛ(z,X, µ, θ) yields (42). Applying (46) to the
standard complementarity conditions for the problem (38)–(41) we obtain the condi-
tions (44)–(45). Consequently, our conditions follow from standard necessary optimal-
ity conditions for problem (38)–(41) (see, e.g., [16, Cor. 28.3.1]).



18 Darinka Dentcheva and Andrzej Ruszczyński

In order to show that the standard sufficient optimality conditions follow from con-
ditions (43)–(45), we shall establish a correspondence between Lagrange multipliers
µik, k ∈ J , and concave nondecreasing utility functions inVi. We have shown that
the Lagrange multipliers generate a utility function. Conversely, let us consider a utility
functionv ∈ Vi, and lett1 < t2 < · · · < tK be its break points. We can define

νk = v′−(tk)− v′+(tk), k = 1, . . . ,K.

For everyk = 1, . . . ,K we defineJ(k) = {j ∈ J : yij = tk}. By the definition ofVi,
the setsJ(k) are nonempty and constitute a partition of the setJ . Therefore, for every
j ∈ J , there is uniquek = 1, . . . ,K with j ∈ J(k), and we can define:

µij = νk/|J(k)|,

where|J(k)| denotes the cardinality ofJ(k). It is a routine check to see that theµij

satisfy the equation (46). Thus, substitutingui(t) in (42) yields the standard Lagrangian
Λ(z,X, µ, θ). Similarly, we can transform the complementarity conditions.

Consequently, our conditions are equivalent to the standard necessary and sufficient
optimality conditions for problem (38)–(41). �

The dual functionalD :
m
×

i=1
Vi × Rmn → R associated with problem (38)-(41) has

the form:

D(u, θ) = sup
z∈Z,X∈Rmn

L(z,X, u, θ) (47)

= sup
z∈Z,X∈Rmn

n∑
j=1

pj

[
hj(z) +

m∑
i=1

(
ui(xij)− ui(yij) + θij(gij(z)− xij)

)]
.

The dual problem reads:

min {D(u, θ) : u ∈
m
×

i=1
Vi, θ ∈ Rmn, θ ≥ 0}. (48)

As a direct consequence of Theorem 6 we obtain the duality theorem.

Theorem 7.Assume that the Slater condition is satisfied. If problem(38)–(41)has an
optimal solution then the dual problem(48) has an optimal solution and the optimal
values of both problems coincide. Furthermore, for every solution(û, θ̂) of the dual
problem, any optimal solution(ẑ, X̂) of (43) satisfying(39)–(40)and (44)–(45), is an
optimal solution of the primal problem(38)–(41).

The dual functional (47) can be decomposed into the sum

D(u, θ) = D0(θ) +
m∑

i=1

Di(ui, θi), (49)

where the functionsD0 : Rmn → R andDi : Vi × Rn → R are defined as follows:

D0(θ) = sup
z∈Z

n∑
j=1

pj

[
hj(z) +

m∑
i=1

θijgij(z)
]
, (50)



Stochastic Optimization with Dominance Constraints 19

and

Di(w, ζ) = sup
x∈Rn

n∑
j=1

pj

[
w(xj)− w(yij)− ζjxj

]
, i = 1, . . . ,m. (51)

The functionD0 has the structure of the dual function associated with the standard
Lagrangian,

L0(z, θ) =
n∑

j=1

pj

[
hj(z) +

m∑
i=1

θijgij(z)
]
.

Under the assumptions of Theorem 7,D0(·) is a proper convex function. Moreover, if
for a givenθ a solutionẑ(θ) of the problem at the right hand side of (50) exists, then
the matrixΓ (ẑ) with entries

γij = pjgij(ẑ), i ∈ I, j ∈ J,

is a subgradient ofD0 at θ. If, additionally, the setZ is compact, then we have (see,
e.g.,[4, Thm. 2.8.2])

∂D0(θ) = co {Γ (ẑ) : L0(ẑ, θ) = D0(θ)}.

Hereco A denotes the closed convex hull of the setA.
Now we shall describe the subdifferential of the functionsDi. For this purpose let

us introduce the spacesPLi of piecewise linear functions fromR to R having break
points atyik, k ∈ J . They are, clearly, finite dimensional.

We can represent the functionsDi as follows:

Di(w, ζ) =
n∑

j=1

pj sup
xj∈R

[
w(xj)− w(yij)− ζjxj

]
= −

n∑
j=1

pjdij(w, ζj),

where
dij(w, ζj) = w∗(ζj) + w(yij).

Let us observe that

dom dij = {(w, ζ) : 0 ≤ ζj ≤ w′−(yi,[1]), j ∈ J}.

By the definition of the setVi, the following equation holds

sup
xj∈R

[
w(xj)− w(yij)− ζjxj

]
= max

k∈J

[
w(yik)− w(yij)− ζjyik

]
(52)

wheneverdij(w, ζj) is finite. The subdifferential ofdij can be characterized as follows.

Lemma 3. The functiondij is a convex polyhedral function onLip(R) × R. Assume
that (w̄, ζ̄) ∈ dom dij and letJ∗ = {j : dij(w̄, ζ̄j) = w̄(yik) − w̄(yij) − ζ̄jyik}. The
functiondij is subdifferentiable at(w̄, ζ̄) and

co
{ ⋃

k∈J∗

(δyik
− δyij

,−yik)
}
⊆ ∂dij(w̄, ζ̄),

whereδt is the Dirac measure att. Moreover, if0 < ζ̄j < w̄′−(yi,[1]) then the above
formula is satisfied as equality.
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Proof. Since for any fixedt the left derivativew′−(t) is a bounded linear functional
on Lip(R), the domain ofdij is determined by finitely many linear inequalities. As
shown in (52), the functiondij(w, ζj) is the maximum of finitely many linear func-
tions of(w, ζj) in its domain. Thereforedij(w, ζj) is a convex polyhedral function. Its
subdifferential contains the convex hull of the gradients of the functions

dk
ij(w, ζj) = w(yik)− w(yij)− ζjyik, k ∈ J∗.

Since∇dk
ij(w̄, ζ̄j) = (δyik

− δyij ,−yik) we obtain the required result.
At the boundary points of the domain ofdij , whenζ̄j = 0 or ζ̄j = w̄′−(yi,[1]), the

subdifferential contains also all elements of the normal cone to the domain. �

6. Numerical Example

It follows from our analysis that the dual functional can be expressed as a weighted sum
of mn + 1 convex nonsmooth functions:

D(u, θ) = D0(θ) +
m∑

i=1

n∑
j=1

pjdij(ui, θij), (53)

whose domains are known, and whose subgradients can be readily calculated. Further-
more, the functionsdij are polyhedral. All these facts can be used for efficient numerical
solution of the problem. The regularized decomposition method, which was developed
in [19] for a similar purpose, can be adapted to this problem as well. It is a special-
ized bundle method [9,10] which takes advantage of representation (53) to increase the
efficiency and the numerical stability of the algorithm.

In order to apply any numerical method we need to decide about a finite dimensional
representation of the utility functionsui, i = 1, . . . ,m. We shall represent each function
ui by its slopes. Let us denote the values ofui at its break points by

uij = ui(yij), j = 1, . . . , n.

According to Lemma 3, a subgradient ofdij within the domain is given by the formula

(δk∗ − δj ,−yik∗)

wherek∗ is the maximizer of

uik − uij − θijyik, k = 1, . . . , n,

andδj denotes thejth unit vector inRn.
Let us now consider the ordered realizationsyi,[1] ≤ yi,[2] ≤ · · · ≤ yi,[n]. We

introduce the variables

sik = (ui)′−(yi,[k]), k = 1, . . . , n.
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The vectorsi ∈ Rn is nonnegative andsik ≥ si,k+1, k = 1, . . . , n − 1. With this
re-ordering of coordinates we can calculate the ordered values ofui as follows

ui,[k] = ui(yi,[k]) = −
∑
`>k

si`(yi,[`] − yi,[`−1]).

A subgradient of the functiondij with respect to(si, θij) can be calculated accordingly:(
−

∑
`>k∗

δ`(yi,[`] − yi,[`−1]) +
∑

yi,[`]>yij

δ`(yi,[`] − yi,[`−1]),−yi,[k∗]

)
,

wherek∗ is the index at which the maximum of

ui,[k] − uij − θijyi,[k], k = 1, . . . , n,

is attained. The domain of the dual problem is defined by:

0 ≤ θij ≤ si1, i = 1, . . . ,m, j = 1, . . . , n,

and it can be directly taken into account within the method.
We tested our dual approach on the following financial optimization example. We

haveN assets with random returnsQ1, . . . , QN . If z1, . . . , zN are the fractions of the
initial capital invested in assets1, . . . , N , then the portfolio return has the form:

G(z) = Q1z1 + · · ·+ QNzN .

The set of feasible allocations is defined as the simplex

Z = {z ∈ RN : z1 + · · ·+ zN = 1, zk ≥ 0, k = 1, . . . , N}.

Let z̃ ∈ Z represent a reference portfolio and letY = G(z̃). We consider the following
problem

max E[G(z)]

subject toG(z) �(2) Y,

z ∈ Z.

In our experiment we have assumed that the returns of the assets have a discrete dis-
tribution with n realizations. Let us observe that the setZ is a convex polyhedron.
Furthermore, the functionG is linear, and the dominance constraint becomes a con-
vex constraint involving a polyhedral function, as discussed in section 5 for problem
(38)–(41). Therefore we do not need to verify the Slater condition here.

Our calculations were carried out for a basket of719 real-world assets, and for616
possible realizations of their joint returns [20]. Historical data on weekly returns in the
12 years from Spring 1990 to Spring 2002 were used as equally likely realizations.
More specifically, ifqjk denotes the historical return of assetk in weekj, the vector
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(qj1, . . . , qjN ), whereN = 719, is considered as thejth realization of the vector of
returns. Therefore

gj(z) =
N∑

k=1

qjkzk

is thejth realization of the portfolio return, attained with probabilitypj = 1/n, where
n = 616.

Function (50) has the form

D0(θ) = sup
z∈Z

n∑
j=1

pj(1 + θj)gj(z) = sup
z∈Z

n∑
j=1

N∑
k=1

pj(1 + θj)qjkzk

= max
1≤k≤N

n∑
j=1

pj(1 + θj)qjk.

In the last expression we have used the fact that a linear form attains its maximum over a
simplex at one of the vertices. The value ofD0 can be easily calculated by enumeration,
and a subgradient with respect toθ is given by the vectorΓ with coordinatesγj =
pjqjk∗ , j = 1, . . . , n, with k∗ representing the best vertex.

The dual problem of minimizing (53) has1335 decision variables: the utility func-
tion u, represented by the vector of slopess ∈ RN , and the multiplierθ ∈ Rn. The
number of functions in (53) equals 617. It is a rather hard nonsmooth optimization
problem, for present standards. As indicated earlier, we have used for its solution a new
version of the regularized decomposition method of [19]. After the solution(û, θ̂) of
the dual problem is found, the optimal solution of the primal problem can be recovered
from the subgradients of the dual function satisfying the optimality conditions.

We have selected as the reference portfolio the equally weighted portfolio of the
200 fastest growing companies in this 12-year period. The expected weekly return of
this portfolio equals 0.0071. Of course, it has been selectedex post, but our objective
here is just to illustrate the effect of the dominance constraint.

The method solved the problem in 163 iterations inca. 38 min CPU time on a
personal computer having a 1.6 GHz clock. The optimality conditions were satisfied
with the accuracy of10−8.

The optimal portfolio contains 22 assets with weights ranging from 0.00095 to
0.0922. Its expected return equals 0.0116, as compared to 0.0164 of the fastest growing
asset. It is interesting to note that the fastest growing asset participates in the optimal
portfolio with the weight of 7% only.

The optimal utility function associated with the dominance constraint is illustrated
in Figure 1. The data points in the figure are the points at which the slope of the utility
function changes.
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